WorldWideScience

Sample records for hazardous waste generation

  1. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  2. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  3. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  4. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    Science.gov (United States)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  5. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  6. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  7. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  8. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  9. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  10. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  11. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  12. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  13. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  14. Environmental justice implications of industrial hazardous waste generation in India: a national scale analysis

    Science.gov (United States)

    Basu, Pratyusha; Chakraborty, Jayajit

    2016-12-01

    While rising air and water pollution have become issues of widespread public concern in India, the relationship between spatial distribution of environmental pollution and social disadvantage has received less attention. This lack of attention becomes particularly relevant in the context of industrial pollution, as India continues to pursue industrial development policies without sufficient regard to its adverse social impacts. This letter examines industrial pollution in India from an environmental justice (EJ) perspective by presenting a national scale study of social inequities in the distribution of industrial hazardous waste generation. Our analysis connects district-level data from the 2009 National Inventory of Hazardous Waste Generating Industries with variables representing urbanization, social disadvantage, and socioeconomic status from the 2011 Census of India. Our results indicate that more urbanized and densely populated districts with a higher proportion of socially and economically disadvantaged residents are significantly more likely to generate hazardous waste. The quantity of hazardous waste generated is significantly higher in more urbanized but sparsely populated districts with a higher proportion of economically disadvantaged households, after accounting for other relevant explanatory factors such as literacy and social disadvantage. These findings underscore the growing need to incorporate EJ considerations in future industrial development and waste management in India.

  15. Hazardous medical waste generation rates of different categories of health-care facilities

    International Nuclear Information System (INIS)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-01-01

    Highlights: ► We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. ► Based on a 22-month study period, HMWGR were highly skewed to the right. ► The HMWGR varied from 0.00124 to 0.718 kg bed −1 d −1 . ► A positive correlation existed between the HMWGR and the number of hospital beds. ► We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed −1 d −1 , using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed −1 d −1 , for the public psychiatric hospitals, to up to 0.72 kg bed −1 d −1 , for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed −1 d −1 , for the psychiatric clinics, to up to 0.49 kg bed −1 d −1 , for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  16. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  17. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  18. Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…

  19. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  20. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  1. Toward identifying the next generation of superfund and hazardous waste site contaminants.

    Science.gov (United States)

    Ela, Wendell P; Sedlak, David L; Barlaz, Morton A; Henry, Heather F; Muir, Derek C G; Swackhamer, Deborah L; Weber, Eric J; Arnold, Robert G; Ferguson, P Lee; Field, Jennifer A; Furlong, Edward T; Giesy, John P; Halden, Rolf U; Henry, Tala; Hites, Ronald A; Hornbuckle, Keri C; Howard, Philip H; Luthy, Richard G; Meyer, Anita K; Sáez, A Eduardo; Vom Saal, Frederick S; Vulpe, Chris D; Wiesner, Mark R

    2011-01-01

    This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants. Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: They are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites. A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  2. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  3. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Science.gov (United States)

    2010-11-04

    ... treatment sludge from the lists of hazardous waste set forth in Title 40 of the Code of Federal Regulations... treatment sludges generated at its facility located in Owosso, Michigan from the list of hazardous wastes... disposed in a Subtitle D landfill and we considered transport of waste constituents through ground water...

  4. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  5. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  6. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  7. Reducing hazardous waste generation: an evaluation and a call for action

    National Research Council Canada - National Science Library

    National Research Council Staff; Environmental Studies Board; Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1985-01-01

    ... Considerations in Reducing the Generation of Hazardous Industrial Wastes Environmental Studies Board Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1985 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesett...

  8. Hazardous waste. Annual report, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Activities in the Hazardous Waste Program area in 1984 ranged from preparing management and long-range plans to arranging training seminars. Past and present generation of hazardous wastes were the key concerns. This report provides a summary of the significant events which took place in 1984. 6 tabs

  9. Disposal of hazardous wastes in Canada's Northwest Territories

    International Nuclear Information System (INIS)

    Henney, P.L.; Heinke, G.W.

    1991-01-01

    In the past decade, many jurisdictions have attempted to estimate quantities and types of hazardous wastes generated within their boundaries. Similar studies done in the Northwest Territories (NWT) are out-of-date, incomplete or specific to only one type of waste or geographical location. In 1990, an industry, business and community survey was conducted to determine types and quantities of hazardous wastes generated in the NWT and currently used disposal methods for these wastes. The survey revealed that 2,500 tons of hazardous wastes were generated each year, including waste oil and petroleum products, fuel tank sludges, acid batteries, spent solvents, antifreeze an waste paint. In many regions, disposal of these wastes may be routine, but waste disposal in arctic and subarctic regions presents unique difficulties. Severe climate, transportation expense, isolation and small quantities of waste generated can make standard solutions expensive, difficult or impossible to apply. Unique solutions are needed for northern waste disposal. The aim of this paper is to give an overview of low-cost, on-site or local hazardous wastes disposal options which can be applied in Canada's NWT and also in other arctic, remote or less-developed regions

  10. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  11. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  12. 40 CFR 262.60 - Imports of hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  13. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  14. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  15. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  16. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    International Nuclear Information System (INIS)

    Delgado Otoniel, Buenrostro; Liliana, Marquez-Benavides; Gaona Francelia, Pinette

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied

  17. Hazardous waste research and development in the Pacific Basin

    International Nuclear Information System (INIS)

    Cirillo, R.R.; Carpenter, R.A.

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste

  18. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  19. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  1. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  2. Recommendations concerning Tennessee's hazardous waste management policies by a task force representing generators, environmentalists, and other key constituencies

    International Nuclear Information System (INIS)

    Colglazier, E.W.; English, M.R.

    1987-01-01

    Four recommendations are proposed. 1) A Governor's Roundtable on Hazardous and Solid Wastes should be established to ensure that Tennessee have sound policies and plans for waste management, adequate waste treatment and disposal capacity, and the means to meet the October, 1989 deadline for certification of hazardous waste capacity. 2) Opportunities for early public information and participation in Tennessee's RCRA permitting process should be improved. 3) A Superfund Public Involvement Task Force should be appointed by the Commissioner of Health and Environment to find ways to ensure that a community affected by a Tennessee Superfund site has early and adequate opportunities for information and involvement. 4) Communications about hazardous waste issues should be improved by the appointment of a hazardous waste information officer, the establishment of a Speakers Bureau, the funding of the UT Center for Industrial Services' Hazardous Waste Extension Program, establishment of a crisis situation network of consultants for communities, and exploration of the possibility of Amnesty Days for household hazardous waste and for small-quantity generators waste

  3. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  4. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  5. Waste minimization via destruction of hazardous organics

    International Nuclear Information System (INIS)

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics

  6. Hazardous healthcare waste management in the Kingdom of Bahrain

    International Nuclear Information System (INIS)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-01-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  7. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  8. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Science.gov (United States)

    2010-07-01

    .... (viii) The quantities of the waste generated at individual generation sites or on a regional or national... result of the improper management of wastes containing the constituent. (x) Action taken by other... frequently are hazardous under the definition of hazardous waste found in section 1004(5) of the Act. (c) The...

  9. Characteristics and Generation of Household Hazardous Waste (HHW in Semarang City Indonesia

    Directory of Open Access Journals (Sweden)

    Fikri Elanda

    2018-01-01

    Full Text Available Most of Household Hazardous Waste (HHW is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%, then poisonous (13%, combustible (6% and corrosive materials (2%. The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW in Semarang (linear equations : y=1,278x+82,00 (volume, y=0,216x+13,89 (weight.

  10. Characteristics and Generation of Household Hazardous Waste (HHW) in Semarang City Indonesia

    Science.gov (United States)

    Fikri, Elanda; Purwanto; Sunoko, Henna Rya

    2018-02-01

    Most of Household Hazardous Waste (HHW) is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%), then poisonous (13%), combustible (6%) and corrosive materials (2%). The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW) in Semarang (linear equations : y=1,278x+82,00 (volume), y=0,216x+13,89 (weight).

  11. The impact of regulatory compliance behavior on hazardous waste generation in European private healthcare facilities

    OpenAIRE

    Botelho, Anabela

    2013-01-01

    Along with the increased provision of healthcare by private outpatient healthcare facilities within the EU countries, there is also an increase on waste generation from these facilities. A significant fraction of this waste is amongst the most hazardous of all wastes arising in communities, posing significant risks to people and the environment if inappropriately managed. The growing awareness that mismanagement of healthcare waste has serious environmental and public health consequences is r...

  12. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  13. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-10-07

    ... the lists of hazardous waste listed at 40 CFR 261.31, both past and currently generated sludge... water production waste treatment system. Once- through non-contact cooling water does not require... grease, sulfide, water content, corrosivity and ignitability. The sludge characterization included...

  14. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  15. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  16. Overview of hazardous-waste regulation at federal facilities

    International Nuclear Information System (INIS)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require

  17. Overview of hazardous-waste regulation at federal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  18. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  19. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  20. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  1. Environmental, technical and technological aspects of hazardous waste management in Poland

    Science.gov (United States)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  2. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  3. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  4. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  5. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  6. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  7. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  8. The current status of hazardous solid waste management.

    Science.gov (United States)

    Kaufman, H B

    1978-01-01

    Growth of the population and of industrialization, and substandard disposal of the increased waste products thus generated, have resulted in numerous documented cases of harm to human, plant, and animal health. The Resource Conservation and Recovery Act (1976), its stated goals, and its intended means of implementation, are discussed relative to hazardous waste problems. Subtitle C of this Act, and the authority granted by it to the U.S. Environmental Protection Agency, are explained. Standards and regulations have been imposed upon those responsible for generating and transporting hazardous wastes, to ensure the ultimate safe disposal of such wastes in environmentally suitable, properly licensed facilities. PMID:738237

  9. Remediation of toxic and hazardous wastes: issues and concerns

    International Nuclear Information System (INIS)

    2005-01-01

    This workshop presented the status of hazardous waste generation in the Philippines, as well the steps being done by the government to address the problem on hazardous materials in the environment and the disposal of the toxic wastes

  10. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  11. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) program plan: Executive summary

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan provides a strategy for management of hazardous and mixed wastes generated by the five Department of Energy (DOE) installations managed by Martin Marietta Energy Systems, Inc. (Energy Systems). This integrated corporate plan is based on the individual installation plans, which identify waste streams, facility capabilities, problem wastes, future needs, and funding needs. Using this information, the corporate plan identifies common concerns and technology/facility needs over the next 10 years. The overall objective of this corporate plan is to ensure that treatment, storage, and disposal (TSD) needs for all hazardous and mixed wastes generated by Energy Systems installations have been identified and planned for. Specific objectives of the program plan are to (1) identify all hazardous and mixed waste streams; (2) identify hazardous and mixed waste TSD requirements; (3) identify any unresolved technical issues preventing implementation of the strategy; (4) develop schedules for studies, demonstrations, and facilities to resolve the issues; and (5) define the interfaces with the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. 10 refs., 7 figs

  12. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  13. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  14. Decision-making methodology for management of hazardous waste

    International Nuclear Information System (INIS)

    Philbin, J.S.; Cranwell, R.M.

    1988-01-01

    A decision-making methodology is presented that combines systems and risk analysis techniques to evaluate hazardous waste management practices associated with DOE weapon production operations. The methodology provides a systematic approach to examining waste generation and waste handling practices in addition to the more visible disposal practices. Release-exposure scenarios for hazardous waste operations are identified and operational risk is determined. Comparisons may be made between existing and alternative waste management practices (and processes) on the basis of overall risk, cost and compliance with regulations. Managers can use this methodology to make and defend resource allocation decisions and to prioritize research needs

  15. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  16. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  17. Radiological hazards of TENORM in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Javied, Sabiha, E-mail: sabihajavied@yahoo.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Akhtar, Nasim [Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad (Pakistan); Tufail, M. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan)

    2011-08-15

    Highlights: {yields} NORM (naturally occurring radioactive material) in phosphate rock (PR) is converted to TENORM (technologically enhanced naturally occurring radioactive material) as a result of chemical processing of the PR to make phosphate fertilizers. {yields} Precipitated calcium carbonate (PCC) is generated as process waste during nitrophosphate fertilizer production, which contains TENORM. {yields} Activity concentration of the radionuclide in the TENORM was measured using gamma spectrometry and radiological hazard was derived from the measured activities. {yields} Radiological pollution in the environment from TENORM in the PCC has been addressed. {yields} Restricted application of the PCC dose not pose a significant radiological hazard. -- Abstract: The NORM (naturally occurring radioactive material) in phosphate rock is transferred as TENORM (technologically enhanced naturally occurring radioactive material) to phosphatic fertilizers and to the waste generated by the chemical processes. The waste generated at the NP (nitrophosphate) fertilizer plant at Multan in Pakistan is PCC (precipitated calcium carbonate). Thirty samples of the PCC were collected from the heaps of the waste near the fertilizer plant. Activity concentrations of radionuclides in the waste samples were measured by using the technique of gamma ray spectrometry consisting of coaxial type HPGe (high purity germanium) detector coupled with a PC (personal computer) based MCA (multichannel analyzer) through a spectroscopy amplifier. Activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in the waste samples were determined to be 273 {+-} 23 (173-398), 32 {+-} 4 (26-39) and 56 {+-} 5 (46-66) Bq kg{sup -1} respectively. The activity concentration of {sup 226}Ra in the PCC waste was found to be higher than that in naturally occurring calcium carbonate (limestone and marble) and in worldwide soil. Radiological hazard was estimated from indoor and outdoor exposure to gamma rays from

  18. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  19. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  20. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  1. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2012-07-23

    ... ConocoPhillips filter press processing of storm water Billings Refinery). tank sludge (F037) generated at... residual solids from the processed storm water tank sludge meet the delisting levels in 40 CFR 261 Appendix... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [FRL 9704-1] Hazardous Waste Management System...

  2. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  3. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator..., NW., Washington, DC 20460. Attention Docket ID No. EPA-HQ-RCRA-2008-0678. Please include a total of 2 copies. Hand Delivery: EPA West Building, Room 3334, 1301 Constitution Ave., NW., Washington, DC. Such...

  4. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  5. Hazardous waste management in Chilean main industry: An overview

    International Nuclear Information System (INIS)

    Navia, Rodrigo; Bezama, Alberto

    2008-01-01

    The new 'Hazardous Waste Management Regulation' was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a 'Hazardous Waste Management Plan' if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory

  6. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  7. National information network and database system of hazardous waste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongchang [National Environmental Protection Agency, Beijing (China)

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  8. The status of hazardous waste management in Taiwan, R.O.C

    International Nuclear Information System (INIS)

    Chen, L.L.G.

    1989-01-01

    A large quantity of industrial waste (such as waste oils FCB's, cadmium, etc.) is produced daily in Taiwan, R.O.C.. A 1985 survey found that the amount of waste generated equalled approximately 30 million tons per year. Hazardous waste represents 9.7% of this total. Based on statistics from this same 1985 survey, 72% of the factories disposed of their waste without intermediate treatment. This paper reports that since most methods used for treatment of hazardous wastes were implemented incorrectly, the proper treatment of such waste has become the focal point of environmental protection in Taiwan. From July, 1987 the short-term program for industrial waste control has had as its first priority the control of toxic, infectious and corrosive hazardous waste. At the same time, a registration system for permission, reporting and results inspection for hazardous wastes is being developed. An industrial waste exchange and reclamation system is also being developed. It is predicted that a complete hazardous waste management program can be developed within the next four years

  9. A generic hazardous waste management training program

    International Nuclear Information System (INIS)

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref

  10. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  11. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  12. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  13. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  14. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  15. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  16. Environmental, technical and technological aspects of hazardous waste management in Poland

    OpenAIRE

    Pyssa Justyna

    2017-01-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions...

  17. Analysis of low-level wastes. Review of hazardous waste regulations and identification of radioactive mixed wastes. Final report

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-12-01

    Regulations governing the management and disposal of hazardous wastes have been promulgated by the US Environmental Protection Agency under authority of the Resource Conservation and Recovery Act. These were reviewed and compared with the available information on the properties and characteristics of low-level radioactive wastes (LLW). In addition, a survey was carried out to establish a data base on the nature and composition of LLW in order to determine whether some LLW streams could also be considered hazardous as defined in 40 CFR Part 261. For the survey, an attempt was made to obtain data on the greatest volume of LLW; hence, as many large LLW generators as possible were contacted. The list of 238 generators contacted was based on information obtained from NRC and other sources. The data base was compiled from completed questionnaires which were returned by 97 reactor and non-reactor facilities. The waste volumes reported by these respondents corresponded to approximately 29% of all LLW disposed of in 1984. The analysis of the survey results indicated that three broad categories of LLW may be radioactive mixed wastes. They include: waste containing organic liquids, disposed of by all types of generators; wastes containing lead metal, i.e., discarded shielding or lead containers; wastes containing chromates, i.e., nuclear power plant process wastes where chromates are used as corrosion inhibitors. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 8 figs., 48 tabs

  18. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  19. ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY-CONTAMINATED HAZARDOUS WASTES

    Science.gov (United States)

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of ongoing hazardous waste generation and historic operations that have led to signif...

  20. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  1. Current Status of Manufacturing Hazardous Waste in Shanghai

    Institute of Scientific and Technical Information of China (English)

    Liu Changqing; Zhang Jiangshan; Zhao Youcai

    2007-01-01

    It is difficult to manage the manufacturing hazardous waste(MHW)whichis generated from a huge amount of complicated sources and causes very serious pollution.Therefore more and more attention has been paid to MHW pollution.shanghai,as an industrial and economic center and an intemational metropolis in China,has a vast industrial system spanning a multitude of sectors,which generates MHW not only in a huge magnitude but also in a large variety of types from complicated sourrces,resulting in severe pollution.In 2003,the production of MHW in Shanghai is about 3.96 x 10ton,involving 33 indices.Most of MHW in Shanghai is treated and disposed of,but a significant portion is not handled properly and effectively.This paper carries out in-field investigation on the current status of MHW production and treat ment in Shanghai,and puts forward scientific proposals that Shanghai should facilitate cleaner production and minimize haz ardous waste;strictly enforce hazardous waste registration system, strengthen monitoring the certified enterprises;strengthen intent disposal center construction and realize hazardous waste reclamation;accelerate establishing tlle technical criteria and the management policy,promote the research and development on the treatment and disposal technology,and strengthen information management,thus realizing integrated management on MHW pollution.

  2. Industrial Hazardous Waste Management In Egypt-the baseline study: An Updated review

    International Nuclear Information System (INIS)

    Farida M, S.

    1999-01-01

    Increased industrialization over the past decades in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. This was not accompanied by any concerted efforts to control these wastes. Consequently, no system for handling or disposing of industrial wastes, in general, and industrial hazardous wastes, in specific, exists. In 1993, a baseline report was formulated to assess the overall problem of industrial hazardous waste management in Egypt. Consequently, recommendations for priority actions were identified and the main components of a national hazardous waste system under the provision of Law 4/ 1994 were presented. This paper provides an updated review of this report in light of the proposed technical, legal and institutional guidelines to help in the realization of such a needed waste management system in Egypt

  3. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  4. The management of household hazardous waste in the United Kingdom.

    Science.gov (United States)

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.

  5. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  6. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  7. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  8. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  9. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... treatment of a hazardous waste generated by the Owens-Brockway Glass Container Company in Vernon, California... action. List of Subjects in 40 CFR Part 268 Environmental protection, Hazardous waste, and Variances...

  10. Sources and management of hazardous waste in Papua New Guinea

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. [Univ. of Papua New Guinea (Papua New Guinea)

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  11. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  13. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  14. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  15. Portable sensor for hazardous waste

    International Nuclear Information System (INIS)

    Piper, L.G.

    1994-01-01

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps

  16. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  17. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  18. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  19. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  20. Nuclear power for energy production and hazardous waste regulations in India

    International Nuclear Information System (INIS)

    Sharma, Prabhakar; Goel, Gaurav

    2010-01-01

    Before installing any nuclear power- generation plants in India, it is important to implement stringent regulations for the health and safety of the people and for protection of the environment, soil and water from the nuclear and hazardous waste produced in the power plants. Although some initiatives have been taken for radioactive waste disposal in India, the current hazardous and nuclear waste storage/disposal regulations are still too soft and are not being implemented properly in the country

  1. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  2. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-12-17

    ... and Community Right-to-Know Act FDA Food and Drug Administration HSWA Hazardous and Solid Waste...(f)), and hazardous substances (40 CFR 302.4) based solely upon the evidence that it is a potential... subsequently identified as hazardous wastes in Sec. 261.33(f) based solely on their potential for carcinogenic...

  3. 75 FR 76633 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Science.gov (United States)

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... its federally authorized RCRA Hazardous Waste Management Program. These authorized changes included... with Conditionally Exempt Small Quality Generators (CESQG) waste is subject to RCRA used oil management...

  4. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Wookeun; Shin, Eung Bai [Hanyang Univ., Ansan (Korea, Republic of); Lee, Kil Chul; Kim, Jae Hyung [National Institute of Environmental Research, Seoul (Korea, Republic of)] [and others

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  5. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  6. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  7. Waste Generation Overview, Course 23263

    International Nuclear Information System (INIS)

    Simpson, Lewis Edward

    2016-01-01

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  8. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  9. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  10. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  11. HAXWDDD (Hazardous Waste Development, Demonstration, and Disposal) - An exercise in corporate planning

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Pechin, W.H.

    1988-01-01

    The Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) program is a corporate initiative that is coordinated between Martin Marietta Energy Systems, Inc. (Energy Systems), and the US Department of Energy's Oak Ridge Operations Office (DOE-ORO). The major objective of HAZWDDD is to develop a comprehensive management strategy for the hazardous and mixed wastes generated by the five Energy Systems installations. This program is of prime importance because federal and state regulations for handling hazardous wastes are becoming increasingly stringent and the generator of such wastes retains legally mandated liability for their disposal indefinitely. In addition, no acceptable method is currently available for handling mixed (hazardous and radioactive) wastes. Both Energy Systems corporate management and DOE-ORO management have recognized the seriousness of these problems and have established several programs to determine acceptable courses of action. A plan has been developed for low-level radioactive waste (LLW), and an active dialogue pertaining to LLW is maintained with the state and federal regulators. During 1986, DOE-ORO and Energy Systems identified the need for a plan to address hazardous and mixed wastes. Each installation supports the concept of HAZWDDD through funding and the development of individual HAZWDDD implementation plans. A corporate plan is being developed to integrate the issues discussed in the five installation plans. This paper describes: (1) the approach taken in collecting the necessary information for the plan; (2) some of the techniques used in analyzing the information provided; (3) preliminary data that have been collected in preparation of this plan, (4) the identification of common concerns and issues, and (5) the integration of this information into a corporate approach to mixed and hazardous waste management

  12. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  13. Idaho National Engineering Laboratory hazardous and radioactive mixed waste identification and characterization report for CY 1986

    International Nuclear Information System (INIS)

    Nishimoto, D.D.

    1987-05-01

    This report provides updated tabulations of the hazardous and radioactive mixed wastes generated and/or handled during CY 1986 at each INEL facility operated by EG and G, or any other operating contractor at the Site. These wastes are described in tabular form, providing information such as composition, generating process, contact person, EPA hazardous waste designation, quantity shipped off site (if applicable), and quantity in storage. Waste generation projections for the next ten years are also included for all INEL facilities. Finally, since many of EG and G's inactive disposal sites may prove to be significant sources of either hazardous or radioactive mixed wastes as remedial action activities under RCRA or CERCLA progress, information on these sites is provided. 2 refs., 1 fig., 8 tabs

  14. Hazardous Waste: Learn the Basics of Hazardous Waste

    Science.gov (United States)

    ... Need More Information on Hazardous Waste? The RCRA Orientation Manual provides introductory information on the solid and ... and Security Notice Connect. Data.gov Inspector General Jobs Newsroom Open Government Regulations.gov Subscribe USA.gov ...

  15. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  16. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  17. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  18. 49 CFR 171.3 - Hazardous waste.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  19. 40 CFR Appendix to Part 262 - Uniform Hazardous Waste Manifest and Instructions (EPA Forms 8700-22 and 8700-22A and Their...

    Science.gov (United States)

    2010-07-01

    ... Regulatory Affairs, Office of Management and Budget, Washington, DC 20503. I. Instructions for Generators... GENERATORS OF HAZARDOUS WASTE Pt. 262, App. Appendix to Part 262—Uniform Hazardous Waste Manifest and... down hard. 2. Federal regulations require generators and transporters of hazardous waste and owners or...

  20. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  1. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  2. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  3. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  4. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  5. Radiological hazards of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  6. Generation of electronic waste in India: Current scenario, dilemmas ...

    African Journals Online (AJOL)

    This paper tries to quantify the amount of E-waste generated in India with the related stakeholder involvement. Electronic waste (E-waste) or waste electrical and electronic equipments (WEEE), which is relatively a recent addition to the hazardous waste stream, is drawing rapid attention across the globe as the quantity ...

  7. Management and hazardous waste characterization in Central for Isotop and Radiation Application based on potential dangers

    International Nuclear Information System (INIS)

    Niken Hayudanti Anggarini; Megi Stefanus; Prihatiningsih

    2014-01-01

    Separating and storing hazardous waste have been done based on the physical, chemical, and based on potential dangers due to safety hazardous waste temporary storage warehouse. From the results of data collection in 2014 found that the most dominant hazardous waste is organic liquid waste which reaches 61 %, followed by inorganic liquid waste 33 % while organic solid waste and inorganic solid waste has a small portion. When viewed from potential danger, flammable liquid waste has the greatest volume percentage it is 47 % and is followed by a corrosive liquid waste 26 %, while the liquid waste that has not been identified is quite large, which is 9 %. From the highest hazard potential data, hazardous waste storage warehouse is required to have good air circulation and waste storage shelf protected from direct solar heat. Cooperation of lab workers and researchers are also indispensable in providing identification of each waste generated to facilitate the subsequent waste management. (author)

  8. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  9. Egyptian Environmental Activities and Regulations for Management of Hazardous Substances and Hazardous Wastes

    International Nuclear Information System (INIS)

    El Zarka, M.

    1999-01-01

    A substantial use of hazardous substances is essential to meet the social and economic goals of the community in Egypt. Agrochemicals are being used extensively to increase crop yield. The outdated agrochemicals and their empty containers represent a serious environmental problem. Industrial development in different sectors in Egypt obligates handling of huge amounts of hazardous substances and hazardous wastes. The inappropriate handling of such hazardous substances creates several health and environmental problems. Egypt faces many challenges to control safe handling of such substances and wastes. Several regulations are governing handling of hazardous substances in Egypt. The unified Environmental Law 4 for the year 1994 includes a full chapter on the Management of Hazardous Substances and Hazardous Wastes. National and international activities have been taken to manage hazardous substances and hazardous wastes in an environmental sound manner

  10. 30 CFR 47.53 - Alternative for hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  11. Future management of hazardous wastes generated at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    This document assesses the potential environmental impacts of a variety of alternatives which could provide a Resource Conservation and Recovery Act (RCRA) permitted waste packaging and storage facility that would handle all hazardous, radioactive, and mixed wastes generated at Brookhaven National Laboratory (BNL) and would operate in full compliance with all federal, state, and local laws and regulations. Location of the existing Hazardous Waste Management Facility (HWMF) with respect to ground water and the site boundary, technical and capacity limitations, inadequate utilities, and required remediation of the area make the existing facility environmentally unacceptable for long term continued use. This Environmental Assessment (EA) describes the need for action by the Department of Energy (DOE). It evaluates the alternatives for fulfilling that need, including the alternative preferred by DOE, a no-action alternative, and other reasonable alternatives. The EA provides a general description of BNL and the existing environment at the current HWMF and alternative locations considered for a new Waste Management Facility (WMF). Finally, the EA describes the potential environmental impacts of the alternatives considered. The preferred alternative, also identified as Alternative D, would be to construct and operate a new WMF on land formerly occupied by barracks during Camp Upton operations, in an area north of Building 830 and the High Flux Beam Reactor/Alternating Gradient Synchrotron (AGS) recharge basins, east of North Railroad Street, and south of East Fifth Avenue. The purpose of this new facility would be to move all storage and transfer activities inside buildings and on paved and curbed areas, consolidate facilities to improve operations management, and provide improved protection of the environment

  12. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This paper contains the proceedings of emergin technologies for hazardous waste management. Topics covered include: advanced transuranic waste managements; remediation of soil/water systems contaminated with nonaqueous pollutants; advances in molten salt oxidation; air treatment and protection; advanced waste minimization strategies; removal of hazardous materials from soils or groundwater; bioremediation of soils and sediment; innovation, monitoring, and asbestos; high-level liquid waste chemistry in the Hanford tanks; biological contributions to soil and groundwater remediation; soil treatment technologies; pollution prevention; incineration and vitrification; current technology; systematic design approaches to hazardous waste management; waste management and environmental restoration at Savannah River; soil washing and flushing for remediation of hazardous wastes

  13. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions... requirements, the standards for owners and operators of hazardous waste treatment, storage and disposal... hazardous waste management facilities, the land disposal restrictions program, and the hazardous waste...

  14. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  15. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  16. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  17. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  18. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  19. Pareto frontier analyses based decision making tool for transportation of hazardous waste

    International Nuclear Information System (INIS)

    Das, Arup; Mazumder, T.N.; Gupta, A.K.

    2012-01-01

    Highlights: ► Posteriori method using multi-objective approach to solve bi-objective routing problem. ► System optimization (with multiple source–destination pairs) in a capacity constrained network using non-dominated sorting. ► Tools like cost elasticity and angle based focus used to analyze Pareto frontier to aid stakeholders make informed decisions. ► A real life case study of Kolkata Metropolitan Area to explain the workability of the model. - Abstract: Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology.

  20. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  1. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  2. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  3. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  4. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  5. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  6. Hazardous waste management in a developing economy

    International Nuclear Information System (INIS)

    Oladiran, M.T.

    1995-01-01

    Many developing countries are characterised by steady increase in population, low GNP and usually a single-source economy. These countries are principally situated in the 40degN/40degS window. In order to generate more wealth, there is a great desire for rapid industrialisation in these countries. However, modern technologies and processes are often associated with by-products and wastes which can be bulky, toxic, chemically unstable, corrosive, radio active and sometimes, at elevated temperatures. In this paper, a critical survey of the deleterious effects of hazardous wastes on man and environment is presented. Current disposal techniques and management principles are discussed Non-objectionable procedures and regulatory control mechanisms for dealing with these wastes are presented. Finally, the importance of research and development in handling these wastes are also highlighted. (author)

  7. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  8. Buying time: Franchising hazardous and nuclear waste cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. [Dept. of Energy, Washington, DC (United States)

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  9. Regulation and Control of Hazardous Wastes

    OpenAIRE

    Hans W. Gottinger

    1994-01-01

    Hazardous waste regulations require disposal in approved dumpsites, where environmental consequences are minimal but entry may be privately very costly. Imperfect policing of regulations makes the socially more costly option illicit disposal preferable form the perspective of the private decision maker. The existence of the waste disposal decision, its economic nature, production independence, and the control over environmental damage are key issues in the economics of hazardous waste managem...

  10. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2011-09-28

    ... Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of proposed rule... Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross Avenue, Dallas, TX... petition. A new petition will be required for this waste stream. List of Subjects in 40 CFR Part 261...

  11. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... will dispose of the leachate at a publicly owned treatment works or at an industrial waste disposal... classification of listed waste pursuant to Sec. Sec. 261.31 and 261.32. Specifically, in its petition, Gulf West... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  12. Hazardous waste management plan, Savannah River Plant

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1984-06-01

    All SRP waste storage, disposal, and recycling facilities that have received hazardous waste, low-level radioactive hazardous waste (mixed waste) or process waste since 1980 have been evaluated by EPA standards. Generally the waste storage areas meet all applicable standards. However, additional storage facilities currently estimated at $2 million and waste disposal facilities currently estimated at $20 million will be required for proper management of stored waste. The majority of the disposal facilities are unlined earthen basins that receive hazardous or process wastes and have or have the potential to contaminate groundwater. To come into compliance with the groundwater standards the influents to the basins will be treated or discontinued, the basins will be decommissioned, groundwater monitoring will be conducted, and remedial actions will be taken as necessary. The costs associated with these basin actions are not completely defined and will increase from present estimates. A major cost which has not been resolved is associated with the disposal of the sludge produced from the treatment plants and basin decommissioning. The Low-Level Radioactive Burial Ground which is also a disposal facility has received mixed waste; however, it does not meet the standards for hazardous waste landfills. In order to properly handle mixed wastes additional storage facilities currently estimated at $500,000 will be provided and options for permanent disposal will be investigated

  13. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Science.gov (United States)

    2010-07-01

    ...(e). (2) A total of 100 kilograms of any residue or contaminated soil, waste, or other debris... accumulation, only in an on-site process subject to regulation under 40 CFR 261.6(c)(2); or (4) Is used oil... waste, so long as the hazardous waste that is treated was counted once; or (3) Spent materials that are...

  14. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  15. 40 CFR 262.11 - Hazardous waste determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  16. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  17. Possible combustion hazards in 3013 plutonium waste container

    International Nuclear Information System (INIS)

    Sherman, M.P.

    1999-01-01

    Are there combustion hazards in plutonium-contaminated waste containers caused by combustible gas generation? Current gas generation models in which the only reaction considered is radiolysis must inevitably predict eventual complete dissociation of any water present into hydrogen and oxygen. Waste prepared for the 3013 container should be less subject to this problem because organic material and most of the absorbed water should have been removed. Depending on the waste form, moisture content, organic content, temperature, and container material, the pressure rise due to gas generation will be bounded by backreactions, recombination of the hydrogen and oxygen, absorption of the oxygen by plutonium oxide, and possibly other chemical reactions. Examination of a variety of food pack waste containers at Los Alamos National Laboratory (LANL) has shown little pressure rise, indeed often subatmospheric pressures. In a few cases large hydrogen concentrations up to 47% mole fraction were observed, but with negligible oxygen content. The only fuel seen in significant quantities was H 2 and, in one case, CO; the only oxidizer seen in significant quantities was O 2 . Considerable work on measuring gas generation is being done at Westinghouse Savannah River Company and LANL. In a mixture of H 2 , O 2 , and other diluent gases, if the hydrogen concentration is below the value at the lean flammability limit, or if the oxygen concentration is below that at the rich flammability limit, a flame will not propagate from an ignition source. Assuming H 2 is the only fuel present in significant quantities, a mixture leaner than the lean limit will get only leaner if mixed with air and is therefore no combustion hazard. However, when a mixture containing large amounts of H 2 is nonflammable because there is insufficient O 2 , there is a hazard. If the mixture should leak into a volume containing O 2 , or the container is opened into the surrounding air, the mixture will pass through the

  18. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  20. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  1. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  2. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  3. Cleaning up eastern Europe: Proposals for a coordinated European hazardous waste management regime

    International Nuclear Information System (INIS)

    Cassidy, B.E.

    1993-01-01

    In the past century, technological development has stimulated tremendous advances in manufacturing productivity and raised living standards throughout the many industrialized nations of the modern world. Only in the last quarter century, however, has the global community begun to recognize the environmental costs of this technological progress. Of principal concern is the large-scale generation by virtually all commercial and industrial sources of waste by-products posing substantial risks to human health or the environment. Methods of the appropriate management of these hazardous or toxic waste streams have received considerable attention in most developed states during the past two decades. More recently, the international community has recognized that hazardous waste management practices adopted by individual nations may pose significant transboundary environmental concerns. Extra-territorial impacts may arise directly, from the exportation of hazardous waste from one state to another, or indirectly, from the contamination of open-quotes migratory mediaclose quotes like air resources and water supplies. Recognition in the scientific community of hazardous waste's contribution to global pollution has progressed at the same time that a new sense of responsibility for the global environment has evolved in the international legal community. Accordingly, the international community has recently initiated several efforts to address the transboundary nature of hazardous waste management practices

  4. Sensitivity Analysis of Population in The Generation of Hazardous and Non-Harzardous Wastes, and Gas from Dumpsites of Ogbomosoland in Nigeria

    Directory of Open Access Journals (Sweden)

    Samson O. Ojoawo

    2013-01-01

    Full Text Available This paper applies the principles of system dynamics modeling in studying the pattern of population changes and the corresponding non-hazardous wastes and gas being generated from the dumpsites of Ogbomosoland, Nigeria. The five (5 Local government Areas (LGAs of Ogbomosoland were categorized as Urban (Ogbomoso North and Ogbomoso South and Rural (Oriire, Ogo Oluwa and Suurulere based on the size, population of residents, consumption pattern and socio-economic activities of the area. A sensitivity analysis of the simulated variables i.e the population, wastes and gas, was performed by employing the developed model results. Findings showed that the wastes and gas increased with the increased population in the 1000 years period. Also, gas production exceeds wastes generation rates for the rural LGAs in all cases. After a 25 years benchmark, when the simulated population of the urban and rural LGAs are respectively 303,411 and 344,735, the rates of waste generation are 3.33x106 and 6.22 x106 m 3 , while the corresponding rates of gas production is 2.44x103 and 6.47x103 m 3 in same order. The study concludes that wastes and gas generation from dumpsites are highly sensitive to population growth. It also concluded that the rate of gas generation is higher in organic wastes of the rural LGAs. The maximum population permissible in the model is 300,000 thus design of full-fledge landfills is recommended to replace the existing dumpsites in the study area.

  5. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  7. Characterization of hazardous waste residuals from Environmental Restoration Program activities at DOE installations: Waste management implications

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Esposito, M.P.

    1995-01-01

    Investigators at Argonne National Laboratory (ANL), with support from associates at the Pacific Northwest Laboratory (PNL), have assembled an inventory of the types and volumes of radioactive, toxic or hazardous, and mixed waste likely to be generated over the next 30 years as the US Department of Energy (DOE) implements its nationwide Environmental Restoration (ER) Program. The inventory and related analyses are being considered for integration into DOE's Programmatic Environmental Impact Statement (PEIS) covering the potential environmental impacts and risks associated with alternative management practices and programs for wastes generated from routine operations. If this happens, the ER-generated waste could be managed under a set of alternatives considered under the PEIS and selected at the end of the current National Environmental Policy Act process

  8. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  9. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  10. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  11. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  12. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    .... facility produces high-carbon steel tire cord for use in radial tire manufacturing. The steel cord is... delisted waste. Lists of Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling...

  13. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  14. Hazardous waste and environmental trade: China`s issues

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jiang [National Research Center for Science and Technology for Development, Beijing (China)

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  15. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  16. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  17. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    International Nuclear Information System (INIS)

    Dare, J. H.; Cournoyer, M. E.

    2002-01-01

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases

  18. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  19. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  20. Hazardous Waste Landfill Siting using GIS Technique and Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ozeair Abessi

    2010-07-01

    Full Text Available Disposal of large amount of generated hazardous waste in power plants, has always received communities' and authori¬ties attentions. In this paper using site screening method and Analytical Hierarchy Process (AHP a sophisticated approach for siting hazardous waste landfill in large areas is presented. This approach demonstrates how the evaluation criteria such as physical, socio-economical, technical, environmental and their regulatory sub criteria can be introduced into an over layer technique to screen some limited appropriate zones in the area. Then, in order to find the optimal site amongst the primary screened site utilizing a Multiple Criteria Decision Making (MCDM method for hierarchy computations of the process is recommended. Using the introduced method an accurate siting procedure for environmental planning of the landfills in an area would be enabled. In the study this approach was utilized for disposal of hazardous wastes of Shahid Rajaee thermal power plant located in Qazvin province west central part of Iran. As a result of this study 10 suitable zones were screened in the area at first, then using analytical hierarchy process a site near the power plant were chosen as the optimal site for landfilling of the hazardous wastes in Qazvin province.

  1. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  2. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  3. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  4. Quantitative assessment of medical waste generation in the capital city of Bangladesh

    International Nuclear Information System (INIS)

    Patwary, Masum A.; O'Hare, William Thomas; Street, Graham; Maudood Elahi, K.; Hossain, Syed Shahadat; Sarker, Mosharraf H.

    2009-01-01

    There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 ± 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.

  5. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  6. Vitrification of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na 2 O) - Lime (CaO) - Silica (SiO 2 ) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation

  7. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  8. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  9. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  11. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  12. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  13. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  14. Regulatory barriers to hazardous waste technology innovation

    International Nuclear Information System (INIS)

    Kuusinen, T.L.; Siegel, M.R.

    1991-02-01

    The primary federal regulatory programs that influence the development of new technology for hazardous waste are the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, also commonly known as Superfund). Two important aspects of RCRA that can create barriers to hazardous waste technology innovation are technology-based waste pre-treatment standards and a cumbersome permitting program. By choosing a technology-based approach to the RCRA land disposal restrictions program, the US Environmental Protection Agency (EPA) has simultaneously created tremendous demand for the technologies specified in its regulations, while at the same time significantly reduced incentives for technology innovation that might have otherwise existed. Also, the RCRA hazardous waste permitting process can take years and cost hundreds of thousands of dollars. The natural tendency of permit writers to be cautious of unproven (i.e., innovative) technology also can create a barrier to deployment of new technologies. EPA has created several permitting innovations, however, to attempt to mitigate this latter barrier. Understanding the constraints of these permitting innovations can be important to the success of hazardous waste technology development programs. 3 refs

  15. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  16. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  17. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  18. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  19. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1986-01-01

    The Hazardous and Solid Waste Amendments of 1984 have greatly expanded the universe of what, and who, is regulated under Resource Conservation and Recovery Act (RCRA). Handling requirements for hazardous waste are becoming increasingly more stringent, particularly where land disposal is concerned. DOE needs to begin actively pursuing strategies directed at keeping the management of LLW clearly separated from wastes that are legitimately regulated under RCRA. Such strategies would include instituting systemwide changes in internal management practices, establishing improved location standards for LLW disposal, and negotiating interagency compromise agreements to obtain variances from RCRA requirements where necessary and appropriate

  20. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  1. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  2. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  3. Controlled air incineration of hazardous chemical and mixed waste at Los Alamos

    International Nuclear Information System (INIS)

    Borduin, L.C.; Hutchins, D.A.; Vavruska, J.J.; Warner, C.L.

    1987-01-01

    The Los Alamos National Laboratory (LANL) Controlled Air Incineration (CAI) system, originally developed for transuranic (TRU) waste volume reduction studies, is currently being qualified for hazardous chemical and mixed waste treatment under provisions of the Resource Conservation and Recovery Act (RCRA). The objective is to obtain a permanent RCRA Part B permit for thermal disposal of hazardous and mixed wastes generated by LANL. Constructed in the mid-1970s as a demonstration project for incineration of TRU solid wastes, the CAI process was substantially modified and tested in 1980-1983 for acceptance of both liquid and solid hazardous chemicals. Successful demonstration of TRU solid waste processing objectives in 1979 and later chemical waste incineration studies have been documented in several publications. In 1984, the LANL CAI became the first US Dept. of Energy (DOE) incinerator to be permitted for polychlorinated biphenyl disposal under the Toxic Substances Control Act. Following establishment of Environmental Protection Agency (EPA) jurisdiction over DOE chemical waste management in 1984, LANL sought and was granted interim status for the CAI and applied for a trial burn permit in the overall laboratory RCRA Part B application. A trial burn and final report have been completed; results have been submitted to EPA and the New Mexico Environmental Improvement Division. This paper provides an overview of trial burn planning and results together with the operational status of LANL's CAI

  4. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  5. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  6. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Policastro, A.J.

    1995-04-01

    This report focuses on the generation of hazardous waste (HW) and the treatment, storage, and disposal (TSD) of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for TSD are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial TSD facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine TSD operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. Furthermore, this report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the TSD alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  7. OVERVIEW OF THE HISTORY, PRESENT STATUS, AND FUTURE DIRECTION OF SOLIDIFICATION/STABILIZATION TECHNOLOGIES FOR HAZARDOUS WASTE TREATMENT

    Science.gov (United States)

    Solidification/stabilization (S/S) technology processes are currently being utilized in the United States to treat inorganic and organic hazardous waste and radioactive waste. These wastes are generated from operating industry or have resulted from the uncontrolled management of ...

  8. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  9. Immobilisation of hazardous waste

    International Nuclear Information System (INIS)

    Cope, C.B.

    1983-01-01

    Hazardous waste, e.g. radioactive waste, particularly that containing caesium-137, is immobilised by mixing with cement and solidifiable organic polymeric material. When first mixed, the organic material is preferably liquid and at this time can be polymerisable or already polymerised. The hardening can result from cooling or further polymerisation e.g. cross-linking. The organic material may be wax, or a polyester which may be unsaturated and cross-linkable by reaction with styrene. (author)

  10. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    Science.gov (United States)

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  11. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    International Nuclear Information System (INIS)

    2003-01-01

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS

  12. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  13. WHO collaboration in hazardous waste management in the Western Pacific Region

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hisashi [Western Pacific Regional Environmental Health Centre, Kuala Lumpur (Malaysia)

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  14. Hazardous-waste landfill research, US EPA (United States Environmental Protection Agency) program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1988-08-01

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid- and hazardous-waste management with respect to land disposal of wastes. To fulfill the responsibility, the LPCD is developing concepts and is documenting the environmental effects of various waste-disposal practices; and is collecting data necessary to support implementation of disposal guidelines mandated by the Hazardous and Solid Waste Amendments of 1984 (HSWA). This paper presents an overview of the land-disposal research associated with the LPCD hazardous waste program plan and will report the current status of work in the following categorical areas: Hazardous-waste facilities - landfills and surface impoundments; Non-Hazardous waste facilities; and Technology transfer.

  15. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  17. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  18. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  19. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  20. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    International Nuclear Information System (INIS)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-01-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  1. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  2. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  3. Bioprocessing scenarios for mixed hazardous waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.

    1994-01-01

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE's facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series

  4. Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Holcomb, C.; Louie, B.; Mullins, M.E.; Outcalt, S.L.; Rogers, T.N.; Watts, L.

    1998-01-01

    'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

  5. Adverse Effects of Waste Generation in Calabar Urban, Nigeria ...

    African Journals Online (AJOL)

    Adverse Effects of Waste Generation in Calabar Urban, Nigeria. ... degradation, blocking of drainage and emission of greenhouse gases. We found a number of health hazards, ranging from pollution to diseases on both human and animals.

  6. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-01-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  7. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-03-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  8. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  9. A new hazard index for the determination of risk potentials of disposed radioactive wastes

    International Nuclear Information System (INIS)

    Kirchner, Gerald

    1990-01-01

    On the basis of a discussion of advantages and limitations of hazard calculations of nuclear waste, a new hazard index is presented. The model deals with environmental processes that determine radiation exposure to man after failure of a geologic repository and release of radionuclides into the biosphere. Included in the model are isotopic composition of the waste, probability for transport of nuclides to man, cycling in the biosphere, radiotoxicity to man and changes of the risk potential which are due to radioactive build-up and decay processes after the waste nuclides enter the biosphere. Nuclide-specific data necessary for the use of the new index are compiled. Calculations for wastes from different nuclear power reactor types and fuel cycle options indicate that 237 Np and 241 Am are the waste constituents with the most demanding requirements in regard to the long-term isolation potential of a repository. Isolation times required for the wastes analyzed are of the order of 10 7 years. Hazard analyses of nuclear wastes with negligible heat generation from various sources show that secondary wastes from nuclear fuel reprocessing and mixed-oxide fuel fabrication have long-term risk potentials which are about two orders of magnitude higher than those from other wastes. They should be disposed of together with high-level wastes. (author)

  10. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  11. Management of Hazardous Waste and Contaminated Land

    OpenAIRE

    Hilary Sigman; Sarah Stafford

    2010-01-01

    Regulation of hazardous waste and cleanup of contaminated sites are two major components of modern public policy for environmental protection. We review the literature on these related areas, with emphasis on empirical analyses. Researchers have identified many behavioral responses to regulation of hazardous waste, including changes in the location of economic activity. However, the drivers behind compliance with these costly regulations remain a puzzle, as most research suggests a limited ro...

  12. Putting NIMBY in perspective: The cultural origins of public response to hazardous waste

    International Nuclear Information System (INIS)

    Pollock, P.H. III; Lilie, S.A.; Vittes, M.E.

    1991-01-01

    The study of public response to the siting of hazardous waste treatment facilities has found a natural home in the literature on localized reaction, the so-called NIMBY (not in my backyard) syndrome. This concern for dealing with NIMBY in practical terms has fallen short in two respects. First, NIMBY has become isolated from two other basic responses: generalized acceptance (open-quotes Yes, in my backyardclose quotes or YIMBY) and generated opposition (open-quotes Not in anybody's backyardclose quotes or NAMBY). Second, too narrow a focus on NIMBY neglects a potentially revealing explanatory analogy: the parallel between the controversy over hazardous waste facilities and other technical controversies, such as the decades-old debate over nuclear power. In this paper, we review three theories that have been developed to explain general attitudes toward risk-bearing technologies. Using data from a statewide random sample, we then look to see if variables that figure prominently in these theories help shape the NIMBY, YIMBY or NAMBY responses to hazardous waste facilities

  13. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  14. National RCRA Hazardous Waste Biennial Report Data Files

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), in cooperation with the States, biennially collects information regarding the generation, management, and final disposition of hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), as amended. Collection, validation and verification of the Biennial Report (BR) data is the responsibility of RCRA authorized states and EPA regions. EPA does not modify the data reported by the states or regions. Any questions regarding the information reported for a RCRA handler should be directed to the state agency or region responsible for the BR data collection. BR data are collected every other year (odd-numbered years) and submitted in the following year. The BR data are used to support regulatory activities and provide basic statistics and trend of hazardous waste generation and management. BR data is available to the public through 3 mechanisms. 1. The RCRAInfo website includes data collected from 2001 to present-day (https://rcrainfo.epa.gov/rcrainfoweb/action/main-menu/view). Users of the RCRAInfo website can run queries and output reports for different data collection years at this site. All BR data collected from 2001 to present-day is stored in RCRAInfo, and is accessible through this website. 2. An FTP site allows users to access BR data files collected from 1999 - present day (ftp://ftp.epa.gov/rcrainfodata/). Zip files are available for download directly from this

  15. The development of hazardous waste management as a state policy concern

    International Nuclear Information System (INIS)

    Herzik, E.B.

    1992-01-01

    Hazardous waste management has become a primary concern of state governments. This concern is relatively recent, with state governments assuming a leading role in hazardous waste policy development and implementation only in the past decade. This article outlines the scope of the hazardous waste problem to which state governments must respond. The scope of the problem is then linked to changing public perceptions and intergovernmental relationships to explain the expanding state government policy role in hazardous waste management. 15 refs., 1 tab

  16. Hazardous and mixed waste solidification development conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-04-01

    EG and G Idaho, Inc., has initiated a program to develop safe, efficient, cost-effective solidification treatment methods for the disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Testing has shown that Extraction Procedure (EP) toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long-term disposal as general or low-level waste, depending upon the radioactivity. The results of the solidification development program are presented in this report

  17. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-03-31

    ...? The Tokusen USA, Inc. facility produces high-carbon steel tire cord for use in radial tire... Part 261 Environmental protection, Hazardous Waste, Recycling, Reporting and recordkeeping requirements...

  18. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  19. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  20. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  1. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  2. Status of inventory, recycling, and storage of hazardous waste in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Yermekbayeva, L. [Ministry of Ecology and Bioresources, Almaty (Kazakhstan)

    1996-12-31

    Conditions associated with toxic and radioactive waste in the Republic of Kazakstan are discussed. At present, more than 19 billion tons of various wastes, including toxic, radioactive, and other hazardous waste, have accumulated in the country, and about 1 billion tons of waste are generated each year. Ecological legislation for toxic waste storage is being examined. However, the definition and classification of waste inventories are not finalized. Furthermore, the country does not have sites for salvaging, rendering harmless, or disposing of these wastes. Kazakstan also has problems with radioactive waste that are complicated by the activity at the Semipalatinsk nuclear testing site. Here, nuclear explosions occurred because of economic and other reasons. In ecologically challenged regions, high levels of pollutants from chemical, toxic, industrial, and radioactive wastes and pesticides cause many diseases. These complex problems may be resolved by establishing a Governmental body to manage industrial and consumer waste, including toxic and radioactive waste, and also by developing legal and other regulations. 3 tabs.

  3. Management of hazardous wastes in the laboratories of the Instituto Tecnologico de Costa Rica (phase III)

    International Nuclear Information System (INIS)

    Salas Jimenez, Juan Carlos; Quesada Carvajal, Hilda; Harada, Katsuhiro

    2009-01-01

    A scaling at pilot plant level was performanced for the treatment of wastes are stored in significant quantities at the Instituto Tecnologico de Costa Rica (ITCR). These wastes are aqueous of heavy metals from laboratories and of the nitriding process slag. Dr. Katsuhiro Harada, Japanese aid worker, suggested a treatment methodology that was tested and adapted to the characteristics of hazardous wastes generated in the ITCR. In addition, an operating procedure was suggested to centralize the treatment of waste produced in different labs but they have similar chemical characteristics; therefore can be treated with the same chemical method. For these cases it is easier and cheaper to concentrate the treatment in one place, and in the case of extremely hazardous waste, whose treatment and disposal are somewhat complicated to implement, it is advisable to establish a specialized laboratory with trained personnel for management. A hazardous waste laboratory equipped with a reactor, sludge filter and laboratory equipment for analysis. The methods tested in the pilot plant for the treatment of aqueous wastes of heavy metals and cyanide slag were effective. (author) [es

  4. Study of the CMR compounds in hazardous wastes

    International Nuclear Information System (INIS)

    Chollot, A.

    2007-01-01

    In order to limit the exposure of workers to carcinogenic, mutagen and reproduction-toxic compounds (CMR) and to optimize the safety needs in the field of hazardous industrial wastes, the INRS has decided to complete its knowledge in doing a sectorial inquiry titled 'study of the CMR compounds contained in wastes'. This study allows to obtain data relative to hazardous wastes and to the presence of CMR compounds into these hazardous wastes. The first part of this study gives the methodology used for doing this inquiry. The results, gathered in databases, are presented in tables and in synthetic schemes. The last part gives operational propositions it could be important to adopt to improve and/or to develop safety approaches adapted to the CMR risk and, particularly the transfer of the good data to workers. (O.M.)

  5. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  6. Electrochemical treatment of mixed (hazardous and radioactive) wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Zawodzinski, C.; Smith, W.H.

    1995-01-01

    Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed wastes with an organic component can be treated by oxidizing the organic compound to carbon dioxide and then recovering the radioactive component. The oxidation can be done directly at the anode or indirectly using an electron transfer mediator. This work describes the destruction of isopropanol, acetone and acetic acid at greater than 90% current efficiency using cobalt +3 or silver +2 as the electron transfer mediator. Also described is the destruction of cellulose based cheesecloth rags with electrochemically generated cobalt +3, at an overall efficiency of approximately 20%

  7. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  8. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  9. University program in hazardous chemical and radioactive waste management

    International Nuclear Information System (INIS)

    Parker, F.L.

    1987-01-01

    The three main functions of a university program are education, training, and research. At Vanderbilt University, there is a Solid and Hazardous Waste option in the Master of Science in Engineering Program. The two main foci are treatment of wastes and environmental transport and transformation of the wastes. Courses in Hazardous Waste Engineering and Radioactive Waste Disposal present a synoptic view of the field, including legal, economic, and institutional aspects as well as the requisite technical content. The training is accomplished for some of the students through the aegis of an internship program sponsored by the US Department of Energy. In the summer between the two academic years of the program, the study works at a facility where decontamination and/or decommissioning and/or remedial actions are taking place. Progress in understanding the movement, transformation, and fate of hazardous materials in the environment is so rapid that it will not be possible to be current in the field without participating in that discovery. Therefore, their students are studying these processes and contributing to new knowledge. Some recent examples are the study of safety factors implicit in assuming a saturated zone below a hazardous waste landfill when an unsaturated zone exists, application of probabilistic risk assessment to three National Priority List sites in Tennessee, and the explanation of why certain organics precede pH, conductivity and nitrates through a clay liner at a hazardous waste disposal site

  10. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced

  11. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  12. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  13. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  14. An Optimization Approach for Hazardous Waste Management Problem under Stochastic Programming

    International Nuclear Information System (INIS)

    Abass, S.A.; Abdallah, A.S.; Gomaa, M.A.

    2008-01-01

    Hazardous waste is the waste which, due to their nature and quantity, is potentially hazardous to human health and/or the environment. This kind of waste requires special disposal techniques to eliminate or reduce thc hazardous. Hazardous waste management (HWM) problem is concerned in the basic with the disposal method. hi this paper we focus on incineration as an effective to dispose the waste. For this type of disposal, there arc air pollution standards imposed by the government. We will propose an optimization model satisfied the air pollution standards and based on the model of Emek and Kara with using random variable coefficients in the constraint

  15. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The objective of the Hazardous Waste Development, Demonstration and Disposal (HAZWDDD) Program Plan is to ensure that the needs for treatment and disposal of all its hazardous and mixed wastes have been identified and planned for. A multifaceted approach to developing and implementing this plan is given, including complete plans for each of the five installations, and an overall integrated plan is also described in this report. The HAZWDDD Plan accomplishes the following: (1) provides background and organizational information; (2) summarizes the 402 hazardous and mixed waste streams from the five installations by grouping them into 13 general waste categories; (3) presents current treatment, storage, and disposal capabilities within Energy Systems; (4) develops a management strategy by outlining critical issues, presents flow sheets describing management schemes for problem waste streams, and builds on the needs identified; (5) outlines specific activities needed to implement the strategy developed; and (6) presents schedule and budget requirements for the next decade. The HAZWDDD Program addresses current and future technical problems and regulatory issues and uncertainties. Because of the nature and magnitude of the problems in hazardous and mixed waste management, substantial funding will be required. 10 refs., 39 figs., 16 tabs

  16. Quality of life and community satisfaction in proximity to hazardous waste

    International Nuclear Information System (INIS)

    Williams, R.G.; Olshansky, S.J.

    1986-01-01

    The NIMBY Syndrome (Not In My Back Yard) characterizes the social and political problems associated with siting hazardous waste facilities. given a rational choice, everyone would prefer than hazardous wastes be located somewhere other than in their own backyard. While there has not been enough research that addresses the social and political effects of having a hazardous waste site located near communities, there have been qualitative case studies, anecdotal evidence, and environmental disasters such as Times Beach and Love Canal that would lead one to believe that hazardous waste sites are disruptive to communities. Media coverage of hazardous waste sites would lead one to believe that the majority of people in proximity to such sites are distraught, economic development in the area is negatively effected, property values decline, and in general, satisfaction with one's community suffers and quality of life decreases. Yet, social science research on this topic is essentially nonexistent. In fact, to date there is no published research that puts hazardous waste in to the larger theoretical context of community satisfaction and quality of life

  17. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  18. Visible and Infrared Remote Imaging of Hazardous Waste: A Review

    Directory of Open Access Journals (Sweden)

    Barry Haack

    2010-11-01

    Full Text Available One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  19. Visible and infrared remote imaging of hazardous waste: A review

    Science.gov (United States)

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  20. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  1. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... hazardous pharmaceutical waste to the list of wastes that may be managed under the Universal Waste rule...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  2. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  3. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    Science.gov (United States)

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  4. Improving Tamper Detection for Hazardous Waste Security

    International Nuclear Information System (INIS)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-01-01

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them

  5. Management of municipal, hazardous and radioactive wastes: An environmental overview. Current issue paper 109

    International Nuclear Information System (INIS)

    Yeager, K.L.

    1990-10-01

    This paper attempts to provide the reader with essential information on the quantity and types of solid, hazardous and radioactive wastes being generated in the province and to introduce some of the existing and future management options being considered. As well, a number of possible issues are identified which may stimulate further interest in the future paths of waste management in Ontario. (author)

  6. Management of municipal, hazardous and radioactive wastes: An environmental overview. Current issue paper 109

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, K L

    1990-10-01

    This paper attempts to provide the reader with essential information on the quantity and types of solid, hazardous and radioactive wastes being generated in the province and to introduce some of the existing and future management options being considered. As well, a number of possible issues are identified which may stimulate further interest in the future paths of waste management in Ontario. (author).

  7. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  8. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    Science.gov (United States)

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  9. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-05-01

    Full Text Available Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  10. Regulating the disposal of cigarette butts as toxic hazardous waste.

    Science.gov (United States)

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  11. Screening tests for hazard classification of complex waste materials – Selection of methods

    International Nuclear Information System (INIS)

    Weltens, R.; Vanermen, G.; Tirez, K.; Robbens, J.; Deprez, K.; Michiels, L.

    2012-01-01

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1–15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or – if not all compounds are identified – from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different

  12. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  13. The Scientific Management of Hazardous Wastes

    Science.gov (United States)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  14. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  15. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  16. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  17. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    Science.gov (United States)

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  18. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  19. Pollution control and resource reuse for alkaline hydrometallurgy of amphoteric metal hazardous wastes

    CERN Document Server

    Youcai, Zhao

    2017-01-01

    This book provides a comprehensive description of alkaline hydrometallurgy of amphoteric metal hazardous wastes. Topics focus on leaching of zinc and lead hazardous wastes, purification of leach solution of zinc and lead, electrowinning of zinc and lead from purified alkaline solutions, chemical reactions taking place in the production flowsheets, thermodynamic and spent electrolyte regeneration, alkaline hydrometallurgy of low-grade smithsonite ores, recovery of molybdenum and tungsten using ion flotation and solvent extraction processes and their application in chemical synthesis of Nb and Ta inorganic compounds, and industrial scale production of 1500-2000 t/a zinc powder using alkaline leaching–electrowinning processes. Processes described are cost-effective, generate lesser secondary pollutants, and have been applied widely in China. Readers that will find the book appealing include solid waste engineers, environmental managers, technicians, recycling coordinators, government officials, undergraduates ...

  20. Contingency plan for the Lawrence Livermore National Laboratory's hazardous-waste operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1981-01-01

    The Lawrence Livermore National Laboratory (LLNL) has the necessary equipment and trained personnel to respond to a large number of hazardous material spills and fires or other emergencies resulting from these spills including injured personnel. This response capability is further expanded by the agreements that LLNL has with a number of outside response agencies. The Hazards Control Department at LLNL functions as the central point for coordinating the response of the equipment and personnel. Emergencies involving hazardous waste are also coordinated through the Hazards Control Department, but the equipment and personnel in the Toxic Waste Control Group would be activated for large volume waste pumpouts. Descriptions of response equipment, hazardous waste locations communication systems, and procedures for personnel involved in the emergency are provided

  1. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous Waste Management Programs'', New York's authorized hazardous waste program. EPA will incorporate by...

  2. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  3. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  4. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  5. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  6. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-09-14

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... December 7, 2004. Waste Combustors; Final Rule; Checklist 198. Hazardous Waste Management March 13, 2002...

  7. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  8. Hazardous waste management and weight-based indicators-The case of Haifa Metropolis

    International Nuclear Information System (INIS)

    Elimelech, E.; Ayalon, O.; Flicstein, B.

    2011-01-01

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate.

  9. Hazardous waste management and weight-based indicators--the case of Haifa Metropolis.

    Science.gov (United States)

    Elimelech, E; Ayalon, O; Flicstein, B

    2011-01-30

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Hazardous waste and health impact: a systematic review of the scientific literature.

    Science.gov (United States)

    Fazzo, L; Minichilli, F; Santoro, M; Ceccarini, A; Della Seta, M; Bianchi, F; Comba, P; Martuzzi, M

    2017-10-11

    Waste is part of the agenda of the European Environment and Health Process and included among the topics of the Sixth Ministerial Conference on Environment and Health. Disposal and management of hazardous waste are worldwide challenges. We performed a systematic review to evaluate the evidence of the health impact of hazardous waste exposure, applying transparent and a priori defined methods. The following five steps, based on pre-defined systematic criteria, were applied. 1. Specify the research question, in terms of "Population-Exposure-Comparators-Outcomes" (PECO). people living near hazardous waste sites; Exposure: exposure to hazardous waste; Comparators: all comparators; Outcomes: all diseases/health disorders. 2. Carry out the literature search, in Medline and EMBASE. 3. Select studies for inclusion: original epidemiological studies, published between 1999 and 2015, on populations residentially exposed to hazardous waste. 4. Assess the quality of selected studies, taking into account study design, exposure and outcome assessment, confounding control. 5. Rate the confidence in the body of evidence for each outcome taking into account the reliability of each study, the strength of the association and concordance of results.Fifty-seven papers of epidemiological investigations on the health status of populations living near hazardous waste sites were selected for the evidence evaluation. The association between 95 health outcomes (diseases and disorders) and residential exposure to hazardous waste sites was evaluated. Health effects of residential hazardous waste exposure, previously partially unrecognized, were highlighted. Sufficient evidence was found of association between exposure to oil industry waste that releases high concentrations of hydrogen sulphide and acute symptoms. The evidence of causal relationship with hazardous waste was defined as limited for: liver, bladder, breast and testis cancers, non-Hodgkin lymphoma, asthma, congenital anomalies

  11. Use of risk to resolve conflicts in assessing hazards at mixed-waste sites

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.

    1991-01-01

    Two main issues contribute to the assessment of health hazard from mixed waste: the scientific methods to assess these materials and the legislative and regulatory control of these materials. This paper is primarily concerned with the scientific method of assessing hazards from mixed waste (i.e., carcinogenic chemicals, noncarcinogenic chemicals, and radioactive material). This paper discusses SRS, a Site Ranking System, and its use of risk concepts to avoid introducing new inconsistencies when ranking mixed-waste sites. SRS ranks each site by scoring factors that influence the human health risk. The factors are (1) the potentially exposed population, (2) the average amount of exposure to the waste, and (3) the toxicity of the waste. The relative risk of a release is measured as the product of these three factors. The third factor, toxicity, is indexed with a single score, but because methods of measuring toxicity differ for carcinogenic chemicals, noncarcinogenic chemicals, and radionuclides, comparison can be difficult; hence, this paper also summarizes the logic and assumptions used to make toxicity comparisons in SRS. As may be expected, results from a ranking scheme based on risk are different from results generated by the original Hazard Ranking System (HRS), used by the Environmental Protection Agency. This paper briefly discusses these differences for five Superfund sites (no mixed waste). The legislative and regulatory control of these materials to protect human health is also discussed. 37 refs., 1 tab

  12. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  13. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-01-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase

  14. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  15. Hazardous materials and toxic substances - Status report

    International Nuclear Information System (INIS)

    Sommerlad, R.E.

    1991-01-01

    The paper first forecasts what the status of hazardous wastes should be in the year 2028. The author believes all the problems will be solved: no new hazardous wastes will be being generated and the current hazardous waste problems will have been cleared up by common sense engineering. He then describes the current status of waste management of hazardous wastes, the regulatory situation, as well as combustion test programs

  16. Annual report of waste generation and pollution prevention progress 1998; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities

  17. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9804-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247...

  18. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  19. Industrial hazardous waste management in Turkey: Current state of the field and primary challenges

    International Nuclear Information System (INIS)

    Salihoglu, Gueray

    2010-01-01

    A holistic evaluation of a country's hazardous waste management (HWM) practices is useful in identifying the necessary actions to focus on. Based on an analysis of industrial hazardous waste (HW) generation in Turkey, this paper attempts to critically evaluate and report current Turkish HWM practices and discuss the primary challenges to be addressed. The generation of industrial HW for Turkey reported in 2004 was 1.195 million tons, which accounted for 7% of the total industrial solid waste (ISW) generated by the manufacturing industry, and for nearly 4.9% of the total solid waste generated in the country. The HW generated by the top five manufacturing product categories - basic metals, chemicals and chemical products, food and beverages, coke and refined petroleum, motor vehicles and trailers - accounted for 89.0% of total industrial HW. 21% of the HW generated in 2004 was recycled or reused, and 6% was sold or donated, whereas 73% was sent to ultimate disposal. 67% of the HW sent to ultimate disposal was disposed of at municipal landfills. The total capacity of the existing regional HW facilities is 212,500 tons/year, which accounts for about 24% of the HW to be disposed. Turkey has identified the HW problem in the country and enacted legislation, designated a lead agency, and promulgated rules and regulations. Several new initiatives are planned for improving HW management nationally; however, some HWM problems will be persistent due to previous and existing industrial development plans. These development policies led to the concentration of industry in regions marked by precious agricultural fields and high population density. This occurred because the government previously exhibited a default prioritization towards industrial development, leading to insufficient implementation of regulations on HW generators. Some of the problems may also be rooted in other countries that allow illegal transboundary HW movements despite international regulations.

  20. Public issues in hazardous waste management in the Republic of Croatia

    International Nuclear Information System (INIS)

    Klika, M.C.

    1995-01-01

    Public acceptance of sites for radioactive and other hazardous waste disposal facilities represents one of most important factors in decision making on definite sites of these facilities. The Republic of Croatia, as a newly independent state, faces the problem of public involvement in site selection of radioactive/hazardous waste disposal facility very seriously, specially having in mind that in the past, in former Yugoslavia almost all decisions had been made without participation of the public. Because of that it is very important now to gain confidence of the public and to enable its active role in decision making. Operation of the APO-Hazardous Waste Management Agency as a state agency which has been established firstly for management of radioactive waste, and later widening its competencies also to other types of hazardous wastes and relations to the public, is going to be presented in the paper. Description of some basic elements related to public participation in site selection of radioactive waste repository in Croatia will be also done

  1. Trans generational ethics: protecting future generations against nuclear waste hazards. Some ethical considerations

    International Nuclear Information System (INIS)

    Cornelis, G.C.

    2002-01-01

    This paper describes the activities launched at SCK x CEN, intended to explore ethical and other non-technical aspects when dealing with the time scales considered in the high-level waste disposal program. Especially the issues of retrievability and precaution will be focused on which will be philosophically contextualised. Many questions will be raised in order to sensitize all stakeholders for the trans-disciplinary character of the trans-generational problem at hand. (author)

  2. Public participation in management of hazardous and radioactive wastes in Croatia

    International Nuclear Information System (INIS)

    Cerskov Klika, M.; Kucar-Dragicevic, S.; Lokner, V.; Schaller, A.; Subasic, D.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in this paper. Most of them are created or led by the APO H azardous Waste management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process. (author)

  3. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  4. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9669-6] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste...

  5. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9461-5] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste...

  6. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9321-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  7. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and...

  8. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2012-08-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-1] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the...

  9. Environmental epidemiology, Volume 1: Public health and hazardous wastes

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Environmental Epidemiology, Volume 1, represents the first of several planned volumes on the uses of epidemiologic techniques to study environmental public health issues. This text focuses on environmental epidemiology as it relates to hazardous waste in the United States. This study was commissioned by the Agency for Toxic Substances and Disease Registry to examine available data for evidence of adverse health effects on human populations exposed to hazardous waste. The committee was also asked to identify data gaps which were impediments to analyzing hazardous waste health effects and to suggest ways that such environmental health assessments might be improved. The committee's solution to the paucity of data on this issue was to concentrate in this volume on identifying the available, peer-reviewed data and, consequently, the major data gaps. The study opens with a recapitulation of the context of hazardous waste sites in the United States, the approaches currently used by state and federal epidemiologists in analyzing hazardous waste exposure and effects, and candid assessment of the problems associated with environmental exposure assessment. From that context, the committee then presents the data currently available to assess human exposures through air, domestic water consumption, soil, and the food chain. The general focus here is on biomarker data as the date of choice. As with all NAS reports, this one closes with general conclusions and recommendations. Environmental health risk assessors will find this volume a valuable resource

  10. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  11. Linking emerging hazardous waste technologies with the electronic information era

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.E.; Suk, W.A. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Blackard, B. [Technology Planning and Management Corp., Durham, NC (United States)

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  12. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  13. 76 FR 18927 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-04-06

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act (``OHWMA'') provides the ODEQ with...

  14. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  15. 76 FR 42125 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2011-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9440-3] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ConocoPhillips... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  16. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2013-12-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9904-21-OW] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Mosaic... Restrictions, under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act...

  17. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act have been...

  18. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  19. Headquarters Air Force Logistics Command guidance manual for hazardous waste minimization (PACER REDUCE): Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Jones, L.W.; Weeter, D.; Roth, J.A.; Debelak, K.A.; Bowers, A.R.

    1988-09-01

    This manual provides guidance for the Air Force Logistics Command (AFLC) Waste Minimization Program, called PACER REDUCE, and applies to all AFLC installations and personel who are responsible for implementing and monitoring activities relating to PACER REDUCE. This guidance for waste minimization provides management and technical approaches for assessing potential waste reduction techniques and for making informed decisions concerning industrial process and waste stream management. Such actions will assist in achieving regulatory compliance with the Resource Conservation and Recovery Act of 1976 as updated by the Hazardous and Solid Waste Amendments of 1984. 37 refs., 14 figs., 22 tabs

  20. General procedure to characterize hazardous waste contaminated with radionuclides

    International Nuclear Information System (INIS)

    Vokal, A.; Svoboda, K.; Necasova, M.

    2002-04-01

    The report is structured as follows: Overview of current status of characterization of hazardous wastes contaminated with radionuclides (HWCTR) in the Czech Republic (Legislative aspects; Categorization of HWCwR; Overview of HWCwR emerging from workplaces handling ionizing radiation sources; Mixed waste management in the Czech Republic); General procedure to characterized wastes of the HWCwR type (Information needed from the waste producer; Waste analysis plan - description of waste treatment facilities, verification of wastes, selection of waste parameters followed, selection of sampling method, selection of test methods, selection of frequency of analyses; Radiation protection plan; Non-destructive methods of verification of waste - radiography/tomography, dosimetric inspection, measuring instrumentation, methods usable for the determination of volume and surface activities of materials; Non-destructive invasive methods - internal pressure measurement and gas analysis, endoscopic examination, visual inspection; Destructive methods - sampling, current equipment at Nuclear Research Institute Rez; Identification of hazardous components in waste - chemical screening of mixed wastes; Assessment of immobilization waste matrices; Assessment of packaging; Safety analyses; QA and QC). (P.A.)

  1. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    Science.gov (United States)

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  2. Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation

    OpenAIRE

    Bozena Dohnalkova

    2015-01-01

    This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable soli...

  3. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-10-07

    ... State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION... the revisions to California's hazardous waste management program shall be effective at 1 p.m. on... implement the RCRA hazardous waste management program. EPA granted authorization for changes to California's...

  4. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-19

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Final..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management System...

  5. Hazardous waste policies and strategies

    International Nuclear Information System (INIS)

    1991-01-01

    This manual has been compiled as a resource document for trainers to help in the design of training workshops of hazardous waste management. Although principally oriented at groupwork, some part of this manual are also suitable for individual study, and as a resource book

  6. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  7. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... Hazardous Waste Management Programs,'' Wisconsin's authorized hazardous waste program. EPA will incorporate... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...

  8. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  9. Household hazardous waste quantification, characterization and management in China's cities: a case study of Suzhou.

    Science.gov (United States)

    Gu, Binxian; Zhu, Weimo; Wang, Haikun; Zhang, Rongrong; Liu, Miaomiao; Chen, Yangqing; Wu, Yi; Yang, Xiayu; He, Sheng; Cheng, Rong; Yang, Jie; Bi, Jun

    2014-11-01

    A four-stage systematic tracking survey of 240 households was conducted from the summer of 2011 to the spring of 2012 in a Chinese city of Suzhou to determine the characteristics of household hazardous waste (HHW) generated by the city. Factor analysis and a regression model were used to study the major driving forces of HHW generation. The results indicate that the rate of HHW generation was 6.16 (0.16-31.74, 95% CI) g/person/day, which accounted for 2.23% of the household solid waste stream. The major waste categories contributing to total HHW were home cleaning products (21.33%), medicines (17.67%) and personal care products (15.19%). Packaging and containers (one-way) and products (single-use) accounted for over 80% of total HHW generation, implying a considerable potential to mitigate HHW generation by changing the packaging design and materials used by manufacturing enterprises. Strong correlations were observed between HHW generation (g/person/day) and the driving forces group of "household structure" and "consumer preferences" (among which the educational level of the household financial manager has the greatest impact). Furthermore, the HHW generation stream in Suzhou suggested the influence of another set of variables, such as local customs and culture, consumption patterns, and urban residential life-style. This study emphasizes that HHW should be categorized at its source (residential households) as an important step toward controlling the HHW hazards of Chinese cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 77 FR 12497 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Exclusion

    Science.gov (United States)

    2012-03-01

    ...,'' from the list of hazardous wastes, a maximum of 200 cubic yards per year of residual solids from sludge... accept the delisted processed storm water tank sludge. This rule also imposes testing conditions for... of F037 residual solids from processing (for oil recovery) sludge removed from two storm water tanks...

  11. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  12. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  13. 77 FR 61326 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-10-09

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... RCRA hazardous waste management program. We granted authorization for changes to their program on... 202. Hazardous Waste Management July 30, 2003; 68 329 IAC 3.1-6-2(16); System; Identification and FR...

  14. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... adopted these requirements by reference at Georgia Hazardous Waste Management Rule 391-3-11-.07(1), EPA... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  15. 75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2010-04-06

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...

  16. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  17. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  18. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  19. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  20. Process for reclaiming tungsten from a hazardous waste

    International Nuclear Information System (INIS)

    Scheithauer, R.A.; MacInnis, M.B.; Miller, M.J.; Vanderpool, C.D.

    1984-01-01

    A process is disclosed wherein tungsten is recovered from hazardous waste material containing said tungsten, arsenic, and other impurities which can consist of magnesium, phosphorus, and silicon and the resulting waste is treated to render it nonhazardous according to EPA standards for arsenic. Said process involves digesting said hazardous waste material in an aqueous solution of an alkali metal hydroxide, adjusting the pH of the resulting solution to about 11.0 to about 13.0 with NaOH to precipitate essentially all of the magnesium and silicon species, filtering the digestion mix to remove the solids from said resulting solution which contains about 80 to about 100% of said tungsten and essentially none of said magnesium and said silicon, slurrying the hazardous solids in hot water, and adding to the slurry a ferric salt solution to precipitate ferric hydroxide, filtering this mixture to give a solid which passes the EPA standard test for solids with respect to arsenic

  1. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes

    International Nuclear Information System (INIS)

    Randall, Paul; Chattopadhyay, Sandip

    2004-01-01

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardous waste generation. This study was performed to evaluate whether the U.S. EPA could propose treatment and disposal alternatives to the current land disposal restriction (LDR) treatment standards for mercury. The focus of this article is on the current state of encapsulation technologies that can be used to immobilize elemental mercury, mercury-contaminated debris, and other mercury-contaminated wastes, soils, sediments, or sludges. The range of encapsulation materials used in bench-scale, pilot-scale, and full-scale applications for mercury-contaminated wastes are summarized. Several studies have been completed regarding the application of sulfur polymer stabilization/solidification, chemically bonded phosphate ceramic encapsulation, and polyethylene encapsulation. Other materials reported in the literature as under development for encapsulation use include asphalt, polyester resins, synthetic elastomers, polysiloxane, sol-gels, Dolocrete TM , and carbon/cement mixtures. The primary objective of these encapsulation methods is to physically immobilize the wastes to prevent contact with leaching agents such as water. However, when used for mercury-contaminated wastes, several of these methods require a pretreatment or stabilization step to chemically fix mercury into a highly insoluble form prior to encapsulation. Performance data is summarized from the testing and evaluation of various encapsulated, mercury-contaminated wastes. Future technology development and research needs are also discussed

  2. Regulatory and management requirements for investigation-derived waste generated during environmental investigations and cleanups

    International Nuclear Information System (INIS)

    Clary, M.B.

    1994-01-01

    Environmental cleanup efforts often result in the generation of waste materials, such as soil samples, drill cuttings, decontamination water, drilling muds, personal protective equipment, and disposable sampling equipment. The management of associated with site characterization and remediation issues is a complicated issue at many CERCLA/RCRA facilities throughout the country, primarily because of the federal hazardous waste regulations. The hazardous waste regulations were intended to apply to the active generation of hazardous waste at industrial facilities and do not often make sense when applied to sites con by poor disposal practices of the past. In order to manage investigation derived waste in a more rational, logical manner, EPA issued guidance on the management of investigation-derived waste (IDW) at Superfund sites in January, 1992. The basic intent of the EPA guidance is to provide Superfund Site Managers with options for handling, managing, and disposing of IDW. The second part of this paper provides a detailed analysis of current IDW practices at various Department of Energy (DOE) facilities and Superfund sites across the nation. Some sites, particularly the DOE facilities, with more complicated on-going cleanup efforts have developed site-specific written procedures for managing IDW, often incorporating risk assessment. In come cases, these site-specific policies are going farther than the current EPA and Colorado policies in terms of conservatively managing IDW

  3. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  4. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  5. Accuracy of hazardous waste project estimates

    International Nuclear Information System (INIS)

    Hackney, J.W.

    1989-01-01

    The HAZRATE system has been developed to appraise the current state of definition of hazardous waste remedial projects. This is shown to have a high degree of correlation to the financial risk of such projects. The method employs a weighted checklist indicating the current degree of definition of some 150 significant project elements. It is based on the author's experience with a similar system for establishing the risk characteristics of process plant projects (Hackney, 1965 and 1989; 1985). In this paper definition ratings for 15 hazardous waste remedial projects have been correlated with the excesses of their actual costs over their base estimates, excluding any allowances for contingencies. Equations are presented, based on this study, for computation of the contingency allowance needed and estimate accuracy possible at a given stage of project development

  6. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.; Chang, Y.S.

    1996-12-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II) and presents the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  7. Design and construction of hazardous waste landfill components

    International Nuclear Information System (INIS)

    Frano, A.J.; Numes, G.S.

    1985-01-01

    This paper discusses design and construction of two sections of a hazardous waste landfill at Peoria Disposal Company's hazardous waste management facilities in central Illinois. One section, an existing disposal facility, was retrofitted with leachate control and containment features for additional security. The second section, a new facility which had been previously permitted for development with a single clay liner, was modified to include a double liner and revised leachate collection system for additional security, and an all-weather construction and operation access ramp. The two sections of the landfill were granted a development permit allowing construction. An operating permit was granted after construction and certification by the designer allowing waste disposal operations. The sections will be accepting waste material at publication. Design and construction included: planning studies, design analyses, permitting, preparation of construction contract documents, construction assistance, monitoring construction, and certification

  8. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  9. 40 CFR 262.89 - OECD Waste Lists.

    Science.gov (United States)

    2010-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Transfrontier Shipments of Hazardous Waste for..., and thereby creates a new hazardous waste, becomes a generator and assumes all subsequent generator..., NW. Washington, DC 20460, by mail, e-mail without digital signature followed by mail, or fax followed...

  10. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1993-05-01

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications

  11. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Science.gov (United States)

    2010-07-01

    ... this section are met: (1) The waste meets the definition of CAMU-eligible waste in § 264.552(a)(1) and... remediation. (d) Applicable hazardous waste management requirements in this part, including recordkeeping... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal of CAMU-eligible wastes in...

  12. Impact of hazardous waste risks and liabilities on the contracting process

    International Nuclear Information System (INIS)

    Gleason, G.L.

    1991-01-01

    Hazardous waste risks include the following: (1) An emerging environmental cleanup industry that differs significantly from traditional engineering; (2) The inability to predict and control the subsurface environment; (3) The implementation of new and often untested technologies; (4) The statutory imposition of strict, joint and several, as well as retroactive, liability; (5) The lack of insurance and other risk-transfer mechanisms to protect against losses; (6) Costly and time consuming litigation to determine liability; and (7) Others. The liabilities associated with the risks inherent in hazardous waste cleanup directly impact hazardous waste contracting. Contract negotiations become onerous during discussions of liability, indemnification, and issues surrounding scope of work and other clauses. Other impacts include (1) Defensive engineering; (2) Lack of incentive to implement innovative technologies; (3) Increased costs to cover risks. Required client indemnification is a necessary and responsible risks management practice, regardless of whether the client is a federal or private client. Federal government indemnification authorities, as well as private contract indemnification mechanisms, will be explained and analyzed. Conflict of interest concerns are also of critical importance in the hazardous waste market, particularly due to concerns over the complexity of the litigation surrounding hazardous waste sites and the need to ensure unbiased results. Other examples of hazardous waste risk management impacts on contracting in the following market sectors will also be provided: (1) U.S. Environmental Protection Agency; (2) Department of Defense; (3) Department of Energy; and (4) Private sector contracts

  13. Environmental education for hazardous waste management and risk reduction in laboratories

    Directory of Open Access Journals (Sweden)

    Tomas Rafael Pierre Martinez

    2013-10-01

    Full Text Available The University laboratories are places where teaching, extension and research activities are develop, which harmful substances are manipulated and hazardous waste are generated, the lack of information about this makes them an inadequate provision causing human health and environmental risks. This research proposes the implementation of environmental education as an alternative for waste management and safety in the University of Magdalena laboratories. Applying a series of polls showed the effectiveness with efficiency or assertively rises at 30% cognitive level during the process. It recommends to obtain better results is necessary evaluate the ethic component.  

  14. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  15. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  16. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  17. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  18. Inorganic and Hazardous Solid Waste Management: Current Status and Challenges for Indonesia

    NARCIS (Netherlands)

    Aprilia, A.; Tezuka, T.; Spaargaren, G.

    2013-01-01

    This article focuses on household waste management in Indonesia, with particular emphasis on inorganic and hazardous waste. It seeks to identify the current situation and also aims to provide a review of the existing policies that are particularly related to inorganic and hazardous waste management.

  19. The underground diposal of hazardous wastes - necessity, possibilities and limitations

    International Nuclear Information System (INIS)

    Herrmann, A.G.; Brumsack, H.J.; Heinrichs, H.

    1985-01-01

    The natural geochemical cycles of many elements in the atmosphere, hydrosphere, and pedosphere have been changed during the past decades by anthropogenic activities. To put a stop to this development, a drastic reduction of the uncontrolled dispersal of potentially hazardous substances into our environment is necessary, compelling the need for the safe disposal of radioactive and nonradioactive hazardous wastes far away from the biosphere. The amount of potentially hazardous waste produced annually in West Germany is larger by a factor of at least 20 than the volume of hazardous material for which suitable underground disposal sites are planned and available at present. (orig.)

  20. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  1. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  2. 77 FR 59758 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection..., (RCRA), allows the Environmental Protection Agency (EPA) to authorize State hazardous waste management... codification of the authorized Idaho hazardous waste management program and incorporates by reference...

  3. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  4. Medical and biohazardous waste generator`s guide: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste.

  5. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  6. Estimation of potential ecological hazard of solidificated waste disposal

    International Nuclear Information System (INIS)

    Krylova, N.V.

    1980-01-01

    The results of estimation of potential ecological hazard of vitrificated high-level radioactive wastes resulted from spent fuel reprocessing of LWR connected with a hypothetic storage damage being occurred in the 5O0-6000-year geologic period are presented. The total volume of the vitrificated wastes in the storage used for calculations is 12000 blocks. The data on vitrificated block radioactivity depending on the time after fuel regeneration, the density of the uniform distribution of vitrificated wastes over the earth surface, as well as the results of estimation of the man external and internal exposures due to radionuclide escape into the biosphere are given in tables. It is shown that the main hazard is caused by external irradiation. The inhalation dose may be significant for man, though the hazard due to radionuclide intake by ingestion is less

  7. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  8. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  9. Unify a hazardous materials/waste program

    International Nuclear Information System (INIS)

    Carson, H.T.

    1988-01-01

    Efficiently managing a hazardous materials/waste program in a multi-facility, multi-product corporation is a major challenge. This paper describes several methods to help unify a program and gain maximum efficiency of manpower and to minimize risk

  10. 77 FR 46964 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  11. 77 FR 29231 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  12. 76 FR 26616 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... (RCRA) allows EPA to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  13. 75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management Programs'' to...

  14. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.

    1995-04-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II), as well as providing the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  15. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  16. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  17. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  18. The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility

    International Nuclear Information System (INIS)

    Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process

  19. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  20. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  1. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  2. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  3. The aesthetics of hazardous waste - Distinguishing visual impacts from publicly perceived risk

    International Nuclear Information System (INIS)

    Sheppard, S.

    1986-01-01

    The need to address the aesthetic impacts of hazardous waste projects on the environment and the public stems from two sources: government regulations which specifically require assessment of aesthetic effects; and rapidly increasing public concern for perceived impacts and risks of existing or proposed hazardous waste facilities. How aesthetic issues are handled on hazardous waste projects can potentially have significant implications on the fate of those projects. These implications range from delays in the permitting process to denial of sites or costly legal judgments in damage suits. This paper discusses strategies for evaluating the aesthetic/perceptual aspects of hazardous waste. In particular, it focuses upon ways to distinguish visual concerns from other influences on public perceptions such as perceived health and safety risks

  4. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.

    Science.gov (United States)

    Hennebert, Pierre; Samaali, Ismahen; Molina, Pauline

    2016-12-01

    A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as "Release of an acute toxic gas": waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, 2014b). When the substances with the cited hazard statement codes react with water or an acid, they can release HCl, Cl 2 , HF, HCN, PH 3 , H 2 S, SO 2 (and two other gases very unlikely to be emitted, hydrazoic acid HN 3 and selenium oxide SeO 2 - a solid with low vapor pressure). Hence, a method is proposed:For a set of 49 waste, water addition did not produce gas. Nearly all the solid waste produced a gas in contact with hydrochloric acid in 5 min in an automated calcimeter with a volume >0.1L of gas per kg of waste. Since a plateau of pressure is reached only for half of the samples in 5 min, 6 h trial with calorimetric bombs or glass flasks were done and confirmed the results. Identification of the gases by portable probes showed that most of the tested samples emit mainly CO 2 . Toxic gases are emitted by four waste: metallic dust from the aluminum industry (CO), two air pollution control residue of industrial waste incinerator (H 2 S) and a halogenated solvent (organic volatile(s) compound(s)). HF has not been measured in these trials started before the present definition of HP 12. According to the definition of HP 12, only the H 2 S emission of substances with hazard statement EUH031 is accounted for. In view of the calcium content of the two air pollution control residue, the presence of calcium sulphide (EUH031) can be assumed. These two waste are therefore classified potentially hazardous for HP 12, from a total of 49 waste. They are also classified as hazardous for other properties (HP 7

  5. Financial management of hazardous waste compliance and mitigation costs: constraints and implications

    OpenAIRE

    Babos, Jeffrey C.

    1991-01-01

    Approved for public release; distribution in unlimited. This research investigates financial management and other constraints and implications of hazardous waste disposal and compliance within DoD and DoN. It shows that during contracting fiscal period where there is an environmentally conscious public, the DoD and the Navy have to make trade-offs in funding for hazardous waste management. The study reveals that legislation removing sovereign immunity from the DoD for hazardous waste dispo...

  6. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  7. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  8. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  9. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-09-30

    ...: Proposed Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... its hazardous waste management program by November 1, 2010. ADDRESSES: Submit your comments... waste management program. EPA continues to have independent enforcement authority under RCRA sections...

  10. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA granted... XV are from the North Carolina Hazardous Waste Management Rules 15A NCAC 13A, effective April 23...

  11. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    Energy Technology Data Exchange (ETDEWEB)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-02-28

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

  12. Hazardous Waste Management: The Role of Journalists in Decision Making Process

    International Nuclear Information System (INIS)

    Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

    2002-01-01

    The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media

  13. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    International Nuclear Information System (INIS)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  14. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The Lawrence Livermore National Laboratory (LLNL) operates three Hazardous Waste Management Facilities with 24 associated waste management units for the treatment and storage of hazardous and mixed wastes. These wastes are generated by research programs and support operations. The storage and treatment units are presently operated under interim status in accordance with the requirements of the US Envirorunental Protection Agency (US EPA) and the Department of Toxic Substances Control (DTSC), a division of the California Envirorunental Protection Agency (Cal/EPA). As required by the California Hazardous Waste Control Act and the Resource Conservation and Recovery Act (RCRA), LLNL ha s applied for a Part B permit to continue operating the storage and waste treatment facilities. As part of this permitting process, LLNL is required to conduct a health risk assessment (HRA) to examine the potential health impacts to the surrounding community from continued storage and treatment of hazardous and mixed wastes. analysis document presents the results of this risk assessment. An analysis of maximum credible chemical accidents is also included in Section 7.0. This HRA was prepared in accordance with procedures set forth by the California Air Pollution Control Officers Association (CAPCOA) ''Air Toxics Assessment Manual,'' CAPCOA guidelines for preparing risk assessments under the Air Toxic ''Hot Spots'' Act (AB 2588) and requirements of the US EPA. By following these procedures, this risk assessment presents a conservative analysis of a hypothetical Maximally Exposed Individual (MEI) using many worst-case assumptions that will not apply to an actual individual. As such, the risk estimates presented should be regarded as a worst-case estimate of any actual risk that may be present

  15. A proposal for a test method for assessment of hazard property HP 12 (“Release of an acute toxic gas”) in hazardous waste classification - Experience from 49 waste

    OpenAIRE

    Hennebert , Pierre; Samaali , Ismahen; Molina , Pauline

    2016-01-01

    International audience; A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as “Release of an acute toxic gas”: waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, ...

  16. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  17. Lessons learned from the EG ampersand G consolidated hazardous waste subcontract and ESH ampersand Q liability assessment process

    International Nuclear Information System (INIS)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG and G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M and O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG and G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG and G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee's facilities for environment, safety, health, and quality (ESH and Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG and G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH and Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract

  18. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  19. A comparison of thermal treatment processes for hazardous waste : Strategic EIA for the Dutch national hazardous waste management plan 1997- 2007

    NARCIS (Netherlands)

    Tukker, A.

    1999-01-01

    This paper (the second in a series of three) compares incineration options for hazardous waste with LCA. Provided that acceptance criteria are met with regard to metals, PAHs and chlorine, Dutch Municipal Solid Waste Incinerators (MSWIs) appeared to be preferable above rotary kilns since they have a

  20. A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Omid Boyer

    2013-01-01

    Full Text Available Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.

  1. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-05-29

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... waste management program. We authorized the following revisions: Oklahoma received authorization for... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  2. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  3. Transportation training: Focusing on movement of hazardous substances and wastes

    International Nuclear Information System (INIS)

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs

  4. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  5. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  6. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    Science.gov (United States)

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  7. Hazardous Medical Waste Management as a Public Health Issue

    OpenAIRE

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Nataša

    2005-01-01

    The amount of waste produced is connected with the degree of a country’s economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment an...

  8. 76 FR 2618 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-01-14

    ... Contaminated Cadmium-, Mercury-, and Silver-Containing Batteries Checklist 201. Hazardous Waste Management June... Restrictions May 26, 1998, 63 MR 7045.1390; Phase IV; Hazardous Soils FR 28556. Effective June 22, Treatment...); Effective February 14, 2005. Hazardous Remediation Waste November 30, MR 7001.0060; Management Requirements...

  9. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  10. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-06

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... December 26, 1984 (49 FR 48300), to implement its Base Hazardous Waste Management Program. This... Waste 53478, September Annotated Sections Management facilities. 8, 2005. 5.103 and 5.105 (Checklist 210...

  11. Household hazardous waste in municipal landfills: contaminants in leachate

    International Nuclear Information System (INIS)

    Slack, R.J.; Gronow, J.R.; Voulvoulis, N.

    2005-01-01

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge

  12. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  13. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  14. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  15. Using boolean and fuzzy logic combined with analytic hierarchy process for hazardous waste landfill site selection: A case study from Hormozgan province, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Saadat Foomani

    2017-01-01

    Full Text Available Hazardous wastes include numerous kinds of discarded chemicals and other wastes generated from industrial, commercial, and institutional activities. These types of waste present immediate or long-term risks to humans, animals, plants, or the environment and therefore require special handling for safe disposal. Landfills that can accept hazardous wastes are excavated or engineered sites where these special types of waste can be disposed of securely. Since landfills are permanent sites, special attention must be afforded in selecting the location. This paper investigated the use of the Boolean theory and Fuzzy logic in combination with Analytic Hierarchy Process (AHP methods by applying GIS and IDRISI software for the selection of a hazardous waste landfill site in the Iranian province of Hormozgan. The best location was determined via the Fuzzy and the Boolean methodologies. By collating the area selected for the hazardous waste landfill, this study found that Fuzzy logic with an AND operator had the best options for this purpose. In the end, the most suitable area for a hazardous waste landfill was about 1.6 km2 which was obtained by employing Fuzzy in combination with AHP and by using an AND operator. In addition, all the fundamental criteria affecting the landfill location were considered.

  16. Industrial Processes to Reduce Generation of Hazardous Waste at DoD Facilities. Phase III Report. Appendix B. Workshop Manual Innovative Hard Chrome Plating, Pensacola Naval Air Rework Facility, Pensacola, Florida.

    Science.gov (United States)

    1985-12-01

    recovery, regional hazardous waste treatment, hazardous waste storage construction criteria, environmental audits, and low-level radioactive waste...Interior, Bureau of Reclamation, May 1983. Campbell, M. and W.M. Glenn. Profit from Polution Prevention, A Guide to Industrial Waste Reduction and...otherwise managed. For the purposes of this memorandum, hazardous materials do not include those radioactive materials that the Nuclear Regulatory

  17. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  18. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Science.gov (United States)

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...

  19. Hazardous waste market and technology trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    What forces are currently driving the growth of the hazardous waste remediation market? Which factors will control the development of cleanup technologies during the next decade? At what types of sites are various technologies being applied? In an effort to answer these questions, EPA has produced an overview of trends in the demand for remedial technologies at CERCLA, RCRA corrective action, underground storage tank (UST), and other cleanup sites across the United States. The 160-page document, entitled Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, was developed by EPA's Office of Solid Waste and Emergency Response. Highlights from the report are presented below. 1 ref., 2 figs., 1 tab

  20. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    Science.gov (United States)

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  1. Thirty-year solid waste generation forecast for facilities at SRS

    International Nuclear Information System (INIS)

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D ampersand D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast

  2. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  3. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  5. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  6. OSHA standard for medical surveillance of hazardous waste workers.

    Science.gov (United States)

    Melius, J M

    1990-01-01

    The increasing amount of work involving hazardous waste sites and the heavy involvement of the federal and state governments in this work have led to the gradual development of guidelines and standards providing for occupational safety and health programs for these sites. On March 6, 1989, the Occupational Safety and Health Administration published its final rule governing occupational safety and health matters at hazardous waste sites and emergency operations. This rule is currently scheduled to take effect on March 6, 1990. This chapter will briefly describe this regulation, particularly its medical surveillance requirements.

  7. Training for hazardous waste workers

    Energy Technology Data Exchange (ETDEWEB)

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  9. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    LaMoreaux, P.E.

    1993-01-01

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  10. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  11. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    Directory of Open Access Journals (Sweden)

    Debere Mesfin Kote

    2013-01-01

    Full Text Available Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public, were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private. Results The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1. Public hospitals generated high proportion of total health care wastes (59.22% in comparison with private hospitals (40.48%. The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001. The amount of waste was positively correlated with the number of patients (p Conclusion These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  12. Pacific Basin conference on hazardous waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This conference was held November 4--8, 1996 in Kuala Lumpur, Malaysia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the problems of hazardous waste. Topics of discussion deal with pollution prevention, waste treatment technology, health and ecosystem effects research, analysis and assessment, and regulatory management techniques. Individual papers have been processed separately for inclusion in the appropriate data bases.

  13. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The waste characterization for each treatment unit or process is based on treatment records from LLNL's computerized Hazardous Waste Management Inventory System (HWMIS). In 1990, these data were compiled into a single database comprising both hazardous waste and mixed waste data. Even though these data originate from the same source used in the previous HRA, the database was modified to set quantities and concentrations to a consistent set of units. This allowed an analysis of waste types by Hazardous Waste Management unit that was more accurate and did not rely upon many of the conservative assumptions used in the Phase II HRA waste characterization. Finally, the current waste characterizations are considered more representative of potential long-term wastes because they were developed by combining all wastes that could be treated in each unit, as opposed to the wastes treated only during 1988 to 1989. This final step more appropriately accounts for the variability in waste types likely to be seen by the Hazardous Waste Management Division. The quantities of each waste listed in the characterization tables represent the sum of all chemical quantities belonging to hazardous and mixed waste types potentially handled by each area

  14. Whose environment? Which perspective? A critical approach to hazardous waste management in Sweden

    OpenAIRE

    R Lidskog

    1993-01-01

    Starting with a description of six general interpretations of this kind of hazardous waste siting, and with a description of the policy for hazardous waste management in Sweden, the author examines the decisionmaking process regarding the siting of the central plant for hazardous waste in Sweden. The paper ends with the conclusion that a locational conflict is to be seen mainly as a struggle concerning the perception and definition of the issue. Thus the question is which perspective on the i...

  15. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Science.gov (United States)

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...

  16. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  17. Risk Assessment of Healthcare Waste by Preliminary Hazard Analysis Method

    Directory of Open Access Journals (Sweden)

    Pouran Morovati

    2017-09-01

    Full Text Available Introduction and purpose: Improper management of healthcare waste (HCW can pose considerable risks to human health and the environment and cause serious problems in developing countries such as Iran. In this study, we sought to determine the hazards of HCW in the public hospitals affiliated to Abadan School of Medicine using the preliminary hazard analysis (PHA method. Methods: In this descriptive and analytic study, health risk assessment of HCW in government hospitals affiliated to Abadan School of Medicine (4 public hospitals was carried out by using PHA in the summer of  2016. Results: We noted the high risk of sharps and infectious wastes. Considering the dual risk of injury and disease transmission, sharps were classified in the very high-risk group, and pharmaceutical and chemical and radioactive wastes were classified in the medium-risk group. Sharps posed the highest risk, while pharmaceutical and chemical wastes had the lowest risk. Among the various stages of waste management, the waste treatment stage was the most hazardous in all the studied hospitals. Conclusion: To diminish the risks associated with healthcare waste management in the studied hospitals, adequate training of healthcare workers and care providers, provision of suitable personal protective and transportation equipment, and supervision of the environmental health manager of hospitals should be considered by the authorities.  

  18. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  19. Household hazardous waste data for the UK by direct sampling.

    Science.gov (United States)

    Slack, Rebecca J; Bonin, Michael; Gronow, Jan R; Van Santen, Anton; Voulvoulis, Nikolaos

    2007-04-01

    The amount of household hazardous waste (HHW) disposed of in the United Kingdom (UK) requires assessment. This paper describes a direct analysis study carried out in three areas in southeast England involving over 500 households. Each participating householder was provided with a special bin in which to place items corresponding to a list of HHW. The amount of waste collected was split into nine broad categories: batteries, home maintenance (DIY), vehicle upkeep, pesticides, pet care, pharmaceuticals, photographic chemicals, household cleaners, and printer cartridges. Over 1 T of waste was collected from the sample households over a 32-week period, which would correspond to an estimated 51,000 T if extrapolated to the UK population for the same period or over 7,000 T per month. Details of likely disposal routes adopted by householders were also sought, demonstrating the different pathways selected for different waste categories. Co-disposal with residual household waste dominated for waste batteries and veterinary medicines, hence avoiding classification as hazardous waste under new UK waste regulations. The information can be used to set a baseline for the management of HHW and provides information for an environmental risk assessment of the disposal of such wastes to landfill.

  20. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    International Nuclear Information System (INIS)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California's waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator's hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia's site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized

  1. A conflict model for the international hazardous waste disposal dispute

    International Nuclear Information System (INIS)

    Hu Kaixian; Hipel, Keith W.; Fang, Liping

    2009-01-01

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  2. A conflict model for the international hazardous waste disposal dispute.

    Science.gov (United States)

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  3. Auditing hazardous waste incineration

    International Nuclear Information System (INIS)

    Jayanty, R.K.M.; Allen, J.M.; Sokol, C.K.; von Lehmden, D.J.

    1990-01-01

    This paper reports that audit standards consisting of volatile and semivoltile organics have been established by the EPA to be provided to federal, state, and local agencies or their contractors for use in performance audits to assess the accuracy of measurement methods used during hazardous waste trial burns. The volatile organic audit standards currently total 29 gaseous organics in 5, 6, 7, 9, and 18-component mixtures at part-per-billion (ppb) levels (1 to 10 000 ppb) in compressed gas cylinders in a balance gas of nitrogen. The semivoltile organic audit standards currently total six organics which are spiked onto XAD-2 cartridges for auditing analysis procedures. Studies of all organic standards have been performed to determine the stability of the compounds and the feasibility of using them as performance audit materials. Results as of July 1987 indicate that all of the selected organic compounds are adequately stabile for use as reliable audit materials. Performance audits have been conducted with the audit materials to assess the accuracy of the measurement methods. To date, 160 performance audits have been initiated with the ppb-level audit gases. The audit results obtained with audit gases during hazardous waste trial burn tests were generally within ±50% of the audit concentrations. A limited number of audit results have been obtained with spiked XAD-2 cartridges, and the results have generally been within ±35% of the audit concentrations

  4. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  5. 78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-03-11

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... Waste program as addressed by the federal used oil management regulations that were published on..., New York Codes, Rules and Regulations (6 NYCRR), Volume A-2A, Hazardous Waste Management System...

  6. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  7. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    Science.gov (United States)

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  8. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  9. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    Science.gov (United States)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the

  10. DOI criticized for failing to inventory hazardous waste sites on federal lands

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Department of the Interior (DOI) manages approximately 440 million acres of public land across the United States, including national parks and forests, wildlife refuges, fish hatcheries, and water and hydroelectric projects. At these facilities, hazardous wastes are commonly generated through such activities as oil and gas drilling, coal mining, hydroelectric plant operation, and pesticide application. Consequently, a significant number of DOI sites are probably contaminated and thus must be identified, assessed, and remediated. 2 refs., 1 tab

  11. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  12. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  13. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  14. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  15. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  16. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  17. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  18. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-07-26

    ...--Statistical Methods for Evaluating Ground-Water Monitoring Data from Hazardous Waste Facilities, 53 FR 39720... Refining Primary and Secondary Oil/Water/Solids Separation Sludge Listings, 56 FR 21955, May 13, 1991: Rule... handle hazardous sludges as hazardous wastes when they leave the zero discharge unit. Whether this...

  19. Positive synergistic effect of the reuse and the treatment of hazardous waste on pyrometallurgical process of lead recovery from waste lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Marija Štulović

    2014-09-01

    Full Text Available Modification and optimization of the pyrometallurgical process of lead recovering from the waste lead-acid batteries have been studied in this paper. The aim of this research is to develop a cleaner production in the field of the secondary lead metallurgy. Lead smelting process with the addition of flux (sodium(I-carbonate and reducing agents (coke, iron has been followed. The modified smelting process with the addition of hazardous waste (activated carbon as alternative reducing agents has shown positive results on the quality of the secondary lead, the generated slag and the process gases. Filtration efficiency of the gases, the return of baghouse dust to the process and use of oxygen burners have positive effect on the environment protection and energy efficiency. Optimization of the recycling process has been based on the properties of the slag. Stabilization of slag is proposed in the furnace with addition of waste dust from the recycling of cathode ray tube (CRT monitors. Phosphorus compounds from dust reduce leachability of toxic elements from the generated slag. Reduction the slag amount and its hazardous character through the elimination of migratory heavy metals and valorization of useful components have been proposed in the patented innovative device - cylindrical rotating washer/separator.

  20. Petitions to delist hazardous wastes: A guidance manual. Second edition

    International Nuclear Information System (INIS)

    1993-03-01

    EPA developed the guidance document to assist facilities in preparing delisting petitions for the exclusion of listed hazardous wastes. The manual provides general information on hazardous waste delisting, discusses sampling strategies and testing protocols in detail, and presents a step-by-step approach to compiling a complete delisting petition. This updated edition incorporates recent changes in RCRA regulations, agency policies, and delisting criteria. It also reflects the current emphasis on ground-water monitoring data and new concepts such as upfront delistings

  1. The municipal districts and the hazardous and nuclear wastes

    International Nuclear Information System (INIS)

    Custodio, H.B.

    1989-01-01

    The contamination of soil, water, air and flora due to increasing of hazardous wastes and population is discussed; the classification of wastes is analysed; the partition of competence in environmental area according to the constitution is explained; solutions to adjust industrial development with preservation of environment are suggested [pt

  2. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...

  3. Guides to pollution prevention: Selected hospital waste streams

    International Nuclear Information System (INIS)

    1990-06-01

    The hazardous wastes generated by general medical and surgical hospitals are small in volume relative to those of industrial facilities; however, the wastes are of a wide variety. Some of the hazardous materials used by hospitals that become part of their waste streams include chemotherapy and antineoplastic chemicals, solvents, formaldehyde, photographic chemicals, radionuclides, mercury, waste anesthetic gases; and other toxic, corrosive and miscellaneous chemicals. Additional wastes such as infectious waste, incinerator exhaust, laundry-related waste, utility wastes, and trash were not addressed in the guide. Reducing the generation of these materials at the source, or recycling the wastes on- or off-site, will benefit hospitals by reducing disposal costs and lowering the liabilities associated with hazardous waste disposal. The guide provides an overview of hospital waste generating processes and presents options for minimizing waste generation through source reduction and recycling

  4. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  5. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...

  6. 77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...

  7. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    Hadlock, D.J.

    1999-01-01

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  8. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  9. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  10. Hazardous waste management in pipeline terminal: a multi-pronged approach for safe disposal of tank bottom sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ammanna, John [Indian Oil Corporation Limited (IOCL), Mumbai (India)

    2009-12-19

    Indian Oil Corporation Ltd., Pipeline Division owns and operates the 1850 Km long Salaya-Mathura Crude Oil Pipeline (SMPL) with installed capacity of 21 MMTPA. Almost 25 types of crude [90% imported and 10% indigenous] are received into 13 on-shore tanks at Vadinar (the Mother Station of SMPL) through 2 Nos. SPM's anchored in the Arabian Sea and located on the west coast of India in the Gulf of Kutch. Larger quantities of tank bottom sludge that gets generated in the terminal during tank M and I pose serious environmental hazards, as procedures for handling, treatment and disposal of hazardous waste are not well established. With increasingly stringent Environmental norms being enforced by Statutory / Regulatory Authorities, storage of hazardous solid waste in lagoons and its disposal through designated approved agencies within the specified time frame, becomes extremely difficult. This paper seeks to address this issue by putting forth an innovative approach to hazardous waste management in pipeline terminals having large crude oil tank farms that has been adopted at Indian Oil Corporation's Vadinar terminal of SMPL where a multi-pronged approach for safe disposal of tank bottom sludge has been successfully implemented. The terminal has since become a 'Zero sludge location'. (author)

  11. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  12. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

    Data.gov (United States)

    National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

  13. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  14. Potentials and limitations of hazard indices for the determination of risk potentials of disposed toxic wastes

    International Nuclear Information System (INIS)

    Kirchner, Gerald

    1989-01-01

    Hazard indices are often used for the determination of risk potentials arising from the geological disposal of toxic wastes. They are based on simplified models for the calculation of potential health effects caused by the wastes. The attractiveness of hazard indices lies in their simplicity which nevertheless results in reliable data on necessary isolation times and the most toxic nuclides of a waste. They also make possible comparisons of the potential risks of different wastes. After a discussion of the processes that control the behavior of toxic wastes in the environment after a failure of the geological barriers, a new hazard index is presented. Originally developed for nuclear wastes, it is the first which involves the joint consideration of the composition of a waste, the probability for transport of waste nuclides to man, their toxicity, and the time-dependent changes of the risk potentials which are caused by radioactive buildup and decay processes after the waste has entered the biosphere. The new hazard index makes possible the calculation of risk potentials at a given time of release and time period of concern thereafter. Sample calculations for different nuclear wastes show the importance of the model improvements on resulting time-dependent risk potentials. Applicability of the new hazard index to non-nuclear wastes is described. Potentials and limitations of comparative risk assessments using hazard indices are discussed. (author)

  15. Proceedings of the international conference on hazardous waste sources, effects and management

    International Nuclear Information System (INIS)

    1999-01-01

    The publication has been set up as a textbook for training course dealing with hazardous waste sources, effects and management. Vol.1: (1)national policy; (2)waste management; (3)environment; (4)health hazards; vol.2: (1)monitoring and characterization; (2) migration; (3)storage and disposal; (4)treatment radioactive; vol.3: (1) Treatment; (2) recycling

  16. Proceedings of the international conference on hazardous waste sources, effects and management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication has been set up as a textbook for training course dealing with hazardous waste sources, effects and management. Vol.1: (1)national policy; (2)waste management; (3)environment; (4)health hazards; vol.2: (1)monitoring and characterization; (2) migration; (3)storage and disposal; (4)treatment radioactive; vol.3: (1) Treatment; (2) recycling.

  17. Assessment of the Microscreen phage-induction assay for screening hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1987-09-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  18. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  19. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  20. Application of glove box robotics to hazardous waste management

    International Nuclear Information System (INIS)

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans