WorldWideScience

Sample records for hazardous waste sites

  1. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  2. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  3. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  4. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  5. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  6. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  7. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  8. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  9. Assessment of mixed hazardous and radioactive waste sites at Hanford

    International Nuclear Information System (INIS)

    McLaughlin, T.J.; Cramer, K.H.; Lamar, D.A.; Sherwood, D.R.; Stenner, R.D.; Schulze, W.B.

    1987-10-01

    The US Department of Energy and Pacific Northwest Laboratory recently completed a preliminary assessment of 685 inactive hazardous waste sites located on the Hanford Site. The preliminary assessment involved collecting historical data and individual site information, conducting site inspections, and establishing an environmental impact priority, using the Hazard Ranking System, for each of these 685 sites. This preliminary assessment was the first step in the remediation process required by the Comprehensive Environmental Response, Compensation and Liability Act. This paper presents the results of that preliminary assessment. 10 refs., 4 figs., 1 tab

  10. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  11. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  12. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  13. A Bayesian sampling strategy for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Skalski, J.R.

    1987-12-01

    Prior knowledge based on historical records or physical evidence often suggests the existence of a hazardous waste site. Initial surveys may provide additional or even conflicting evidence of site contamination. This article presents a Bayes sampling strategy that allocates sampling at a site using this prior knowledge. This sampling strategy minimizes the environmental risks of missing chemical or radionuclide hot spots at a waste site. The environmental risk is shown to be proportional to the size of the undetected hot spot or inversely proportional to the probability of hot spot detection. 12 refs., 2 figs

  14. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  15. Technology needs and trends for hazardous waste site remediation

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    1995-01-01

    Over the next few decades, federal, state, and local governments and private industry will commit billions of dollars annually to clean up sites contaminated with hazardous waste and petroleum products. While these needs represent an obligation for society, they also represent an important business opportunity for vendors of remediation services. This presentation assesses the remediation market by characterizing sites that comprise the demand for cleanup services, observing remedy selection trends in the Superfund program, and discussing gaps in the supply of technologies

  16. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.

    1985-01-01

    The site of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publicity controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Based on the available technologies, the effective siting of facilities is more of a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have generally failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. It is proposed in this paper that more readily acceptable solutions to siting hazardous waste facilities might result from the integration of two social science approaches: (1) social impact assessment, which seeks to define and mitigate problems, and (2) hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. This paper illustrates how this integration of approaches could be implemented

  17. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  18. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  19. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  20. Characterization of the atmospheric pathway at hazardous waste sites

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.

    1988-10-01

    Evaluation of potential health effects for populations surrounding hazardous waste sites requires consideration of all potential contaminant transport pathways through groundwater, surface water, and the atmosphere. A comprehensive pathway model that includes emission, dispersion, and deposition computations has been developed as a component of the Remedial Action Priority System (RAPS). RAPS is designed to assess the relative potential risks associated with hazardous and radioactive mixed-waste disposal sites. The atmospheric component includes optional volatilization and suspension emission routines. Atmospheric transport, dispersion, and deposition are computed using relatively standard modeling techniques expanded to incorporate topographical influences. This sector-averaged Gaussian model accounts for local channeling, terrain heights, and terrain roughness effects. Long-term total deposition is computed for the terrain surrounding the hazardous waste site. An example is given of applications at a US Department of Energy site, where atmospheric emissions are potentially important. The multiple applications of RAPS have provided information on the relative importance of different constitutent transport pathways from a potential population risk basis. Our results show that the atmospheric pathway is often equally as important as other pathways such as groundwater and direct soil ingestion. 6 refs., 3 figs., 4 tabs

  1. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    LaMoreaux, P.E.

    1993-01-01

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  2. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

    Data.gov (United States)

    National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

  3. Description of the Northwest hazardous waste site data base and preliminary analysis of site characteristics

    International Nuclear Information System (INIS)

    Woodruff, D.L.; Hartz, K.E.; Triplett, M.B.

    1988-08-01

    The Northwest Hazardous Waste RD and D Center (the Center) conducts research, development, and demonstration (RD and D) activities for hazardous and radioactive mixed-waste technologies applicable to remediating sites in the states of Idaho, Montana, Oregon, and Washington. To properly set priorities for these RD and D activities and to target development efforts it is necessary to understand the nature of the sites requiring remediation. A data base of hazardous waste site characteristics has been constructed to facilitate this analysis. The data base used data from EPA's Region X Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) and from Preliminary Assessment/Site Investigation (PA/SI) forms for sites in Montana. The Center's data base focuses on two sets of sites--those on the National Priorities List (NPL) and other sites that are denoted as ''active'' CERCLIS sites. Active CERCLIS sites are those sites that are undergoing active investigation and analysis. The data base contains information for each site covering site identification and location, type of industry associated with the site, waste categories present (e.g., heavy metals, pesticides, etc.), methods of disposal (e.g., tanks, drums, land, etc.), waste forms (e.g., liquid, solid, etc.), and hazard targets (e.g., surface water, groundwater, etc.). As part of this analysis, the Northwest region was divided into three geographic subregions to identify differences in disposal site characteristics within the Northwest. 2 refs., 18 figs., 5 tabs

  4. SRS: Site ranking system for hazardous chemical and radioactive waste

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs

  5. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  6. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioeconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  7. Remediation of hazardous waste sites by heap leaching

    International Nuclear Information System (INIS)

    Samani, Z.; Hanson, A.; Dwyer, B.

    1994-01-01

    Efforts are being made to devise technologies and treatment systems to remediate contaminated soil-on site without generating significant wastes for off-site disposal. Heap leaching, a technique used extensively in the mining industry, has been investigated as a method for remediation of hazardous chemical contamination of the vadose zone. In the mining industry, metal-bearing ore is excavated and mounded on a pad. The metals are removed by passing a special leaching solution through the ore. In this study, the removal of chromium(VI) from the New Mexico soils (sand, sandy loam, and clay) using heap leaching was evaluated at a column scale. The heap leaching study demonstrated greater than 99% removal of Cr(VI) from all three soils using tap water as the leaching agent. (author) 13 figs., 5 tabs., 21 refs

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  9. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  10. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  11. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Feo, Giovanni De; Gisi, Sabino De

    2014-01-01

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  13. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  14. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Expeditious Methods for Site Characterization and Risk Assessment at Department of Defense Hazardous Waste Sites in the Republic of Korea

    National Research Council Canada - National Science Library

    Hartman, Dean

    1999-01-01

    ...) with preferred innovative site characterization technologies and risk assessment methods to meet their needs in obtaining hazardous waste site data and then prioritizing those sites for remediation based upon risk...

  16. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  17. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  18. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    Science.gov (United States)

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  19. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is ...

  20. BIOREMEDIATION OF HAZARDOUS WASTE SITES: PRACTICAL APPROACHES TO IMPLEMENTATION (EPA/625/K-96/001)

    Science.gov (United States)

    This document contains abstracts and slide hardcopy for the U.S. Environmental Protection Agency's (EPA's) "Seminar Series on Bioremediation of Hazardous Waste Sites: Practical Approaches to Implementation." This technology transfer seminar series, sponsored by EPA's Biosystems ...

  1. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  2. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study.

  3. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study

  4. Three multimedia models used at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers

  5. In situ vitrification of a mixed radioactive and hazardous waste site

    International Nuclear Information System (INIS)

    Campbell, B.E.; Koegler, S.S.

    1990-11-01

    A large-scale test of the in situ vitrification (ISV) process was performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington State. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many US Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground. The goals of the test are to demonstrate at least 99% retention of fission products and hazardous metals in the ISV glass during the test; demonstrate the ability of the ISV off-gas treatment system to process a waste site containing significant quantities of combustible material and demonstrate the ability of ISV to vitrify the site to a depth of 20 ft or greater. The test was completed in April 1990. 5 figs

  6. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    International Nuclear Information System (INIS)

    2003-01-01

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS

  7. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... treatment of a hazardous waste generated by the Owens-Brockway Glass Container Company in Vernon, California... action. List of Subjects in 40 CFR Part 268 Environmental protection, Hazardous waste, and Variances...

  8. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Science.gov (United States)

    2010-07-01

    ..., storage or disposal facility. If an eligible academic entity makes the hazardous waste determination... hazardous waste permit or interim status as soon as it arrives in the on-site treatment, storage or disposal... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the...

  9. Contingency plan for the Lawrence Livermore National Laboratory, Site 300, hazardous waste operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.

    1983-01-01

    This contingency plan for hazardous waste release provides guidance for coordinating response efforts. With a goal to minimize hazards to human health and life; and protect livestock, wildlife, the environment, and property in the event of a fire, explosion, or any unplanned release of hazardous substances or mixtures to the air, water, or soil. In this document, hazardous waste includes all waste substances or mixtures that: contain any of the hazardous substances listed in the Resource Conservation and Recovery Act; have the characteristic of being toxic, flammable, reactive, corrosive, an irritant, and/or a strong sensitizer; are radioactive and are used in experiments at Site 300; or could have a significant effect on the environment. This Plan includes an overview of emergency response capabilities; and responsibilities assigned to both LLNL and non-LLNL emergency response personel

  10. Factors for assessment of human health risk associated with remedial action at hazardous waste sites

    International Nuclear Information System (INIS)

    Stephenson, D.E.; King, C.M.; Looney, B.B.; Holmes, W.G.; Gordon, D.E.

    1985-01-01

    A risk assessment strategy that is cost effective and minimized human health risks was developed for closure of hazardous waste sites at the Savannah River Plant. The strategy consists of (1) site characterization, (2) contaminant transport modeling, and (3) determination of relative merits of alternative remedial actions according to the degree of health protection they provide

  11. Hazardous Waste Landfill Siting using GIS Technique and Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ozeair Abessi

    2010-07-01

    Full Text Available Disposal of large amount of generated hazardous waste in power plants, has always received communities' and authori¬ties attentions. In this paper using site screening method and Analytical Hierarchy Process (AHP a sophisticated approach for siting hazardous waste landfill in large areas is presented. This approach demonstrates how the evaluation criteria such as physical, socio-economical, technical, environmental and their regulatory sub criteria can be introduced into an over layer technique to screen some limited appropriate zones in the area. Then, in order to find the optimal site amongst the primary screened site utilizing a Multiple Criteria Decision Making (MCDM method for hierarchy computations of the process is recommended. Using the introduced method an accurate siting procedure for environmental planning of the landfills in an area would be enabled. In the study this approach was utilized for disposal of hazardous wastes of Shahid Rajaee thermal power plant located in Qazvin province west central part of Iran. As a result of this study 10 suitable zones were screened in the area at first, then using analytical hierarchy process a site near the power plant were chosen as the optimal site for landfilling of the hazardous wastes in Qazvin province.

  12. Toward identifying the next generation of superfund and hazardous waste site contaminants.

    Science.gov (United States)

    Ela, Wendell P; Sedlak, David L; Barlaz, Morton A; Henry, Heather F; Muir, Derek C G; Swackhamer, Deborah L; Weber, Eric J; Arnold, Robert G; Ferguson, P Lee; Field, Jennifer A; Furlong, Edward T; Giesy, John P; Halden, Rolf U; Henry, Tala; Hites, Ronald A; Hornbuckle, Keri C; Howard, Philip H; Luthy, Richard G; Meyer, Anita K; Sáez, A Eduardo; Vom Saal, Frederick S; Vulpe, Chris D; Wiesner, Mark R

    2011-01-01

    This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants. Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: They are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites. A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  13. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    Adelman, D.D.; Stansbury, J.

    1997-01-01

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  14. Use of risk to resolve conflicts in assessing hazards at mixed-waste sites

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.

    1991-01-01

    Two main issues contribute to the assessment of health hazard from mixed waste: the scientific methods to assess these materials and the legislative and regulatory control of these materials. This paper is primarily concerned with the scientific method of assessing hazards from mixed waste (i.e., carcinogenic chemicals, noncarcinogenic chemicals, and radioactive material). This paper discusses SRS, a Site Ranking System, and its use of risk concepts to avoid introducing new inconsistencies when ranking mixed-waste sites. SRS ranks each site by scoring factors that influence the human health risk. The factors are (1) the potentially exposed population, (2) the average amount of exposure to the waste, and (3) the toxicity of the waste. The relative risk of a release is measured as the product of these three factors. The third factor, toxicity, is indexed with a single score, but because methods of measuring toxicity differ for carcinogenic chemicals, noncarcinogenic chemicals, and radionuclides, comparison can be difficult; hence, this paper also summarizes the logic and assumptions used to make toxicity comparisons in SRS. As may be expected, results from a ranking scheme based on risk are different from results generated by the original Hazard Ranking System (HRS), used by the Environmental Protection Agency. This paper briefly discusses these differences for five Superfund sites (no mixed waste). The legislative and regulatory control of these materials to protect human health is also discussed. 37 refs., 1 tab

  15. Emergence of interest groups on hazardous waste siting: How do they form and survive

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1986-01-01

    The disposal and siting of hazardous and radioactive wastes has created numerous problems for decision-makers in the field of waste management. The social/political problems have proven to be some of the most difficult to solve. Public knowledge of the presence of hazardous and radioactive waste sites has grown considerably in recent years. Over the same period, the process of choosing new disposal sites has attracted a great deal of publicity. In many cases, when existing sites are discovered or when a community is being considered for a new disposal site, organized groups emerge in the community to support or oppose the proposed actions and the decision-makers responsible. Emergent groups are a form of organized collective action in response to a particular situation or event, such as the siting or discovery of a hazardous waste disposal site. Sociological methods and theory can provide insight on the patterns common to these groups, their emergence, and their survival or decline. The questions addressed in this paper are: what are the variables that lead to the formation of such groups, and what conditions or group actions contribute to their growth and survival?

  16. PHYTOREMEDIATION OF CONTAMINATED SOIL AND GROUND WATER AT HAZARDOUS WASTE SITES

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is provided. The different fo...

  17. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  18. Protecting subcontractor personnel during hazardous waste site characterization

    International Nuclear Information System (INIS)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs

  19. Protecting subcontractor personnel during hazardous waste site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs.

  20. Characterization of hazardous waste sites: a methods manual. Volume 2. Available sampling methods (second edition)

    International Nuclear Information System (INIS)

    Ford, P.J.; Turina, P.J.; Seely, D.E.

    1984-12-01

    Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that arise during routine waste site and hazardous spill investigations. The sampling methods presented in this document are compiled by media, and were selected on the basis of practicality, economics, representativeness, compatability with analytical considerations, and safety, as well as other criteria. In addition to sampling procedures, sample handling and shipping, chain-of-custody procedures, instrument certification, equipment fabrication, and equipment decontamination procedures are described. Sampling methods for soil, sludges, sediments, and bulk materials cover the solids medium. Ten methods are detailed for surface waters, groundwater and containerized liquids; twelve are presented for ambient air, soil gases and vapors, and headspace gases. A brief discussion of ionizing radiation survey instruments is also provided

  1. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  2. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  3. All hazardous waste politics is local: Grass-roots advocacy and public participation in siting and cleanup decisions

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, R.C.

    1998-12-31

    The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.

  4. The potential monetary benefits of reclaiming hazardous waste sites in the Campania region: an economic evaluation.

    Science.gov (United States)

    Guerriero, Carla; Cairns, John

    2009-06-24

    Evaluating the economic benefit of reducing negative health outcomes resulting from waste management is of pivotal importance for designing an effective waste policy that takes into account the health consequences for the populations exposed to environmental hazards. Despite the high level of Italian and international media interest in the problem of hazardous waste in Campania little has been done to reclaim the land and the waterways contaminated by hazardous waste. This study aims to reduce the uncertainty about health damage due to waste exposure by providing for the first time a monetary valuation of health benefits arising from the reclamation of hazardous waste dumps in Campania. First the criteria by which the landfills in the Campania region, in particular in the two provinces of Naples and Caserta, have been classified are described. Then, the annual cases of premature death and fatal cases of cancers attributable to waste exposure are quantified. Finally, the present value of the health benefits from the reclamation of polluted land is estimated for each of the health outcomes (premature mortality, fatal cancer and premature mortality adjusted for the cancer premium). Due to the uncertainty about the time frame of the benefits arising from reclamation, the latency of the effects of toxic waste on human health and the lack of context specific estimates of the Value of Preventing a Fatality (VPF), extensive sensitivity analyses are performed. There are estimated to be 848 cases of premature mortality and 403 cases of fatal cancer per year as a consequence of exposure to toxic waste. The present value of the benefit of reducing the number of waste associated deaths after adjusting for a cancer premium is euro11.6 billion. This value ranges from euro5.4 to euro20.0 billion assuming a time frame for benefits of 10 and 50 years respectively. This study suggests that there is a strong economic argument for both reclaiming the land contaminated with hazardous

  5. The potential monetary benefits of reclaiming hazardous waste sites in the Campania region: an economic evaluation

    Directory of Open Access Journals (Sweden)

    Cairns John

    2009-06-01

    economic argument for both reclaiming the land contaminated with hazardous waste in the two provinces of Naples and Caserta and increasing the control of the territory in order to avoid the creation of new illegal dump sites.

  6. DOI criticized for failing to inventory hazardous waste sites on federal lands

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Department of the Interior (DOI) manages approximately 440 million acres of public land across the United States, including national parks and forests, wildlife refuges, fish hatcheries, and water and hydroelectric projects. At these facilities, hazardous wastes are commonly generated through such activities as oil and gas drilling, coal mining, hydroelectric plant operation, and pesticide application. Consequently, a significant number of DOI sites are probably contaminated and thus must be identified, assessed, and remediated. 2 refs., 1 tab

  7. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  8. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    International Nuclear Information System (INIS)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included

  9. Application of geographical information system in disposal site selection for hazardous wastes.

    Science.gov (United States)

    Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan

    2014-01-01

    The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.

  10. Evaluation of Landfill Site Candidate for Naturally Occurring Radioactive Materials (Norm) and Hazardous Waste

    International Nuclear Information System (INIS)

    Sucipta; Hadi Suntoko; Bunawas

    2007-01-01

    Refers to co-location concept, Kabil site, where located at the southeast end of low hills in Batam Island, will be sited as an integrated industrial waste management center including landfill. So that, it is necessary an evaluation of the landfill site candidate for NORM and hazardous waste. The evaluation includes geological and non-geological aspects, to determine the suitability or capability in supporting the function as landfill facility. The site candidate was evaluated by serial sreps as follows: 1) criteria formulation; 2) selecting the parameter for evaluation; 3) Positive screening or evaluation of the land having potentiality for landfill site by descriptive method: and 4) determine the land suitability or capability for landfill site. The evaluation of geological and non- geological aspects include topography, litology, seismicity, groundwater and surface water, climate, hydro-oceanography, flora and fauna, spatial pattern and transportation system. The most of the parameters evaluated show the fulfilling to the site criteria, and can be mentioned that the land is suitable for landfill site. Some parameters are not so suitable for that purpose, especially on permeability and homogeneity of the rocks/soils, distance to surface water body, depth of groundwater, the flow rate of groundwater, precipitation, and humidity of the air. The lack of suitability showed by some parameters can be compensated by improving the appropriate engineered barrier in order to fulfill the landfill performance in providing the supporting capacity, long live stability and waste containment. (author)

  11. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    International Nuclear Information System (INIS)

    Collins, M.S.; Borgstrom, C.M.

    2004-01-01

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and

  12. Evaluation of soil bioassays for use at Washington state hazardous waste sites: A pilot study

    International Nuclear Information System (INIS)

    Blakley, N.; Norton, D.; Stinson, M.; Boyer, R.

    1994-01-01

    The Washington State Department of Ecology (Ecology) is developing guidelines to assess soil toxicity at hazardous waste sites being investigated under the Washington Model Toxics Control Act Cleanup Regulation. To evaluate soil toxicity, Ecology selected five bioassay protocols -- Daphnia, Earthworm, Seedling, Fathead Minnow, and Frog Embryo Teratogenesis Assay Xenopus (FETAX) -- for use as screening level assessment tools at six State hazardous waste sites. Sites contained a variety of contaminants including metals, creosote, pesticides, and petroleum products (leaking underground storage tanks). Three locations, representing high, medium, and low levels of contamination, were samples at each site. In general, the high contaminant samples resulted in the highest toxic response in all bioassays. The order of site toxicity, as assessed by overall toxic response, is creosote, petroleum products, metals, and pesticides. Results indicate that human health standards, especially for metals, may not adequately protect some of the species tested. The FETAX bioassay had the greatest overall number of toxic responses and lowest variance. The seedling and Daphnia bioassays had lower and similar overall toxic response results, followed by the earthworm and fathead minnow. Variability was markedly highest for the seedling. The Daphnia and fathead minnow variability were similar to the FETAX level, while the earthworm variability was slightly higher

  13. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual

    International Nuclear Information System (INIS)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs

  14. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  15. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    International Nuclear Information System (INIS)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance

  16. Determining the number of samples required for decisions concerning remedial actions at hazardous waste sites

    International Nuclear Information System (INIS)

    Skiles, J.L.; Redfearn, A.; White, R.K.

    1991-01-01

    An important consideration for every risk analyst is how many field samples should be taken so that scientifically defensible decisions concerning the need for remediation of a hazardous waste site can be made. Since any plausible remedial action alternative must, at a minimum, satisfy the condition of protectiveness of human and environmental health, we propose a risk-based approach for determining the number of samples to take during remedial investigations rather than using more traditional approaches such as considering background levels of contamination or federal or state cleanup standards

  17. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  18. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed

  19. In situ vitrification of a mixed radioactive and hazardous waste site

    International Nuclear Information System (INIS)

    Koegler, S.S.

    1990-01-01

    This paper reports on a large-scale test of the in situ vitrification (ISV) process being performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington state. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many U.S. Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground to the desired treatment depth, and a layer of electrically conductive material (a starter path) is placed between the electrodes. Electrical power is applied to the electrodes causing the conductive material to melt, thus melting the surrounding soil. Electrical energy is transferred to the molten soil through Joule (resistance) heating and the soil continues to melt to the desired depth, at which time the power to the electrodes is discontinued. A hood placed over the area to be vitrified allows the off gases from the process to be treated before their release to the atmosphere. After completion of the melt, the molten-soil cools and solidifies, and soil is backfilled over the subsided area

  20. Recent developments in health risks modeling techniques applied to hazardous waste site assessment and remediation

    International Nuclear Information System (INIS)

    Mendez, W.M. Jr.

    1990-01-01

    Remediation of hazardous an mixed waste sites is often driven by assessments of human health risks posed by the exposures to hazardous substances released from these sites. The methods used to assess potential health risk involve, either implicitly or explicitly, models for pollutant releases, transport, human exposure and intake, and for characterizing health effects. Because knowledge about pollutant fate transport processes at most waste sites is quite limited, and data cost are quite high, most of the models currently used to assess risk, and endorsed by regulatory agencies, are quite simple. The models employ many simplifying assumptions about pollutant fate and distribution in the environment about human pollutant intake, and toxicologic responses to pollutant exposures. An important consequence of data scarcity and model simplification is that risk estimates are quite uncertain and estimates of the magnitude uncertainty associated with risk assessment has been very difficult. A number of methods have been developed to address the issue of uncertainty in risk assessments in a manner that realistically reflects uncertainty in model specification and data limitations. These methods include definition of multiple exposure scenarios, sensitivity analyses, and explicit probabilistic modeling of uncertainty. Recent developments in this area will be discussed, along with their possible impacts on remediation programs, and remaining obstacles to their wider use and acceptance by the scientific and regulatory communities

  1. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  2. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Labieniec, Paula Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  3. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    International Nuclear Information System (INIS)

    Labieniec, P.A.

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface

  4. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Mike Serrato

    2012-01-01

    Full Text Available This study investigated the usability of hyperspectral remote sensing for characterizing vegetation at hazardous waste sites. The specific objectives of this study were to: (1 estimate leaf-area-index (LAI of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP, and machine learning regression trees, and (2 map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF-derived metrics and vegetation indices. HyMap airborne data (126 bands at 2.3 × 2.3 m spatial resolution, collected over the U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona, were used. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. Regression trees resulted in the best calibration performance of LAI estimation (R2 > 0.80. The use of REPs failed to accurately predict LAI (R2 < 0.2. The use of the MTMF-derived metrics (matched filter scores and infeasibility and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches ( < 1 m found on the sites.

  5. Vegetation Cover Analysis Of Hazardous Waste Sites In Utah And Arizona Using Hyperspectral Remote Sensing

    International Nuclear Information System (INIS)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-01

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R 2 > 0.80). The use of REPs failed to accurately predict LAI (R 2 < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  6. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  7. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  8. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  9. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    Science.gov (United States)

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  10. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    International Nuclear Information System (INIS)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-01

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow

  11. Ecological assessments at DOE hazardous waste sites: Current procedures and problems

    International Nuclear Information System (INIS)

    Hlohowskyj, I.; Krummel, J.R.; Irving, J.S.; Vinikour, W.S.

    1989-01-01

    Major actions at US Department of Energy (DOE) hazardous waste sites require CERCLA compliance that meets NEPA considerations. Although NEPA compliance includes ecological considerations, neither the Council on Environmental Quality (CEQ) nor the DOE provide detailed guidance for conducting ecological assessments under NEPA. However, the identification of the form and magnitude of potential ecological impacts associated with a proposed action is directly dependent on the quality of the baseline data available for a particular site. Using the Surplus Facilities Management Program Weldon Spring site as an example, we discuss the collection of baseline ecological data for the site. This site is surrounded by approximately 17,000 acres of wildlife area. Available wildlife data consisted of qualitative, county-level species lists, and vegetation data was in the form of a regional qualitative narrative. Detailed site-specific occurrence data for listed species and high quality natural communities was provided by the Missouri Department of Conservation Heritage data base. 30 refs., 1 fig., 1 tab

  12. Analysis of abandoned potential CERCLA hazardous waste sites using historic aerial photographs

    International Nuclear Information System (INIS)

    Rosowitz, D.W.; Franzen, P.A.; Green, D.J.

    1993-01-01

    Aerial photographs of varying scale from federal agencies and commercial aerial service companies covering the years 1938, 1942, 1948, 1952, 1957, 1960, 1970, 1971, 1977, and 1986 of the Edgewood Area of Aberdeen Proving Ground (APG), Maryland, (Gunpowder Neck 7.5 Minute United States Geological Survey Topographic Quadrangle Map) were evaluated for identification of potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) hazardous waste sites and land use changes for approximately 1500 acres (610 hectares) used in the testing of military-related chemicals and munitions on Carroll Island and Graces Quarters. Detailed testing records exist only for July 1964 to December 1971, thus making the interpretation of aerial photographs a valuable tool in reconstructing past activities from the late 1930s to June 1964 and guiding future sampling locations in the multiphased CERCLA process. Many potential test sites were activated by either clear-cutting tracks of vegetation or using existing cleared land until final abandonment of the site(s) circa 1974-1975. Ground inspection of open-quotes land scarringclose quotes at either known or suspected sites was essential for verifying the existence, location, and subsequent sampling of potential CERCLA sites. Photomorphic mapping techniques are described to delineate and compare different land use changes in past chemical and munitions handling and testing. Delineation of features was based on photographic characteristics of tone, pattern, texture, shape, shadow, size, and proximity to known features. 7 refs., 9 figs

  13. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  14. Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Conway, R.; Anderson, R.G.

    1996-01-01

    How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems

  15. Organizational approach to estimating public resistance at proposed disposal sites for radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Payne, B.A.

    1982-01-01

    This paper was intended to present an organizational approach to predicting collective action and then to apply that approach to the issue of siting of a nuclear or other hazardous waste repository. Borrowing largely from two previously developed models (one by Perry et al. at Battelle's Human Affairs Research Center and one by Charles Tilly), I developed a theoretical model. Indicators were identified for many of the variables, but they are not easily measured, requiring a number of decisions on thresholds which were not clarified in the paper. What remains is further discussion of these measurement problems, evaluation of the confirmation status of the propositions, and empirical tests of the model. In the meantime, however, the discussion should provide assessors of public resistance with a theoretical basis for their thinking and a guide to some revealing indicators of the potential for collective action

  16. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  17. Building a Co-Created Citizen Science Program with Community Members Neighboring a Hazardous Waste Site

    Science.gov (United States)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To date, only a limited number of co-created citizen science projects, where community members are involved in most or all steps of the scientific process, have been initiated at contaminated sites and even less in conjunction with risk communication. Gardenroots: The Dewey-Humboldt AZ Garden Project was a place-based, co-created citizen science project where community members and researchers together: defined the question for study, developed hypotheses, collected environmental samples, disseminated results broadly, translated the results into action, and posed new research questions. This co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels) that was not being evaluated in the current site assessment. Furthermore, co-producing science led to both individual learning and social-ecological outcomes. This approach illustrates the benefits of a co-created citizen-science program in addressing the complex problems that arise in communities neighboring a hazardous waste sites. Such a project increased the community's involvement in regional environmental assessment and decision-making, which has the potential to help mitigate environmental exposures and thereby reduce associated risks.

  18. Determining the number of samples required for decisions concerning remedial actions at hazardous waste sites

    International Nuclear Information System (INIS)

    Skiles, J.L.; Redfearn, A.; White, R.K.

    1991-01-01

    The processing of collecting, analyzing, and assessing the data needed to make to make decisions concerning the cleanup of hazardous waste sites is quite complex and often very expensive. This is due to the many elements that must be considered during remedial investigations. The decision maker must have sufficient data to determine the potential risks to human health and the environment and to verify compliance with regulatory requirements, given the availability of resources allocated for a site, and time constraints specified for the completion of the decision making process. It is desirable to simplify the remedial investigation procedure as much as possible to conserve both time and resources while, simultaneously, minimizing the probability of error associated with each decision to be made. With this in mind, it is necessary to have a practical and statistically valid technique for estimating the number of on-site samples required to ''guarantee'' that the correct decisions are made with a specified precision and confidence level. Here, we will examine existing methodologies and then develop our own approach for determining a statistically defensible sample size based on specific guidelines that have been established for the risk assessment process

  19. Multimedia approach to estimating target cleanup levels for soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1990-04-01

    Contaminated soils at hazardous and nuclear waste sites pose a potential threat to human health via transport through environmental media and subsequent human intake. To minimize health risks, it is necessary to identify those risks and ensure that appropriate actions are taken to protect public health. The regulatory process may typically include identification of target cleanup levels and evaluation of the effectiveness of remedial alternatives and the corresponding reduction in risks at a site. The US Environmental Protection Agency (EPA) recommends that exposure assessments be combined with toxicity information to quantify the health risk posed by a specific site. This recommendation then forms the basis for establishing target cleanup levels. An exposure assessment must first identify the chemical concentration in a specific medium (soil, water, air, or food), estimate the exposure potential based on human intake from that media, and then combined with health criteria to estimate the upperbound health risks for noncarcinogens and carcinogens. Estimation of target cleanup levels involves the use of these same principles but can occur in reverse order. The procedure starts from establishing a permissible health effect level and ends with an estimated target cleanup level through an exposure assessment process. 17 refs

  20. Indoor Air Contamination from Hazardous Waste Sites: Improving the Evidence Base for Decision-Making.

    Science.gov (United States)

    Johnston, Jill; MacDonald Gibson, Jacqueline

    2015-11-27

    At hazardous waste sites, volatile chemicals can migrate through groundwater and soil into buildings, a process known as vapor intrusion. Due to increasing recognition of vapor intrusion as a potential indoor air pollution source, in 2015 the U.S. Environmental Protection Agency (EPA) released a new vapor intrusion guidance document. The guidance specifies two conditions for demonstrating that remediation is needed: (1) proof of a vapor intrusion pathway; and (2) evidence that human health risks exceed established thresholds (for example, one excess cancer among 10,000 exposed people). However, the guidance lacks details on methods for demonstrating these conditions. We review current evidence suggesting that monitoring and modeling approaches commonly employed at vapor intrusion sites do not adequately characterize long-term exposure and in many cases may underestimate risks. On the basis of this evidence, we recommend specific approaches to monitoring and modeling to account for these uncertainties. We propose a value of information approach to integrate the lines of evidence at a site and determine if more information is needed before deciding whether the two conditions specified in the vapor intrusion guidance are satisfied. To facilitate data collection and decision-making, we recommend a multi-directional community engagement strategy and consideration of environment justice concerns.

  1. Portable sensor for hazardous waste

    International Nuclear Information System (INIS)

    Piper, L.G.

    1994-01-01

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps

  2. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  3. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  4. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  5. Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford site

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1992-01-01

    All hazardous material and waste transported over roadways open to the public must be in compliance with the U.S. Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any U.S. Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOT regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOT requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOT regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations. (author)

  6. PHYTOREMEDIATION OF CONTAMINATED SOIL AND GROUND WATER AT HAZARDOUS WASTE SITES (EPA/540/S-01/500)

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is provided. The different form...

  7. Integrating state-of-the-science technology for a cost-effective hazardous waste site characterization

    International Nuclear Information System (INIS)

    Muhr, C.A.; Dickerson, K.S.; Korte, N.E.

    1993-01-01

    Oak Ridge National Laboratory's Environmental Technology Section in Grand Junction, Colorado has performed numerous hazardous waste site characterization since 1985. One of the most costly aspects of site characterization is the installation of groundwater monitoring wells and the subsequent long-term sampling and analysis costs. By optimizing the location of monitoring wells, better information can be obtained from fewer points, resulting in considerable cost savings to the project. A number of different screening techniques can be used prior to monitoring well installation allowing optimal well and soil-boring placement. Additionally, these screening techniques can provide a large amount of data in a small area to provide insight into local heterogeneities in the subsurface. Several screening techniques have been used by ORNL to accomplish these goals including: (1) geophysical surveys (electromagnetic and magnetic) conducted with the UltraSonic Ranging and Data System (USRADS reg-sign), (2) installation of temporary monitoring wells, (3) analysis of samples in the field with a gas chromatograph (GC), and (4) use of the colloidal borescope for determining groundwater flow directions and velocities

  8. A program optimization system for the cleanup of DOE hazardous waste sites an application to FY 1990 funding decisions

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Jenni, K.E.; Cotton, T.A.; Lehr, J.C.; Longo, T.P.

    1989-01-01

    This paper describes a formal system used by the Department of Energy (DOE) as an aid for allocating funds for cleaning up hazardous waste sites. The system, called the Program Optimization System (POS), is based on multiattribute utility analysis and was developed for DOE's Hazardous Waste and Remedial Actions Division (HWRAD). HWRAD has responsibility for recommending environmental restoration (ER) activities to the Assistant Secretary of Energy. Recently, the POS was used to analyze and recommend funding levels for FY 1990 cleanup activities at DOE defense program facilities

  9. Management of risk factors in the selection and use of PPE [personal protective equipment] on hazardous waste sites

    International Nuclear Information System (INIS)

    Kemplin, M.G.

    1988-01-01

    Industrial hygiene managers working in the hazardous waste area face daily decisions concerning appropriate levels of personal protective equipment (PPE) for hazards expected on various waste site projects. Typical hazards include exposures to toxic dust, chemical vapors, toxic gases, splashes of corrosive or toxic substances, radioactive materials and high noise levels. Managers who are experienced in this area recognize that each item of PPE can represent potential hazards in its own right. For example, full-face respirators typically restrict peripheral vision and can impede proper communications. In high ambient temperature conditions, coated protective suits can represent significant heat stress concerns, etc. Accordingly, this paper reviews health and safety management decision-making in this regard

  10. Non-invasive shallow seismic source comparison for hazardous waste site investigations

    International Nuclear Information System (INIS)

    Doll, W.E.

    1994-01-01

    Many commonly used shallow seismic sources are unacceptable for hazardous waste site investigations because they risk exhumation of contaminants in the soil, they add contaminants (e.g. lead) which are not allowed by regulations, or they add new migration paths for contaminants. Furthermore, recently developed high frequency vibrators for shallow investigations could be more effective at some sites than non-invasive impulsive sources because of their ability to tailor the source spectrum and reduce interference. The authors show preliminary results of a comparison test of eight non-invasive impulsive and swept sources in preparation for seismic reflection profiling on the Oak Ridge Reservation, Tennessee. Well log data are used to determine geologic contacts and to generate synthetic seismograms for the site. Common midpoint (CMP) seismic data for each source were collected at 95 geophone groups from 125 shot points along a 400m test line. Hydrophone data were obtained at 1.5m spacing between 61m and 133m depth in a hole near the center of the CMP line. As of March, 1994, brute stacks have been completed for three of the eight sources. Depth penetration is demonstrated in brute stacks and shot gathers, which show a 200ms reflector for all of the sources tested along portions of the line. Source effectiveness will also be evaluated by comparing images of several shallower reflectors (40--150ms) which are apparent in many of the records. Imaging of these reflectors appears to depend upon the ability of the source to generate sufficient high frequency energy (>100 Hz)

  11. An approach for balancing health and ecological risks at hazardous waste sites

    International Nuclear Information System (INIS)

    Suter, G.W. II; Hull, R.N.; Stack, M.; Cornaby, B.W.; Hadden, C.T.; Zafran, F.A.

    1995-01-01

    Human health and ecological risks must be balanced at hazardous waste sites in order to ensure that remedial actions prevent unacceptable risks of either type. Actions that are designed to protect humans may fail to protect nonhuman populations and ecosystems or may damage ecosystems. However, there is no common scale of health and ecological risk that would allow comparisons to be performed. This paper presents an approach to addressing this problem based on classifying all risks (i.e., health and ecological risks due contaminants and remediation) as insignificant (de minimis), highly significant (de manifestis), or intermediate. For health risks the classification is based on standard criteria. However, in the absence of national guidance concerning the acceptability of ecological risks, new ecological criteria are proposed based on an analysis of regulatory precedents. Matrices and flow charts are presented to guide the use of these risk categories in remedial decision making. The assessment of mercury contamination of the East Fork Poplar Creek is presented as an example of the implementation of the approach. 15 refs., 3 figs., 3 tabs

  12. The potential role of earthworms in toxicity assessment of terrestrial hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Goven, A.J.; Fitzpatrick, L.C. [Univ. of North Texas, Denton, TX (United States); Venables, B.J. [TRAC Labs., Inc., Denton, TX (United States)

    1994-12-31

    Understanding the toxic potential and mechanisms of action of environmental xenobiotics is fundamental for assessing risk to public and environmental health. Current established protocols with earthworms focus primarily on defining the lethal effects of chemicals associated with soil contamination. Development of sublethal assays, until recently, has been largely ignored. Here the authors develop rationale for use of earthworms as a model organism for comprehensive assessment of risks to higher wildlife from contaminated soils and hazardous waste sites. They present a panel of lethal (LC/LD50`s) and sublethal measurement endpoint biomarkers, developed within the framework of the National Toxicology Program`s tiered immunotoxicity protocol for mice and according to published criteria for good measurement endpoints, that represent sensitive phylogenetically-conserved processes. Specifically the authors discuss immunosuppressive effects of terrestrial heavy metal and organic contamination on the innate, nonspecific and specific immune responses of earthworm, Lumbricus terrestris, coelomocytes in terms of total and differential cell counts, lysozyme activity, nitroblue tetrazolium dye reduction, phagocytic activity and secretary rosette formation. Findings indicate that sensitive phylogenetically conserved immune responses present in invertebrates can be used to assess or predict risk to wildlife from contaminated soils.

  13. Superfund at work: Hazardous waste cleanup efforts nationwide, spring 1993 (Radium Chemical Site profile, Queens, New York)

    International Nuclear Information System (INIS)

    1993-01-01

    The Radium Chemical hazardous waste site in Queens, New York was contaminated with radium, posing a grave potential threat to the community. The US Environmental Protection Agency (EPA) used the Superfund program to design a long-term cleanup for the site using input from citizens and the business community. Superfund staff: Mobilized a quick cleanup action to remove 10,000 small containers of radium; Developed a streamlined approach to long-term cleanup; Secured the site to reduce the possibility of radiation exposure to the local residents; Cooperated with the community to design a well-organized emergency response plan; and Educated local citizens about site hazards, incorporating community concerns into the cleanup process. The Radium Chemical site is a clear example of EPA's effective management and problem-solving strategies at Superfund sites

  14. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  15. Hazard waste risk assessment

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1986-01-01

    Pacific Northwest Laboratory continued to provide technical assistance to the Department of Energy (DOE) Office of Operational Safety (OOS) in the area of risk assessment for hazardous and radioactive-mixed waste management. The overall objective is to provide technical assistance to OOS in developing cost-effective risk assessment tools and strategies for bringing DOE facilities into compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) and the Resource Conservation and Recovery Act (RCRA). Major efforts during FY 1985 included (1) completing the modification of the Environmental Protection Agency (EPA) Hazard Ranking System (HRS) and developing training manuals and courses to assist in field office implementation of the modified Hazard Ranking System (mHRS); (2) initiating the development of a system for reviewing field office HRS/mHRS evaluations for appropriate use of data and appropriate application of the methodology; (3) initiating the development of a data base management system to maintain all field office HRS/mHRS scoring sheets and to support the master OOS environmental data base system; (4) developing implementation guidance for Phase I of the DOE CERCLA Program, Installation Assessment; (5) continuing to develop an objective, scientifically based methodology for DOE management to use in establishing priorities for conducting site assessments under Phase II of the DOE CERCLA Program, Confirmation; and (6) participating in developing the DOE response to EPA on the proposed listing of three sites on the National Priorities List

  16. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Cochran, J.R.; McDonald, J.R.; Russell, R.J.; Robertson, R.; Hensel, E.

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy's Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ''... better, faster, safer and cheaper ...'' system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA)

  17. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  18. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  19. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  20. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  1. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  2. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  3. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  4. The use of historical imagery in the remediation of an urban hazardous waste site

    Science.gov (United States)

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  5. Potential of semiautomated, synoptic geologic studies for characterization of hazardous waste sites

    International Nuclear Information System (INIS)

    Foley, M.G.; Beaver, D.E.; Glennon, M.A.; Eliason, J.R.

    1988-01-01

    Siting studies for licensing hazardous facilities require three-dimensional characterization of site geology including lithology, structure, and tectonics. The scope of these studies depends on the type of hazardous facility and its associated regulations. This scope can vary from a pro forma literature review to an extensive, multiyear research effort. Further, the regulatory environment often requires that the credibility of such studies be established in administrative and litigative proceedings, rather than solely by technical peer review. Pacific Northwest Laboratory (PNL) has developed a technology called remote geologic analysis (RGA). This technology provides reproducible photogeologic maps, determinations of three- dimensional faults and fracture sets expressed as erosional lineaments or planar topographic features, planar feature identification in seismic hypocenter data, and crustal- stress/tectonic analyses. Results from the RGA establish a foundation for interpretations that are defensible in licensing proceedings

  6. Emergence of interest groups on hazardous waste siting: how do they form and survive

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1985-01-01

    This paper discusses the two components of the facilitative setting that are important for group formation. The first component, the ideological component, provides the basic ideas that are adopted by the emerging group. The ideological setting for group formation is produced by such things as antinuclear news coverage and concentration of news stories on hazardous waste problems, on ideas concerning the credibility of the federal government, and on the pervasivensee of ideas about general environmental problems. The organizational component of the facilitative setting provides such things as leadership ability, flexible time, resources, and experience. These are important for providing people, organization, and money to achieve group goals. By and large, the conditions conducive to group formation, growth, and survival are outside the control of decision-makers. Agencies and project sponsors are currently caught in a paradox. Actively involving the public in the decision-making process tends to contribute to the growth and survival of various interest groups. Not involving the public means damage to credibility and conflict with values concerning participatory democracy. Resolution in this area can only be achieved when a comprehensive, coordinated national approach to hazardous waste management emerges. 26 refs

  7. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  8. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  9. Immobilisation of hazardous waste

    International Nuclear Information System (INIS)

    Cope, C.B.

    1983-01-01

    Hazardous waste, e.g. radioactive waste, particularly that containing caesium-137, is immobilised by mixing with cement and solidifiable organic polymeric material. When first mixed, the organic material is preferably liquid and at this time can be polymerisable or already polymerised. The hardening can result from cooling or further polymerisation e.g. cross-linking. The organic material may be wax, or a polyester which may be unsaturated and cross-linkable by reaction with styrene. (author)

  10. An evaluation of remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites in Pennsylvania

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2014-01-01

    This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.

  11. Bioaccumulation of polychlorinated biphenyls in ranid frogs and northern water snakes from a hazardous waste site and a contaminated watershed.

    Science.gov (United States)

    Fontenot, L W; Noble, G P; Akins, J M; Stephens, M D; Cobb, G P

    2000-04-01

    Livers of bullfrogs (Rana catesbeiana) from a polychlorinated biphenyl (PCB) contaminated watershed and hazardous waste site located in Pickens County, South Carolina, contained significantly higher concentrations of PCBs (2.33 and 2.26 ppm, respectively) than those from a reference site (0.05 ppm). Green frogs (R. clamitans) from the two contaminated sites also accumulated higher levels of PCBs (2.37 and 3.88 ppm, respectively) than those from the reference site (0.02 ppm). No temporal variation was observed in PCB concentrations of bullfrogs or green frogs from the contaminated sites between 1992 and 1993. Levels of PCBs in the livers of northern water snakes (Nerodia sipedon) were significantly higher in snakes from the contaminated watershed (13.70 ppm) than in those from the waste site (2.29 ppm) and two reference sites (2.50 and 1.23 ppm). When compared to frogs, significantly higher bioaccumulation occurred in water snakes from the contaminated watershed. No significant differences in PCB levels were found with respect to sex or body size (snout-vent length (SVL) or body mass) for frogs or snakes. PCBs were detected also in eggs of both frogs and snakes. Results of this study provide baseline data and document the bioaccumulation of PCB residues in frog and snake tissues; however, the significance of these tissue residues to reproduction, survival, growth/development, and population dynamics in contaminated habitats is unknown.

  12. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  13. Development of the remedial action priority system: An improved risk assessment tool for prioritizing hazardous and radioactive-mixed waste disposal sites

    International Nuclear Information System (INIS)

    Whelan, G.; Strenge, D.L.; Steelman, B.L.; Hawley, K.A.

    1985-01-01

    The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap that exists between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment and remediation efforts. The HRS was designed as an initial screening tool to discriminate between hazardous waste sites that do not and those that are likely to power significant problems to human health, safety and/or the environment. The HRS is used by the U.S. EPA to identify sites for nomination to the National Priorities List (NPL). Because the HRS is not designed to evaluate sites containing radionuclides, a modified Hazard Ranking System (mHRS) addressing both hazardous and radioactive mixed wastes was developed by Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). Neither the HRS nor the mHRS was designed to prioritize sites that are nominated to the NPL according to their potential risks. To provide DOE with a better management tool for prioritizing funding and human resource allocations for further investigations and possible remediations at its inactive waste sites, PNL is developing the risk assessment methodology called RAPS. Use of RAPS will help DOE ensure that those sites posing the highest potential risk are addressed first

  14. Using boolean and fuzzy logic combined with analytic hierarchy process for hazardous waste landfill site selection: A case study from Hormozgan province, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Saadat Foomani

    2017-01-01

    Full Text Available Hazardous wastes include numerous kinds of discarded chemicals and other wastes generated from industrial, commercial, and institutional activities. These types of waste present immediate or long-term risks to humans, animals, plants, or the environment and therefore require special handling for safe disposal. Landfills that can accept hazardous wastes are excavated or engineered sites where these special types of waste can be disposed of securely. Since landfills are permanent sites, special attention must be afforded in selecting the location. This paper investigated the use of the Boolean theory and Fuzzy logic in combination with Analytic Hierarchy Process (AHP methods by applying GIS and IDRISI software for the selection of a hazardous waste landfill site in the Iranian province of Hormozgan. The best location was determined via the Fuzzy and the Boolean methodologies. By collating the area selected for the hazardous waste landfill, this study found that Fuzzy logic with an AND operator had the best options for this purpose. In the end, the most suitable area for a hazardous waste landfill was about 1.6 km2 which was obtained by employing Fuzzy in combination with AHP and by using an AND operator. In addition, all the fundamental criteria affecting the landfill location were considered.

  15. Hydrogeology of a hazardous-waste disposal site near Brentwood, Williamson County, Tennessee

    Science.gov (United States)

    Tucci, Patrick; Hanchar, D.W.; Lee, R.W.

    1990-01-01

    Approximately 44,000 gal of industrial solvent wastes were disposed in pits on a farm near Brentwood, Tennessee, in 1978, and contaminants were reported in the soil and shallow groundwater on the site in 1985. In order for the State to evaluate possible remedial-action alternatives, an 18-month study was conducted to define the hydrogeologic setting of the site and surrounding area. The area is underlain by four hydrogeologic units: (1) an upper aquifer consisting of saturated regolith, Bigby-Cannon Limestone, and weathered Hermitage Formation; (2) the Hermitage confining unit; (3) a lower aquifer consisting of the Carters Limestone; and (4) the Lebanon confining unit. Wells generally are low yielding less than 1 gal/min ), although locally the aquifers may yield as much as 80 gal/minute. This lower aquifer is anisotropic, and transmissivity of this aquifer is greatest in a northwest-southeast direction. Recharge to the groundwater system is primarily from precipitation, and estimates of average annual recharge rates range from 6 to 15 inches/year. Discharge from the groundwater system is primarily to the Little Harpeth River and its tributaries. Groundwater flow at the disposal site is mainly to a small topographic depression that drains the site. Geochemical data indicate four distinct water types. These types represent (1) shallow, rapidly circulating groundwater; (2) deeper (> than 100 ft), rapidly circulating groundwater; (3) shallow, slow moving groundwater; and (4) deeper, slow moving groundwater. Results of the numerical model indicate that most flow is in the upper aquifer. (USGS)

  16. Preliminary assessment of laboratory techniques for measurement of volatiles through soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Case, J.T.

    1985-01-01

    This study was conducted to determine if an inexpensive laboratory screening technique could be developed to detect the presence of hazardous volatile compounds without disturbing the soil over buried waste. A laboratory investigation was designed to evaluate the movement of two volatile organics through packed soil columns. Six soil columns were filled with three different soils. Two volatile organics, trichloroethylene (TCE) and dichloroethylene (1, 2 DCE), were placed at the base of the columns as a saturated water solution. Column headspace analysis was performed by purging the top of the columns with nitrogen gas and bubbling this gas through a pentane trap. Samples in the air space were also collected using 25 and 100 microliter gas tight syringes. All samples were analyzed using Electron Capture Detector (ECD) by gas chromatography. Results indicate that the volatile organic compounds can be detected through a five foot column of soil in concentrations down to parts-per-billion (ppb) for both TCE and DCE. Distribution coefficients (Kd) experiments were also conducted to assess breakthrough time and related concentration with soil type

  17. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  18. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  19. Development of the Remedial Action Priority System: an improved risk assessment tool for prioritizing hazardous and radioactive-mixed waste disposal sites

    International Nuclear Information System (INIS)

    Whelan, G.; Strenge, D.L.; Steelman, B.L.; Hawley, K.A.

    1985-08-01

    The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap that exists between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment, and remediation efforts. The HRS was designed as an initial screening tool to discriminate between hazardous waste sites that do not and those that are likely to pose significant problems to human health, safety, and/or the environment. The HRS is used by the US Environmental Protection Agency to identify sites for nomination to the National Priorites List (NPL). Because the HRS is not designed to evaluate sites containing radionuclides, a modified Hazard Ranking System (mHRS) addressing both hazardous and radioactive mixed wastes was developed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). Neither the HRS nor the mHRS was designed to prioritize sites that are nominated to the NPL according to their potential risks. 15 refs., 6 figs., 3 tabs

  20. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- monitoring technology

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Molnar, D.L.

    1994-02-01

    The objective of this study was to investigate and evaluate existing proven technologies for the monitoring of hazardous waste sites during remediation activities and to protect the health and safety of all related entities while complying with government regulations. The study began with a literature search to determine manufacturers and related instrumentation which would be applicable to the most complex (in terms of toxicity and mediums affected) sites. Criteria for monitoring and analyses were established and a functional analysis was performed to select the most appropriate instrumentation available. Gas Chromatography/Mass Spectrometry is the most widely accepted method for generating quantitative data given the characterization of the Winfield site. Fourier Transform Infrared Spectroscopy, while not a new technology, has the distinct advantage of measuring simultaneously hundreds of gaseous pollutants which can also be sparged from water and this technology received the highest score as per the functional analysis. To protect workers and the public surrounding remediation sites which are known to contain VOCs, on site monitoring prior to, and during the excavation operations, is recommended until enough data are obtained to assess the health risks to workers. The conclusion of this study is to recommend evaluation of both the mobile GC/MS and FTIR systems simultaneously in identical operating conditions

  1. Sampling of resident earthworms using mustard expellant to evaluate ecological risk at a mixed hazardous and radioactive waste site

    International Nuclear Information System (INIS)

    Stair, D.M. Jr.; Keller, L.J.

    1994-01-01

    As residents of contaminated soils and as prey for many species of wildlife, earthworms can serve as integrative biomonitors of soil contamination, which is biologically available to the terrestrial food chain. The assessment of contaminants within earthworm tissue provides a more realistic measurement of the potential biological hazards and ecological risks than physical and chemical measurements of soil. A unique sampling procedure using a mixture of ground mustard powder and water was implemented for cost-effectively collecting earthworms without digging; the procedure minimized occupational exposure to soil contaminants and reduced the quantity of investigation-derived wastes. The study site is located at a closed burial ground for low-level radioactive waste and transuranic waste that lies within the Valley and Ridge Physiographic Province of East Tennessee. Earthworms were maintained in the laboratory for four days to allow passage of the contents of the digestive tract. Earthworm body burdens, castings, and soil were analyzed for gamma-emitting radioisotopes (potassium 40, cobalt 60, cesium 137), strontium 90, trace metals (arsenic, cadmium, chromium, mercury, lead, and selenium), and polychlorinated biphenyls (PCBs). Ecological effects of soil contamination on the earthworms were also assessed through analysis of weight, abundance, and reproductive success

  2. CalTOX, a multimedia total exposure model for hazardous-waste sites

    International Nuclear Information System (INIS)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population

  3. Overview and technical and practical aspects for use of geostatistics in hazardous-, toxic-, and radioactive-waste-site investigations

    International Nuclear Information System (INIS)

    Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.; Vecchia, A.V.

    1999-01-01

    Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, as is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation

  4. Fate of high loads of ammonia in a pond and wetland downstream from a hazardous waste disposal site.

    Science.gov (United States)

    Cutrofello, Michele; Durant, John L

    2007-07-01

    Halls Brook (eastern Massachusetts, USA) is a significant source of total dissolved ammonia (sum of NH(3) and NH(4)(+); (NH(3))(T)) to the Aberjona River, a water body listed for NH(3) impairment on the Clean Water Act section 303(d) list. We hypothesized (1) that (NH(3))(T) in Halls Brook derived from a hazardous waste site via groundwater discharging to a two-basin pond that feeds the brook; and (2) that transport of (NH(3))(T) to the Aberjona River was controlled by lacustrine and wetland processes. To test these hypotheses we measured (NH(3))(T) levels in the brook, the pond, and a wetlands directly downstream of the pond during both dry and wet weather over a ten month period. In addition, we analyzed sediment cores and nitrogen isotopes, and performed mass balance calculations. Groundwater discharge from beneath the hazardous waste site was the major source of (NH(3))(T) (20-67 kg d(-1)) and salinity to the north basin of the pond. The salty bottom waters of the north basin were anoxic on all sampling dates, and exhibited relatively stable (NH(3))(T) concentrations between 200 and 600 mg Nl(-1). These levels were >100-times higher than typical background levels, and 8-24-times above the acute effects level for (NH(3))(T) toxicity. Bottom waters from the north basin continuously spill over into the south basin contributing approximately 50% of the (NH(3))(T) load entering this basin. The remainder comes from Halls Brook, which receives (NH(3))(T) loadings from as yet unknown sources upstream. During storm events up to 50% of the mass of (NH(3))(T) was flushed from the south basin and into the wetlands. The wetlands acted as a (NH(3))(T) sink in dry weather in the growing season and a discharge-dependent (NH(3))(T) source to the Aberjona River during rainstorms.

  5. Health and safety training for hazardous waste site activities at Oak Ridge National Laboratory: Implementation of OSHA 29 CFR 1910.120(e)

    International Nuclear Information System (INIS)

    White, D.A.

    1988-01-01

    Among the requirements set forth by the interim final rule, 29 CFR Part 1910.120, promulgated by the Occupational Safety and Health Administration (OSHA) in response to the Superfund Amendments and Reauthorization Act of 1986 (SARA), are specific provisions for health and safety training of employees involved in hazardous waste operations. These training provisions require a minimum of 40 hours of initial instruction off the site for employees involved in corrective operations and cleanup activities at hazardous waste sites. A less detailed training requirement of 24 hours is specified for employees working in more routine treatment, storage, and disposal activities. Managers and supervisors who are directly responsible for or who supervise employees engaged in hazardous waste operations must complete 8 additional hours of training related to management of hazardous waste site activities. Consistent with the intent of 29 CFR 1910.120, a training program has been developed at Oak Ridge National Laboratory (ORNL) to comply with the need to protect the safety and health of hazardous waste workers. All hourly requirements specified in the interim final rule are met by a comprehensive program structure involving three stages of training. This paper will outline and discuss the content of each of these stages of the program. The involvement of various ORNL organizations in facilitating the training will be highlighted. Implementation strategies will be discussed as well as progress made to date

  6. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  7. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  8. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  9. On policies to regulate long-term risks from hazardous waste disposal sites under both intergenerational equity and intragenerational equity

    Science.gov (United States)

    Shu, Zhongbin

    In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the disposal of high-level radioactive wastes and global warming, but also include the disposal of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being disposed of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of disposal of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund sites that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the disposal of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate

  10. Final hazard classification and auditable safety analysis for the 300-FF-1 Operable Unit liquid waste sites, landfills, and Burial Ground 618-4

    International Nuclear Information System (INIS)

    Adam, W.J.; Larson, A.R.

    1996-12-01

    This document provides the hazard categorizations and classifications for the activities associated with the 300-FF-1 Operable Unit (OU) remediation. Categories and classifications presented are applicable only to the 300-FF-1 OU waste sites specifically listed in the inventory. The purpose of this remedial action is to remove contaminated soil, debris, and solid waste from liquid waste sites, landfills, and Burial Ground 618-4 within the 300-FF-1 OU. Resulting waste from this project will be sent to the Environmental Restoration Disposal Facility (ERDF) in the 200 West Area. The 300-FF-1 OU is part of the 300 Area of the Hanford Site and is next to the Columbia River. The objective of this remedial action is to reduce contamination at these waste sites to levels that are acceptable for industrial purposes. Specific remedial objectives (cleanup goals) for each contaminant of concern (COC) are provided in a table, along with the maximum soil concentration detected

  11. Auditing hazardous waste incineration

    International Nuclear Information System (INIS)

    Jayanty, R.K.M.; Allen, J.M.; Sokol, C.K.; von Lehmden, D.J.

    1990-01-01

    This paper reports that audit standards consisting of volatile and semivoltile organics have been established by the EPA to be provided to federal, state, and local agencies or their contractors for use in performance audits to assess the accuracy of measurement methods used during hazardous waste trial burns. The volatile organic audit standards currently total 29 gaseous organics in 5, 6, 7, 9, and 18-component mixtures at part-per-billion (ppb) levels (1 to 10 000 ppb) in compressed gas cylinders in a balance gas of nitrogen. The semivoltile organic audit standards currently total six organics which are spiked onto XAD-2 cartridges for auditing analysis procedures. Studies of all organic standards have been performed to determine the stability of the compounds and the feasibility of using them as performance audit materials. Results as of July 1987 indicate that all of the selected organic compounds are adequately stabile for use as reliable audit materials. Performance audits have been conducted with the audit materials to assess the accuracy of the measurement methods. To date, 160 performance audits have been initiated with the ppb-level audit gases. The audit results obtained with audit gases during hazardous waste trial burn tests were generally within ±50% of the audit concentrations. A limited number of audit results have been obtained with spiked XAD-2 cartridges, and the results have generally been within ±35% of the audit concentrations

  12. Long-term cover design for low-level radioactive and hazardous waste sites as applied to the Rocky Flats Environmental Technology Site solar evaporation ponds

    International Nuclear Information System (INIS)

    Stenseng, S.E.; Nixon, P.A.

    1996-01-01

    The US Department of Energy (DOE) operated five lined solar evaporation ponds (SEPs) at the Rocky Flats Environmental Technology Site (RFETS) in Jefferson County, Colorado from 1953 until 1986. The SEPs were used primarily to store and evaporate low-level radioactive and hazardous process wastes. Operation of the SEPs has resulted in contamination of the surrounding soils, and may also provide a source of groundwater contamination. The DOE proposes to close the SEPs by consolidating the contaminated material beneath an engineered cover. The primary objective of the closure of such hazardous and radioactive sites is to limit the exposure of the general public to the contaminants for time periods ranging from 100 to 10,000 years. The goal of the SEPs engineered cover is to isolate hazardous and low-level radioactive soils for a minimum of 1,000 years. Since there is currently no existing regulatory design guidance for a 1,000-year engineered cover, the proposed design of the SEPs engineered cover is based on research and testing that has been conducted for many years at various DOE facilities in the US. This paper discusses the main design theories of the proposed engineered cover for the closure of the SEPs, and how the research and test results of these other programs have been used to arrive at the final cover configuration, the material selections, the component layering, layer thicknesses, and the balance and interaction between components to establish an overall effective cover system

  13. Hazardous waste landfill research

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1983-05-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the Permit Writers Guidance Manuals. These manuals will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of work in the various categorical areas.

  14. Management of Hazardous Waste and Contaminated Land

    OpenAIRE

    Hilary Sigman; Sarah Stafford

    2010-01-01

    Regulation of hazardous waste and cleanup of contaminated sites are two major components of modern public policy for environmental protection. We review the literature on these related areas, with emphasis on empirical analyses. Researchers have identified many behavioral responses to regulation of hazardous waste, including changes in the location of economic activity. However, the drivers behind compliance with these costly regulations remain a puzzle, as most research suggests a limited ro...

  15. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  16. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    International Nuclear Information System (INIS)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results

  17. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  18. Computer Models Used to Support Cleanup Decision Making at Hazardous and Radioactive Waste Sites

    Science.gov (United States)

    This report is a product of the Interagency Environmental Pathway Modeling Workgroup. This report will help bring a uniform approach to solving environmental modeling problems common to site remediation and restoration efforts.

  19. Hazardous waste. Annual report, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Activities in the Hazardous Waste Program area in 1984 ranged from preparing management and long-range plans to arranging training seminars. Past and present generation of hazardous wastes were the key concerns. This report provides a summary of the significant events which took place in 1984. 6 tabs

  20. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  1. An evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.

  2. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  3. Some statistical aspects of background based groundwater standards at an arid hazardous waste site

    International Nuclear Information System (INIS)

    Chou, C.J.; Hodges, F.N.; Johnson, V.G.

    1994-07-01

    Statistical goodness-of-fit tests and open-quotes Box and Whiskerclose quotes plots of hydrochemical data from selected contaminant-free downgradient wells, and wells located upgradient in a non-contaminated or background area show that spatially distinct sample populations do not exhibit significant differences in groundwater chemical composition within the upper unconfined aquifer. Well location dominates natural constituent variability at this arid site. Spatial coverage should be emphasized in such cases rather than sampling frequency. 5 refs., 3 figs., 1 tab

  4. Analysis of risk indicators and issues associated with applications of screening model for hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Buck, J.W.; Strenge, D.L.; Droppo, J.G. Jr.

    1990-12-01

    Risk indicators, such as population risk, maximum individual risk, time of arrival of contamination, and maximum water concentrations, were analyzed to determine their effect on results from a screening model for hazardous and radioactive waste sites. The analysis of risk indicators is based on calculations resulting from exposure to air and waterborne contamination predicted with Multimedia Environmental Pollutant Assessment System (MEPAS) model. The different risk indicators were analyzed, based on constituent type and transport and exposure pathways. Three of the specific comparisons that were made are (1) population-based versus maximum individual-based risk indicators, (2) time of arrival of contamination, and (3) comparison of different threshold assumptions for noncarcinogenic impacts. Comparison of indicators for population- and maximum individual-based human health risk suggests that these two parameters are highly correlated, but for a given problem, one may be more important than the other. The results indicate that the arrival distribution for different levels of contamination reaching a receptor can also be helpful in decisions regarding the use of resources for remediating short- and long-term environmental problems. The addition of information from a linear model for noncarcinogenic impacts allows interpretation of results below the reference dose (RfD) levels that might help in decisions for certain applications. The analysis of risk indicators suggests that important information may be lost by the use of a single indicator to represent public health risk and that multiple indicators should be considered. 15 refs., 8 figs., 1 tab

  5. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  6. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  7. Hazardous Waste: Learn the Basics of Hazardous Waste

    Science.gov (United States)

    ... Need More Information on Hazardous Waste? The RCRA Orientation Manual provides introductory information on the solid and ... and Security Notice Connect. Data.gov Inspector General Jobs Newsroom Open Government Regulations.gov Subscribe USA.gov ...

  8. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  9. Hazardous waste market and technology trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    What forces are currently driving the growth of the hazardous waste remediation market? Which factors will control the development of cleanup technologies during the next decade? At what types of sites are various technologies being applied? In an effort to answer these questions, EPA has produced an overview of trends in the demand for remedial technologies at CERCLA, RCRA corrective action, underground storage tank (UST), and other cleanup sites across the United States. The 160-page document, entitled Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, was developed by EPA's Office of Solid Waste and Emergency Response. Highlights from the report are presented below. 1 ref., 2 figs., 1 tab

  10. Vitrification of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na 2 O) - Lime (CaO) - Silica (SiO 2 ) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation

  11. Creating trust in a risk context. On social acceptance of risks in siting of repositories for radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Lidskog, R.

    1993-01-01

    Taking Beck's and Giddens' recent formulation of the society's new conditions for gaining trust as theoretical point of departure, this article focusses trust and risk with regard to hazardous and radioactive waste disposal in Sweden. Seeing trust as intimately connected with cognitive understanding of risk, the information strategies of the companies with responsibility for hazardous and radioactive waste management are analyzed. Central in gaining trust is the creation of access points - points of connection between lay individuals or collectivities and the representatives of expert systems - at which trust can be built up or maintained. This article emphasizes that this kind of local conflict is to be seen as a struggle concerning the cognitive understanding of risk-generating activities, and the question is to what extent the cognitive understanding of nuclear companies will be accepted among the affected local population and to what extent the local population will develop and maintain an alternative cognitive understanding. 78 refs

  12. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  13. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  14. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Science.gov (United States)

    2010-07-01

    .... (viii) The quantities of the waste generated at individual generation sites or on a regional or national... result of the improper management of wastes containing the constituent. (x) Action taken by other... frequently are hazardous under the definition of hazardous waste found in section 1004(5) of the Act. (c) The...

  15. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  16. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  17. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  18. Household Hazardous Waste

    Science.gov (United States)

    ... waste collection" near your zip code in the Earth 911 database Exit for more information. Contact your ... lemon juice in one pint of mineral or vegetable oil and wipe furniture. Rug Deodorizer Liberally sprinkle ...

  19. A tiered analytical protocol for the characterization of heavy oil residues at petroleum-contaminated hazardous waste sites

    International Nuclear Information System (INIS)

    Pollard, S.J.T.; Kenefick, S.L.; Hrudey, S.E.; Fuhr, B.J.; Holloway, L.R.; Rawluk, M.

    1994-01-01

    The analysis of hydrocarbon-contaminated soils from abandoned refinery sites in Alberta, Canada is used to illustrate a tiered analytical approach to the characterization of complex hydrocarbon wastes. Soil extracts isolated from heavy oil- and creosote-contaminated sites were characterized by thin layer chromatography with flame ionization detection (TLC-FID), ultraviolet fluorescence, simulated distillation (GC-SIMDIS) and chemical ionization GC-MS analysis. The combined screening and detailed analytical methods provided information essential to remedial technology selection including the extent of contamination, the class composition of soil extracts, the distillation profile of component classes and the distribution of individual class components within various waste fractions. Residual contamination was characteristic of heavy, degraded oils, consistent with documented site operations and length of hydrocarbon exposure at the soil surface

  20. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  1. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  2. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  3. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  4. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  5. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  6. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  7. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  8. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  9. Hazard Ranking System evaluation of CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    International Nuclear Information System (INIS)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs

  10. Hazard Ranking System evaluation of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs.

  11. Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city

    Directory of Open Access Journals (Sweden)

    Syeda Maria Ali

    2014-01-01

    Full Text Available Deteriorating soil quality and decrease in vegetation abundance are grave consequences of open waste dumping which have resulted in growing public concern. The focus of this study is to assess the contribution of open waste dumping in soil contamination and its effect on plant diversity in one of the renowned green cities of Pakistan. Surface soil samples (n = 12 + 12 were collected from both the open waste dumping areas allocated by Capital Development Authority (CDA and sub- sectors of H-belt of Islamabad city (representative of control site. The diversity of vegetation was studied at both sampling sites. Significant modifications were observed in the soil properties of the dumping sites. Soils at the disposal sites showed high pH, TDS and EC regime in comparison to control sites. Various heavy metal concentrations i.e., Lead (Pb, Copper (Cu, Nickel (Ni, Chromium (Cr and Zinc (Zn were also found to be higher at the dumping sites except for Cadmium (Cd which had a higher value in control site. A similar trend was observed in plant diversity. Control sites showed diversified variety of plants i.e., 44 plant species while this number reduced to only 32 plant species at the disposal sites. This is attributed to changes in soil characteristics at disposal sites and in its vicinity areas.

  12. Hazardous waste policies and strategies

    International Nuclear Information System (INIS)

    1991-01-01

    This manual has been compiled as a resource document for trainers to help in the design of training workshops of hazardous waste management. Although principally oriented at groupwork, some part of this manual are also suitable for individual study, and as a resource book

  13. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  14. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  15. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  16. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  17. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  18. Research Implementation and Quality Assurance Project Plan: An Evaluation of Hyperspectral Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2009-01-01

    This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.

  19. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the period October 2000-July 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 2000--July 2001 monitoring period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in July 2001. There has been no subsidence at any of the markers since monitoring began eight years ago. Precipitation for the period October 2000 through July 2001 was 9.42 centimeters (cm) (3.71 inches [in]) (U.S. National Weather Service, 2001). The prior year annual rainfall (January 2000 through December 2000) was 10.44 cm (4.1 1 in.). The recorded average annual rainfall for this site from 1972 to January 2000 is 14.91 cm (5.87 in.). The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that may be indicative of moisture movement at a point located directly beneath each trench. All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches

  20. 75 FR 50932 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-08-18

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...-1990. FOR FURTHER INFORMATION CONTACT: Robin Biscaia, RCRA Waste Management Section, Office of Site... final [[Page 50933

  1. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  2. 49 CFR 171.3 - Hazardous waste.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  3. Training for hazardous waste workers

    Energy Technology Data Exchange (ETDEWEB)

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  4. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1993-05-01

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications

  5. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  6. Waste minimization via destruction of hazardous organics

    International Nuclear Information System (INIS)

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics

  7. Benefits Assessment of Two California Hazardous Waste Disposal Facilities (1983)

    Science.gov (United States)

    The purpose of this study was to assess the benefits of RCRA regulations, comparing the results before and after new regulations at two existing hazardous waste sites previously regulated under California state law

  8. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  9. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  10. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  11. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  12. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  13. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  14. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  15. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  16. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  17. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  18. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  19. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  20. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  1. Radiological hazards of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  2. CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population.

  3. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    D. F. Emer

    2001-03-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the

  4. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  5. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  6. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  7. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  8. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  9. Improving Tamper Detection for Hazardous Waste Security

    International Nuclear Information System (INIS)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-01-01

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  11. 77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2012-08-22

    ... employed by copper smelters and copper refining operations (Id.). The Agency further stated in 1994, that... stabilization mixture of ferrous sulfate, quick lime and sodium sulfide flakes with a 1:0.45 waste to reagent...

  12. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  13. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  14. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  15. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  16. The underground diposal of hazardous wastes - necessity, possibilities and limitations

    International Nuclear Information System (INIS)

    Herrmann, A.G.; Brumsack, H.J.; Heinrichs, H.

    1985-01-01

    The natural geochemical cycles of many elements in the atmosphere, hydrosphere, and pedosphere have been changed during the past decades by anthropogenic activities. To put a stop to this development, a drastic reduction of the uncontrolled dispersal of potentially hazardous substances into our environment is necessary, compelling the need for the safe disposal of radioactive and nonradioactive hazardous wastes far away from the biosphere. The amount of potentially hazardous waste produced annually in West Germany is larger by a factor of at least 20 than the volume of hazardous material for which suitable underground disposal sites are planned and available at present. (orig.)

  17. The Disposal of Hazardous Wastes.

    Science.gov (United States)

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  18. Disposal of hazardous wastes in Canada's Northwest Territories

    International Nuclear Information System (INIS)

    Henney, P.L.; Heinke, G.W.

    1991-01-01

    In the past decade, many jurisdictions have attempted to estimate quantities and types of hazardous wastes generated within their boundaries. Similar studies done in the Northwest Territories (NWT) are out-of-date, incomplete or specific to only one type of waste or geographical location. In 1990, an industry, business and community survey was conducted to determine types and quantities of hazardous wastes generated in the NWT and currently used disposal methods for these wastes. The survey revealed that 2,500 tons of hazardous wastes were generated each year, including waste oil and petroleum products, fuel tank sludges, acid batteries, spent solvents, antifreeze an waste paint. In many regions, disposal of these wastes may be routine, but waste disposal in arctic and subarctic regions presents unique difficulties. Severe climate, transportation expense, isolation and small quantities of waste generated can make standard solutions expensive, difficult or impossible to apply. Unique solutions are needed for northern waste disposal. The aim of this paper is to give an overview of low-cost, on-site or local hazardous wastes disposal options which can be applied in Canada's NWT and also in other arctic, remote or less-developed regions

  19. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions... requirements, the standards for owners and operators of hazardous waste treatment, storage and disposal... hazardous waste management facilities, the land disposal restrictions program, and the hazardous waste...

  20. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  1. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  2. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  3. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  4. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  5. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  6. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  7. Robotics in hazardous waste management

    International Nuclear Information System (INIS)

    Mahalingam, R.J.; Jayaraman, K.M.; Cunningham, A.J.; Meieran, H.B.; Zafrir, H.; Kroitoru, L.

    1994-01-01

    This paper addresses the advent of mobile robotic systems into the earth sciences and environmental studies. It presents issues surrounding the rationale for employing stationary and mobile robots to assist in waste chemical site remediation and cleanup activities, missions that could be conducted, and the current availability status for these devices. This rationale is an extension of that being promoted by the US Department of Energy (DOE) to assist in resolving environmental restoration and waste management (ER and WM) issues associated with several DOE national laboratories, facilities, and other sites. DOE has also committed to restore the environment surrounding the existing storage facilities and sites to a safe state. Technologies that are expected to play a major role in these activities are stationary and mobile robotic devices, and in particular, mobile robots. Specific topics discussed in this article include: introduction to robotics: motivations for considering robots in HWM: incorporation of robotics into HWM methods--this subsection includes a rationale for performing a ''screening test'' to determine the advantages of using a robot; safety and performance factors; illustrations for robots in action and current and future trends

  8. Mohawk Tannery Hazardous Waste Site in New Hampshire included on EPA List of Targeted for Immediate Attention

    Science.gov (United States)

    Today, the U.S. Environmental Protection Agency released the list of Superfund sites that Administrator Pruitt has targeted for immediate and intense attention. The former Mohawk Tannery facility (a.k.a. Granite State Leathers) is one of the 21 sites on th

  9. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  10. Management of Hazardous Waste in Indonesia

    Science.gov (United States)

    Widyatmoko, H.

    2018-01-01

    Indonesia needs to build four Treatment Centrals for 229,907 tons per year produced hazardous waste. But almost all hazardous waste treatment is managed by just one company at present, namely PT. PPLI (Prasada Pamunah Limbah Industri). This research is based on collected data which identifies payback period of 0.69 years and rate of return 85 %. PT PPLI is located within the Cileungsi District of the Bogor Regency of West Java Province. Records from nearest rainfall station at Cibinong indicate that annual average rainfall for the site is about 3,600 mm. It is situated on hilly terrain and is characterized by steep slopes as well as has a very complex geological structure. The Tertiary sequence was folded to form an assymetric anticline with axis trend in an East-West direction. Three major faults cut the middle of the site in a North-South direction with a vertical displacement of about 1.5 meters and a zone width of 1 meter. The high concentration of Chemical Oxygen Demand (COD) 2500 ppm in Secondary Leachate Collection System (SLCS) indicate a possible failure of the Primary Leachate Clection System (PLCS), which need correct action to prevent groundwater contamination.

  11. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  12. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  13. Regulation and Control of Hazardous Wastes

    OpenAIRE

    Hans W. Gottinger

    1994-01-01

    Hazardous waste regulations require disposal in approved dumpsites, where environmental consequences are minimal but entry may be privately very costly. Imperfect policing of regulations makes the socially more costly option illicit disposal preferable form the perspective of the private decision maker. The existence of the waste disposal decision, its economic nature, production independence, and the control over environmental damage are key issues in the economics of hazardous waste managem...

  14. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2004-01-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement

  15. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  16. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  17. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  18. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  19. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  20. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  1. OSHA standard for medical surveillance of hazardous waste workers.

    Science.gov (United States)

    Melius, J M

    1990-01-01

    The increasing amount of work involving hazardous waste sites and the heavy involvement of the federal and state governments in this work have led to the gradual development of guidelines and standards providing for occupational safety and health programs for these sites. On March 6, 1989, the Occupational Safety and Health Administration published its final rule governing occupational safety and health matters at hazardous waste sites and emergency operations. This rule is currently scheduled to take effect on March 6, 1990. This chapter will briefly describe this regulation, particularly its medical surveillance requirements.

  2. Hazardous waste management plan, Savannah River Plant

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1984-06-01

    All SRP waste storage, disposal, and recycling facilities that have received hazardous waste, low-level radioactive hazardous waste (mixed waste) or process waste since 1980 have been evaluated by EPA standards. Generally the waste storage areas meet all applicable standards. However, additional storage facilities currently estimated at $2 million and waste disposal facilities currently estimated at $20 million will be required for proper management of stored waste. The majority of the disposal facilities are unlined earthen basins that receive hazardous or process wastes and have or have the potential to contaminate groundwater. To come into compliance with the groundwater standards the influents to the basins will be treated or discontinued, the basins will be decommissioned, groundwater monitoring will be conducted, and remedial actions will be taken as necessary. The costs associated with these basin actions are not completely defined and will increase from present estimates. A major cost which has not been resolved is associated with the disposal of the sludge produced from the treatment plants and basin decommissioning. The Low-Level Radioactive Burial Ground which is also a disposal facility has received mixed waste; however, it does not meet the standards for hazardous waste landfills. In order to properly handle mixed wastes additional storage facilities currently estimated at $500,000 will be provided and options for permanent disposal will be investigated

  3. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  4. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  5. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  6. University program in hazardous chemical and radioactive waste management

    International Nuclear Information System (INIS)

    Parker, F.L.

    1987-01-01

    The three main functions of a university program are education, training, and research. At Vanderbilt University, there is a Solid and Hazardous Waste option in the Master of Science in Engineering Program. The two main foci are treatment of wastes and environmental transport and transformation of the wastes. Courses in Hazardous Waste Engineering and Radioactive Waste Disposal present a synoptic view of the field, including legal, economic, and institutional aspects as well as the requisite technical content. The training is accomplished for some of the students through the aegis of an internship program sponsored by the US Department of Energy. In the summer between the two academic years of the program, the study works at a facility where decontamination and/or decommissioning and/or remedial actions are taking place. Progress in understanding the movement, transformation, and fate of hazardous materials in the environment is so rapid that it will not be possible to be current in the field without participating in that discovery. Therefore, their students are studying these processes and contributing to new knowledge. Some recent examples are the study of safety factors implicit in assuming a saturated zone below a hazardous waste landfill when an unsaturated zone exists, application of probabilistic risk assessment to three National Priority List sites in Tennessee, and the explanation of why certain organics precede pH, conductivity and nitrates through a clay liner at a hazardous waste disposal site

  7. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project. Status to date January 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fifth year (1997) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). Staffing issues this year have been a challenge with the resignation of an Environmental Specialist (ES) in June 1997, and the death of Robert Stovall, an Environmental Engineer (EE) II in August 1997. Progress made during this period includes securing a contract laboratory, participation in several workgroup meetings for activities at the site, oversight of the Feasibility Study/Proposed Plan (FS/PP), coordination between the US Department of Energy and the various State regulatory programs and interactions with the local public drinking water supply agency and health departments

  8. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  9. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-12-17

    ... and Community Right-to-Know Act FDA Food and Drug Administration HSWA Hazardous and Solid Waste...(f)), and hazardous substances (40 CFR 302.4) based solely upon the evidence that it is a potential... subsequently identified as hazardous wastes in Sec. 261.33(f) based solely on their potential for carcinogenic...

  11. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  12. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  13. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  14. Hydrogeology and results of aquifer tests in the vicinity of a hazardous-waste disposal site near Byron, Illinois

    Science.gov (United States)

    Kay, Robert T.; Olson, David N.; Ryan, Barbara J.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation of a Superfund Site near Byron, Illinois. The purpose of the investigation was to determine the hydrogeologic properties of the Galena-Platteville and St. Peter aquifers, the primary water-supply aquifers for domestic supply in the area. The Galena and Platteville Groups and older St. Peter Sandstone are separated by the Harmony Hill Shale Member of the Glenwood Formation. The Harmony Hill Shale Member is a semiconfining unit. Groundwater flow in the study area is from the site northwestward to the Rock River. Movement of groundwater in the dolomites is mainly through joints, fractures, and solution openings. Analysis of the Galena-Platteville aquifer-test data indicates that the calculated aquifer transmissivity ranges from 490 to 670 sq ft/day, and the calculated specific yield ranges from 0.017 to 0.140. Aquifer test data also indicate that the Galena-Platteville aquifer is heterogeneous and anisotropic. Analysis of the St. Peter aquifer-test data indicates that the calculated transmissivity of the aquifer ranges from 1,200 to 1 ,305 sq ft/day, storativity ranges from 0.000528 to 0.00128, horizontal hydraulic conductivity ranges from 2.9 to 3.1 ft/day, and leakage through the Harmony Hill Shale Member ranges from .000123 to .000217 ft/day/ft. (USGS)

  15. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Science.gov (United States)

    2010-11-04

    ... treatment sludge from the lists of hazardous waste set forth in Title 40 of the Code of Federal Regulations... treatment sludges generated at its facility located in Owosso, Michigan from the list of hazardous wastes... disposed in a Subtitle D landfill and we considered transport of waste constituents through ground water...

  16. CERCLA and RCRA requirements affecting cleanup of a hazardous waste management unit at a Superfund site: A case study

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1995-03-01

    The Fernald Environmental Management Project (FEMP) attempted to address both RCRA and CERCLA requirements at the fire training facility (FTF) by integrating a CERCLA removal action work plan with a RCRA closure plan. While the regulatory agencies involved with the FTF cleanup agreed the integrated document was a good idea, implementation proved complicated, owing to disposition of clean debris from a Superfund site, treatment of contaminated media, duration of cleanup activities, and cleanup certification. While all the complications have not been resolved, solutions to all have been proposed to Ohio EPA and U.S. EPA. Both agencies have worked closely with FEMP to find the most effective fulfillment of RCRA and CERCLA requirements

  17. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  18. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  19. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  20. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  1. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  2. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-03-31

    ...? The Tokusen USA, Inc. facility produces high-carbon steel tire cord for use in radial tire... Part 261 Environmental protection, Hazardous Waste, Recycling, Reporting and recordkeeping requirements...

  3. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    .... facility produces high-carbon steel tire cord for use in radial tire manufacturing. The steel cord is... delisted waste. Lists of Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling...

  4. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  5. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    Hadlock, D.J.

    1999-01-01

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  6. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  7. Natural phenomena hazards project for Department of Energy sites

    International Nuclear Information System (INIS)

    Coats, D.W.

    1985-01-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. In the final phase, it is anticipated that the DOE will use the hazard models to establish uniform criteria for the design and evaluation of critical facilities. 13 references, 2 figures, 1 table

  8. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  9. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2011-09-28

    ... Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of proposed rule... Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross Avenue, Dallas, TX... petition. A new petition will be required for this waste stream. List of Subjects in 40 CFR Part 261...

  10. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  11. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  12. Whose environment? Which perspective? A critical approach to hazardous waste management in Sweden

    OpenAIRE

    R Lidskog

    1993-01-01

    Starting with a description of six general interpretations of this kind of hazardous waste siting, and with a description of the policy for hazardous waste management in Sweden, the author examines the decisionmaking process regarding the siting of the central plant for hazardous waste in Sweden. The paper ends with the conclusion that a locational conflict is to be seen mainly as a struggle concerning the perception and definition of the issue. Thus the question is which perspective on the i...

  13. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  14. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  16. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  17. A Comparison of Organic Emissions from Hazardous Waste Incinerators Versus the 1990 Toxics Release Inventory Air Releases

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for t...

  18. Buying time: Franchising hazardous and nuclear waste cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. [Dept. of Energy, Washington, DC (United States)

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  19. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  20. Visible and infrared remote imaging of hazardous waste: A review

    Science.gov (United States)

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  1. Visible and Infrared Remote Imaging of Hazardous Waste: A Review

    Directory of Open Access Journals (Sweden)

    Barry Haack

    2010-11-01

    Full Text Available One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  2. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  3. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  4. Sea dumping of hazardous wastes

    International Nuclear Information System (INIS)

    Thomas, J.

    1980-01-01

    From 1967 until 1976 ca. 45,000 t of weak radioactive wastes had been dumped into the sea during several actions under the supervision of the NEA. The requirements to be deduced from the experiences with regard to marine areas, packaging and transports of the wastes are described. Up to now the possibilities of the sea dumping of strong radioactive wastes has been just discussed. The natural removal of the decay heat by sea water would be advantageous but the problem of water-proof packagings for the period of 1000 years have not been solved yet. (orig.) [de

  5. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  6. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  7. Mitigation of the most hazardous tank at the Hanford Site

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1994-09-01

    Various tanks at the Hanford Site have been declared to be unresolved safety problems. This means that the tank has the potential to be beyond the limits covered by the current safety documentation. Tank 241-SY-101 poses the greatest hazard. The waste stored in this tank has periodically released hydrogen gas which exceeds the lower flammable limits. A mixer pump was installed in this tank to stir the waste. Stirring the waste would allow the hydrogen to be released slowly in a controlled manner and mitigate the hazard associated with this tank. The testing of this mixer pump is reported in this document. The mixer pump has been successful in controlling the hydrogen concentration in the tank dome to below the flammable limit which has mitigated the hazardous gas releases

  8. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  9. Environmental epidemiology, Volume 1: Public health and hazardous wastes

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Environmental Epidemiology, Volume 1, represents the first of several planned volumes on the uses of epidemiologic techniques to study environmental public health issues. This text focuses on environmental epidemiology as it relates to hazardous waste in the United States. This study was commissioned by the Agency for Toxic Substances and Disease Registry to examine available data for evidence of adverse health effects on human populations exposed to hazardous waste. The committee was also asked to identify data gaps which were impediments to analyzing hazardous waste health effects and to suggest ways that such environmental health assessments might be improved. The committee's solution to the paucity of data on this issue was to concentrate in this volume on identifying the available, peer-reviewed data and, consequently, the major data gaps. The study opens with a recapitulation of the context of hazardous waste sites in the United States, the approaches currently used by state and federal epidemiologists in analyzing hazardous waste exposure and effects, and candid assessment of the problems associated with environmental exposure assessment. From that context, the committee then presents the data currently available to assess human exposures through air, domestic water consumption, soil, and the food chain. The general focus here is on biomarker data as the date of choice. As with all NAS reports, this one closes with general conclusions and recommendations. Environmental health risk assessors will find this volume a valuable resource

  10. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  11. Guidelines for hazardous-waste treatment sites. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, Second Session, August 5, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Representatives of a variety of environmental agencies and citizen organizations as well as officials from all levels of government testified on proposed amendments to the Resource Conservation and Recovery Act (RCRA) that call for the Environmental Protection Agency (EPA) to develop criteria guidelines for siting hazardous waste facilities. Uncertainty issues were raised because the guidelines would apply to existing as well as new facilities. The 16 witnesses examined whether the guidelines would be adequate to protect public health. The testimony of critics focused on specific situations involving PCB plants and other hazards in which the site selection standards proved inadequate. EPA representatives described siting relationships which EPA considers to be important. Additional material submitted for the record follows the testimony.

  12. Bioprocessing scenarios for mixed hazardous waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.

    1994-01-01

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE's facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series

  13. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  14. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  15. Regulatory barriers to hazardous waste technology innovation

    International Nuclear Information System (INIS)

    Kuusinen, T.L.; Siegel, M.R.

    1991-02-01

    The primary federal regulatory programs that influence the development of new technology for hazardous waste are the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, also commonly known as Superfund). Two important aspects of RCRA that can create barriers to hazardous waste technology innovation are technology-based waste pre-treatment standards and a cumbersome permitting program. By choosing a technology-based approach to the RCRA land disposal restrictions program, the US Environmental Protection Agency (EPA) has simultaneously created tremendous demand for the technologies specified in its regulations, while at the same time significantly reduced incentives for technology innovation that might have otherwise existed. Also, the RCRA hazardous waste permitting process can take years and cost hundreds of thousands of dollars. The natural tendency of permit writers to be cautious of unproven (i.e., innovative) technology also can create a barrier to deployment of new technologies. EPA has created several permitting innovations, however, to attempt to mitigate this latter barrier. Understanding the constraints of these permitting innovations can be important to the success of hazardous waste technology development programs. 3 refs

  16. Pacific Basin conference on hazardous waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This conference was held November 4--8, 1996 in Kuala Lumpur, Malaysia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the problems of hazardous waste. Topics of discussion deal with pollution prevention, waste treatment technology, health and ecosystem effects research, analysis and assessment, and regulatory management techniques. Individual papers have been processed separately for inclusion in the appropriate data bases.

  17. 40 CFR 262.60 - Imports of hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  18. 30 CFR 47.53 - Alternative for hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  19. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  20. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  1. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  2. 75 FR 43478 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-07-26

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental.... Mail: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07... Delivery or Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  3. 75 FR 35720 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-06-23

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07-1... Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  4. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    Science.gov (United States)

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  5. Unify a hazardous materials/waste program

    International Nuclear Information System (INIS)

    Carson, H.T.

    1988-01-01

    Efficiently managing a hazardous materials/waste program in a multi-facility, multi-product corporation is a major challenge. This paper describes several methods to help unify a program and gain maximum efficiency of manpower and to minimize risk

  6. A generic hazardous waste management training program

    International Nuclear Information System (INIS)

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref

  7. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  8. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  9. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  10. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  11. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  12. Remediation of toxic and hazardous wastes: issues and concerns

    International Nuclear Information System (INIS)

    2005-01-01

    This workshop presented the status of hazardous waste generation in the Philippines, as well the steps being done by the government to address the problem on hazardous materials in the environment and the disposal of the toxic wastes

  13. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  14. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  15. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  16. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  17. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J.A.L.; Pereira, F.A.; Tomich, S. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  18. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J A.L.; Pereira, F A; Tomich, S [CETREL S.A., Camacari, BA (Brazil)

    1994-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  19. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  20. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  1. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  2. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  3. Hazardous waste management in a developing economy

    International Nuclear Information System (INIS)

    Oladiran, M.T.

    1995-01-01

    Many developing countries are characterised by steady increase in population, low GNP and usually a single-source economy. These countries are principally situated in the 40degN/40degS window. In order to generate more wealth, there is a great desire for rapid industrialisation in these countries. However, modern technologies and processes are often associated with by-products and wastes which can be bulky, toxic, chemically unstable, corrosive, radio active and sometimes, at elevated temperatures. In this paper, a critical survey of the deleterious effects of hazardous wastes on man and environment is presented. Current disposal techniques and management principles are discussed Non-objectionable procedures and regulatory control mechanisms for dealing with these wastes are presented. Finally, the importance of research and development in handling these wastes are also highlighted. (author)

  4. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-10-07

    ... the lists of hazardous waste listed at 40 CFR 261.31, both past and currently generated sludge... water production waste treatment system. Once- through non-contact cooling water does not require... grease, sulfide, water content, corrosivity and ignitability. The sludge characterization included...

  5. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This paper contains the proceedings of emergin technologies for hazardous waste management. Topics covered include: advanced transuranic waste managements; remediation of soil/water systems contaminated with nonaqueous pollutants; advances in molten salt oxidation; air treatment and protection; advanced waste minimization strategies; removal of hazardous materials from soils or groundwater; bioremediation of soils and sediment; innovation, monitoring, and asbestos; high-level liquid waste chemistry in the Hanford tanks; biological contributions to soil and groundwater remediation; soil treatment technologies; pollution prevention; incineration and vitrification; current technology; systematic design approaches to hazardous waste management; waste management and environmental restoration at Savannah River; soil washing and flushing for remediation of hazardous wastes

  6. ASSESSMENT OF EARTHQUAKE HAZARDS ON WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    Earthquake hazards may arise as a result of: (a) transient ground deformation, which is induced due to seismic wave propagation, and (b) permanent ground deformation, which is caused by abrupt fault dislocation. Since the adequate performance of waste landfills after an earthquake is of outmost...... importance, the current study examines the impact of both types of earthquake hazards by performing efficient finite-element analyses. These took also into account the potential slip displacement development along the geosynthetic interfaces of the composite base liner. At first, the development of permanent...

  7. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  8. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  9. The Scientific Management of Hazardous Wastes

    Science.gov (United States)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  10. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  11. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  12. Accuracy of hazardous waste project estimates

    International Nuclear Information System (INIS)

    Hackney, J.W.

    1989-01-01

    The HAZRATE system has been developed to appraise the current state of definition of hazardous waste remedial projects. This is shown to have a high degree of correlation to the financial risk of such projects. The method employs a weighted checklist indicating the current degree of definition of some 150 significant project elements. It is based on the author's experience with a similar system for establishing the risk characteristics of process plant projects (Hackney, 1965 and 1989; 1985). In this paper definition ratings for 15 hazardous waste remedial projects have been correlated with the excesses of their actual costs over their base estimates, excluding any allowances for contingencies. Equations are presented, based on this study, for computation of the contingency allowance needed and estimate accuracy possible at a given stage of project development

  13. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  14. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  15. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  16. Frozen soil barriers for hazardous waste confinement

    International Nuclear Information System (INIS)

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-01-01

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies

  17. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  18. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  19. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  20. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  1. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  2. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  3. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  4. An evaluation of three representative multimedia models used to support cleanup decision-making at hazardous, mixed, and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.

    1996-01-01

    The decision process involved in cleaning sites contaminated with hazardous, mixed, and radioactive materials is supported often by results obtained from computer models. These results provide limits within which a decision-maker can judge the importance of individual transport and fate processes, and the likely outcome of alternative cleanup strategies. The transport of hazardous materials may occur predominately through one particular pathway but, more often, actual or potential transport must be evaluated across several pathways and media. Multimedia models are designed to simulate the transport of contaminants from a source to a receptor through more than one environmental pathway. Three such multimedia models are reviewed here: MEPAS, MMSOILS, and PRESTO-EPA-CPG. The reviews are based on documentation provided with the software, on published reviews, on personal interviews with the model developers, and on model summaries extracted from computer databases and expert systems. The three models are reviewed within the context of specific media components: air, surface water, ground water, and food chain. Additional sections evaluate the way that these three models calculate human exposure and dose and how they report uncertainty. Special emphasis is placed on how each model handles radionuclide transport within specific media. For the purpose of simulating the transport, fate and effects of radioactive contaminants through more than one pathway, both MEPAS and PRESTO-EPA-CPG are adequate for screening studies; MMSOILS only handles nonradioactive substances and must be modified before it can be used in these same applications. Of the three models, MEPAS is the most versatile, especially if the user needs to model the transport, fate, and effects of hazardous and radioactive contaminants. 44 refs., 2 tabs

  5. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Science.gov (United States)

    2010-07-01

    ...(e). (2) A total of 100 kilograms of any residue or contaminated soil, waste, or other debris... accumulation, only in an on-site process subject to regulation under 40 CFR 261.6(c)(2); or (4) Is used oil... waste, so long as the hazardous waste that is treated was counted once; or (3) Spent materials that are...

  6. 78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-12-31

    ...] Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions AGENCY... Docket ID No. EPA-R01- RCRA-2013-0554, by mail to Sharon Leitch, RCRA Waste Management and UST Section..., RCRA Waste Management and UST Section, Office of Site Remediation and Restoration (OSRR07-1), US EPA...

  7. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  8. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  9. Bioassay-based risk assessment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, K.C.; Brown, K.W.; He, L.Y. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Microbial bioassays have been used to assess the genotoxic hazard at more than 30 different hazardous waste sites. Environmental samples were extracted with dichloromethane and methanol, and the resulting residue tested using GC/MS analysis as well as the Salmonella Microsomal and E. coli Prophage Induction assays. At a munitions wastewater contaminated site, there was no correlation between mutagenicity in bacteria, and the risk as estimated from chemical analysis data of trinitrotoluene. Samples 202 and 204 from a coal gasification site contained 72 mg/kg and 9 mg/kg benzo(a)pyrene, whereas the mutagenic responses of these samples were 231 net revertants/mg and 902 revertants/mg, respectively. The data suggest that microbial bioassays provide a valuable tool for monitoring the interactions of the components of a complex mixture.

  10. Imaging data analyses for hazardous waste applications. Final report

    International Nuclear Information System (INIS)

    David, N.; Ginsberg, I.W.

    1995-12-01

    The paper presents some examples of the use of remote sensing products for characterization of hazardous waste sites. The sites are located at the Los Alamos National Laboratory (LANL) where materials associated with past weapons testing are buried. Problems of interest include delineation of strata for soil sampling, detection and delineation of buried trenches containing contaminants, seepage from capped areas and old septic drain fields, and location of faults and fractures relative to hazardous waste areas. Merging of site map and other geographic information with imagery was found by site managers to produce useful products. Merging of hydrographic and soil contaminant data aided soil sampling strategists. Overlays of suspected trench on multispectral and thermal images showed correlation between image signatures and trenches. Overlays of engineering drawings on recent and historical photos showed error in trench location and extent. A thermal image showed warm anomalies suspected to be areas of water seepage through an asphalt cap. Overlays of engineering drawings on multispectral and thermal images showed correlation between image signatures and drain fields. Analysis of aerial photography and spectral signatures of faults/fractures improved geologic maps of mixed waste areas

  11. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Ulm, D.J.; McGuire, P.N.; Lynch, E.R.

    1994-01-01

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  12. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  13. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  14. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  15. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  16. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  17. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    Blaylock, B.

    1995-01-01

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  18. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  19. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  20. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  1. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  2. Idaho National Engineering Laboratory hazardous and radioactive mixed waste identification and characterization report for CY 1986

    International Nuclear Information System (INIS)

    Nishimoto, D.D.

    1987-05-01

    This report provides updated tabulations of the hazardous and radioactive mixed wastes generated and/or handled during CY 1986 at each INEL facility operated by EG and G, or any other operating contractor at the Site. These wastes are described in tabular form, providing information such as composition, generating process, contact person, EPA hazardous waste designation, quantity shipped off site (if applicable), and quantity in storage. Waste generation projections for the next ten years are also included for all INEL facilities. Finally, since many of EG and G's inactive disposal sites may prove to be significant sources of either hazardous or radioactive mixed wastes as remedial action activities under RCRA or CERCLA progress, information on these sites is provided. 2 refs., 1 fig., 8 tabs

  3. Waste Minimization via Radiological Hazard Reduction

    International Nuclear Information System (INIS)

    Stone, K.A.; Coffield, T.; Hooker, K.L.

    1998-01-01

    The Savannah River Site (SRS), a 803 km 2 U.S. Department of Energy (DOE) facility in south-western South Carolina, incorporates pollution prevention as a fundamental component of its Environmental Management System. A comprehensive pollution prevention program was implemented as part of an overall business strategy to reduce waste generation and pollution releases, minimize environmental impacts, and to reduce future waste management and pollution control costs. In fiscal years 1995 through 1997, the Site focused on implementing specific waste reduction initiatives identified while benchmarking industry best practices. These efforts resulted in greater than $25 million in documented cost avoidance. While these results have been dramatic to date, the Site is further challenged to maximize resource utilization and deploy new technologies and practices to achieve further waste reductions. The Site has elected to target a site-wide reduction of contaminated work spaces in fiscal year 1998 as the primary source reduction initiative. Over 120,900 m 2 of radiologically contaminated work areas (approximately 600 separate inside areas) exist at SRS. Reduction of these areas reduces future waste generation, minimizes worker exposure, and reduces surveillance and maintenance costs. This is a major focus of the Site's As Low As Reasonably Achievable (ALARA) program by reducing sources of worker exposure. The basis for this approach was demonstrated during 1997 as part of a successful Enhanced Work Planning pilot conducted at several specific contamination areas at SRS. An economic-based prioritization process was utilized to develop a model for prioritizing areas to reclaim. In the H-Canyon Separation facility, over 3,900 m 2 of potentially contaminated area was rolled back to a Radiation Buffer Area. The facility estimated nearly 420 m 3 of low level radioactive waste will be avoided each year, and overall cost savings and productivity gains will reach approximately $1

  4. 40 CFR 262.11 - Hazardous waste determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  5. Adaptive control of manipulators handling hazardous waste

    International Nuclear Information System (INIS)

    Colbaugh, R.; Glass, K.

    1994-01-01

    This article focuses on developing a robot control system capable of meeting hazardous waste handling application requirements, and presents as a solution an adaptive strategy for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end-effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse transformation. Computer simulation results are given for a four degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing important tasks in robotic waste handling applications. (author) 3 figs., 39 refs

  6. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  7. Solid Waste Burial Grounds/Central Waste Complex hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for Solid Waste Burial Grounds/Central Waste Complex on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is documented

  8. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  9. Recovering energy and materials from hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The tannery industry faces growing environmental concerns because of the high hazardous metal content of its process waste. The formation, during the tanning process, of the highly toxic hexavalent chromium precludes the use of conventional thermal incineration processes. Borge Tannery in Norway, which processes 600 cattle hides per day, has solved the problem by using new PyroArc technology. The PyroArc waste processing plant can treat all of the tannery's production wastes, transforming them into useful products such as fuel gas and re-usable metal. The fuel gas consists mainly of carbon monoxide, hydrogen and nitrogen, and has a calorific value of about 4 MJ/Nm{sub 3}. About 65-70% of the energy content of the source material (waste or biomass) is recovered in the gas, and this is used to produce steam and/or electricity in a gas engine with a capacity of 580 kW. A further 20-25% of the initial energy content is recovered as heat or low-pressure steam. The plant is designed to be self-sufficient in energy (1.5 MW) and to meet the tannery's maximum requirements for hot water and steam. (UK)

  10. Egyptian Environmental Activities and Regulations for Management of Hazardous Substances and Hazardous Wastes

    International Nuclear Information System (INIS)

    El Zarka, M.

    1999-01-01

    A substantial use of hazardous substances is essential to meet the social and economic goals of the community in Egypt. Agrochemicals are being used extensively to increase crop yield. The outdated agrochemicals and their empty containers represent a serious environmental problem. Industrial development in different sectors in Egypt obligates handling of huge amounts of hazardous substances and hazardous wastes. The inappropriate handling of such hazardous substances creates several health and environmental problems. Egypt faces many challenges to control safe handling of such substances and wastes. Several regulations are governing handling of hazardous substances in Egypt. The unified Environmental Law 4 for the year 1994 includes a full chapter on the Management of Hazardous Substances and Hazardous Wastes. National and international activities have been taken to manage hazardous substances and hazardous wastes in an environmental sound manner

  11. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2012-07-23

    ... ConocoPhillips filter press processing of storm water Billings Refinery). tank sludge (F037) generated at... residual solids from the processed storm water tank sludge meet the delisting levels in 40 CFR 261 Appendix... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [FRL 9704-1] Hazardous Waste Management System...

  12. 77 FR 12497 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Exclusion

    Science.gov (United States)

    2012-03-01

    ...,'' from the list of hazardous wastes, a maximum of 200 cubic yards per year of residual solids from sludge... accept the delisted processed storm water tank sludge. This rule also imposes testing conditions for... of F037 residual solids from processing (for oil recovery) sludge removed from two storm water tanks...

  13. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  14. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  15. Managing risks of noncancer health effects at hazardous waste sites: A case study using the Reference Concentration (RfC) of trichloroethylene (TCE).

    Science.gov (United States)

    Dourson, Michael L; Gadagbui, Bernard K; Thompson, Rod B; Pfau, Edward J; Lowe, John

    2016-10-01

    A method for determining a safety range for non-cancer risks is proposed, similar in concept to the range used for cancer in the management of waste sites. This safety range brings transparency to the chemical specific Reference Dose or Concentration by replacing their "order of magnitude" definitions with a scientifically-based range. EPA's multiple RfCs for trichloroethylene (TCE) were evaluated as a case study. For TCE, a multi-endpoint safety range was judged to be 3 μg/m(3) to 30 μg/m,(3) based on a review of kidney effects found in NTP (1988), thymus effects found in Keil et al. (2009) and cardiac effects found in the Johnson et al. (2003) study. This multi-endpoint safety range is derived from studies for which the appropriate averaging time corresponds to different exposure durations, and, therefore, can be applied to both long- and short-term exposures with appropriate consideration of exposure averaging times. For shorter-term exposures, averaging time should be based on the time of cardiac development in humans during fetal growth, an average of approximately 20-25 days. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Quality of life and community satisfaction in proximity to hazardous waste

    International Nuclear Information System (INIS)

    Williams, R.G.; Olshansky, S.J.

    1986-01-01

    The NIMBY Syndrome (Not In My Back Yard) characterizes the social and political problems associated with siting hazardous waste facilities. given a rational choice, everyone would prefer than hazardous wastes be located somewhere other than in their own backyard. While there has not been enough research that addresses the social and political effects of having a hazardous waste site located near communities, there have been qualitative case studies, anecdotal evidence, and environmental disasters such as Times Beach and Love Canal that would lead one to believe that hazardous waste sites are disruptive to communities. Media coverage of hazardous waste sites would lead one to believe that the majority of people in proximity to such sites are distraught, economic development in the area is negatively effected, property values decline, and in general, satisfaction with one's community suffers and quality of life decreases. Yet, social science research on this topic is essentially nonexistent. In fact, to date there is no published research that puts hazardous waste in to the larger theoretical context of community satisfaction and quality of life

  17. ORNL grouting technologies for immobilizing hazardous wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon

  18. Hazardous waste and environmental trade: China`s issues

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jiang [National Research Center for Science and Technology for Development, Beijing (China)

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  19. Apparatus for waste disposal of radioactive hazardous waste

    International Nuclear Information System (INIS)

    Burack, R.D.; Stenger, W.J.; Wolfe, C.R.

    1992-01-01

    This patent describes an apparatus for concentrating dissolved and solid radioactive materials carried in a waste water solution containing a hazardous chelating agent used for cleaning nuclear equipment. It comprises oxidizing chamber means, separator means coupled to the oxidizing chamber means; ion exchange means containing an ion exchange resin; dryer means for receiving the radioactive solids from the separator means and for producing dry solids; and packaging means for receiving the dry solids and spent ion exchange resins containing the removed dissolved radioactive materials and for packaging the dry solids and spent resins in solid form

  20. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  1. Hazardous healthcare waste management in the Kingdom of Bahrain

    International Nuclear Information System (INIS)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-01-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  2. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  3. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  4. Biotreatment of industrial and hazardous waste

    International Nuclear Information System (INIS)

    Levin, M.A.; Gealt, M.A.

    1993-01-01

    This book attempts to approach the topic of biodegradation of hazardous wastes in a holistic fashion. The issues of science, engineering and regulation are all addressed. As much as possible, both theoretical and practical considerations have been dealt with. Selection of bacteria for the specific purpose of degrading compounds is discussed at the bench-scale to the field level. Engineering theory as applied to growth on toxic substances is discussed. The legal issues are covered. There are also several examples of field studies indicating the current usage of biodegradation, both within reactors and in situ. The use of biodegradation is compared with other mechanisms of disposal, in terms of time limitations, degradation limitations and, perhaps most important, cost. Individual papers have been processed separately for inclusion in the appropriate data bases

  5. Method for disposing of hazardous wastes

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  6. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  7. Underground disposal of hazardous waste - state of the art and R and D projects

    International Nuclear Information System (INIS)

    Pitterich, H.; Brueckner, C.

    1998-01-01

    The project management group Entsorgung (PTE) coordinates R and D activities on deep geological disposal of hazardous waste besides other activities in the field of nuclear disposal. R and D projects aim at the improvement of tools used to predict the long-term behaviour of underground disposal facilities and the threat for man and environment associated with these facilities. The current German situation on deep geological disposal of hazardous waste is described and some results from the fields waste-anaylsis, geochemical modelling and geotechnical barriers for the sealing of waste disposal sites are presented. (orig.)

  8. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig

  9. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  10. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  11. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator..., NW., Washington, DC 20460. Attention Docket ID No. EPA-HQ-RCRA-2008-0678. Please include a total of 2 copies. Hand Delivery: EPA West Building, Room 3334, 1301 Constitution Ave., NW., Washington, DC. Such...

  12. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  13. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  14. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  15. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  16. Hazardous waste research and development in the Pacific Basin

    International Nuclear Information System (INIS)

    Cirillo, R.R.; Carpenter, R.A.

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste

  17. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  18. 75 FR 44920 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2010-07-30

    ... State Registry of Inactive Hazardous Waste Disposal Sites as a ``Class 2 Inactive Hazardous Waste Site..., Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Natural resources, Oil... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the SMS...

  19. Hazardous Medical Waste Management as a Public Health Issue

    OpenAIRE

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Nataša

    2005-01-01

    The amount of waste produced is connected with the degree of a country’s economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment an...

  20. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  3. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  4. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  5. Waste receiving and processing (WRAP) module 1 hazards assessment. Revision 1

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1997-01-01

    This report documents the hazards assessment for the Waste Receiving and Processing Module I (WRAP 1) located on the U.S. Department of Energy (DOE) Hanford Site. Operation of the WRAP 1 is the responsibility of Rust Federal Services Hanford (RFSH). This hazards assessment was conducted to provide the emergency planning technical basis for the WRAP 1. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  6. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  7. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  8. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  9. On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis

    International Nuclear Information System (INIS)

    Morse, M.A.; Aamodt, P.L.; Cox, W.B.

    1996-01-01

    The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions

  10. National RCRA Hazardous Waste Biennial Report Data Files

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), in cooperation with the States, biennially collects information regarding the generation, management, and final disposition of hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), as amended. Collection, validation and verification of the Biennial Report (BR) data is the responsibility of RCRA authorized states and EPA regions. EPA does not modify the data reported by the states or regions. Any questions regarding the information reported for a RCRA handler should be directed to the state agency or region responsible for the BR data collection. BR data are collected every other year (odd-numbered years) and submitted in the following year. The BR data are used to support regulatory activities and provide basic statistics and trend of hazardous waste generation and management. BR data is available to the public through 3 mechanisms. 1. The RCRAInfo website includes data collected from 2001 to present-day (https://rcrainfo.epa.gov/rcrainfoweb/action/main-menu/view). Users of the RCRAInfo website can run queries and output reports for different data collection years at this site. All BR data collected from 2001 to present-day is stored in RCRAInfo, and is accessible through this website. 2. An FTP site allows users to access BR data files collected from 1999 - present day (ftp://ftp.epa.gov/rcrainfodata/). Zip files are available for download directly from this

  11. Overview of hazardous-waste regulation at federal facilities

    International Nuclear Information System (INIS)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require

  12. Overview of hazardous-waste regulation at federal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  13. Hazardous waste and health impact: a systematic review of the scientific literature.

    Science.gov (United States)

    Fazzo, L; Minichilli, F; Santoro, M; Ceccarini, A; Della Seta, M; Bianchi, F; Comba, P; Martuzzi, M

    2017-10-11

    Waste is part of the agenda of the European Environment and Health Process and included among the topics of the Sixth Ministerial Conference on Environment and Health. Disposal and management of hazardous waste are worldwide challenges. We performed a systematic review to evaluate the evidence of the health impact of hazardous waste exposure, applying transparent and a priori defined methods. The following five steps, based on pre-defined systematic criteria, were applied. 1. Specify the research question, in terms of "Population-Exposure-Comparators-Outcomes" (PECO). people living near hazardous waste sites; Exposure: exposure to hazardous waste; Comparators: all comparators; Outcomes: all diseases/health disorders. 2. Carry out the literature search, in Medline and EMBASE. 3. Select studies for inclusion: original epidemiological studies, published between 1999 and 2015, on populations residentially exposed to hazardous waste. 4. Assess the quality of selected studies, taking into account study design, exposure and outcome assessment, confounding control. 5. Rate the confidence in the body of evidence for each outcome taking into account the reliability of each study, the strength of the association and concordance of results.Fifty-seven papers of epidemiological investigations on the health status of populations living near hazardous waste sites were selected for the evidence evaluation. The association between 95 health outcomes (diseases and disorders) and residential exposure to hazardous waste sites was evaluated. Health effects of residential hazardous waste exposure, previously partially unrecognized, were highlighted. Sufficient evidence was found of association between exposure to oil industry waste that releases high concentrations of hydrogen sulphide and acute symptoms. The evidence of causal relationship with hazardous waste was defined as limited for: liver, bladder, breast and testis cancers, non-Hodgkin lymphoma, asthma, congenital anomalies

  14. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  15. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  16. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  17. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  18. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  19. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  20. Decision-making methodology for management of hazardous waste

    International Nuclear Information System (INIS)

    Philbin, J.S.; Cranwell, R.M.

    1988-01-01

    A decision-making methodology is presented that combines systems and risk analysis techniques to evaluate hazardous waste management practices associated with DOE weapon production operations. The methodology provides a systematic approach to examining waste generation and waste handling practices in addition to the more visible disposal practices. Release-exposure scenarios for hazardous waste operations are identified and operational risk is determined. Comparisons may be made between existing and alternative waste management practices (and processes) on the basis of overall risk, cost and compliance with regulations. Managers can use this methodology to make and defend resource allocation decisions and to prioritize research needs

  1. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  2. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  3. 77 FR 59758 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection..., (RCRA), allows the Environmental Protection Agency (EPA) to authorize State hazardous waste management... codification of the authorized Idaho hazardous waste management program and incorporates by reference...

  4. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  5. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  6. The aesthetics of hazardous waste - Distinguishing visual impacts from publicly perceived risk

    International Nuclear Information System (INIS)

    Sheppard, S.

    1986-01-01

    The need to address the aesthetic impacts of hazardous waste projects on the environment and the public stems from two sources: government regulations which specifically require assessment of aesthetic effects; and rapidly increasing public concern for perceived impacts and risks of existing or proposed hazardous waste facilities. How aesthetic issues are handled on hazardous waste projects can potentially have significant implications on the fate of those projects. These implications range from delays in the permitting process to denial of sites or costly legal judgments in damage suits. This paper discusses strategies for evaluating the aesthetic/perceptual aspects of hazardous waste. In particular, it focuses upon ways to distinguish visual concerns from other influences on public perceptions such as perceived health and safety risks

  7. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  8. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  9. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  10. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  11. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  12. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  13. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  14. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  15. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  16. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  17. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  18. The management of household hazardous waste in the United Kingdom.

    Science.gov (United States)

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.

  19. Public issues in hazardous waste management in the Republic of Croatia

    International Nuclear Information System (INIS)

    Klika, M.C.

    1995-01-01

    Public acceptance of sites for radioactive and other hazardous waste disposal facilities represents one of most important factors in decision making on definite sites of these facilities. The Republic of Croatia, as a newly independent state, faces the problem of public involvement in site selection of radioactive/hazardous waste disposal facility very seriously, specially having in mind that in the past, in former Yugoslavia almost all decisions had been made without participation of the public. Because of that it is very important now to gain confidence of the public and to enable its active role in decision making. Operation of the APO-Hazardous Waste Management Agency as a state agency which has been established firstly for management of radioactive waste, and later widening its competencies also to other types of hazardous wastes and relations to the public, is going to be presented in the paper. Description of some basic elements related to public participation in site selection of radioactive waste repository in Croatia will be also done

  20. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project. Status of project to date January 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell

  1. Blasting at a Superfund chemical waste site

    International Nuclear Information System (INIS)

    Burns, D.R.

    1991-01-01

    During the summer of 1989, Maine Drilling and Blasting of Gardiner, Maine was contracted by Cayer Corporation of Harvard, Massachusetts to drill and blast an interceptor trench at the Nyanza Chemical Superfund Site in Ashland, Massachusetts. The interceptor trench was to be 1,365 feet long and to be blasted out of granite. The trench was to be 12 feet wide at the bottom with 1/1 slopes, the deepest cut being 30 feet deep. A French drain 12 feet wide by 15 to 35 feet deep was blasted below the main trench on a 2% slope from its center to each end. A French drain is an excavation where the rock is blasted but not dug. The trench would be used as a perimeter road with any ground water flow going through the French drain flowing to both ends of the trench. Being a Superfund project turned a simple blasting project into a regulatory nightmare. The US Environmental Protection Agency performed all the chemical related functions on site. The US Army Corps of Engineers was overseeing all related excavation and construction on site, as was the Massachusetts Department of Environmental Quality Engineering, the local Hazardous Wastes Council, and the local Fire Department. All parties had some input with the blasting and all issues had to be addressed. The paper outlines the project, how it was designed and completed. Also included is an outline of the blast plan to be submitted for approval, an outline of the Safety/Hazardous Waste training and a description of all the problems which arose during the project by various regulatory agencies

  2. Comprehensive characterization and hazard assessment of the DOE-Niagara Falls storage site

    International Nuclear Information System (INIS)

    Anderson, T.L.; Dettorre, J.F.; Jackson, D.R.; Ausmus, B.S.

    1981-06-01

    A comprehensive radioecological and nonradiological characterization and hazards assessment was conducted on DOE-Niagara Falls Storage Site. Pitchblende residues and other low-level nuclear waste have been stored on the site since 1944. The most highly radioactive residues were stored in four abandoned buildings, while other wastes were deposited in pits or piled on surface soils on the Site. Several ditches were constructed on the Site to facilitate drainage or excess precipitation. Results of the study will permit the US DOE to form an appropriate remedial action plan for the Site

  3. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  4. Hazard and operability study of the multi-function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Hughes, M.E.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) East site will be constructed on the west side of the 200E area and the MWTF West site will be constructed in the SW quadrant of the 200W site in the Hanford Area. This is a description of facility hazards that site personnel or the general public could potentially be exposed to during operation. A list of preliminary Design Basis Accidents was developed

  5. The current status of hazardous solid waste management.

    Science.gov (United States)

    Kaufman, H B

    1978-01-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  6. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  7. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  8. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Khrushchov, D. P.; Matorin, Eu. M.; Shekhunova, S. B.

    2002-01-01

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  9. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  10. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  11. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  12. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  13. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  14. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project. Status of project to date January 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This document describes the progress made by the Missouri Department of Natural Resources during the third year (1995) of the Agreement in Support (AIS) in its oversight role at the Weldon Springs Site. The accomplishments this year include participation in several workgroup meetings, oversight of the two operable units (Groundwater and Quarry Residuals), coordination between the US DOE and the various regulatory programs, and continued independent analysis of the treated water discharges

  15. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ''Pneumatic Excavator'' which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions

  16. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  17. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  18. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  19. Obtention to the methodology for evaluation to the confirmation of the hazardous wastes safety isolation

    International Nuclear Information System (INIS)

    Peralta, J.L.; Gil, R.; Castillo, R.; Leyva, D.

    2003-01-01

    Taking into account, the practical experience of the safety assessment in the radioactive wastes management, the International Atomic Energy Agency (IAEA) recommendations in this topics, the norms and national and international legislation about noxious substances to the environment and their restriction limits, the best international practices and approaches of isolation hazardous wastes sites, a Methodology is developed (Cuba particular conditions) to obtaining and/or confirmation of the hazardous wastes safety isolation, as a tool able to carry out the assessment of facilities to build and all installation and/or place where hazardous wastes isolated from the environment. The Methodology, embraces the evaluation of technical, economic and social topics, allowing to develop an integral safety assessment which allows to estimate the environment possible impact for hazardous waste isolation (radioactive and non radioactive); Just are shown in this paper the selection approaches for the obtaining and/or evaluation of the best site, the steps description to continue for the definition of the main scenarios and the models to take into account in the valuation of the possible liberation and pathway to the environment of the non radioactive pollutants. The main contribution of this Methodology resides in the creation of a scientific-technique necessary guide for the evident demand of carrying out the most organized, effective and hazardous wastes safety management

  20. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  1. Linking emerging hazardous waste technologies with the electronic information era

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.E.; Suk, W.A. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Blackard, B. [Technology Planning and Management Corp., Durham, NC (United States)

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  2. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  3. Impact of hazardous waste risks and liabilities on the contracting process

    International Nuclear Information System (INIS)

    Gleason, G.L.

    1991-01-01

    Hazardous waste risks include the following: (1) An emerging environmental cleanup industry that differs significantly from traditional engineering; (2) The inability to predict and control the subsurface environment; (3) The implementation of new and often untested technologies; (4) The statutory imposition of strict, joint and several, as well as retroactive, liability; (5) The lack of insurance and other risk-transfer mechanisms to protect against losses; (6) Costly and time consuming litigation to determine liability; and (7) Others. The liabilities associated with the risks inherent in hazardous waste cleanup directly impact hazardous waste contracting. Contract negotiations become onerous during discussions of liability, indemnification, and issues surrounding scope of work and other clauses. Other impacts include (1) Defensive engineering; (2) Lack of incentive to implement innovative technologies; (3) Increased costs to cover risks. Required client indemnification is a necessary and responsible risks management practice, regardless of whether the client is a federal or private client. Federal government indemnification authorities, as well as private contract indemnification mechanisms, will be explained and analyzed. Conflict of interest concerns are also of critical importance in the hazardous waste market, particularly due to concerns over the complexity of the litigation surrounding hazardous waste sites and the need to ensure unbiased results. Other examples of hazardous waste risk management impacts on contracting in the following market sectors will also be provided: (1) U.S. Environmental Protection Agency; (2) Department of Defense; (3) Department of Energy; and (4) Private sector contracts

  4. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  5. Petitions to delist hazardous wastes: A guidance manual. Second edition

    International Nuclear Information System (INIS)

    1993-03-01

    EPA developed the guidance document to assist facilities in preparing delisting petitions for the exclusion of listed hazardous wastes. The manual provides general information on hazardous waste delisting, discusses sampling strategies and testing protocols in detail, and presents a step-by-step approach to compiling a complete delisting petition. This updated edition incorporates recent changes in RCRA regulations, agency policies, and delisting criteria. It also reflects the current emphasis on ground-water monitoring data and new concepts such as upfront delistings

  6. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  7. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  8. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Science.gov (United States)

    2010-07-01

    ... this section are met: (1) The waste meets the definition of CAMU-eligible waste in § 264.552(a)(1) and... remediation. (d) Applicable hazardous waste management requirements in this part, including recordkeeping... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal of CAMU-eligible wastes in...

  9. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  10. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    Science.gov (United States)

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  11. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  12. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  13. Environmental information document: New hazardous and mixed waste storage/disposal facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities and alternative operations are described for new hazardous and mixed waste storage/disposal facilities at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented

  14. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    Energy Technology Data Exchange (ETDEWEB)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-02-28

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

  15. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    International Nuclear Information System (INIS)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-01-01

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media

  16. Remote sensing investigations at a hazardous-waste landfill

    Science.gov (United States)

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  17. What makes a thermal plasma suitable for hazardous waste disposal

    International Nuclear Information System (INIS)

    Benocci, R.; Florio, R.; Galassi, A.; Paolicchio, M.; Sindoni, E.

    1997-01-01

    The basic transport and thermodynamic characteristic of a thermal plasma are analysed in order to emphasize those properties that make a high-temperature source profitable and suitable over the conventional devices for hazardous waste treatment. In addition a survey of the basic reaction sequence and apparatus units is made together with the different approaches to thermal plasma waste treatments

  18. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    Science.gov (United States)

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  19. The municipal districts and the hazardous and nuclear wastes

    International Nuclear Information System (INIS)

    Custodio, H.B.

    1989-01-01

    The contamination of soil, water, air and flora due to increasing of hazardous wastes and population is discussed; the classification of wastes is analysed; the partition of competence in environmental area according to the constitution is explained; solutions to adjust industrial development with preservation of environment are suggested [pt

  20. General procedure to characterize hazardous waste contaminated with radionuclides

    International Nuclear Information System (INIS)

    Vokal, A.; Svoboda, K.; Necasova, M.

    2002-04-01

    The report is structured as follows: Overview of current status of characterization of hazardous wastes contaminated with radionuclides (HWCTR) in the Czech Republic (Legislative aspects; Categorization of HWCwR; Overview of HWCwR emerging from workplaces handling ionizing radiation sources; Mixed waste management in the Czech Republic); General procedure to characterized wastes of the HWCwR type (Information needed from the waste producer; Waste analysis plan - description of waste treatment facilities, verification of wastes, selection of waste parameters followed, selection of sampling method, selection of test methods, selection of frequency of analyses; Radiation protection plan; Non-destructive methods of verification of waste - radiography/tomography, dosimetric inspection, measuring instrumentation, methods usable for the determination of volume and surface activities of materials; Non-destructive invasive methods - internal pressure measurement and gas analysis, endoscopic examination, visual inspection; Destructive methods - sampling, current equipment at Nuclear Research Institute Rez; Identification of hazardous components in waste - chemical screening of mixed wastes; Assessment of immobilization waste matrices; Assessment of packaging; Safety analyses; QA and QC). (P.A.)