WorldWideScience

Sample records for hazardous waste treatment

  1. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  2. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  3. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  4. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  5. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  6. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  7. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  8. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  9. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  10. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  11. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  12. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  13. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  14. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  15. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  17. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  18. Reliability analysis of common hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption

  19. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Robert D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  20. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  1. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  2. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  4. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... treatment of a hazardous waste generated by the Owens-Brockway Glass Container Company in Vernon, California... action. List of Subjects in 40 CFR Part 268 Environmental protection, Hazardous waste, and Variances...

  5. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status thermal treatment...

  6. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  7. Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel

  8. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Science.gov (United States)

    2010-11-04

    ... treatment sludge from the lists of hazardous waste set forth in Title 40 of the Code of Federal Regulations... treatment sludges generated at its facility located in Owosso, Michigan from the list of hazardous wastes... disposed in a Subtitle D landfill and we considered transport of waste constituents through ground water...

  9. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  10. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  11. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    Science.gov (United States)

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  12. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  13. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  14. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  15. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  16. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Science.gov (United States)

    2010-07-01

    ..., storage or disposal facility. If an eligible academic entity makes the hazardous waste determination... hazardous waste permit or interim status as soon as it arrives in the on-site treatment, storage or disposal... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the...

  17. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  18. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This paper contains the proceedings of emergin technologies for hazardous waste management. Topics covered include: advanced transuranic waste managements; remediation of soil/water systems contaminated with nonaqueous pollutants; advances in molten salt oxidation; air treatment and protection; advanced waste minimization strategies; removal of hazardous materials from soils or groundwater; bioremediation of soils and sediment; innovation, monitoring, and asbestos; high-level liquid waste chemistry in the Hanford tanks; biological contributions to soil and groundwater remediation; soil treatment technologies; pollution prevention; incineration and vitrification; current technology; systematic design approaches to hazardous waste management; waste management and environmental restoration at Savannah River; soil washing and flushing for remediation of hazardous wastes

  19. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  20. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  1. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions... requirements, the standards for owners and operators of hazardous waste treatment, storage and disposal... hazardous waste management facilities, the land disposal restrictions program, and the hazardous waste...

  2. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  3. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  4. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  5. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    Science.gov (United States)

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  6. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  7. Waste minimization via destruction of hazardous organics

    International Nuclear Information System (INIS)

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics

  8. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  9. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  10. Electrochemical treatment of mixed (hazardous and radioactive) wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Zawodzinski, C.; Smith, W.H.

    1995-01-01

    Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed wastes with an organic component can be treated by oxidizing the organic compound to carbon dioxide and then recovering the radioactive component. The oxidation can be done directly at the anode or indirectly using an electron transfer mediator. This work describes the destruction of isopropanol, acetone and acetic acid at greater than 90% current efficiency using cobalt +3 or silver +2 as the electron transfer mediator. Also described is the destruction of cellulose based cheesecloth rags with electrochemically generated cobalt +3, at an overall efficiency of approximately 20%

  11. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  12. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    International Nuclear Information System (INIS)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards

  13. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  14. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  15. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  16. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    Science.gov (United States)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the

  17. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  18. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  19. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  20. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  1. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-10-07

    ... the lists of hazardous waste listed at 40 CFR 261.31, both past and currently generated sludge... water production waste treatment system. Once- through non-contact cooling water does not require... grease, sulfide, water content, corrosivity and ignitability. The sludge characterization included...

  2. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  3. The status of hazardous waste management in Taiwan, R.O.C

    International Nuclear Information System (INIS)

    Chen, L.L.G.

    1989-01-01

    A large quantity of industrial waste (such as waste oils FCB's, cadmium, etc.) is produced daily in Taiwan, R.O.C.. A 1985 survey found that the amount of waste generated equalled approximately 30 million tons per year. Hazardous waste represents 9.7% of this total. Based on statistics from this same 1985 survey, 72% of the factories disposed of their waste without intermediate treatment. This paper reports that since most methods used for treatment of hazardous wastes were implemented incorrectly, the proper treatment of such waste has become the focal point of environmental protection in Taiwan. From July, 1987 the short-term program for industrial waste control has had as its first priority the control of toxic, infectious and corrosive hazardous waste. At the same time, a registration system for permission, reporting and results inspection for hazardous wastes is being developed. An industrial waste exchange and reclamation system is also being developed. It is predicted that a complete hazardous waste management program can be developed within the next four years

  4. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  5. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    Science.gov (United States)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  6. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  7. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  8. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  9. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  10. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  11. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  12. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  13. Hazardous waste and environmental trade: China`s issues

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jiang [National Research Center for Science and Technology for Development, Beijing (China)

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  14. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  15. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  16. Hazardous healthcare waste management in the Kingdom of Bahrain

    International Nuclear Information System (INIS)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-01-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  17. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  18. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  19. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  20. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  1. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  2. Hazardous waste management plan, Savannah River Plant

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1984-06-01

    All SRP waste storage, disposal, and recycling facilities that have received hazardous waste, low-level radioactive hazardous waste (mixed waste) or process waste since 1980 have been evaluated by EPA standards. Generally the waste storage areas meet all applicable standards. However, additional storage facilities currently estimated at $2 million and waste disposal facilities currently estimated at $20 million will be required for proper management of stored waste. The majority of the disposal facilities are unlined earthen basins that receive hazardous or process wastes and have or have the potential to contaminate groundwater. To come into compliance with the groundwater standards the influents to the basins will be treated or discontinued, the basins will be decommissioned, groundwater monitoring will be conducted, and remedial actions will be taken as necessary. The costs associated with these basin actions are not completely defined and will increase from present estimates. A major cost which has not been resolved is associated with the disposal of the sludge produced from the treatment plants and basin decommissioning. The Low-Level Radioactive Burial Ground which is also a disposal facility has received mixed waste; however, it does not meet the standards for hazardous waste landfills. In order to properly handle mixed wastes additional storage facilities currently estimated at $500,000 will be provided and options for permanent disposal will be investigated

  3. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  4. Packed bed reactor treatment of liquid hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-01-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl 4 ), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO 2 is not released to the environment

  5. Biotechnology and hazardous waste treatment; Part 1. The state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1990-04-01

    There is considerable speculation regarding the use of biotechnology for improving the treatment of hazardous waste. Biotechnology may be able to improve waste treatment capabilities by overcoming the limits of biological treatment (bioremediation). The contaminant is usually one of the sources of food and energy for the organisms thriving in the contaminated environment. The viability of these organisms is controlled by several environmental factors, notably, nutrient, water, oxygen, temperature and pH levels; the presence of toxic organic compounds, metals, or high salt content can inhibit their activities. Carbon:nitrogen:phosphorous ratios must be monitored to assure that only the contaminant is the limiting nutrient. Several innovative bioremediation practices which can be considered biotechnological are being tested: anaerobic dehalogenation of PCBs and DDT; cometabolic degradation; denitrification; and gene amplification.

  6. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  7. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  8. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  9. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  10. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  11. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  12. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The objective of the Hazardous Waste Development, Demonstration and Disposal (HAZWDDD) Program Plan is to ensure that the needs for treatment and disposal of all its hazardous and mixed wastes have been identified and planned for. A multifaceted approach to developing and implementing this plan is given, including complete plans for each of the five installations, and an overall integrated plan is also described in this report. The HAZWDDD Plan accomplishes the following: (1) provides background and organizational information; (2) summarizes the 402 hazardous and mixed waste streams from the five installations by grouping them into 13 general waste categories; (3) presents current treatment, storage, and disposal capabilities within Energy Systems; (4) develops a management strategy by outlining critical issues, presents flow sheets describing management schemes for problem waste streams, and builds on the needs identified; (5) outlines specific activities needed to implement the strategy developed; and (6) presents schedule and budget requirements for the next decade. The HAZWDDD Program addresses current and future technical problems and regulatory issues and uncertainties. Because of the nature and magnitude of the problems in hazardous and mixed waste management, substantial funding will be required. 10 refs., 39 figs., 16 tabs

  13. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  14. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  15. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  16. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1994-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  17. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1993-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  18. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  19. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  20. Regulatory barriers to hazardous waste technology innovation

    International Nuclear Information System (INIS)

    Kuusinen, T.L.; Siegel, M.R.

    1991-02-01

    The primary federal regulatory programs that influence the development of new technology for hazardous waste are the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, also commonly known as Superfund). Two important aspects of RCRA that can create barriers to hazardous waste technology innovation are technology-based waste pre-treatment standards and a cumbersome permitting program. By choosing a technology-based approach to the RCRA land disposal restrictions program, the US Environmental Protection Agency (EPA) has simultaneously created tremendous demand for the technologies specified in its regulations, while at the same time significantly reduced incentives for technology innovation that might have otherwise existed. Also, the RCRA hazardous waste permitting process can take years and cost hundreds of thousands of dollars. The natural tendency of permit writers to be cautious of unproven (i.e., innovative) technology also can create a barrier to deployment of new technologies. EPA has created several permitting innovations, however, to attempt to mitigate this latter barrier. Understanding the constraints of these permitting innovations can be important to the success of hazardous waste technology development programs. 3 refs

  1. Bioprocessing scenarios for mixed hazardous waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.

    1994-01-01

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE's facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series

  2. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  3. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  4. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  5. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  6. Hazardous Medical Waste Management as a Public Health Issue

    OpenAIRE

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Nataša

    2005-01-01

    The amount of waste produced is connected with the degree of a country’s economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment an...

  7. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  8. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  9. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  10. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  11. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  12. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  13. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  14. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  15. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  16. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  17. Proceedings of the international conference on hazardous waste sources, effects and management

    International Nuclear Information System (INIS)

    1999-01-01

    The publication has been set up as a textbook for training course dealing with hazardous waste sources, effects and management. Vol.1: (1)national policy; (2)waste management; (3)environment; (4)health hazards; vol.2: (1)monitoring and characterization; (2) migration; (3)storage and disposal; (4)treatment radioactive; vol.3: (1) Treatment; (2) recycling

  18. Proceedings of the international conference on hazardous waste sources, effects and management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication has been set up as a textbook for training course dealing with hazardous waste sources, effects and management. Vol.1: (1)national policy; (2)waste management; (3)environment; (4)health hazards; vol.2: (1)monitoring and characterization; (2) migration; (3)storage and disposal; (4)treatment radioactive; vol.3: (1) Treatment; (2) recycling.

  19. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  20. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  1. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) program plan: Executive summary

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan provides a strategy for management of hazardous and mixed wastes generated by the five Department of Energy (DOE) installations managed by Martin Marietta Energy Systems, Inc. (Energy Systems). This integrated corporate plan is based on the individual installation plans, which identify waste streams, facility capabilities, problem wastes, future needs, and funding needs. Using this information, the corporate plan identifies common concerns and technology/facility needs over the next 10 years. The overall objective of this corporate plan is to ensure that treatment, storage, and disposal (TSD) needs for all hazardous and mixed wastes generated by Energy Systems installations have been identified and planned for. Specific objectives of the program plan are to (1) identify all hazardous and mixed waste streams; (2) identify hazardous and mixed waste TSD requirements; (3) identify any unresolved technical issues preventing implementation of the strategy; (4) develop schedules for studies, demonstrations, and facilities to resolve the issues; and (5) define the interfaces with the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. 10 refs., 7 figs

  2. Portable sensor for hazardous waste

    International Nuclear Information System (INIS)

    Piper, L.G.

    1994-01-01

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps

  3. A comparison of thermal treatment processes for hazardous waste : Strategic EIA for the Dutch national hazardous waste management plan 1997- 2007

    NARCIS (Netherlands)

    Tukker, A.

    1999-01-01

    This paper (the second in a series of three) compares incineration options for hazardous waste with LCA. Provided that acceptance criteria are met with regard to metals, PAHs and chlorine, Dutch Municipal Solid Waste Incinerators (MSWIs) appeared to be preferable above rotary kilns since they have a

  4. 76 FR 2618 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-01-14

    ... Contaminated Cadmium-, Mercury-, and Silver-Containing Batteries Checklist 201. Hazardous Waste Management June... Restrictions May 26, 1998, 63 MR 7045.1390; Phase IV; Hazardous Soils FR 28556. Effective June 22, Treatment...); Effective February 14, 2005. Hazardous Remediation Waste November 30, MR 7001.0060; Management Requirements...

  5. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  6. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  7. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  8. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-12-17

    ... and Community Right-to-Know Act FDA Food and Drug Administration HSWA Hazardous and Solid Waste...(f)), and hazardous substances (40 CFR 302.4) based solely upon the evidence that it is a potential... subsequently identified as hazardous wastes in Sec. 261.33(f) based solely on their potential for carcinogenic...

  9. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  10. Hazardous Waste: Learn the Basics of Hazardous Waste

    Science.gov (United States)

    ... Need More Information on Hazardous Waste? The RCRA Orientation Manual provides introductory information on the solid and ... and Security Notice Connect. Data.gov Inspector General Jobs Newsroom Open Government Regulations.gov Subscribe USA.gov ...

  11. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  12. University program in hazardous chemical and radioactive waste management

    International Nuclear Information System (INIS)

    Parker, F.L.

    1987-01-01

    The three main functions of a university program are education, training, and research. At Vanderbilt University, there is a Solid and Hazardous Waste option in the Master of Science in Engineering Program. The two main foci are treatment of wastes and environmental transport and transformation of the wastes. Courses in Hazardous Waste Engineering and Radioactive Waste Disposal present a synoptic view of the field, including legal, economic, and institutional aspects as well as the requisite technical content. The training is accomplished for some of the students through the aegis of an internship program sponsored by the US Department of Energy. In the summer between the two academic years of the program, the study works at a facility where decontamination and/or decommissioning and/or remedial actions are taking place. Progress in understanding the movement, transformation, and fate of hazardous materials in the environment is so rapid that it will not be possible to be current in the field without participating in that discovery. Therefore, their students are studying these processes and contributing to new knowledge. Some recent examples are the study of safety factors implicit in assuming a saturated zone below a hazardous waste landfill when an unsaturated zone exists, application of probabilistic risk assessment to three National Priority List sites in Tennessee, and the explanation of why certain organics precede pH, conductivity and nitrates through a clay liner at a hazardous waste disposal site

  13. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  14. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  15. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  16. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  17. 49 CFR 171.3 - Hazardous waste.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  18. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  19. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  20. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  1. General procedure to characterize hazardous waste contaminated with radionuclides

    International Nuclear Information System (INIS)

    Vokal, A.; Svoboda, K.; Necasova, M.

    2002-04-01

    The report is structured as follows: Overview of current status of characterization of hazardous wastes contaminated with radionuclides (HWCTR) in the Czech Republic (Legislative aspects; Categorization of HWCwR; Overview of HWCwR emerging from workplaces handling ionizing radiation sources; Mixed waste management in the Czech Republic); General procedure to characterized wastes of the HWCwR type (Information needed from the waste producer; Waste analysis plan - description of waste treatment facilities, verification of wastes, selection of waste parameters followed, selection of sampling method, selection of test methods, selection of frequency of analyses; Radiation protection plan; Non-destructive methods of verification of waste - radiography/tomography, dosimetric inspection, measuring instrumentation, methods usable for the determination of volume and surface activities of materials; Non-destructive invasive methods - internal pressure measurement and gas analysis, endoscopic examination, visual inspection; Destructive methods - sampling, current equipment at Nuclear Research Institute Rez; Identification of hazardous components in waste - chemical screening of mixed wastes; Assessment of immobilization waste matrices; Assessment of packaging; Safety analyses; QA and QC). (P.A.)

  2. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  3. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The waste characterization for each treatment unit or process is based on treatment records from LLNL's computerized Hazardous Waste Management Inventory System (HWMIS). In 1990, these data were compiled into a single database comprising both hazardous waste and mixed waste data. Even though these data originate from the same source used in the previous HRA, the database was modified to set quantities and concentrations to a consistent set of units. This allowed an analysis of waste types by Hazardous Waste Management unit that was more accurate and did not rely upon many of the conservative assumptions used in the Phase II HRA waste characterization. Finally, the current waste characterizations are considered more representative of potential long-term wastes because they were developed by combining all wastes that could be treated in each unit, as opposed to the wastes treated only during 1988 to 1989. This final step more appropriately accounts for the variability in waste types likely to be seen by the Hazardous Waste Management Division. The quantities of each waste listed in the characterization tables represent the sum of all chemical quantities belonging to hazardous and mixed waste types potentially handled by each area

  4. What makes a thermal plasma suitable for hazardous waste disposal

    International Nuclear Information System (INIS)

    Benocci, R.; Florio, R.; Galassi, A.; Paolicchio, M.; Sindoni, E.

    1997-01-01

    The basic transport and thermodynamic characteristic of a thermal plasma are analysed in order to emphasize those properties that make a high-temperature source profitable and suitable over the conventional devices for hazardous waste treatment. In addition a survey of the basic reaction sequence and apparatus units is made together with the different approaches to thermal plasma waste treatments

  5. Radiological hazards of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  6. Hazardous waste. Annual report, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Activities in the Hazardous Waste Program area in 1984 ranged from preparing management and long-range plans to arranging training seminars. Past and present generation of hazardous wastes were the key concerns. This report provides a summary of the significant events which took place in 1984. 6 tabs

  7. Pacific Basin conference on hazardous waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This conference was held November 4--8, 1996 in Kuala Lumpur, Malaysia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the problems of hazardous waste. Topics of discussion deal with pollution prevention, waste treatment technology, health and ecosystem effects research, analysis and assessment, and regulatory management techniques. Individual papers have been processed separately for inclusion in the appropriate data bases.

  8. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  9. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  10. Management of hazardous wastes in the laboratories of the Instituto Tecnologico de Costa Rica (phase III)

    International Nuclear Information System (INIS)

    Salas Jimenez, Juan Carlos; Quesada Carvajal, Hilda; Harada, Katsuhiro

    2009-01-01

    A scaling at pilot plant level was performanced for the treatment of wastes are stored in significant quantities at the Instituto Tecnologico de Costa Rica (ITCR). These wastes are aqueous of heavy metals from laboratories and of the nitriding process slag. Dr. Katsuhiro Harada, Japanese aid worker, suggested a treatment methodology that was tested and adapted to the characteristics of hazardous wastes generated in the ITCR. In addition, an operating procedure was suggested to centralize the treatment of waste produced in different labs but they have similar chemical characteristics; therefore can be treated with the same chemical method. For these cases it is easier and cheaper to concentrate the treatment in one place, and in the case of extremely hazardous waste, whose treatment and disposal are somewhat complicated to implement, it is advisable to establish a specialized laboratory with trained personnel for management. A hazardous waste laboratory equipped with a reactor, sludge filter and laboratory equipment for analysis. The methods tested in the pilot plant for the treatment of aqueous wastes of heavy metals and cyanide slag were effective. (author) [es

  11. Overview of hazardous-waste regulation at federal facilities

    International Nuclear Information System (INIS)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require

  12. Overview of hazardous-waste regulation at federal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  13. Egyptian Environmental Activities and Regulations for Management of Hazardous Substances and Hazardous Wastes

    International Nuclear Information System (INIS)

    El Zarka, M.

    1999-01-01

    A substantial use of hazardous substances is essential to meet the social and economic goals of the community in Egypt. Agrochemicals are being used extensively to increase crop yield. The outdated agrochemicals and their empty containers represent a serious environmental problem. Industrial development in different sectors in Egypt obligates handling of huge amounts of hazardous substances and hazardous wastes. The inappropriate handling of such hazardous substances creates several health and environmental problems. Egypt faces many challenges to control safe handling of such substances and wastes. Several regulations are governing handling of hazardous substances in Egypt. The unified Environmental Law 4 for the year 1994 includes a full chapter on the Management of Hazardous Substances and Hazardous Wastes. National and international activities have been taken to manage hazardous substances and hazardous wastes in an environmental sound manner

  14. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  15. 40 CFR 262.60 - Imports of hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  16. 30 CFR 47.53 - Alternative for hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  17. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  18. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  19. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  20. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  1. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  2. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  3. The PERC trademark process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    International Nuclear Information System (INIS)

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-01-01

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC)trademark treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC trademark treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream's form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment

  4. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  5. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  7. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  8. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  9. Developing a dependable approach for evaluating waste treatment data

    International Nuclear Information System (INIS)

    Gering, K.L.

    1997-01-01

    Decision makers involved with hazardous waste treatment issues are faced with the challenge of making objective evaluations concerning treatment formulations. This work utilizes an effectiveness factor (denoted as η) as the basis for waste treatment evaluations, which was recently developed for application to mixed waste treatability studies involving solidification and stabilization at the Idaho National Engineering and Environmental Laboratory. The effectiveness factor incorporates an arbitrary treatment criterion Φ, which in practice could be the Toxicity Characteristic Leaching Procedure, Unconfined Compressive Strength, Leachability Index, or any other criterion used to judge treatment performance. Three values for Φ are utilized when assessing a given treatment formulation: before treatment, after treatment, and a reference value (typically a treatment standard). The expression for η also incorporates the waste loading as the prime experimental parameter, and accounts for the contribution that each hazard has upon the overall treatment performance. Also discussed are general guidelines for numerical boundaries and statistical interpretations of treatment data. Case studies are presented that demonstrate the usefulness of the effectiveness factor and related numerical methods, where the typical hazards encountered are toxic metals within mixed waste

  10. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-23

    ... Treatment Subcategories for Radioactively Contaminated Cadmium-, Mercury-, and Silver- Containing Batteries..., 1998 (63 FR 28556) Land Disposal Restrictions Phase IV; Hazardous Soils Treatment Standards and..., October 22, 1998 (63 FR 56710) Hazardous Remediation Waste Management Requirements (HWIR-Media), Checklist...

  11. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  12. Lime treatment of liquid waste containing heavy metals, radionuclides and organics

    International Nuclear Information System (INIS)

    DuPont, A.

    1990-01-01

    This paper reports on lime treatment of liquid waste containing heavy metals, radio nuclides and organics. Lime is wellknown for its use in softening drinking water the treatment of municipal wastewaters. It is becoming important in the treatment of industrial wastewater and liquid inorganic hazardous waste; however, there are many questions regarding the use of lime for the treatment of liquid hazardous waste

  13. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  14. Management of Hazardous Waste in Indonesia

    Science.gov (United States)

    Widyatmoko, H.

    2018-01-01

    Indonesia needs to build four Treatment Centrals for 229,907 tons per year produced hazardous waste. But almost all hazardous waste treatment is managed by just one company at present, namely PT. PPLI (Prasada Pamunah Limbah Industri). This research is based on collected data which identifies payback period of 0.69 years and rate of return 85 %. PT PPLI is located within the Cileungsi District of the Bogor Regency of West Java Province. Records from nearest rainfall station at Cibinong indicate that annual average rainfall for the site is about 3,600 mm. It is situated on hilly terrain and is characterized by steep slopes as well as has a very complex geological structure. The Tertiary sequence was folded to form an assymetric anticline with axis trend in an East-West direction. Three major faults cut the middle of the site in a North-South direction with a vertical displacement of about 1.5 meters and a zone width of 1 meter. The high concentration of Chemical Oxygen Demand (COD) 2500 ppm in Secondary Leachate Collection System (SLCS) indicate a possible failure of the Primary Leachate Clection System (PLCS), which need correct action to prevent groundwater contamination.

  15. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  16. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  17. Current Status of Manufacturing Hazardous Waste in Shanghai

    Institute of Scientific and Technical Information of China (English)

    Liu Changqing; Zhang Jiangshan; Zhao Youcai

    2007-01-01

    It is difficult to manage the manufacturing hazardous waste(MHW)whichis generated from a huge amount of complicated sources and causes very serious pollution.Therefore more and more attention has been paid to MHW pollution.shanghai,as an industrial and economic center and an intemational metropolis in China,has a vast industrial system spanning a multitude of sectors,which generates MHW not only in a huge magnitude but also in a large variety of types from complicated sourrces,resulting in severe pollution.In 2003,the production of MHW in Shanghai is about 3.96 x 10ton,involving 33 indices.Most of MHW in Shanghai is treated and disposed of,but a significant portion is not handled properly and effectively.This paper carries out in-field investigation on the current status of MHW production and treat ment in Shanghai,and puts forward scientific proposals that Shanghai should facilitate cleaner production and minimize haz ardous waste;strictly enforce hazardous waste registration system, strengthen monitoring the certified enterprises;strengthen intent disposal center construction and realize hazardous waste reclamation;accelerate establishing tlle technical criteria and the management policy,promote the research and development on the treatment and disposal technology,and strengthen information management,thus realizing integrated management on MHW pollution.

  18. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  19. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    International Nuclear Information System (INIS)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation

  20. Regulation and Control of Hazardous Wastes

    OpenAIRE

    Hans W. Gottinger

    1994-01-01

    Hazardous waste regulations require disposal in approved dumpsites, where environmental consequences are minimal but entry may be privately very costly. Imperfect policing of regulations makes the socially more costly option illicit disposal preferable form the perspective of the private decision maker. The existence of the waste disposal decision, its economic nature, production independence, and the control over environmental damage are key issues in the economics of hazardous waste managem...

  1. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2011-09-28

    ... Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of proposed rule... Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross Avenue, Dallas, TX... petition. A new petition will be required for this waste stream. List of Subjects in 40 CFR Part 261...

  2. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  3. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  4. 40 CFR 262.11 - Hazardous waste determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  5. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  6. Sources and management of hazardous waste in Papua New Guinea

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. [Univ. of Papua New Guinea (Papua New Guinea)

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  7. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  9. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  10. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  11. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  12. Household hazardous waste in municipal landfills: contaminants in leachate

    International Nuclear Information System (INIS)

    Slack, R.J.; Gronow, J.R.; Voulvoulis, N.

    2005-01-01

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge

  13. A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Omid Boyer

    2013-01-01

    Full Text Available Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.

  14. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  16. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  17. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  18. Disposal of hazardous wastes in Canada's Northwest Territories

    International Nuclear Information System (INIS)

    Henney, P.L.; Heinke, G.W.

    1991-01-01

    In the past decade, many jurisdictions have attempted to estimate quantities and types of hazardous wastes generated within their boundaries. Similar studies done in the Northwest Territories (NWT) are out-of-date, incomplete or specific to only one type of waste or geographical location. In 1990, an industry, business and community survey was conducted to determine types and quantities of hazardous wastes generated in the NWT and currently used disposal methods for these wastes. The survey revealed that 2,500 tons of hazardous wastes were generated each year, including waste oil and petroleum products, fuel tank sludges, acid batteries, spent solvents, antifreeze an waste paint. In many regions, disposal of these wastes may be routine, but waste disposal in arctic and subarctic regions presents unique difficulties. Severe climate, transportation expense, isolation and small quantities of waste generated can make standard solutions expensive, difficult or impossible to apply. Unique solutions are needed for northern waste disposal. The aim of this paper is to give an overview of low-cost, on-site or local hazardous wastes disposal options which can be applied in Canada's NWT and also in other arctic, remote or less-developed regions

  19. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  20. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  1. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  2. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  3. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  4. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    .... facility produces high-carbon steel tire cord for use in radial tire manufacturing. The steel cord is... delisted waste. Lists of Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling...

  5. An engineering and economic analysis: Inductively coupled plasma mobile treatment of hazardous waste

    International Nuclear Information System (INIS)

    Detering, B.A.; McLlwain, M.E.

    1997-10-01

    This analysis considers the engineering and economic viability of an rf-plasma, mobile treatment process for remediation of hazardous waste located at remote sites in Alaska. A simple engineering process flowsheet is used to define the elements associated with the process and to identify major pieces of equipment. The proposed flowsheet and equipment are used to estimate capital and operational costs for four separate processing cases. These cases explore various operational situations, including moving equipment to a remote site, transporting wastes to a base site, and varying operational periods. Some cases consider variations in fuel costs known to exist across Alaska. Operational costs, capital equipment costs, and revenues are used to calculate pro-forma income statements. These income statements are used to predict economic viability. Based on the economic viability, the analysis suggests that processing of hydrocarbon-contaminated soils is more profitable when performed at remote sites as compared to at a home base. Processing of poly-chloro-biphenyl (PCB)-contaminated oil at a stationary site is more profitable as compared to remote treatment due to the cost of transporting the equipment. Over the range of fuel prices considered, higher fuel costs increase the per unit treatment price by ten percent. Based on the results of this analysis, an rf-plasma based process appears to be economically viable for remote treatment of hydrocarbon-contaminated soil, but less viable for treatment of PCB-contaminated oil

  6. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  7. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    International Nuclear Information System (INIS)

    Vanderberg, L.A.; Foreman, T.M.; Attrep, M. Jr.; Brainard, J.R.; Sauer, N.

    1999-01-01

    The redirection and downsizing of the US Department of Energy's nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and biodegradation of volatile organics, enzymatic digestion of cellulosics, and metal ion extraction--was effective in treating a radiologically contaminated heterogeneous paint-stripping waste. Treatment of VOCs using a modified bioreactor avoided radioactive contamination of byproduct biomass and inhibition of biodegradation by toxic metal ions in the waste. Cellulase digestion of bulk cellulose minimized the final solid waste volume by 80%. Moreover, the residue passed TCLP for RCRA metals. Hazardous metals and radioactivity in byproduct sugar solutions were removed using polymer filtration, which employs a combination of water-soluble chelating polymers and ultrafiltration to separate and concentrate metal contaminants. Polymer filtration was used to concentrate RCRA metals and radioactivity into <5% of the original wastewater volume. Permeate solutions had no detectable radioactivity and were below RCRA-allowable discharge limits for Pb and Cr

  8. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    Science.gov (United States)

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  9. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-05-01

    Full Text Available Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  10. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  11. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  12. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  13. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  14. Hazardous waste research and development in the Pacific Basin

    International Nuclear Information System (INIS)

    Cirillo, R.R.; Carpenter, R.A.

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste

  15. Treatment methods for radioactive mixed wastes in commercial low-level wastes - technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid solvent extraction, and specific chemical destruction techniques have been considered for organic liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. Fore each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  16. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  17. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  18. Information requirements for the Department of Energy Defense Programs' hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Herron, S.A.

    1987-01-01

    This document contains viewgraphs from a presentation made to the DOE Low-Level Waste Management Conference in Denver, Colorado. The presentation described information and data base systems that describe hazardous and mixed waste treatment, storage, and disposal

  19. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  20. Vitrification of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na 2 O) - Lime (CaO) - Silica (SiO 2 ) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation

  1. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    Energy Technology Data Exchange (ETDEWEB)

    Holzemer, Michael J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hart, Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  2. Risk Assessment of Healthcare Waste by Preliminary Hazard Analysis Method

    Directory of Open Access Journals (Sweden)

    Pouran Morovati

    2017-09-01

    Full Text Available Introduction and purpose: Improper management of healthcare waste (HCW can pose considerable risks to human health and the environment and cause serious problems in developing countries such as Iran. In this study, we sought to determine the hazards of HCW in the public hospitals affiliated to Abadan School of Medicine using the preliminary hazard analysis (PHA method. Methods: In this descriptive and analytic study, health risk assessment of HCW in government hospitals affiliated to Abadan School of Medicine (4 public hospitals was carried out by using PHA in the summer of  2016. Results: We noted the high risk of sharps and infectious wastes. Considering the dual risk of injury and disease transmission, sharps were classified in the very high-risk group, and pharmaceutical and chemical and radioactive wastes were classified in the medium-risk group. Sharps posed the highest risk, while pharmaceutical and chemical wastes had the lowest risk. Among the various stages of waste management, the waste treatment stage was the most hazardous in all the studied hospitals. Conclusion: To diminish the risks associated with healthcare waste management in the studied hospitals, adequate training of healthcare workers and care providers, provision of suitable personal protective and transportation equipment, and supervision of the environmental health manager of hospitals should be considered by the authorities.  

  3. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  4. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  5. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  6. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  7. 40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27. (a) Hazardous Wastes FO20, FO21, FO22, FO23, FO26... requirements are necessary for piles managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order...

  8. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    International Nuclear Information System (INIS)

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE's Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP's charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program

  9. Development of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. Management of mixed waste requires treatment which must meet the standards established by the US Environmental Protection Agency for the specific hazardous constituents while also providing adequate control of the radionuclides. Technology has not been developed, demonstrated, or tested to produce a low-risk final waste form specifically for mixed waste. Throughout the US Department of Energy (DOE) complex, mixed waste is a problem because definitive treatment standards have not been established and few disposal facilities are available. Treatment capability and capacity are also limited. Site-specific solutions to the management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development between various sites. Significant progress is being made in developing technology for mixed waste under the Mixed Waste Integrated Program. The status of the technical initiatives in chemical/physical treatment, destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  10. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  11. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  12. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  13. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  14. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1986-01-01

    The Hazardous and Solid Waste Amendments of 1984 have greatly expanded the universe of what, and who, is regulated under Resource Conservation and Recovery Act (RCRA). Handling requirements for hazardous waste are becoming increasingly more stringent, particularly where land disposal is concerned. DOE needs to begin actively pursuing strategies directed at keeping the management of LLW clearly separated from wastes that are legitimately regulated under RCRA. Such strategies would include instituting systemwide changes in internal management practices, establishing improved location standards for LLW disposal, and negotiating interagency compromise agreements to obtain variances from RCRA requirements where necessary and appropriate

  15. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  16. 40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.231 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27. (a) Hazardous Wastes FO20, FO21, FO22... surface impoundments managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order to reduce...

  17. Recommendations concerning Tennessee's hazardous waste management policies by a task force representing generators, environmentalists, and other key constituencies

    International Nuclear Information System (INIS)

    Colglazier, E.W.; English, M.R.

    1987-01-01

    Four recommendations are proposed. 1) A Governor's Roundtable on Hazardous and Solid Wastes should be established to ensure that Tennessee have sound policies and plans for waste management, adequate waste treatment and disposal capacity, and the means to meet the October, 1989 deadline for certification of hazardous waste capacity. 2) Opportunities for early public information and participation in Tennessee's RCRA permitting process should be improved. 3) A Superfund Public Involvement Task Force should be appointed by the Commissioner of Health and Environment to find ways to ensure that a community affected by a Tennessee Superfund site has early and adequate opportunities for information and involvement. 4) Communications about hazardous waste issues should be improved by the appointment of a hazardous waste information officer, the establishment of a Speakers Bureau, the funding of the UT Center for Industrial Services' Hazardous Waste Extension Program, establishment of a crisis situation network of consultants for communities, and exploration of the possibility of Amnesty Days for household hazardous waste and for small-quantity generators waste

  18. Rotating biological contractor treatment of 2-nitrophenol and 2-chlorophenol containing hazardous wastes

    International Nuclear Information System (INIS)

    Tokuz, R.Y.

    1990-01-01

    Rotating Biological Contactors (RBCs) have a number of advantages over other biological treatment systems. For example, they can provide high treatment efficiencies of activated sludge systems with much lower energy inputs. Organic shock loads are handled well because large biomass is present. No bulking, foaming, or floating of sludge occurs and sludge has good settleability and dewaterability. Another advantage of RBC systems is the minimal labor requirement for operation and maintenance. Even though RBC systems have these advantages, their acceptance was slow mainly due to operational problems with the earlier units (such as shaft failures) and the lack of considerable design and operation data. A review of literature shows that there is only limited information available on the wastewater treatment with RBCs. Recently, there has been considerable contributions to the knowledge on RBC technology. However, information on the treatment of organic hazardous wastes using RBCs is still very limited. This paper reports that a considerable number of studies on the biological treatment of organic hazardous compounds was sponsored by U.S. Environmental Protection Agency (EPA). For example, an EPA sponsored study examined the effect of such compounds on the performance of activated sludge process. Bench-scale continuous-flow and batch units were used. Influent was settled municipal wastewater to which toxic compounds were added. In batch operations, 2-chlorophenol and pentachlorophenol caused an increase in the effluent Chemical Oxygen Demand (COD) at an influent concentration of 5 mg/L. No adverse effect of 2-nitrophenol on the batch system was reports. 2-Chlorophenol was one of the compounds that upset the performance of continuous-flow activated sludge units, yielding higher than normal levels of effluent suspended solids

  19. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  20. Environmental, technical and technological aspects of hazardous waste management in Poland

    Science.gov (United States)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  1. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The Lawrence Livermore National Laboratory (LLNL) operates three Hazardous Waste Management Facilities with 24 associated waste management units for the treatment and storage of hazardous and mixed wastes. These wastes are generated by research programs and support operations. The storage and treatment units are presently operated under interim status in accordance with the requirements of the US Envirorunental Protection Agency (US EPA) and the Department of Toxic Substances Control (DTSC), a division of the California Envirorunental Protection Agency (Cal/EPA). As required by the California Hazardous Waste Control Act and the Resource Conservation and Recovery Act (RCRA), LLNL ha s applied for a Part B permit to continue operating the storage and waste treatment facilities. As part of this permitting process, LLNL is required to conduct a health risk assessment (HRA) to examine the potential health impacts to the surrounding community from continued storage and treatment of hazardous and mixed wastes. analysis document presents the results of this risk assessment. An analysis of maximum credible chemical accidents is also included in Section 7.0. This HRA was prepared in accordance with procedures set forth by the California Air Pollution Control Officers Association (CAPCOA) ''Air Toxics Assessment Manual,'' CAPCOA guidelines for preparing risk assessments under the Air Toxic ''Hot Spots'' Act (AB 2588) and requirements of the US EPA. By following these procedures, this risk assessment presents a conservative analysis of a hypothetical Maximally Exposed Individual (MEI) using many worst-case assumptions that will not apply to an actual individual. As such, the risk estimates presented should be regarded as a worst-case estimate of any actual risk that may be present

  2. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  3. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  4. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  5. Management and deposition of nuclear, toxic and hazardous wastes

    International Nuclear Information System (INIS)

    Dalston, Regina Celia Reboucas; Montalvao, Renata; Nascimento, Igor; Oliveira, Maristela Aparecida de; Motta, Rondineli; Morais, Magda de; Dantas, Alberto Pinheiro

    2005-01-01

    the main guidelines of the management program of toxic, radioactive and hazardous wastes which are applicable to the graduation laboratories at the Catholic University of Brasilia (UCB) are presented. The main advantages and possibilities of applications of processes for inertization of salts of heavy metals by precipitation with sodium metasilicate solution and methods of adsorption of toxic wastes in minerals such as bentonites and silicates are discussed. In the treatment of waste, the use of effective technologies enables solid wastes to be processed and prepared in accordance with the existing rules and resolutions. The applicability of supports of polymeric resins catalyzed for moulding and final disposal of toxic wastes, previously treated and converted in the form of insoluble salts is presented. It is also suggested the use of polymeric supports for the containment of radioactive wastes

  6. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  7. Immobilisation of hazardous waste

    International Nuclear Information System (INIS)

    Cope, C.B.

    1983-01-01

    Hazardous waste, e.g. radioactive waste, particularly that containing caesium-137, is immobilised by mixing with cement and solidifiable organic polymeric material. When first mixed, the organic material is preferably liquid and at this time can be polymerisable or already polymerised. The hardening can result from cooling or further polymerisation e.g. cross-linking. The organic material may be wax, or a polyester which may be unsaturated and cross-linkable by reaction with styrene. (author)

  8. National information network and database system of hazardous waste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongchang [National Environmental Protection Agency, Beijing (China)

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  9. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  10. 昆明地区危险废物处理处置及防治对策分析%Analysis of Precaution and Treatment and Disposal of Hazardous Wastes in Kunming

    Institute of Scientific and Technical Information of China (English)

    陈松

    2014-01-01

    The Management of hazardous wastes at home and aboard was introduced.A deep analysis of how haz-ardous wastes were managed in Kunming was done.The analysis covered the treatment and disposal status of haz-ardous wastes,the categories of wastes,the amount of wastes,and problems of waste management.Countermeas-ures were urged to promote the hazardous waste management in Kunming.%介绍了国内外危险废物管理情况。就昆明地区危险废物的管理,处理处置现状,危险废物种类、产生量,以及管理存在的问题和不足进行了深入分析。在此基础上提出了相应的防治对策。

  11. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  12. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  13. WHO collaboration in hazardous waste management in the Western Pacific Region

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hisashi [Western Pacific Regional Environmental Health Centre, Kuala Lumpur (Malaysia)

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  14. Hazardous-waste landfill research, US EPA (United States Environmental Protection Agency) program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1988-08-01

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid- and hazardous-waste management with respect to land disposal of wastes. To fulfill the responsibility, the LPCD is developing concepts and is documenting the environmental effects of various waste-disposal practices; and is collecting data necessary to support implementation of disposal guidelines mandated by the Hazardous and Solid Waste Amendments of 1984 (HSWA). This paper presents an overview of the land-disposal research associated with the LPCD hazardous waste program plan and will report the current status of work in the following categorical areas: Hazardous-waste facilities - landfills and surface impoundments; Non-Hazardous waste facilities; and Technology transfer.

  15. A generic hazardous waste management training program

    International Nuclear Information System (INIS)

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref

  16. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  17. EPA/DOE joint efforts on mixed waste treatment

    International Nuclear Information System (INIS)

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-01-01

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final open-quotes Hazardous Waste Combustion Strategyclose quotes in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit open-quotes Roadmapclose quotes Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit

  18. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    International Nuclear Information System (INIS)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-01-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  19. Hazardous medical waste generation rates of different categories of health-care facilities

    International Nuclear Information System (INIS)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-01-01

    Highlights: ► We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. ► Based on a 22-month study period, HMWGR were highly skewed to the right. ► The HMWGR varied from 0.00124 to 0.718 kg bed −1 d −1 . ► A positive correlation existed between the HMWGR and the number of hospital beds. ► We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed −1 d −1 , using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed −1 d −1 , for the public psychiatric hospitals, to up to 0.72 kg bed −1 d −1 , for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed −1 d −1 , for the psychiatric clinics, to up to 0.49 kg bed −1 d −1 , for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  20. Decision-making methodology for management of hazardous waste

    International Nuclear Information System (INIS)

    Philbin, J.S.; Cranwell, R.M.

    1988-01-01

    A decision-making methodology is presented that combines systems and risk analysis techniques to evaluate hazardous waste management practices associated with DOE weapon production operations. The methodology provides a systematic approach to examining waste generation and waste handling practices in addition to the more visible disposal practices. Release-exposure scenarios for hazardous waste operations are identified and operational risk is determined. Comparisons may be made between existing and alternative waste management practices (and processes) on the basis of overall risk, cost and compliance with regulations. Managers can use this methodology to make and defend resource allocation decisions and to prioritize research needs

  1. Radioactive sodium waste treatment and conditioning. Review of main aspects

    International Nuclear Information System (INIS)

    2007-01-01

    This publication reviews the main aspects relating to the treatment and conditioning of radioactive sodium waste. This waste arises from the operation of liquid metal fast reactors (LMFRs). In this type of reactor, sodium (Na) or sodium-potassium alloys (NaK) are used as a low-effect neutron moderating coolant medium for extracting and transferring thermal energy from the core and they represent a significant technical and safety challenge during operation and decommissioning. This publication provides the reader with technologically oriented information on the present status of sodium waste management approaches and recent achievements related to treatment and conditioning, with the objective of facilitating planning and preparatory work for the decommissioning of LMFRs. This publication provides a comprehensive review of the hazards associated with sodium waste management. Given the large quantities of sodium waste arising during decommissioning or reactor refurbishment, as well as the challenges and varied techniques associated with removal of 100% of all sodium and NaK bulk quantities and residues during decommissioning, a hazards review and analysis is a critical component in planning the dismantling and waste management activities. Roughly half of this publication focuses on sodium waste generating, handling and treatment processes. This includes draining sodium and NaK from plant systems; in situ treatment of residual sodium; cutting techniques for pumps, valves, piping and other components; cleaning of components; potential reuse of sodium; and removal of selected radionuclides from sodium waste with the objective of reducing the waste classification or converting it to exempt waste. The focus is on proven techniques and technologies, and each discussed method includes a review of the associated principle or theory, practical applications, advantages and disadvantages, limitations, industry experience, and final waste products. A review is provided of final

  2. OVERVIEW OF THE HISTORY, PRESENT STATUS, AND FUTURE DIRECTION OF SOLIDIFICATION/STABILIZATION TECHNOLOGIES FOR HAZARDOUS WASTE TREATMENT

    Science.gov (United States)

    Solidification/stabilization (S/S) technology processes are currently being utilized in the United States to treat inorganic and organic hazardous waste and radioactive waste. These wastes are generated from operating industry or have resulted from the uncontrolled management of ...

  3. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Science.gov (United States)

    2010-07-01

    .... (viii) The quantities of the waste generated at individual generation sites or on a regional or national... result of the improper management of wastes containing the constituent. (x) Action taken by other... frequently are hazardous under the definition of hazardous waste found in section 1004(5) of the Act. (c) The...

  4. In situ vitrification of a mixed radioactive and hazardous waste site

    International Nuclear Information System (INIS)

    Campbell, B.E.; Koegler, S.S.

    1990-11-01

    A large-scale test of the in situ vitrification (ISV) process was performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington State. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many US Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground. The goals of the test are to demonstrate at least 99% retention of fission products and hazardous metals in the ISV glass during the test; demonstrate the ability of the ISV off-gas treatment system to process a waste site containing significant quantities of combustible material and demonstrate the ability of ISV to vitrify the site to a depth of 20 ft or greater. The test was completed in April 1990. 5 figs

  5. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  6. Mixed-waste treatment -- What about the residuals?

    International Nuclear Information System (INIS)

    Carlson, T.; Carpenter, C.; Cummins, L.; Haas, P.; MacInnis, J.; Maxwell, C.

    1993-01-01

    Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ''derived-from'' residuals. Major findings include that final disposal options are more significantly impacted by the type of waste treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals

  7. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  8. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  9. Chemical treatment of mixed waste at the FEMP

    International Nuclear Information System (INIS)

    Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

    1996-01-01

    The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams

  10. Controlled air incineration of hazardous chemical and mixed waste at Los Alamos

    International Nuclear Information System (INIS)

    Borduin, L.C.; Hutchins, D.A.; Vavruska, J.J.; Warner, C.L.

    1987-01-01

    The Los Alamos National Laboratory (LANL) Controlled Air Incineration (CAI) system, originally developed for transuranic (TRU) waste volume reduction studies, is currently being qualified for hazardous chemical and mixed waste treatment under provisions of the Resource Conservation and Recovery Act (RCRA). The objective is to obtain a permanent RCRA Part B permit for thermal disposal of hazardous and mixed wastes generated by LANL. Constructed in the mid-1970s as a demonstration project for incineration of TRU solid wastes, the CAI process was substantially modified and tested in 1980-1983 for acceptance of both liquid and solid hazardous chemicals. Successful demonstration of TRU solid waste processing objectives in 1979 and later chemical waste incineration studies have been documented in several publications. In 1984, the LANL CAI became the first US Dept. of Energy (DOE) incinerator to be permitted for polychlorinated biphenyl disposal under the Toxic Substances Control Act. Following establishment of Environmental Protection Agency (EPA) jurisdiction over DOE chemical waste management in 1984, LANL sought and was granted interim status for the CAI and applied for a trial burn permit in the overall laboratory RCRA Part B application. A trial burn and final report have been completed; results have been submitted to EPA and the New Mexico Environmental Improvement Division. This paper provides an overview of trial burn planning and results together with the operational status of LANL's CAI

  11. Evaluating the technical aspects of mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Bagaasen, L.M.; Scott, P.A.

    1992-10-01

    This report discusses treatment of mixed wastes which is thought to be more complicated than treatment of either hazardous or radioactive wastes. In fact, the treatment itself is no more complicated: however, the regulations that define acceptability of the final waste disposal system are significantly more entangled, and sometimes in apparent conflict. This session explores the factors that influence the choice of waste treatment technologies, and expands on some of the limitations to their application. The objective of the presentation is to describe the technical factors that influence potential treatment processes and the ramifications associated with particular selections (for example, the generation of secondary waste streams). These collectively provide a framework for making informed treatment process selections

  12. Management of Hazardous Waste and Contaminated Land

    OpenAIRE

    Hilary Sigman; Sarah Stafford

    2010-01-01

    Regulation of hazardous waste and cleanup of contaminated sites are two major components of modern public policy for environmental protection. We review the literature on these related areas, with emphasis on empirical analyses. Researchers have identified many behavioral responses to regulation of hazardous waste, including changes in the location of economic activity. However, the drivers behind compliance with these costly regulations remain a puzzle, as most research suggests a limited ro...

  13. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  14. Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab

  15. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  16. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  17. Lessons learned from the EG ampersand G consolidated hazardous waste subcontract and ESH ampersand Q liability assessment process

    International Nuclear Information System (INIS)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG and G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M and O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG and G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG and G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee's facilities for environment, safety, health, and quality (ESH and Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG and G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH and Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract

  18. The development of hazardous waste management as a state policy concern

    International Nuclear Information System (INIS)

    Herzik, E.B.

    1992-01-01

    Hazardous waste management has become a primary concern of state governments. This concern is relatively recent, with state governments assuming a leading role in hazardous waste policy development and implementation only in the past decade. This article outlines the scope of the hazardous waste problem to which state governments must respond. The scope of the problem is then linked to changing public perceptions and intergovernmental relationships to explain the expanding state government policy role in hazardous waste management. 15 refs., 1 tab

  19. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  20. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-03-31

    ...? The Tokusen USA, Inc. facility produces high-carbon steel tire cord for use in radial tire... Part 261 Environmental protection, Hazardous Waste, Recycling, Reporting and recordkeeping requirements...

  1. Two-stage thermal/nonthermal waste treatment process

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1993-01-01

    An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report

  2. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  3. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  4. Remediation of toxic and hazardous wastes: issues and concerns

    International Nuclear Information System (INIS)

    2005-01-01

    This workshop presented the status of hazardous waste generation in the Philippines, as well the steps being done by the government to address the problem on hazardous materials in the environment and the disposal of the toxic wastes

  5. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    International Nuclear Information System (INIS)

    2003-01-01

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS

  6. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  7. Study of the CMR compounds in hazardous wastes

    International Nuclear Information System (INIS)

    Chollot, A.

    2007-01-01

    In order to limit the exposure of workers to carcinogenic, mutagen and reproduction-toxic compounds (CMR) and to optimize the safety needs in the field of hazardous industrial wastes, the INRS has decided to complete its knowledge in doing a sectorial inquiry titled 'study of the CMR compounds contained in wastes'. This study allows to obtain data relative to hazardous wastes and to the presence of CMR compounds into these hazardous wastes. The first part of this study gives the methodology used for doing this inquiry. The results, gathered in databases, are presented in tables and in synthetic schemes. The last part gives operational propositions it could be important to adopt to improve and/or to develop safety approaches adapted to the CMR risk and, particularly the transfer of the good data to workers. (O.M.)

  8. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  9. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  10. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  11. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  12. Evaluation of waste treatment technologies by LLWDDD [Low-Level Waste Disposal Development and Demonstration] Programs

    International Nuclear Information System (INIS)

    Kennerly, J.M.; Williams, L.C.; Dole, L.R.; Genung, R.K.

    1987-01-01

    Waste treatments are divided into four categories: (1) volume reduction; (2) conditioning to improve waste form performance; (3) segregation to achieve waste reduction; and (4) separation to remove radioactive (or hazardous) constituents. Two waste treatment demonstrations are described. In the first, volume reduction by mechanical means was achieved during the supercompaction of 300 55-gal drums of solid waste at ORNL. In the second demonstration, conditioning of waste through immobilization and packaging to improve the performance of the waste form is being evaluated. The final section of this paper describes potential scenarios for the management of uranium-contaminated wastes at the Y-12 Plant in Oak Ridge and emphasizes where demonstrations of treatment technology will be needed to implement the scenarios. Separation and thermal treatment are identified as the principal means for treating these wastes. 15 figs

  13. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  14. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  15. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  16. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  17. Hazardous waste management in Chilean main industry: An overview

    International Nuclear Information System (INIS)

    Navia, Rodrigo; Bezama, Alberto

    2008-01-01

    The new 'Hazardous Waste Management Regulation' was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a 'Hazardous Waste Management Plan' if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory

  18. An Optimization Approach for Hazardous Waste Management Problem under Stochastic Programming

    International Nuclear Information System (INIS)

    Abass, S.A.; Abdallah, A.S.; Gomaa, M.A.

    2008-01-01

    Hazardous waste is the waste which, due to their nature and quantity, is potentially hazardous to human health and/or the environment. This kind of waste requires special disposal techniques to eliminate or reduce thc hazardous. Hazardous waste management (HWM) problem is concerned in the basic with the disposal method. hi this paper we focus on incineration as an effective to dispose the waste. For this type of disposal, there arc air pollution standards imposed by the government. We will propose an optimization model satisfied the air pollution standards and based on the model of Emek and Kara with using random variable coefficients in the constraint

  19. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  20. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  1. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes

    International Nuclear Information System (INIS)

    Randall, Paul; Chattopadhyay, Sandip

    2004-01-01

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardous waste generation. This study was performed to evaluate whether the U.S. EPA could propose treatment and disposal alternatives to the current land disposal restriction (LDR) treatment standards for mercury. The focus of this article is on the current state of encapsulation technologies that can be used to immobilize elemental mercury, mercury-contaminated debris, and other mercury-contaminated wastes, soils, sediments, or sludges. The range of encapsulation materials used in bench-scale, pilot-scale, and full-scale applications for mercury-contaminated wastes are summarized. Several studies have been completed regarding the application of sulfur polymer stabilization/solidification, chemically bonded phosphate ceramic encapsulation, and polyethylene encapsulation. Other materials reported in the literature as under development for encapsulation use include asphalt, polyester resins, synthetic elastomers, polysiloxane, sol-gels, Dolocrete TM , and carbon/cement mixtures. The primary objective of these encapsulation methods is to physically immobilize the wastes to prevent contact with leaching agents such as water. However, when used for mercury-contaminated wastes, several of these methods require a pretreatment or stabilization step to chemically fix mercury into a highly insoluble form prior to encapsulation. Performance data is summarized from the testing and evaluation of various encapsulated, mercury-contaminated wastes. Future technology development and research needs are also discussed

  2. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  3. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  4. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  5. Quality of life and community satisfaction in proximity to hazardous waste

    International Nuclear Information System (INIS)

    Williams, R.G.; Olshansky, S.J.

    1986-01-01

    The NIMBY Syndrome (Not In My Back Yard) characterizes the social and political problems associated with siting hazardous waste facilities. given a rational choice, everyone would prefer than hazardous wastes be located somewhere other than in their own backyard. While there has not been enough research that addresses the social and political effects of having a hazardous waste site located near communities, there have been qualitative case studies, anecdotal evidence, and environmental disasters such as Times Beach and Love Canal that would lead one to believe that hazardous waste sites are disruptive to communities. Media coverage of hazardous waste sites would lead one to believe that the majority of people in proximity to such sites are distraught, economic development in the area is negatively effected, property values decline, and in general, satisfaction with one's community suffers and quality of life decreases. Yet, social science research on this topic is essentially nonexistent. In fact, to date there is no published research that puts hazardous waste in to the larger theoretical context of community satisfaction and quality of life

  6. Visible and Infrared Remote Imaging of Hazardous Waste: A Review

    Directory of Open Access Journals (Sweden)

    Barry Haack

    2010-11-01

    Full Text Available One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  7. Visible and infrared remote imaging of hazardous waste: A review

    Science.gov (United States)

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  8. Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Holcomb, C.; Louie, B.; Mullins, M.E.; Outcalt, S.L.; Rogers, T.N.; Watts, L.

    1998-01-01

    'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

  9. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  10. Public perception of hazardousness caused by current trends of municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khatib, Issam A., E-mail: ikhatib@birzeit.edu [Institute of Environmental and Water Studies, Birzeit University, Birzeit, Palestine (Country Unknown); Kontogianni, Stamatia [Laboratory of Heat Transfer and Environmental Engineering, Dpt. of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, 54006 Thessaloniki (Greece); Abu Nabaa, Hendya; Alshami, Ni’meh [Faculty of Graduate Studies, Birzeit University, Birzeit, Palestine (Country Unknown); Al-Sari’, Majed I. [The Joint Services Council for Solid Waste Management for Hebron and Bethlehem Governorates JSC-H& B, West Bank (Palestinian Territory, Occupied)

    2015-02-15

    Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard perception); the

  11. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  12. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... hazardous pharmaceutical waste to the list of wastes that may be managed under the Universal Waste rule...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  13. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    Science.gov (United States)

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  14. Improving Tamper Detection for Hazardous Waste Security

    International Nuclear Information System (INIS)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-01-01

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them

  15. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  16. The current status of hazardous solid waste management.

    Science.gov (United States)

    Kaufman, H B

    1978-01-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  17. Putting NIMBY in perspective: The cultural origins of public response to hazardous waste

    International Nuclear Information System (INIS)

    Pollock, P.H. III; Lilie, S.A.; Vittes, M.E.

    1991-01-01

    The study of public response to the siting of hazardous waste treatment facilities has found a natural home in the literature on localized reaction, the so-called NIMBY (not in my backyard) syndrome. This concern for dealing with NIMBY in practical terms has fallen short in two respects. First, NIMBY has become isolated from two other basic responses: generalized acceptance (open-quotes Yes, in my backyardclose quotes or YIMBY) and generated opposition (open-quotes Not in anybody's backyardclose quotes or NAMBY). Second, too narrow a focus on NIMBY neglects a potentially revealing explanatory analogy: the parallel between the controversy over hazardous waste facilities and other technical controversies, such as the decades-old debate over nuclear power. In this paper, we review three theories that have been developed to explain general attitudes toward risk-bearing technologies. Using data from a statewide random sample, we then look to see if variables that figure prominently in these theories help shape the NIMBY, YIMBY or NAMBY responses to hazardous waste facilities

  18. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-01-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  19. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-03-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  20. Screening tests for hazard classification of complex waste materials – Selection of methods

    International Nuclear Information System (INIS)

    Weltens, R.; Vanermen, G.; Tirez, K.; Robbens, J.; Deprez, K.; Michiels, L.

    2012-01-01

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1–15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or – if not all compounds are identified – from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different

  1. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  2. The Scientific Management of Hazardous Wastes

    Science.gov (United States)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  3. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  4. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  5. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    Science.gov (United States)

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  6. Development of the photo catalytic materials for the purification and deodorization of hazardous wastes

    International Nuclear Information System (INIS)

    Hong, Gye Woon; Park, Ji Yeon; Jung, Choong Hwan; Kim, Weon Ju

    1999-12-01

    A hazardous material treatment system utilizing photochemical reaction is a new technology which does not produce any secondary pollutants after dissolving treatment because it is activated by solar photo energy. Photo catalysis reaction apparatus using photo catalytic reaction of TiO 2 was fabricated and installed to food waste treatment system for removing bad smell during treatment of food waste. Evolved gas was analysed by gas chromatograph and active carbon fiber sheet and yarn were used as adsorption media for photo catalysis in order to increase the effectiveness of filter system. (author)

  7. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  8. Contingency plan for the Lawrence Livermore National Laboratory's hazardous-waste operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1981-01-01

    The Lawrence Livermore National Laboratory (LLNL) has the necessary equipment and trained personnel to respond to a large number of hazardous material spills and fires or other emergencies resulting from these spills including injured personnel. This response capability is further expanded by the agreements that LLNL has with a number of outside response agencies. The Hazards Control Department at LLNL functions as the central point for coordinating the response of the equipment and personnel. Emergencies involving hazardous waste are also coordinated through the Hazards Control Department, but the equipment and personnel in the Toxic Waste Control Group would be activated for large volume waste pumpouts. Descriptions of response equipment, hazardous waste locations communication systems, and procedures for personnel involved in the emergency are provided

  9. 40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment...

  10. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous Waste Management Programs'', New York's authorized hazardous waste program. EPA will incorporate by...

  11. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  12. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  13. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  14. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  15. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-09-14

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... December 7, 2004. Waste Combustors; Final Rule; Checklist 198. Hazardous Waste Management March 13, 2002...

  16. Hazardous and mixed waste solidification development conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-04-01

    EG and G Idaho, Inc., has initiated a program to develop safe, efficient, cost-effective solidification treatment methods for the disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Testing has shown that Extraction Procedure (EP) toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long-term disposal as general or low-level waste, depending upon the radioactivity. The results of the solidification development program are presented in this report

  17. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  18. Hazardous waste management and weight-based indicators-The case of Haifa Metropolis

    International Nuclear Information System (INIS)

    Elimelech, E.; Ayalon, O.; Flicstein, B.

    2011-01-01

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate.

  19. Hazardous waste management and weight-based indicators--the case of Haifa Metropolis.

    Science.gov (United States)

    Elimelech, E; Ayalon, O; Flicstein, B

    2011-01-30

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Public perception of hazardousness caused by current trends of municipal solid waste management.

    Science.gov (United States)

    Al-Khatib, Issam A; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni'meh; Al-Sari', Majed I

    2015-02-01

    Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens' collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent's educational attainment and their awareness of hazardous waste (hazard perception); the results will indicate the measure taking required to avoid accidents occurred in those regions (burns from toxics, cuts from sharps, etc). National policy and legislation development based on the research outcomes will ensure equitable and accessible services are in place in order to move towards a healthier environment. Specialized health education and training programs on national scale are also needed to enhance awareness on hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Can Chlorella pyrenoidosa be a bioindicator for hazardous solid waste detoxification?

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Li-Fang, E-mail: hulif127@163.com [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Long, Yu-Yang; Shen, Dong-Sheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Jiang, Chen-Jing [The Second Institute of Oceanography, SOA, Hangzhou 310012 (China)

    2012-02-01

    Four kinds of solid waste residue (SWR, S1 to S4) from different stages in a sequential detoxification process were chosen. The biotoxicity of the leachates from S1 to S4 was tested by Chlorella pyrenoidosa. The growth inhibition, the chlorophyll a (chla) and chlorophyll b (chlb) concentrations, and the ultrastructural morphology of cells of C. pyrenoidosa were studied. It shows that the growth inhibition of C. pyrenoidosa significantly increased with increasing leachate concentration when exposed to the leachates from S1, S2, S3, and S4, respectively. It well reflects the toxicity difference of leachate from SWR at different treatment stages, namely S1 > S2 > S3 > S4. Correspondingly, the chla and chlb concentrations of C. pyrenoidosa increased gradually as SWR was treated deeply. Leachate disrupted chlorophyll synthesis and inhibited cell growth. The changing of the ultrastructural morphology of cells under different leachate exposures, such as volume of chloroplasts and quantity of thylakoids reducing, confirmed the toxicity decrease of leachates from different stages. C. pyrenoidosa is a good bioindicator for hazardous solid waste detoxification. The EC{sub 50} at difference scenarios also suggests that it was feasible to estimate ecological toxicity of leachates to C. pyrenoidosa after exposure times of 72 h. C. pyrenoidosa can be introduced to evaluate the effect of hazardous solid waste disposal by biotoxicity assessment. - Highlights: Black-Right-Pointing-Pointer The detoxification process of hazardous solid waste was evaluated by Chlorella pyrenoidosa. Black-Right-Pointing-Pointer The best exposure time of ecological toxicity assessment of Chlorella pyrenoidosa was presented. Black-Right-Pointing-Pointer The possible toxicity of the hazardous solid waste at different disposal stage on Chlorella pyrenoidosa was explored from cell tissue.

  2. Hazardous waste and health impact: a systematic review of the scientific literature.

    Science.gov (United States)

    Fazzo, L; Minichilli, F; Santoro, M; Ceccarini, A; Della Seta, M; Bianchi, F; Comba, P; Martuzzi, M

    2017-10-11

    Waste is part of the agenda of the European Environment and Health Process and included among the topics of the Sixth Ministerial Conference on Environment and Health. Disposal and management of hazardous waste are worldwide challenges. We performed a systematic review to evaluate the evidence of the health impact of hazardous waste exposure, applying transparent and a priori defined methods. The following five steps, based on pre-defined systematic criteria, were applied. 1. Specify the research question, in terms of "Population-Exposure-Comparators-Outcomes" (PECO). people living near hazardous waste sites; Exposure: exposure to hazardous waste; Comparators: all comparators; Outcomes: all diseases/health disorders. 2. Carry out the literature search, in Medline and EMBASE. 3. Select studies for inclusion: original epidemiological studies, published between 1999 and 2015, on populations residentially exposed to hazardous waste. 4. Assess the quality of selected studies, taking into account study design, exposure and outcome assessment, confounding control. 5. Rate the confidence in the body of evidence for each outcome taking into account the reliability of each study, the strength of the association and concordance of results.Fifty-seven papers of epidemiological investigations on the health status of populations living near hazardous waste sites were selected for the evidence evaluation. The association between 95 health outcomes (diseases and disorders) and residential exposure to hazardous waste sites was evaluated. Health effects of residential hazardous waste exposure, previously partially unrecognized, were highlighted. Sufficient evidence was found of association between exposure to oil industry waste that releases high concentrations of hydrogen sulphide and acute symptoms. The evidence of causal relationship with hazardous waste was defined as limited for: liver, bladder, breast and testis cancers, non-Hodgkin lymphoma, asthma, congenital anomalies

  3. The management of household hazardous waste in the United Kingdom.

    Science.gov (United States)

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.

  4. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  5. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  6. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  7. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    International Nuclear Information System (INIS)

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ''ideas''. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ''cradle-to-grave'' systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ''downselection'' of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW

  8. Industrial Hazardous Waste Management In Egypt-the baseline study: An Updated review

    International Nuclear Information System (INIS)

    Farida M, S.

    1999-01-01

    Increased industrialization over the past decades in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. This was not accompanied by any concerted efforts to control these wastes. Consequently, no system for handling or disposing of industrial wastes, in general, and industrial hazardous wastes, in specific, exists. In 1993, a baseline report was formulated to assess the overall problem of industrial hazardous waste management in Egypt. Consequently, recommendations for priority actions were identified and the main components of a national hazardous waste system under the provision of Law 4/ 1994 were presented. This paper provides an updated review of this report in light of the proposed technical, legal and institutional guidelines to help in the realization of such a needed waste management system in Egypt

  9. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-01-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase

  10. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  11. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  12. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Wookeun; Shin, Eung Bai [Hanyang Univ., Ansan (Korea, Republic of); Lee, Kil Chul; Kim, Jae Hyung [National Institute of Environmental Research, Seoul (Korea, Republic of)] [and others

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  13. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    International Nuclear Information System (INIS)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs

  14. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  15. Public issues in hazardous waste management in the Republic of Croatia

    International Nuclear Information System (INIS)

    Klika, M.C.

    1995-01-01

    Public acceptance of sites for radioactive and other hazardous waste disposal facilities represents one of most important factors in decision making on definite sites of these facilities. The Republic of Croatia, as a newly independent state, faces the problem of public involvement in site selection of radioactive/hazardous waste disposal facility very seriously, specially having in mind that in the past, in former Yugoslavia almost all decisions had been made without participation of the public. Because of that it is very important now to gain confidence of the public and to enable its active role in decision making. Operation of the APO-Hazardous Waste Management Agency as a state agency which has been established firstly for management of radioactive waste, and later widening its competencies also to other types of hazardous wastes and relations to the public, is going to be presented in the paper. Description of some basic elements related to public participation in site selection of radioactive waste repository in Croatia will be also done

  16. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  17. Public participation in management of hazardous and radioactive wastes in Croatia

    International Nuclear Information System (INIS)

    Cerskov Klika, M.; Kucar-Dragicevic, S.; Lokner, V.; Schaller, A.; Subasic, D.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in this paper. Most of them are created or led by the APO H azardous Waste management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process. (author)

  18. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  19. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9669-6] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste...

  20. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9461-5] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste...

  1. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9321-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  2. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  3. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-08-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-1] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the...

  4. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2012-07-23

    ... ConocoPhillips filter press processing of storm water Billings Refinery). tank sludge (F037) generated at... residual solids from the processed storm water tank sludge meet the delisting levels in 40 CFR 261 Appendix... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [FRL 9704-1] Hazardous Waste Management System...

  5. Environmental epidemiology, Volume 1: Public health and hazardous wastes

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Environmental Epidemiology, Volume 1, represents the first of several planned volumes on the uses of epidemiologic techniques to study environmental public health issues. This text focuses on environmental epidemiology as it relates to hazardous waste in the United States. This study was commissioned by the Agency for Toxic Substances and Disease Registry to examine available data for evidence of adverse health effects on human populations exposed to hazardous waste. The committee was also asked to identify data gaps which were impediments to analyzing hazardous waste health effects and to suggest ways that such environmental health assessments might be improved. The committee's solution to the paucity of data on this issue was to concentrate in this volume on identifying the available, peer-reviewed data and, consequently, the major data gaps. The study opens with a recapitulation of the context of hazardous waste sites in the United States, the approaches currently used by state and federal epidemiologists in analyzing hazardous waste exposure and effects, and candid assessment of the problems associated with environmental exposure assessment. From that context, the committee then presents the data currently available to assess human exposures through air, domestic water consumption, soil, and the food chain. The general focus here is on biomarker data as the date of choice. As with all NAS reports, this one closes with general conclusions and recommendations. Environmental health risk assessors will find this volume a valuable resource

  6. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  7. Linking emerging hazardous waste technologies with the electronic information era

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.E.; Suk, W.A. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Blackard, B. [Technology Planning and Management Corp., Durham, NC (United States)

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  8. 76 FR 18927 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-04-06

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act (``OHWMA'') provides the ODEQ with...

  9. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  10. 76 FR 42125 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9440-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ConocoPhillips... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  11. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-12-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9904-21-OW] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Mosaic... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  12. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act have been...

  13. Hazardous Waste Cleanup: Thermo King de Puerto Rico Incorporated in Arecibo, Puerto Rico

    Science.gov (United States)

    Thermo King de Puerto Rico, Inc. facility is located in the Zeno Gandia Industrial Area in Arecibo, Puerto Rico. Major features of the facility include six buildings used for manufacturing and storage, a wastewater treatment plant, a hazardous waste and no

  14. Headquarters Air Force Logistics Command guidance manual for hazardous waste minimization (PACER REDUCE): Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Jones, L.W.; Weeter, D.; Roth, J.A.; Debelak, K.A.; Bowers, A.R.

    1988-09-01

    This manual provides guidance for the Air Force Logistics Command (AFLC) Waste Minimization Program, called PACER REDUCE, and applies to all AFLC installations and personel who are responsible for implementing and monitoring activities relating to PACER REDUCE. This guidance for waste minimization provides management and technical approaches for assessing potential waste reduction techniques and for making informed decisions concerning industrial process and waste stream management. Such actions will assist in achieving regulatory compliance with the Resource Conservation and Recovery Act of 1976 as updated by the Hazardous and Solid Waste Amendments of 1984. 37 refs., 14 figs., 22 tabs

  15. Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation

    OpenAIRE

    Bozena Dohnalkova

    2015-01-01

    This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable soli...

  16. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  17. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-10-07

    ... State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION... the revisions to California's hazardous waste management program shall be effective at 1 p.m. on... implement the RCRA hazardous waste management program. EPA granted authorization for changes to California's...

  18. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-19

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Final..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management System...

  19. Hazardous waste policies and strategies

    International Nuclear Information System (INIS)

    1991-01-01

    This manual has been compiled as a resource document for trainers to help in the design of training workshops of hazardous waste management. Although principally oriented at groupwork, some part of this manual are also suitable for individual study, and as a resource book

  20. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  1. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... Hazardous Waste Management Programs,'' Wisconsin's authorized hazardous waste program. EPA will incorporate... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...

  2. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  3. Assessing mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m 3 of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers

  4. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  5. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  6. 77 FR 12497 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Exclusion

    Science.gov (United States)

    2012-03-01

    ...,'' from the list of hazardous wastes, a maximum of 200 cubic yards per year of residual solids from sludge... accept the delisted processed storm water tank sludge. This rule also imposes testing conditions for... of F037 residual solids from processing (for oil recovery) sludge removed from two storm water tanks...

  7. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  8. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  9. 77 FR 61326 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-10-09

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... RCRA hazardous waste management program. We granted authorization for changes to their program on... 202. Hazardous Waste Management July 30, 2003; 68 329 IAC 3.1-6-2(16); System; Identification and FR...

  10. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... adopted these requirements by reference at Georgia Hazardous Waste Management Rule 391-3-11-.07(1), EPA... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  11. 75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2010-04-06

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...

  12. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator..., NW., Washington, DC 20460. Attention Docket ID No. EPA-HQ-RCRA-2008-0678. Please include a total of 2 copies. Hand Delivery: EPA West Building, Room 3334, 1301 Constitution Ave., NW., Washington, DC. Such...

  13. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  14. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  15. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  16. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  17. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  18. Process for reclaiming tungsten from a hazardous waste

    International Nuclear Information System (INIS)

    Scheithauer, R.A.; MacInnis, M.B.; Miller, M.J.; Vanderpool, C.D.

    1984-01-01

    A process is disclosed wherein tungsten is recovered from hazardous waste material containing said tungsten, arsenic, and other impurities which can consist of magnesium, phosphorus, and silicon and the resulting waste is treated to render it nonhazardous according to EPA standards for arsenic. Said process involves digesting said hazardous waste material in an aqueous solution of an alkali metal hydroxide, adjusting the pH of the resulting solution to about 11.0 to about 13.0 with NaOH to precipitate essentially all of the magnesium and silicon species, filtering the digestion mix to remove the solids from said resulting solution which contains about 80 to about 100% of said tungsten and essentially none of said magnesium and said silicon, slurrying the hazardous solids in hot water, and adding to the slurry a ferric salt solution to precipitate ferric hydroxide, filtering this mixture to give a solid which passes the EPA standard test for solids with respect to arsenic

  19. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  20. Accuracy of hazardous waste project estimates

    International Nuclear Information System (INIS)

    Hackney, J.W.

    1989-01-01

    The HAZRATE system has been developed to appraise the current state of definition of hazardous waste remedial projects. This is shown to have a high degree of correlation to the financial risk of such projects. The method employs a weighted checklist indicating the current degree of definition of some 150 significant project elements. It is based on the author's experience with a similar system for establishing the risk characteristics of process plant projects (Hackney, 1965 and 1989; 1985). In this paper definition ratings for 15 hazardous waste remedial projects have been correlated with the excesses of their actual costs over their base estimates, excluding any allowances for contingencies. Equations are presented, based on this study, for computation of the contingency allowance needed and estimate accuracy possible at a given stage of project development

  1. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.; Chang, Y.S.

    1996-12-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II) and presents the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  2. Design and construction of hazardous waste landfill components

    International Nuclear Information System (INIS)

    Frano, A.J.; Numes, G.S.

    1985-01-01

    This paper discusses design and construction of two sections of a hazardous waste landfill at Peoria Disposal Company's hazardous waste management facilities in central Illinois. One section, an existing disposal facility, was retrofitted with leachate control and containment features for additional security. The second section, a new facility which had been previously permitted for development with a single clay liner, was modified to include a double liner and revised leachate collection system for additional security, and an all-weather construction and operation access ramp. The two sections of the landfill were granted a development permit allowing construction. An operating permit was granted after construction and certification by the designer allowing waste disposal operations. The sections will be accepting waste material at publication. Design and construction included: planning studies, design analyses, permitting, preparation of construction contract documents, construction assistance, monitoring construction, and certification

  3. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1993-05-01

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications

  4. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Science.gov (United States)

    2010-07-01

    ... this section are met: (1) The waste meets the definition of CAMU-eligible waste in § 264.552(a)(1) and... remediation. (d) Applicable hazardous waste management requirements in this part, including recordkeeping... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal of CAMU-eligible wastes in...

  5. Impact of hazardous waste risks and liabilities on the contracting process

    International Nuclear Information System (INIS)

    Gleason, G.L.

    1991-01-01

    Hazardous waste risks include the following: (1) An emerging environmental cleanup industry that differs significantly from traditional engineering; (2) The inability to predict and control the subsurface environment; (3) The implementation of new and often untested technologies; (4) The statutory imposition of strict, joint and several, as well as retroactive, liability; (5) The lack of insurance and other risk-transfer mechanisms to protect against losses; (6) Costly and time consuming litigation to determine liability; and (7) Others. The liabilities associated with the risks inherent in hazardous waste cleanup directly impact hazardous waste contracting. Contract negotiations become onerous during discussions of liability, indemnification, and issues surrounding scope of work and other clauses. Other impacts include (1) Defensive engineering; (2) Lack of incentive to implement innovative technologies; (3) Increased costs to cover risks. Required client indemnification is a necessary and responsible risks management practice, regardless of whether the client is a federal or private client. Federal government indemnification authorities, as well as private contract indemnification mechanisms, will be explained and analyzed. Conflict of interest concerns are also of critical importance in the hazardous waste market, particularly due to concerns over the complexity of the litigation surrounding hazardous waste sites and the need to ensure unbiased results. Other examples of hazardous waste risk management impacts on contracting in the following market sectors will also be provided: (1) U.S. Environmental Protection Agency; (2) Department of Defense; (3) Department of Energy; and (4) Private sector contracts

  6. Environmental, technical and technological aspects of hazardous waste management in Poland

    OpenAIRE

    Pyssa Justyna

    2017-01-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions...

  7. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  8. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  9. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  10. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  11. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Policastro, A.J.

    1995-04-01

    This report focuses on the generation of hazardous waste (HW) and the treatment, storage, and disposal (TSD) of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for TSD are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial TSD facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine TSD operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. Furthermore, this report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the TSD alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  12. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  13. Inorganic and Hazardous Solid Waste Management: Current Status and Challenges for Indonesia

    NARCIS (Netherlands)

    Aprilia, A.; Tezuka, T.; Spaargaren, G.

    2013-01-01

    This article focuses on household waste management in Indonesia, with particular emphasis on inorganic and hazardous waste. It seeks to identify the current situation and also aims to provide a review of the existing policies that are particularly related to inorganic and hazardous waste management.

  14. The underground diposal of hazardous wastes - necessity, possibilities and limitations

    International Nuclear Information System (INIS)

    Herrmann, A.G.; Brumsack, H.J.; Heinrichs, H.

    1985-01-01

    The natural geochemical cycles of many elements in the atmosphere, hydrosphere, and pedosphere have been changed during the past decades by anthropogenic activities. To put a stop to this development, a drastic reduction of the uncontrolled dispersal of potentially hazardous substances into our environment is necessary, compelling the need for the safe disposal of radioactive and nonradioactive hazardous wastes far away from the biosphere. The amount of potentially hazardous waste produced annually in West Germany is larger by a factor of at least 20 than the volume of hazardous material for which suitable underground disposal sites are planned and available at present. (orig.)

  15. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  16. 77 FR 59758 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection..., (RCRA), allows the Environmental Protection Agency (EPA) to authorize State hazardous waste management... codification of the authorized Idaho hazardous waste management program and incorporates by reference...

  17. USE OF RECYCLED POLYMERS FOR ENCAPSULATION OF RADIOACTIVE, HAZARDOUS AND MIXED WASTES

    International Nuclear Information System (INIS)

    LAGERRAAEN, P.R.; KALB, P.D.

    1997-01-01

    Polyethylene encapsulation is a waste treatment technology developed at Brookhaven National Laboratory using thermoplastic polymers to safely and effectively solidify hazardous, radioactive and mixed wastes for disposal. Over 13 years of development and demonstration with surrogate wastes as well as actual waste streams on both bench and full scale have shown this to be a viable and robust technology with wide application. Process development efforts have previously focused on the use of virgin polymer feedstocks. In order to potentially improve process economics and serve to lessen the municipal waste burden, recycled polymers were investigated for use as encapsulating agents. Recycled plastics included low-density polyethylene, linear low-density polyethylene, high-density polyethylene and polypropylene, and were used as a direct substitute for or blended together with virgin resin. Impacts on processing and final waste form performance were examined

  18. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  19. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  20. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  1. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  2. Experiences with treatment of mixed waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-01-01

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits

  3. Experiences with treatment of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  4. Chemical treatment of mixed waste can be done.....Today exclamation point

    International Nuclear Information System (INIS)

    Honigford, L.; Dilday, D.; Cook, D.; Sattler, J.

    1996-01-01

    The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams

  5. Estimation of potential ecological hazard of solidificated waste disposal

    International Nuclear Information System (INIS)

    Krylova, N.V.

    1980-01-01

    The results of estimation of potential ecological hazard of vitrificated high-level radioactive wastes resulted from spent fuel reprocessing of LWR connected with a hypothetic storage damage being occurred in the 5O0-6000-year geologic period are presented. The total volume of the vitrificated wastes in the storage used for calculations is 12000 blocks. The data on vitrificated block radioactivity depending on the time after fuel regeneration, the density of the uniform distribution of vitrificated wastes over the earth surface, as well as the results of estimation of the man external and internal exposures due to radionuclide escape into the biosphere are given in tables. It is shown that the main hazard is caused by external irradiation. The inhalation dose may be significant for man, though the hazard due to radionuclide intake by ingestion is less

  6. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  7. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  8. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Haywood, Fred F.; Goldsmith, William A.; Allen, Douglas F.; Mezga, Lance J.

    1995-12-01

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  9. Unify a hazardous materials/waste program

    International Nuclear Information System (INIS)

    Carson, H.T.

    1988-01-01

    Efficiently managing a hazardous materials/waste program in a multi-facility, multi-product corporation is a major challenge. This paper describes several methods to help unify a program and gain maximum efficiency of manpower and to minimize risk

  10. 77 FR 46964 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  11. 77 FR 29231 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  12. 76 FR 26616 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... (RCRA) allows EPA to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  13. 75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management Programs'' to...

  14. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.

    1995-04-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II), as well as providing the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  15. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  16. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  17. The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility

    International Nuclear Information System (INIS)

    Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process

  18. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  19. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  20. The aesthetics of hazardous waste - Distinguishing visual impacts from publicly perceived risk

    International Nuclear Information System (INIS)

    Sheppard, S.

    1986-01-01

    The need to address the aesthetic impacts of hazardous waste projects on the environment and the public stems from two sources: government regulations which specifically require assessment of aesthetic effects; and rapidly increasing public concern for perceived impacts and risks of existing or proposed hazardous waste facilities. How aesthetic issues are handled on hazardous waste projects can potentially have significant implications on the fate of those projects. These implications range from delays in the permitting process to denial of sites or costly legal judgments in damage suits. This paper discusses strategies for evaluating the aesthetic/perceptual aspects of hazardous waste. In particular, it focuses upon ways to distinguish visual concerns from other influences on public perceptions such as perceived health and safety risks

  1. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.

    Science.gov (United States)

    Hennebert, Pierre; Samaali, Ismahen; Molina, Pauline

    2016-12-01

    A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as "Release of an acute toxic gas": waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, 2014b). When the substances with the cited hazard statement codes react with water or an acid, they can release HCl, Cl 2 , HF, HCN, PH 3 , H 2 S, SO 2 (and two other gases very unlikely to be emitted, hydrazoic acid HN 3 and selenium oxide SeO 2 - a solid with low vapor pressure). Hence, a method is proposed:For a set of 49 waste, water addition did not produce gas. Nearly all the solid waste produced a gas in contact with hydrochloric acid in 5 min in an automated calcimeter with a volume >0.1L of gas per kg of waste. Since a plateau of pressure is reached only for half of the samples in 5 min, 6 h trial with calorimetric bombs or glass flasks were done and confirmed the results. Identification of the gases by portable probes showed that most of the tested samples emit mainly CO 2 . Toxic gases are emitted by four waste: metallic dust from the aluminum industry (CO), two air pollution control residue of industrial waste incinerator (H 2 S) and a halogenated solvent (organic volatile(s) compound(s)). HF has not been measured in these trials started before the present definition of HP 12. According to the definition of HP 12, only the H 2 S emission of substances with hazard statement EUH031 is accounted for. In view of the calcium content of the two air pollution control residue, the presence of calcium sulphide (EUH031) can be assumed. These two waste are therefore classified potentially hazardous for HP 12, from a total of 49 waste. They are also classified as hazardous for other properties (HP 7

  2. Financial management of hazardous waste compliance and mitigation costs: constraints and implications

    OpenAIRE

    Babos, Jeffrey C.

    1991-01-01

    Approved for public release; distribution in unlimited. This research investigates financial management and other constraints and implications of hazardous waste disposal and compliance within DoD and DoN. It shows that during contracting fiscal period where there is an environmentally conscious public, the DoD and the Navy have to make trade-offs in funding for hazardous waste management. The study reveals that legislation removing sovereign immunity from the DoD for hazardous waste dispo...

  3. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  4. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  5. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-09-30

    ...: Proposed Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... its hazardous waste management program by November 1, 2010. ADDRESSES: Submit your comments... waste management program. EPA continues to have independent enforcement authority under RCRA sections...

  6. Incorporating regulatory considerations into waste treatment technology development

    International Nuclear Information System (INIS)

    Siegel, M.R.; Powell, J.A.; Williams, T.A.; Kuusinen, T.L.; Lesperance, A.M.

    1991-02-01

    It is generally recognized that the development of new and innovative waste treatment technologies can significantly benefit the US Department of Energy's (DOE) environmental restoration and waste management program. DOE has established a research, development, demonstration, testing, and evaluation (RDDT ampersand E) program, managed by its Office of Technology Development, to encourage and direct the development of new waste treatment and management technologies. The treatment, storage, and disposal of hazardous and radioactive waste is heavily regulated both at the federal and state levels. In order to achieve the goals of applying the best new technologies in the fastest and most cost-effective manner possible, it is essential that regulatory factors be considered early and often during the development process. This paper presents a number of regulatory issues that are relevant to any program intended to encourage the development of new waste treatment and management technologies. It will also address how the use of these basic regulatory considerations can help ensure that technologies that are developed are acceptable to regulators and can therefore be deployed in the field. 2 refs

  7. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA granted... XV are from the North Carolina Hazardous Waste Management Rules 15A NCAC 13A, effective April 23...

  8. Pareto frontier analyses based decision making tool for transportation of hazardous waste

    International Nuclear Information System (INIS)

    Das, Arup; Mazumder, T.N.; Gupta, A.K.

    2012-01-01

    Highlights: ► Posteriori method using multi-objective approach to solve bi-objective routing problem. ► System optimization (with multiple source–destination pairs) in a capacity constrained network using non-dominated sorting. ► Tools like cost elasticity and angle based focus used to analyze Pareto frontier to aid stakeholders make informed decisions. ► A real life case study of Kolkata Metropolitan Area to explain the workability of the model. - Abstract: Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology.

  9. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    Energy Technology Data Exchange (ETDEWEB)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-02-28

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

  10. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    International Nuclear Information System (INIS)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-01-01

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media

  11. Toxic waste treatment with sliding centrifugal plasma reactor

    International Nuclear Information System (INIS)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S.; Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C.

    2008-01-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  12. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment...

  13. A proposal for a test method for assessment of hazard property HP 12 (“Release of an acute toxic gas”) in hazardous waste classification - Experience from 49 waste

    OpenAIRE

    Hennebert , Pierre; Samaali , Ismahen; Molina , Pauline

    2016-01-01

    International audience; A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as “Release of an acute toxic gas”: waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, ...

  14. HAXWDDD (Hazardous Waste Development, Demonstration, and Disposal) - An exercise in corporate planning

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Pechin, W.H.

    1988-01-01

    The Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) program is a corporate initiative that is coordinated between Martin Marietta Energy Systems, Inc. (Energy Systems), and the US Department of Energy's Oak Ridge Operations Office (DOE-ORO). The major objective of HAZWDDD is to develop a comprehensive management strategy for the hazardous and mixed wastes generated by the five Energy Systems installations. This program is of prime importance because federal and state regulations for handling hazardous wastes are becoming increasingly stringent and the generator of such wastes retains legally mandated liability for their disposal indefinitely. In addition, no acceptable method is currently available for handling mixed (hazardous and radioactive) wastes. Both Energy Systems corporate management and DOE-ORO management have recognized the seriousness of these problems and have established several programs to determine acceptable courses of action. A plan has been developed for low-level radioactive waste (LLW), and an active dialogue pertaining to LLW is maintained with the state and federal regulators. During 1986, DOE-ORO and Energy Systems identified the need for a plan to address hazardous and mixed wastes. Each installation supports the concept of HAZWDDD through funding and the development of individual HAZWDDD implementation plans. A corporate plan is being developed to integrate the issues discussed in the five installation plans. This paper describes: (1) the approach taken in collecting the necessary information for the plan; (2) some of the techniques used in analyzing the information provided; (3) preliminary data that have been collected in preparation of this plan, (4) the identification of common concerns and issues, and (5) the integration of this information into a corporate approach to mixed and hazardous waste management

  15. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  16. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  17. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  18. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-05-29

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... waste management program. We authorized the following revisions: Oklahoma received authorization for... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  19. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  20. Transportation training: Focusing on movement of hazardous substances and wastes

    International Nuclear Information System (INIS)

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs

  1. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  2. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  3. Management and hazardous waste characterization in Central for Isotop and Radiation Application based on potential dangers

    International Nuclear Information System (INIS)

    Niken Hayudanti Anggarini; Megi Stefanus; Prihatiningsih

    2014-01-01

    Separating and storing hazardous waste have been done based on the physical, chemical, and based on potential dangers due to safety hazardous waste temporary storage warehouse. From the results of data collection in 2014 found that the most dominant hazardous waste is organic liquid waste which reaches 61 %, followed by inorganic liquid waste 33 % while organic solid waste and inorganic solid waste has a small portion. When viewed from potential danger, flammable liquid waste has the greatest volume percentage it is 47 % and is followed by a corrosive liquid waste 26 %, while the liquid waste that has not been identified is quite large, which is 9 %. From the highest hazard potential data, hazardous waste storage warehouse is required to have good air circulation and waste storage shelf protected from direct solar heat. Cooperation of lab workers and researchers are also indispensable in providing identification of each waste generated to facilitate the subsequent waste management. (author)

  4. Buying time: Franchising hazardous and nuclear waste cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. [Dept. of Energy, Washington, DC (United States)

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  5. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  6. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-06

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... December 26, 1984 (49 FR 48300), to implement its Base Hazardous Waste Management Program. This... Waste 53478, September Annotated Sections Management facilities. 8, 2005. 5.103 and 5.105 (Checklist 210...

  7. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  8. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  9. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    International Nuclear Information System (INIS)

    Ades, M.J.; Vincent, A.M. III.

    1997-01-01

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins

  10. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  11. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Science.gov (United States)

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...

  12. Hazardous waste market and technology trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    What forces are currently driving the growth of the hazardous waste remediation market? Which factors will control the development of cleanup technologies during the next decade? At what types of sites are various technologies being applied? In an effort to answer these questions, EPA has produced an overview of trends in the demand for remedial technologies at CERCLA, RCRA corrective action, underground storage tank (UST), and other cleanup sites across the United States. The 160-page document, entitled Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, was developed by EPA's Office of Solid Waste and Emergency Response. Highlights from the report are presented below. 1 ref., 2 figs., 1 tab

  13. ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY-CONTAMINATED HAZARDOUS WASTES

    Science.gov (United States)

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of ongoing hazardous waste generation and historic operations that have led to signif...

  14. Nuclear power for energy production and hazardous waste regulations in India

    International Nuclear Information System (INIS)

    Sharma, Prabhakar; Goel, Gaurav

    2010-01-01

    Before installing any nuclear power- generation plants in India, it is important to implement stringent regulations for the health and safety of the people and for protection of the environment, soil and water from the nuclear and hazardous waste produced in the power plants. Although some initiatives have been taken for radioactive waste disposal in India, the current hazardous and nuclear waste storage/disposal regulations are still too soft and are not being implemented properly in the country

  15. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    Science.gov (United States)

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  16. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  17. Industrial Processes to Reduce Generation of Hazardous Waste at DoD Facilities. Phase III Report. Appendix B. Workshop Manual Innovative Hard Chrome Plating, Pensacola Naval Air Rework Facility, Pensacola, Florida.

    Science.gov (United States)

    1985-12-01

    recovery, regional hazardous waste treatment, hazardous waste storage construction criteria, environmental audits, and low-level radioactive waste...Interior, Bureau of Reclamation, May 1983. Campbell, M. and W.M. Glenn. Profit from Polution Prevention, A Guide to Industrial Waste Reduction and...otherwise managed. For the purposes of this memorandum, hazardous materials do not include those radioactive materials that the Nuclear Regulatory

  18. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    Science.gov (United States)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  19. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  1. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  2. OSHA standard for medical surveillance of hazardous waste workers.

    Science.gov (United States)

    Melius, J M

    1990-01-01

    The increasing amount of work involving hazardous waste sites and the heavy involvement of the federal and state governments in this work have led to the gradual development of guidelines and standards providing for occupational safety and health programs for these sites. On March 6, 1989, the Occupational Safety and Health Administration published its final rule governing occupational safety and health matters at hazardous waste sites and emergency operations. This rule is currently scheduled to take effect on March 6, 1990. This chapter will briefly describe this regulation, particularly its medical surveillance requirements.

  3. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  4. Training for hazardous waste workers

    Energy Technology Data Exchange (ETDEWEB)

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  5. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    LaMoreaux, P.E.

    1993-01-01

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  6. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  7. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  8. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  9. Characterization of secondary solid waste anticipated from the treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Kent, T.E.; Taylor, P.A.

    1992-09-01

    This project was undertaken to demonstrate that new liquid waste streams, generated as a consequence of closure activities at Waste Area Grouping (WAG) 6, can be treated adequately by existing wastewater treatment facilities at Oak Ridge National Laboratory (ORNL) without producing hazardous secondary solid wastes. Previous bench-scale treatable studies indicated that ORNL treatment operations will adequately remove the contaminants although additional study was required in order to characterize the secondary waste materials produced as a result of the treatment A 0.5-L/min pilot plant was designed and constructed to accurately simulate the treatment capabilities of ORNL fill-scale (490 L/min) treatment facilities-the Process Waste Treatment Plant (PWTP) and Nonradiological Wastewater Treatment Plant (NRWTP). This new test system was able to produce secondary wastes in the quantities necessary for US Environmental Protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system was operated for a 45-d test period with a minimum of problems and downtime. The pilot plant operating data verified that the WAG 6 trench waters can be treated at the PWTP and NRWTP to meet the discharge limits. The results of TCLP testing indicate that none of the secondary solid wastes will be considered hazardous as defined by the Resource Conservation and Recovery Act

  10. Whose environment? Which perspective? A critical approach to hazardous waste management in Sweden

    OpenAIRE

    R Lidskog

    1993-01-01

    Starting with a description of six general interpretations of this kind of hazardous waste siting, and with a description of the policy for hazardous waste management in Sweden, the author examines the decisionmaking process regarding the siting of the central plant for hazardous waste in Sweden. The paper ends with the conclusion that a locational conflict is to be seen mainly as a struggle concerning the perception and definition of the issue. Thus the question is which perspective on the i...

  11. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  12. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Science.gov (United States)

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...

  13. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  14. Household hazardous waste data for the UK by direct sampling.

    Science.gov (United States)

    Slack, Rebecca J; Bonin, Michael; Gronow, Jan R; Van Santen, Anton; Voulvoulis, Nikolaos

    2007-04-01

    The amount of household hazardous waste (HHW) disposed of in the United Kingdom (UK) requires assessment. This paper describes a direct analysis study carried out in three areas in southeast England involving over 500 households. Each participating householder was provided with a special bin in which to place items corresponding to a list of HHW. The amount of waste collected was split into nine broad categories: batteries, home maintenance (DIY), vehicle upkeep, pesticides, pet care, pharmaceuticals, photographic chemicals, household cleaners, and printer cartridges. Over 1 T of waste was collected from the sample households over a 32-week period, which would correspond to an estimated 51,000 T if extrapolated to the UK population for the same period or over 7,000 T per month. Details of likely disposal routes adopted by householders were also sought, demonstrating the different pathways selected for different waste categories. Co-disposal with residual household waste dominated for waste batteries and veterinary medicines, hence avoiding classification as hazardous waste under new UK waste regulations. The information can be used to set a baseline for the management of HHW and provides information for an environmental risk assessment of the disposal of such wastes to landfill.

  15. A conflict model for the international hazardous waste disposal dispute

    International Nuclear Information System (INIS)

    Hu Kaixian; Hipel, Keith W.; Fang, Liping

    2009-01-01

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  16. A conflict model for the international hazardous waste disposal dispute.

    Science.gov (United States)

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  17. Auditing hazardous waste incineration

    International Nuclear Information System (INIS)

    Jayanty, R.K.M.; Allen, J.M.; Sokol, C.K.; von Lehmden, D.J.

    1990-01-01

    This paper reports that audit standards consisting of volatile and semivoltile organics have been established by the EPA to be provided to federal, state, and local agencies or their contractors for use in performance audits to assess the accuracy of measurement methods used during hazardous waste trial burns. The volatile organic audit standards currently total 29 gaseous organics in 5, 6, 7, 9, and 18-component mixtures at part-per-billion (ppb) levels (1 to 10 000 ppb) in compressed gas cylinders in a balance gas of nitrogen. The semivoltile organic audit standards currently total six organics which are spiked onto XAD-2 cartridges for auditing analysis procedures. Studies of all organic standards have been performed to determine the stability of the compounds and the feasibility of using them as performance audit materials. Results as of July 1987 indicate that all of the selected organic compounds are adequately stabile for use as reliable audit materials. Performance audits have been conducted with the audit materials to assess the accuracy of the measurement methods. To date, 160 performance audits have been initiated with the ppb-level audit gases. The audit results obtained with audit gases during hazardous waste trial burn tests were generally within ±50% of the audit concentrations. A limited number of audit results have been obtained with spiked XAD-2 cartridges, and the results have generally been within ±35% of the audit concentrations

  18. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  19. 78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-03-11

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... Waste program as addressed by the federal used oil management regulations that were published on..., New York Codes, Rules and Regulations (6 NYCRR), Volume A-2A, Hazardous Waste Management System...

  20. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...