WorldWideScience

Sample records for hatchery reared salmon

  1. Genetic versus rearing-environment effects on phenotype: hatchery and natural rearing effects on hatchery- and wild-born coho salmon.

    Directory of Open Access Journals (Sweden)

    Cedar M Chittenden

    Full Text Available With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus kisutch returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between replicates, between rearing environments, and between cross types were compared. While there were few phenotypic differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from hatchery introgression into wild populations, or conversely, due to strong selection in nature--capable of maintaining highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.

  2. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  3. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  4. Environment-dependent plasticity and ontogenetic changes in the brain of hatchery-reared Atlantic salmon

    DEFF Research Database (Denmark)

    Näslund, J.; Larsen, Martin Hage; Thomassen, S.T.

    2017-01-01

    enhancement strategies, like environmental enrichment. Here, we investigated the size of the brain in hatcheryreared Atlantic salmon Salmo salar kept at standard (high) and reduced (low) tank densities. In contrast to our predictions, we found that fish reared at high density had larger dry mass of cerebellum...... and telencephalon, correcting for body size. No differences were detected for total brain mass. Furthermore, we found that the relative size of both telencephalon and cerebellum, in relation to total brain mass, changed with body size. Cerebellum increased in relative size with increased body size, while......Lowered rearing density has repeatedly been shown to increase the performance of hatchery-reared salmonids stocked into natural environments. One possible mechanism for this pattern could be that lower densities enhance brain development, which has been shown to be the case in other hatchery...

  5. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  6. Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): no evidence for a critical period

    DEFF Research Database (Denmark)

    Näslund, Joacim; Aarestrup, Kim; Thomassen, Søren T.

    2012-01-01

    was released into nature and recaptured at smoltification. These stream-reared smolts developed smaller brains than the hatchery reared smolts, irrespective of initial enrichment treatment. These novel findings do not support the hypothesis that there is a critical early period determining the brain growth...... trajectory. In contrast, our results indicate that brain growth is plastic in relation to environment. In addition, we show allometric growth in brain substructures over juvenile development, which suggests that comparisons between groups of different body size should be made with caution. These results can......In hatcheries, fish are normally reared in barren environments, which have been reported to affect their phenotypic development compared with wild conspecifics. In this study, Atlantic salmon (Salmo salar) alevins were reared in conventional barren hatchery trays or in either of two types...

  7. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    Science.gov (United States)

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  8. Source-Sink Estimates of Genetic Introgression Show Influence of Hatchery Strays on Wild Chum Salmon Populations in Prince William Sound, Alaska

    OpenAIRE

    Jasper, James R.; Habicht, Christopher; Moffitt, Steve; Brenner, Rich; Marsh, Jennifer; Lewis, Bert; Creelman Fox, Elisabeth; Grauvogel, Zac; Rogers Olive, Serena D.; Grant, W. Stewart

    2013-01-01

    The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. H...

  9. Hatchery tank enrichment affects cortisol levels and shelter-seeking in Atlantic salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Näslund, Joacim; Rosengren, Malin; Del Villar, Diego

    2013-01-01

    Stocking programs using hatchery-reared salmon are often implemented for augmenting natural populations. However, survival of these fish is often low compared with wild conspecifics, possibly because of genetic, physiological, and behavioural deficiencies. Here, we compared presmolt Atlantic salm...

  10. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    Science.gov (United States)

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  11. Lake Roosevelt Fisheries Monitoring Progam; Thyroid-Induced Chemical Imprinting in Early Life Stages and Assessment of Smoltification in Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1993 Supplement Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tilson, Mary Beth; Galloway, Heather; Scholz, Allan T. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

    1994-06-01

    In 1991, two hatcheries were built to provide a kokanee salmon and rainbow trout fishery for Lake Roosevelt as partial mitigation for the loss of anadromous salmon and steelhead caused by construction of Grand Coulee Dam. The Sherman Creek Hatchery, located on a tributary of Lake Roosevelt to provide an egg collection and imprinting site, is small with limited rearing capability. The second hatchery was located on the Spokane Indian Reservation because of a spring water source that supplied cold, pure water for incubating and rearing eggs.`The Spokane Tribal Hatchery thus serves as the production facility. Fish reared there are released into Sherman Creek and other tributary streams as 7-9 month old fry. However, to date, returns of adult fish to release sites has been poor. If hatchery reared kokanee imprint to the hatchery water at egg or swim up stages before 3 months of age, they may not be imprinting as 7-9 month old fry at the time of stocking. In addition, if these fish undergo a smolt phase in the reservoir when they are 1.5 years old, they could migrate below Grand Coulee Dam and out of the Lake Roosevelt system. In the present investigation, which is part of the Lake Roosevelt monitoring program to assess hatchery effectiveness, kokanee salmon were tested to determine if they experienced thyroxine-induced chemical imprinting and smoltification similar to anadromous salmonids. Determination of the critical period for olfactory imprinting was determined by exposing kokanee to different synthetic chemicals (morpholine or phenethyl alcohol) at different life stages, and then measuring the ability to discriminate the chemicals as sexually mature adults. Whole body thyroxine content and blood plasma thyroxine concentration was measured to determine if peak thyroid activity coincided with imprinting or other morphological, physiological or behavioral transitions associated with smoltification.

  12. Physiological Assessment of Wild and Hatchery Juvenile Salmonids : Final Report, 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Donald A.; Beckman, Brian R.; Dickhoff, Walton W.

    2003-08-01

    It is generally held that hatchery-reared salmonids are of inferior quality and have lower smolt-to-adult survival compared to naturally-reared salmon. The overall objectives of the work performed under this contract were the following: (1) Characterize the physiology and development of naturally rearing juvenile salmonids to: (2) Allow for the design of effective rearing programs for producing wild-like smolts in supplementation and production hatchery programs. (3) Examine the relationship between growth rate and size on the physiology and migratory performance of fish reared in hatchery programs. (4) Examine the interaction of rearing temperature and feed rate on the growth and smoltification of salmon for use in producing a more wild-like smolt in hatchery programs.

  13. Genetic differences in growth, migration, and survival between hatchery and wild steelhead and Chinook salmon: Introduction and executive summary

    Science.gov (United States)

    Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.

  14. Distribution, feeding and growth of hatchery-reared Atlantic salmon (Salmo salar L. parr stocked into rivers with various abiotic conditions

    Directory of Open Access Journals (Sweden)

    Nikolaev A. M.

    2017-06-01

    Full Text Available Within the research of efficiency of Atlantic salmon the artificial reproduction, feeding rate, distribution and growth of farm-raised one-year-old Atlantic salmon have been examined. The fish has been released into nursery areas with different hydrological characteristics located in the Rivers Kola, Umba, Srednyaya and Akkim in the Murmansk region. The observations have being conducted for 1–5 months since the moment of fish release. In natural habitat, juveniles rapidly distribute downstream and upstream regardless of water temperature, depth and current velocity. In all examined nursery areas adapting one-year-old juveniles prefer to stay at weak current sites close to the shore, hiding in the gravel. In all the cases farmed parr shows high feed rate, but qualitative composition of their food differs significantly from food composition of wild juveniles. Revealed peculiarities of adapting parr's distribution and qualitative food composition indicate the impact of long-term rearing at hatcheries on fish behavior. Growth rate of one-year-old juveniles is arcwise connected with fraction composition of gravel and the level of bottom fouling: the bigger bottom rocks are and the thicker the fouling is, the more intensive fish growth is. The revealed correlations have been described with equations of linear regression. Connections between juvenile growth and water temperature, current velocity and depth of the area have not been detected. The research outcomes could provide a basis for scientific advice for planning release sites and number of released one-year-old Atlantic salmon by hatcheries in the Murmansk region.

  15. Management of bacterial kidney disease in Chinook Salmon hatcheries based on broodstock testing by enzyme-linked immunosorbent assay: A multiyear study

    Science.gov (United States)

    Munson, A. Douglas; Elliott, Diane G.; Johnson, Keith

    2010-01-01

    From the mid-1980s through the early 1990s, outbreaks of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum continued in Chinook salmon Oncorhynchus tshawytscha in Idaho Department of Fish and Game (IDFG) hatcheries despite the use of three control methods: (1) injection of returning adult fish with erythromycin to reduce prespawning BKD mortality and limit vertical transmission of R. salmoninarum, (2) topical disinfection of green eggs with iodophor, and (3) prophylactic treatments of juvenile fish with erythromycin-medicated feed. In addition, programs to manage BKD through measurement of R. salmoninarum antigen levels in kidney tissues from spawning female Chinook salmon by an enzyme-linked immunosorbent assay (ELISA) were tested over 13–15 brood years at three IDFG hatcheries. The ELISA results were used for either (1) segregated rearing of progeny from females with high ELISA optical density (OD) values (usually ≥0.25), which are indicative of high R. salmoninarum antigen levels, or (2) culling of eggs from females with high ELISA OD values. The ELISA-based culling program had the most profound positive effects on the study populations. Mortality of juvenile fish during rearing was significantly lower at each hatchery for brood years derived from culling compared with brood years for which culling was not practiced. The prevalence of R. salmoninarum in juvenile fish, as evidenced by detection of the bacterium in kidney smears by the direct fluorescent antibody test, also decreased significantly at each hatchery. In addition, the proportions of returning adult females with kidney ELISA OD values of 0.25 or more decreased 56–85% for fish reared in brood years during which culling was practiced, whereas the proportions of ELISA-negative adults increased 55–58%. This management strategy may allow IDFG Chinook salmon hatcheries to reduce or eliminate prophylactic erythromycin-medicated feed treatments. We recommend using ELISA

  16. Pen Rearing and Imprinting of Fall Chinook Salmon, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Jerry F.; Macy, Thomas L.; Gardenier, James T.; Beeman, John W.

    1986-12-01

    Pen rearing studies during 1986 completed the second of three years intended for rearing and releasing upriver bright fall chinook salmon (Oncorhynchus tshawytscha) from two study sites, a backwater and a pond, adjacent to the Columbia River; both areas are located in the Jonn Day Reservoir. Results of this study in 1984 and 1985 showed that fish could be successfully reared in net pens and that growth and physiological development of the off-station reared fish proceeded at a faster rate than in fish reared at a hatchery. Transfer of fish from the hatchery to off-station sites at Social Security Pond (pond) and Rock Creek (backwater) during early March increased the period of rearing in 1986 by about four weeks. The increased period of rearing allowed all treatments of fed fish to reach a minimum weight of YU fish/lb by release. Differences in growth of fed fish between regular density treatments and additional, high density treatments (double and triple the regular densities) were not significantly different (P > 0.05), but growth of all fed fish reared off-station was again significantly better than that of hatchery reared fish (P < 0.05), Mortalities in all groups of fed fish were low. Physiological development of fed fish was similar in all treatments. At release, development of fish at Social Security Pond appeared to be somewhat ahead of fish at Rock Creek on the same dates however, none of the groups of fed fish achieved a high state of smoltification by release. Unfed fish grew poorly over the redring period, and at release were significantly smaller than either fed groups at the off-station sites, or the control groups reared at the hatchery (P < 0.05). Development of unfed fish toward smoltification was much slower than of fed fish. Mortality of all groups of unfed fish, including the barrier net, was relatively low. Health of all fish reared off-station remained good over the rearing period, and no outbreaks of disease were noted. On-site marking and

  17. Reduced rearing density increases postrelease migration success of Atlantic salmon (Salmo salar) smolts

    DEFF Research Database (Denmark)

    Larsen, Martin Hage; Johnsson, Jörgen I; Näslund, Joacim

    2016-01-01

    during rearing in the hatchery. However, individuals reared at reduced density had less eroded dorsal fins and opercula relative to those from the high-density treatment. In the stream, the downstream migration success was 16% higher for fish reared at reduced density than for conspecifics kept at high-density......The overall aim of this study was to investigate the effect of rearing density on the post-release survival of Atlantic salmon (Salmo salar) smolts during seaward migration. Fish were either reared at conventional hatchery density or at one-third of conventional density. Three hundred one-year old...... smolts from each density treatment were individually tagged with passive integrated transponder (PIT) tags and released 3.2 km upstream of a stationary antenna array in a natural stream. There were no significant differences in length, body mass, or condition between fish from the two density treatments...

  18. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  19. Spokane Tribal Hatchery, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2004-05-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to

  20. Umatilla Hatchery Monitoring and Evaluation, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael C.; Brown, Kassandra A.; Waln, Karen (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-11-01

    This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for the period November 1, 1997 to October 31, 1998. Studies at Umatilla Hatchery are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated as part of the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirements for fish health monitoring are mandatory and have become the responsibility of the fish health staff conducting studies at UFH. Additional studies include evaluations of sport fisheries in the Umatilla River and mass marking and straying of fall chinook salmon. Except for adult recovery data, an experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. We are currently in the second year of rearing subyearling fall chinook salmon at three densities. Experimental rearing of subyearling, fall release, and yearling spring chinook salmon, and steelhead has also been conducted. Although preliminary adult return data has been recovered, data on smolt-to-adult survival for all groups is incomplete. Conclusions in this report should be viewed as preliminary and used in conjunction with additional data as it becomes available.

  1. Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska.

    Directory of Open Access Journals (Sweden)

    James R Jasper

    Full Text Available The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta in Prince William Sound (PWS, Alaska, with 135 single nucleotide polymorphism (SNP markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982 with frequencies in contemporary samples (2008-2010 and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.

  2. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  3. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  4. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1999-2003 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.

    2003-02-25

    The National Marine Fisheries Service (NMFS) has been conducting Natural Rearing Enhancement System (NATURES) research since the early 1990s. NATURES studies have looked at a variety of mechanisms to enhance production of wild-like salmonids from hatcheries. The goal of NATURES research is to develop fish culture techniques that enable hatcheries to produce salmon with more wild-like characteristics and increased postrelease survival. The development of such techniques is called for in the Columbia Basin Fish and Wildlife Program. This document is the draft report for the Supplemental Fish Quality Contract DE-AI79-91BP20651 Over the history of the project, the effects of seminatural raceway habitats, automated underwater feeders, exercise current velocities, live food diets, and predator avoidance training have been investigated. The findings of these studies are reported in an earlier contract report (Maynard et al. 1996a). The current report focuses on research that has been conducted between 1999 and 2002. This includes studies on the effect of exercise on salmon and steelhead trout, effects of predator avoid training, integration of NATUES protocols into production hatcheries, and the study of social behavior of steelhead grown in enriched and conventional environments. Traditionally, salmon (Oncorhynchus spp.) are reared in barren concrete raceways that lack natural substrate, in-stream structure, or overhead cover. The fish are fed in an unnatural manner with artificial feeds mechanically or hand broadcast across the water surface. This traditional approach has increased the egg-to-smolt survival of hatchery-reared fish by an order of magnitude over that experienced by wild-reared salmon. However, once hatchery-reared fish are released into the wild their smolt-to-adult survival is usually much lower than wild-reared salmon. The reduced postrelease survival of hatchery-reared fish may stem from differences in their behavior and morphology compared to wild-reared

  5. Morphometric comparison between hatchery-reared and wild-caught megalopae of the mangrove crab

    Directory of Open Access Journals (Sweden)

    Bárbara Andressa Casagrande Ayres

    2013-08-01

    Full Text Available The objective of this work was to compare the morphometry of hatchery-reared and wild-caught mangrove crab (Ucides cordatus megalopae. Ten U. cordatus megalopae of each group (hatchery-reared and wild-caught were individually analyzed using a stereoscopic microscope equipped with an ocular micrometer. Length, width, and height of all megalopae were measured, and the size of body appendices was determined. The results indicate that the hatchery-reared megalopae are more robust than the wild ones. Furthermore, some significant differences in the size of certain appendices can be cues of the kind of alterations that hatchery-reared individuals experience.

  6. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Donald; Beckman, Brian; Cooper, Kathleen

    2003-08-01

    The Yakima River Spring Chinook Salmon Supplementation Project in Washington State is currently one of the most ambitious efforts to enhance a natural salmon population in the United States. Over the past five years we have conducted research to characterize the developmental physiology of naturally- and hatchery-reared wild progeny spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River basin. Fish were sampled at the main hatchery in Cle Elum, at remote acclimation sites and, during smolt migration, at downstream dams. Throughout these studies the maturational state of all fish was characterized using combinations of visual and histological analysis of testes, gonadosomatic index (GSI), and measurement of plasma 11-ketotestosterone (11-KT). We established that a plasma 11-KT threshold of 0.8 ng/ml could be used to designate male fish as either immature or precociously maturing approximately 8 months prior to final maturation (1-2 months prior to release as 'smolts'). Our analyses revealed that 37-49% of the hatchery-reared males from this program undergo precocious maturation at 2 years of age and a proportion of these fish appear to residualize in the upper Yakima River basin throughout the summer. An unnaturally high incidence of precocious male maturation may result in loss of potential returning anadromous adults, skewing of female: male sex ratios, ecological, and genetic impacts on wild populations and other native species. Precocious male maturation is significantly influenced by growth rate at specific times of year and future studies will be conducted to alter maturation rates through seasonal growth rate manipulations.

  7. Water chemistry - Investigation of Methods to Improve Homing by Hatchery Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Investigate olfactory imprinting techniques that will improve homing by hatchery salmon to their hatchery of origin, and thereby reduce potential risks from these...

  8. Spokane Tribal Hatchery, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2005-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the

  9. Nez Perce Tribal Hatchery Program : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Nez Perce Tribal Hatchery (Idaho).

    1996-06-01

    Bonneville Power Administration, the Bureau of Indian Affairs, the Nez Perce Tribe propose a supplementation program to restore chinook salmon to the Clearwater River Subbasin in Idaho. The Clearwater River is a tributary to the Snake River, which empties into the Columbia River. The Nez Perce Tribe would build and operate two central incubation and rearing hatcheries and six satellite facilities. Spring, summer and fall chinook salmon would be reared and acclimated to different areas in the Subbasin and released at the hatchery and satellite sites or in other watercourses throughout the Subbasin. The supplementation program differs from other hatchery programs because the fish would be released at different sizes and would return to reproduce naturally in the areas where they are released. Several environmental issues were identified during scoping: the possibility that the project would fail if mainstem Columbia River juvenile and adult passage problems are not solved; genetic risks to fish listed as endangered or threatened; potential impacts to wild and resident fish stocks because of increase competition for food and space; and water quality. The Proposed Action would affect several important aspects of Nez Perce tribal life, primarily salmon harvest, employment, and fisheries management.

  10. Nez Perce Tribal Hatchery Program: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-06-01

    Bonneville Power Administration, the Bureau of Indian Affairs, the Nez Perce Tribe propose a supplementation program to restore chinook salmon to the Clearwater River Subbasin in Idaho. The Clearwater River is a tributary to the Snake River, which empties into the Columbia River. The Nez Perce Tribe would build and operate two central incubation and rearing hatcheries and six satellite facilities. Spring, summer and fall chinook salmon would be reared and acclimated to different areas in the Subbasin and released at the hatchery and satellite sites or in other watercourses throughout the Subbasin. The supplementation program differs from other hatchery programs because the fish would be released at different sizes and would return to reproduce naturally in the areas where they are released. Several environmental issues were identified during scoping: the possibility that the project would fail if mainstem Columbia River juvenile and adult passage problems are not solved; genetic risks to fish listed as endangered or threatened; potential impacts to wild and resident fish stocks because of increase competition for food and space; and water quality. The Proposed Action would affect several important aspects of Nez Perce tribal life, primarily salmon harvest, employment, and fisheries management

  11. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume III of III; Disease and Physiology Supplements, 1978-1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Slatick, Emil; Gilbreath, Lyle G.; Harmon, Jerrel R. (Northwest and Alaska Fisheries Science Centr, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1988-02-03

    The main functions of the National Marine Fisheries Service (NMFS) Aquaculture Task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might affect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. The health status of the stocks was quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will affect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. This report contains five previously published papers.

  12. Monitoring and evaluation plan for the Nez Perce Tribal Hatchery

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan, the 1995 Supplement to the Master Plan, and the Nez Perce Tribal Hatchery Program Environmental Impact Statement. The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts.

  13. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  14. Reduced reproductive success of hatchery coho salmon in the wild: insights into most likely mechanisms.

    Science.gov (United States)

    Thériault, Véronique; Moyer, Gregory R; Jackson, Laura S; Blouin, Michael S; Banks, Michael A

    2011-05-01

    Supplementation of wild salmonids with captive-bred fish is a common practice for both commercial and conservation purposes. However, evidence for lower fitness of captive-reared fish relative to wild fish has accumulated in recent years, diminishing the apparent effectiveness of supplementation as a management tool. To date, the mechanism(s) responsible for these fitness declines remain unknown. In this study, we showed with molecular parentage analysis that hatchery coho salmon (Oncorhynchus kisutch) had lower reproductive success than wild fish once they reproduced in the wild. This effect was more pronounced in males than in same-aged females. Hatchery spawned fish that were released as unfed fry (age 0), as well as hatchery fish raised for one year in the hatchery (released as smolts, age 1), both experienced lower lifetime reproductive success (RS) than wild fish. However, the subset of hatchery males that returned as 2-year olds (jacks) did not exhibit the same fitness decrease as males that returned as 3-year olds. Thus, we report three lines of evidence pointing to the absence of sexual selection in the hatchery as a contributing mechanism for fitness declines of hatchery fish in the wild: (i) hatchery fish released as unfed fry that survived to adulthood still had low RS relative to wild fish, (ii) age-3 male hatchery fish consistently showed a lower relative RS than female hatchery fish (suggesting a role for sexual selection), and (iii) age-2 jacks, which use a sneaker mating strategy, did not show the same declines as 3-year olds, which compete differently for females (again, implicating sexual selection). © 2011 Blackwell Publishing Ltd.

  15. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A. (Idaho Department of Fish and Game, Boise, ID)

    2005-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek

  16. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  17. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24

  18. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the

  19. Umatilla Hatchery monitoring and evaluation : annual report, 1999; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving

  20. Northeast Oregon Hatchery Project, Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  1. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 6, 1995--June 20, 1995

    International Nuclear Information System (INIS)

    Blenden, M.L.; Osborne, R.S.; Kucera, P.A.

    1996-01-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wild chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June

  2. Nez Perce Tribal Hatchery Complex; Operations and Maintenance and 2005 Annual Operation Plan, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Harty, Harold R.; Lundberg, Jeffrey H.; Penney, Aaron K. (Nez Perce Tribe, Lapwai, ID)

    2005-02-01

    The Nez Perce Tribal Hatchery (NPTH) responds directly to a need to mitigate for naturally-reproducing salmon in the Clearwater River subbasin. The overall goal is to produce and release fish that will survive to adulthood, spawn in the Clearwater River subbasin and produce viable offspring that will support future natural production and genetic integrity. Several underlying purposes of fisheries management will be maintained through this program: (1) Protect, mitigate, and enhance Columbia River subbasin anadromous fish resources. (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater River subbasin. (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project completion. (4) Sustain long-term fitness and genetic integrity of targeted fish populations. (5) Keep ecological and genetic impacts to non-target populations within acceptable limits. (6) Promote Nez Perce Tribal Management of Nez Perce Tribal hatchery Facilities and production areas within Nez Perce Treaty lands. Nez Perce Tribal Hatchery is a supplementation program that will rear and release spring, fall, and early-fall stocks of chinook salmon. Two life stages of spring chinook salmon will be released: parr and presmolts. Fall and early-fall chinook salmon will be released as subyearling smolts. The intent of NPTHC is to use conventional hatchery and Natural Rearing Enhancement Systems (NATURES) techniques to develop, increase and restore natural populations of spring and fall chinook salmon in the Clearwater River subbasin.

  3. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  4. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  5. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River: March 1, 1994--June 15, 1994; TOPICAL

    International Nuclear Information System (INIS)

    Ashe, B.L.; Miller, A.C.; Kucera, P.A.; Blenden, M.L.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout

  6. Effects of hatchery rearing on Florida largemouth bass Micropterus floridanus resource allocation and performance under semi-natural conditions.

    Science.gov (United States)

    Garlock, T M; Monk, C T; Lorenzen, K; Matthews, M D; St Mary, C M

    2014-12-01

    This study examined the growth, activity, metabolism and post-release survival of three groups of Florida largemouth bass Micropterus floridanus: wild-caught fish, hatchery fish reared according to standard practice (hatchery standard) and hatchery fish reared under reduced and unpredictable food provisioning (hatchery manipulated). Hatchery-standard fish differed from wild-caught fish in all measured variables, including survival in semi-natural ponds. Hatchery-standard and hatchery-manipulated fish showed higher activity levels, faster growth and lower standard metabolic rates than wild-caught fish in the hatchery. Fish reared under the manipulated feeding regime showed increased metabolic rates and increased post-release growth, similar to wild-caught fish. Their activity levels and post-release survival, however, remained similar to those of hatchery-standard fish. Activity was negatively correlated with post-release survival and failure of the feed manipulation to reduce activity may have contributed to its failure to improve post-release survival. Activity and post-release survival may be influenced by characteristics of the rearing environment other than the feeding regime, such as stock density or water flow rates. © 2014 The Fisheries Society of the British Isles.

  7. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  8. Northeast Oregon Hatchery Project final siting report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  9. Northeast Oregon Hatchery Project conceptual design report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  10. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1996-1998 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.

    2001-09-13

    This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings.

  11. Development of a natural rearing system to improve supplemental fish quality: 1996-1998: final report; TOPICAL

    International Nuclear Information System (INIS)

    Maynard, Desmond J.

    2001-01-01

    This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings

  12. Monitoring and Evaluation Plan for the Nez Perce Tribal Hatchery, 1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Cleveland R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan (Larson and Mobrand 1992), the 1995 Supplement to the Master Plan (Johnson et al. 1995), and the Nez Perce Tribal Hatchery Program Environmental Impact Statement (Bonneville Power Administration et al. 1996). The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine. whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts. Program success will be gauged primarily by changes in the abundance and distribution of supplemented chinook populations. The evaluation of project-related impacts will focus on the biological effects of constructing and operating NPTH hatchery facilities, introducing hatchery fish into the natural environment, and removing or displacing wild

  13. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes (Oregon Department of Fish and Wildlife, Salem, OR)

    2003-12-01

    REPORT A: UMATILLA HATCHERY MONITORING AND EVALUATION--This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for 1 November, 1999 to 31 October, 2002. Studies at UFH are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated along with the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirements for fish health monitoring at UFH are mandatory. An experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. An evaluation of survival of subyearling fall chinook salmon reared at three densities will be completed with final returns in 2005. Two new evaluations were started during this reporting period. The first is an evaluation of spring chinook survival of groups transferred to Imeques acclimation facility in the fall, overwinter-acclimated and released with the standard acclimated production groups in March. The second is an evaluation of subyearling fall chinook survival and straying of a direct-stream released group in the lower Umatilla River and the standard group acclimated at Thornhollow acclimation facility in the upper Umatilla River. An important aspect of the project is evaluation of the spring chinook and summer steelhead fisheries in the upper and lower Umatilla River. REPORT B: Fish Health Monitoring and Evaluation, 2000 Fiscal Year--The results presented in this report are from the ninth year of Fish Health Monitoring and Evaluation in the Umatilla Hatchery program. Broodstock monitoring for hatchery production was conducted on adult returns to the

  14. Migratory urge and gll Na+,K+-ATPase activity of hatchery-reared Atlantic salmon smolts from the Dennys and Penobscot River stocks, Maine

    Science.gov (United States)

    Spencer, Randall C.; Zydlewski, Joseph D.; Zydlewski, Gayle B.

    2010-01-01

    Hatchery-reared Atlantic salmon Salmo salar smolts produced from captive-reared Dennys River and sea-run Penobscot River broodstock are released into their source rivers in Maine. The adult return rate of Dennys smolts is comparatively low, and disparity in smolt quality between stocks resulting from genetic or broodstock rearing effects is plausible. Smolt behavior and physiology were assessed during sequential 14-d trials conducted in seminatural annular tanks with circular flow. “Migratory urge” (downstream movement) was monitored remotely using passive integrated transponder tags, and gill Na+,K+-ATPase activity was measured at the beginning and end of the trials to provide an index of smolt development. The migratory urge of both stocks was low in early April, increased 20-fold through late May, and declined by the end of June. The frequency and seasonal distribution of downstream movement were independent of stock. In March and April, initial gill Na+,K+-ATPase activities of Penobscot River smolts were lower than those of Dennys River smolts. For these trials, however, Penobscot River smolts increased enzyme activity after exposure to the tank, whereas Dennys River smolts did not, resulting in similar activities between stocks at the end of all trials. There was no clear relationship between migratory urge and gill Na+,K+-ATPase activity. Gill Na+,K+-ATPase activity of both stocks increased in advance of migratory urge and then declined while migratory urge was increasing. Maximum movement was observed from 2 h after sunset through 1 h after sunrise but varied seasonally. Dennys River smolts were slightly more nocturnal than Penobscot River smolts. These data suggest that Dennys and Penobscot River stocks are not markedly different in either physiological or behavioral expression of smolting.

  15. An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon

    Science.gov (United States)

    Naish, Kerry A.; Taylor, Joseph E.; Levin, Phillip S.; Quinn, Thomas P.; Winton, James R.; Huppert , Daniel; Hilborn , Ray

    2007-01-01

    The historical, political and scientific aspects of salmon hatchery programmes designed to enhance fishery production, or to recover endangered populations, are reviewed. We start by pointing out that the establishment of hatcheries has been a political response to societal demands for harvest and conservation; given this social context, we then critically examined the levels of activity, the biological risks, and the economic analysis associated with salmon hatchery programmes. A rigorous analysis of the impacts of hatchery programmes was hindered by the lack of standardized data on release sizes and survival rates at all ecological scales, and since hatchery programme objectives are rarely defined, it was also difficult to measure their effectiveness at meeting release objectives. Debates on the genetic effects of hatchery programmes on wild fish have been dominated by whether correct management practices can reduce negative outcomes, but we noted that there has been an absence of programmatic research approaches addressing this important issue. Competitive interactions between hatchery and wild fish were observed to be complex, but studies researching approaches to reduce these interactions at all ecological scales during the entire salmon life history have been rare, and thus are not typically considered in hatchery management. Harvesting of salmon released from fishery enhancement hatcheries likely impacts vulnerable wild populations; managers have responded to this problem by mass marking hatchery fish, so that fishing effort can be directed towards hatchery populations. However, we noted that the effectiveness of this approach is dependant on accurate marking and production of hatchery fish with high survival rates, and it is not yet clear whether selective fishing will prevent overharvest of wild populations. Finally, research demonstrating disease transmission from hatchery fish to wild populations was observed to be equivocal; evidence in this area has

  16. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following

  17. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    Science.gov (United States)

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-02-16

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.

  18. Sherman Creek Hatchery, annual report 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake

  19. Etiology of sockeye salmon 'virus' disease

    Science.gov (United States)

    Guenther, Raymond W.; Watson, S.W.; Rucker, R.R.; Ross, A.J.

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerlings (Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  20. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    Science.gov (United States)

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.

  1. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Flagg, Thomas A.

    1994-11-01

    The National Marine Fisheries Service (NMFS), in cooperation with Idaho and BPA, has established captive broodstocks to aid recovery of endangered Snake River sockeye salmon. NMFS is currently maintaining four separate Redfish Lake sockeye Salmon captive broodstocks; all these broodstocks are being reared full-term to maturity in fresh (well) water. Experiments are also being conducted on nonendangered 1990 and 1991-brood Lake Wenatchee (WA) sockeye salmon to compare effects on survival and reproduction to maturity in fresh water and seawater; for both brood-years, fish reared in fresh water were larger than those reared in seawater. Data from captive rearing experiments suggest a ranking priority of circular tanks supplied with pathogen-free fresh water, circular tanks supplied with pumped/filtered/uv-sterilized seawater, and seawater net-pens for rearing sockeye salmon to maturity.

  2. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  3. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  4. Spokane Tribal Hatchery, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Project are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and

  5. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996; ANNUAL

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-01-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  7. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lovrak, Jon (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Ford, WA); Combs, Mitch (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Kettle Falls, WA)

    2004-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and

  8. Nez Perce Tribal Hatchery Program : Draft Environmental Impact Statement Summary.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Nez Perce Tribal Hatchery (Idaho)

    1996-06-01

    This summary gives the major points of the Draft Environmental Impact Statement (EIS) prepared for the Nez Perce Tribal Hatchery by the Nez Perce Tribe (NPT), the Bonneville Power Administration (BPA), the Bureau of Indian Affairs (BIA), and other interested parties. The Nez Perce once were one of the largest Plateau tribes in the Northwest and occupied a territory that included north central Idaho, southeastern Washington and northeastern Oregon. Salmon and other migratory fish species are an invaluable food resource and an integral part of the Nez Perce Tribe`s culture. Anadromous fish have always made up the bulk of the Nez Perce tribal diet and this dependence on salmon was recognized in the treaties made with the Tribe by the US. The historic economic, social, and religious significance of the fish to the Nez Perce Tribe continues to this day, which makes the decline of fish populations in the Columbia River Basin a substantial detrimental impact to the Nez Perce way of life. The Nez Perce Tribal Hatchery is a supplementation program that would rear and release spring, summer, and fall chinook (Oncorhynchus tshawytscha), biologically similar to wild fish, to reproduce in the Clearwater River Subbasin. Program managers propose techniques that are compatible with existing aquatic and riparian ecosystems and would integrate hatchery-produced salmon into the stream and river environments needed to complete their life cycle.

  9. Nez Perce Tribal Hatchery Program: Draft environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-06-01

    This summary gives the major points of the Draft Environmental Impact Statement (EIS) prepared for the Nez Perce Tribal Hatchery by the Nez Perce Tribe (NPT), the Bonneville Power Administration (BPA), the Bureau of Indian Affairs (BIA), and other interested parties. The Nez Perce once were one of the largest Plateau tribes in the Northwest and occupied a territory that included north central Idaho, southeastern Washington and northeastern Oregon. Salmon and other migratory fish species are an invaluable food resource and an integral part of the Nez Perce Tribe's culture. Anadromous fish have always made up the bulk of the Nez Perce tribal diet and this dependence on salmon was recognized in the treaties made with the Tribe by the US. The historic economic, social, and religious significance of the fish to the Nez Perce Tribe continues to this day, which makes the decline of fish populations in the Columbia River Basin a substantial detrimental impact to the Nez Perce way of life. The Nez Perce Tribal Hatchery is a supplementation program that would rear and release spring, summer, and fall chinook (Oncorhynchus tshawytscha), biologically similar to wild fish, to reproduce in the Clearwater River Subbasin. Program managers propose techniques that are compatible with existing aquatic and riparian ecosystems and would integrate hatchery-produced salmon into the stream and river environments needed to complete their life cycle

  10. Predation on hatchery-reared lobsters released in the wild

    OpenAIRE

    van der Meeren, Gro

    2000-01-01

    Predation on hatchery-reared lobsters (Homarus gammarus) in the wild was studied in order to identify predators in southwestern Norway on rocky and sandy substrates in winter and summer. Lobsters of 12–15 mm carapace length were tagged with magnetic microtags. About 51 000 juvenile lobsters were released on 10 occasions at three locations. Predator samplings were by trammel nets, eel traps, and videorecordings during the 24 h immediately following the releases. In summer, loss to ...

  11. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms

    Science.gov (United States)

    Chittenden, C. M.; Sweeting, R.; Neville, C. M.; Young, K.; Galbraith, M.; Carmack, E.; Vagle, S.; Dempsey, M.; Eert, J.; Beamish, R. J.

    2018-01-01

    Changes in food availability during the early marine phase of wild Chinook Salmon (O. tshawytscha) are being investigated as a cause of their recent declines in the Salish Sea. The marine survival of hatchery smolts, in particular, has been poor. This part of the Salish Sea Marine Survival Project examined the diet of young out-migrating Chinook Salmon for four consecutive years in the Cowichan River estuary and in Cowichan Bay, British Columbia, Canada. Local zooplankton communities were monitored during the final year of the study in the Cowichan River estuary, Cowichan Bay, and eastward to the Salish Sea to better understand the bottom-up processes that may be affecting Chinook Salmon survival. Rearing environment affected body size, diet, and distribution in the study area. Clipped smolts (hatchery-reared) were larger than the unclipped smolts (primarily naturally-reared), ate larger prey, spent very little time in the estuary, and disappeared from the bay earlier, likely due to emigration or mortality. Their larger body size may be a disadvantage for hatchery smolts if it necessitates their leaving the estuary prematurely to meet energy needs; the onset of piscivory began at a forklength of approximately 74 mm, which was less than the average forklength of the clipped fish in this study. The primary zooplankton bloom occurred during the last week of April/first week of May 2013, whereas the main release of hatchery-reared Chinook Salmon smolts occurs each year in mid-May-this timing mismatch may reduce their survival. Gut fullness was correlated with zooplankton biomass; however, both the clipped and unclipped smolts were not observed in the bay until the bloom of harmful Noctiluca was finished-20 days after the maximum recorded zooplankton abundance. Jellyfish medusa flourished in nearshore areas, becoming less prevalent towards the deeper waters of the Salish Sea. The sizable presence of Noctiluca and jellyfish in the zooplankton blooms may be repelling

  12. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon

    Science.gov (United States)

    Hess, Maureen A; Rabe, Craig D; Vogel, Jason L; Stephenson, Jeff J; Nelson, Doug D; Narum, Shawn R

    2012-01-01

    While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F1 females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild. PMID:23025818

  13. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  15. Comparison of the riverine and early marine migration behaviour and survival of wild and hatchery-reared sea trout Salmo trutta smolts

    DEFF Research Database (Denmark)

    Aarestrup, Kim; Baktoft, Henrik; Koed, Anders

    2014-01-01

    listening stations (ALS) at four locations in the river and fjord. Migration speeds were approximately three to eleven times faster in the river than in the early marine environment. Hatchery-reared smolts migrated faster than wild smolts, but the difference was small, especially compared to the large...... of the wild smolts was 1.8 and 2.9 times higher than that of the hatchery-reared smolts in the two study years, respectively, from release in the river to the outermost marine ALS site, 46 km from the release site. Overall, survival from release to the outermost ALS site was 79% for wild and 39% for hatchery......The seaward migration of wild (n = 61) and hatchery-reared (n = 46) sea trout smolts was investigated in the Danish River Gudenaa and Randers Fjord (17.3 and 28.6 km stretch, respectively) using acoustic telemetry. Their riverine and early marine migration was monitored by deploying automatic...

  16. Effects of feed quality and quantity on growth, early maturation and smolt development in hatchery-reared landlocked Atlantic salmon Salmo salar.

    Science.gov (United States)

    Norrgård, J R; Bergman, E; Greenberg, L A; Schmitz, M

    2014-10-01

    The effects of feed quality and quantity on growth, early male parr maturation and development of smolt characteristics were studied in hatchery-reared landlocked Atlantic salmon Salmo salar. The fish were subjected to two levels of feed rations and two levels of lipid content from first feeding until release in May of their second year. Salmo salar fed high rations, regardless of lipid content, grew the most and those fed low lipid feed with low rations grew the least. In addition, fish fed low lipid feed had lower body lipid levels than fish fed high lipid feed. Salmo salar from all treatments showed some reduction in condition factor (K) and lipid levels during their second spring. Smolt status was evaluated using both physiological and morphological variables. These results, based on gill Na(+) , K(+) -ATPase (NKA) enzyme activity, saltwater tolerance challenges and visual assessments, were consistent with each other, showing that S. salar from all treatments, except the treatment in which the fish were fed low rations with low lipid content, exhibited characteristics associated with smolting at 2 years of age. Sexually mature male parr from the high ration, high lipid content treatment were also subjected to saltwater challenge tests, and were found to be unable to regulate plasma sodium levels. The proportion of sexually mature male parr was reduced when the fish were fed low feed rations, but was not affected by the lipid content of the feed. Salmo salar fed low rations with low lipid content exhibited the highest degree of severe fin erosion. © 2014 The Fisheries Society of the British Isles.

  17. A comparison of the survival and migration of wild and F1-hatchery-reared brown trout (Salmo trutta) smolts traversing an artificial lake

    DEFF Research Database (Denmark)

    Schwinn, Michael; Baktoft, Henrik; Aarestrup, Kim

    2017-01-01

    rates from the sea of wild and 1-year old F1-hatchery-reared brown trout smolts in a Danish lowland stream that contains an artificial lake using passive integrated transponder telemetry in the years 2011–2013 and 2016. The majority of hatchery-reared smolts descended within 72 h after their release...

  18. Wenatchee Chinook Parentage - Evaluate the reproductive success of hatchery and wild Chinook salmon in the Wenatchee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic parentage analysis to measure the relative fitness of hatchery and wild spring run Chinook salmon that spawn in the Wenatchee River. In addition...

  19. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  20. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  1. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  2. Movements of two strains of radio tagged Atlantic salmon, Salmo salar L., smolts through a reservoir

    DEFF Research Database (Denmark)

    Aarestrup, Kim; Jepsen, Niels; Rasmusssen, Gorm

    1999-01-01

    Smolt migration through a shallow and turbid hydro-reservoir in a major Danish river system was investigated using radiotelemetry. Hatchery-reared 1+-year-old Atlantic salmon, Salmo salar L., smolts of equal size from two different non- native strains were radio-tagged and followed during...

  3. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.

    Directory of Open Access Journals (Sweden)

    Martin H Larsen

    Full Text Available Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar, test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival and

  4. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.

    Science.gov (United States)

    Larsen, Martin H; Johnsson, Jörgen I; Winberg, Svante; Wilson, Alexander D M; Hammenstig, David; Thörnqvist, Per-Ove; Midwood, Jonathan D; Aarestrup, Kim; Höglund, Erik

    2015-01-01

    Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life

  5. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2001-03-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake.

  6. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  7. Nez Perce Tribal Hatchery Project, Operations and Maintenance and Planning and Design, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Roy Edward; Walker, Grant W.; Penney, Aaron K. (Nez Perce Tribe, Lapwai, ID)

    2006-03-01

    This report fulfills the contract obligations based on the Statement of Work (SOW) for the project as contracted with Bonneville Power Administration (BPA). Nez Perce Tribal Hatchery (NPTH) Year-2001 annual report combines information from two contracts with a combined value of $2,336,491. They are identified by Bonneville Power Administration as follows: (1) Operations and Maintenance--Project No. 1983-350-00, Contract No. 4504, and (2) Planning and Design--Project No. 1983-350-00, Contract No. 4035. The Operations and Maintenance (O&M) budget of $2,166,110 was divided as follows: Facility Development and Fish Production Costs--$860,463; and Equipment Purchases as capital cost--$1,305,647 for equipment and subcontracts. The Planning and Design (P&D) budget of $170,381 was allocated to development of a Coho master planning document in conjunction with Nez Perce Tribal Hatchery. The O&M budget expenditures represent personnel and fish production expenses; e.g., administration, management, coordination, facility development, personnel training and fish production costs for spring Chinook and Coho salmon. Under Objective 1: Fish Culture Training and Education, tribal staff worked at Clearwater Anadromous Hatchery (CAFH) an Idaho Department of Fish and Game (IDFG) facility to produce spring Chinook smolt and parr for release that are intended to provide future broodstock for NPTH. As a training exercise, BPA allowed tribal staff to rear Coho salmon at Dworshak National Fish Hatchery, a U.S. Fish and Wildlife Service (USFWS) facility. This statement of work allows this type of training to prepare tribal staff to later rear salmon at Nez Perce Tribal Hatchery under Task 1.6. As a subset of the O&M budget, the equipment purchase budget of $1,305,647 less $82,080 for subcontracts provides operational and portable equipment necessary for NPTH facilities after construction. The equipment budget for the year was $1,223,567; this year's purchases amounted $287,364.48 (see

  8. Rearing in seawater mesocosms improves the spawning performance of growth hormone transgenic and wild-type coho salmon.

    Directory of Open Access Journals (Sweden)

    Rosalind A Leggatt

    Full Text Available Growth hormone (GH transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination has not been fully ascertained. Hence, salmon were reared in large (350,000 L, semi-natural, seawater tanks (termed mesocosms designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic

  9. Migratory characteristics of spring chinook salmon in the Willamette River

    International Nuclear Information System (INIS)

    Snelling, J.C.; Schreck, C.B.; Bradford, C.S.; Davis, L.E.; Slater, C.H.; Beck, M.T.; Ewing, S.K.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na + /K + gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls

  10. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    Science.gov (United States)

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  11. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-09-01

    Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

  12. Testing three common stocking methods: Differences in smolt size, migration rate and timing of two strains of stocked Atlantic salmon ( Salmo salar )

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Larsen, Martin Hage; Thomassen, Søren T.

    2018-01-01

    The influence of three common stocking practices for two strains (Ätran and Burrishoole) of hatchery-reared Atlantic salmon, Salmo salar, on smolt size, migration probability and migration timing were investigated in situ. Using a common garden experiment, fish from these populations were release...... to inherited factors, and emphasize the importance of considering age of fish and time spent in the hatchery when stocking populations in the wild to maximize smolt output......The influence of three common stocking practices for two strains (Ätran and Burrishoole) of hatchery-reared Atlantic salmon, Salmo salar, on smolt size, migration probability and migration timing were investigated in situ. Using a common garden experiment, fish from these populations were released...... as fry, half-year olds and oneyear olds. Our results indicate that fish released at the fry and half-year stage produce smaller smolts, and migrate later in the year than their counterparts released at one-year of age, for both the Ätran and the Burrishoole populations. While fry had the lowest...

  13. Lake Roosevelt Fisheries Monitoring Program; Artificial Imprinting and Smoltification in Juvenile Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1994 Supplement Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tilson, Mary Beth; Scholz, Allan T.; White, Ronald J. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

    1995-02-01

    At the kokanee salmon hatcheries on Lake Roosevelt, constructed as partial mitigation for effects from Grand Coulee Dam, adult returns have been poor. The reason may be in the imprinting or in the smoltification. A study was initiated in 1992 to determine if there was a critical period for thyroxine induced alfactory imprinting in kokanee salmon; experiments were conducted on imprinting to morpholine and phenethyl alcohol. Other results showed that chemical imprinting coincided with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992. In this report, imprinting experiments were repeated; results showed that imprinting occurred concomitant with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992 and tested in 1994 as age 3 spawners. Imprinting also occurred at the same time as thyroxine peaks in 1992 kokanee exposed to synthetic chemicals in 1993 and tested as age 2 spawners. In both groups fish that had the highest whole body thyroxine content (swimup stage) also had the highest percentage of fish that were attracted to their exposure odor in behavioral tests. So, kokanee salmon imprinted to chemical cues during two sensitive periods during development, at the alevin/swimup and smolt stages. A field test was conducted in Lake Roosevelt on coded wire tagged fish. Smoltification experiments were conducted from 1992 to 1994. Recommendations are made for the Lake Roosevelt kokanee hatcheries.

  14. Snake River sockeye salmon captive broodstock program: hatchery element: annual progress report, 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Kline, Paul A.; Willard, Catherine

    2001-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report

  15. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1991-1995 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.; Flagg, Thomas A.; Mahnken, Conrad V.W.

    1996-08-01

    In this report, the National Marine Fisheries Service (NMFS), in collaboration with the Bonneville Power Administration (BPA), the Washington State Department of Fish and Wildlife (WDFW), and the US Fish and Wildlife Service (USFWS), presents research findings and guidelines for development and evaluation of innovative culture techniques to increase postrelease survival of hatchery fish. The Natural Rearing Enhancement System (NATURES) described in this report is a collection of experimental approaches designed to produce hatchery-reared chinook salmon (Oncorhynchus tshawytscha) that exhibit wild-like behavior, physiology, and morphology. The NATURES culture research for salmonids included multiple tests to develop techniques such as: raceways equipped with cover, structure, and natural substrates to promote development of proper body camouflage coloration; feed-delivery systems that condition fish to orient to the bottom rather than the surface of the rearing vessel; predator conditioning of fish to train them to avoid predators; and supplementing diets with natural live foods to improve foraging ability. The underlying assumptions are that NATURES will: (1) promote the development of natural cryptic coloration and antipredator behavior; (2) increase postrelease foraging efficiency; (3) improve fish health and condition by alleviating chronic, artificial rearing habitat-induced stress; and (4) reduce potential genetic selection pressures induced by the conventional salmon culture environment. A goal in using NATURES is to provide quality fish for rebuilding depleted natural runs.

  16. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  17. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. [National Marine Fisheries Service

    2009-04-08

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturally with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program

  18. Hatchery evaluation report: Lyons Ferry Hatchery - fall chinook. Final report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Fall Chinook). The audit is being conducted as a requirement of the Northwest Power Planning Council (NPPC) ''Strategy for Salmon'' and the Columbia River Basin Fish and Wildlife Program. Under the audit, the hatcheries are evaluated against policies and related performance measures developed by the Integrated Hatchery Operations Team (IHOT). IHOT is a multi-agency group established by the NPPC to direct the development of new basinwide standards for managing and operating fish hatcheries. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  19. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  20. Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar.

    Science.gov (United States)

    Jørgensen, Katarina M; Solberg, Monica F; Besnier, Francois; Thorsen, Anders; Fjelldal, Per Gunnar; Skaala, Øystein; Malde, Ketil; Glover, Kevin A

    2018-04-12

    In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.

  1. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    Science.gov (United States)

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  2. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  3. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  4. Recent salmon declines: a result of lost feeding opportunities due to bad timing?

    Directory of Open Access Journals (Sweden)

    Cedar M Chittenden

    Full Text Available As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140 and coded-wire tags (n = 266,692 were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule.

  5. Redfish Lake sockeye salmon captive broodstock rearing and research, 1994. Annual report

    International Nuclear Information System (INIS)

    Flagg, T.A.; McAuley, W.C.; Wastel, M.R.; Frost, D.A.; Mahnken, C.V.W.

    1996-03-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game (IDFG) and the Bonneville Power Administration, has established captive broodstocks to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the US Endangered Species Act (ESA). Captive broodstock programs are emerging as an important component of restoration efforts for ESA-listed salmon populations. Captive broodstock programs are a form of artificial propagation. However, they differ from standard hatchery techniques in one important respect: fish are cultured in captivity for the entire life cycle. The high fecundity of Pacific salmon, coupled with their potentially high survival in protective culture, affords an opportunity for captive broodstocks to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of this stock: sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS research from January to December 1994 on the Redfish Lake sockeye salmon captive broodstock program and summarizes results since the beginning of the study in 1991. Spawn from NMFS Redfish Lake sockeye salmon captive broodstocks is being returned to Idaho to aid recovery efforts for the species

  6. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Flagg, Thomas A.

    1996-03-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game (IDFG) and the Bonneville Power Administration, has established captive broodstocks to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the US Endangered Species Act (ESA). Captive broodstock programs are emerging as an important component of restoration efforts for ESA-listed salmon populations. Captive broodstock programs are a form of artificial propagation. However, they differ from standard hatchery techniques in one important respect: fish are cultured in captivity for the entire life cycle. The high fecundity of Pacific salmon, coupled with their potentially high survival in protective culture, affords an opportunity for captive broodstocks to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of this stock: sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS research from January to December 1994 on the Redfish Lake sockeye salmon captive broodstock program and summarizes results since the beginning of the study in 1991. Spawn from NMFS Redfish Lake sockeye salmon captive broodstocks is being returned to Idaho to aid recovery efforts for the species.

  7. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  8. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2002-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from

  9. Development of rations for the enhanced survival of salmon

    International Nuclear Information System (INIS)

    Ewing, R.D.; Lagasse, J.P.

    1990-12-01

    The nutritional quality of feed plays an important role in determining the health and ''fitness'' of smolts. Commercial fish meal, the major source of protein in salmon rations, may be reduced in quality from poor drying techniques during manufacture. Dietary stress in the hatchery may result. This investigation tests the hypothesis that protein quality of fish rations can influence the survival of smolts and the ultimate return of adults. The test involves a comparison between performances of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) reared on rations containing very high quality protein derived from vacuum dried meals and those of fish reared on commercial rations, with commercial fish meal as a source of protein. Survival and return of several brood years of test and control fish are used to measure the influence of ration on survival. This report includes recovery data from these marked fish collected 1982 through September 1990

  10. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated

  11. Vaccination improves survival of Baltic salmon ( Salmo salar ) smolts in delayed release sea ranching (net-pen period)

    DEFF Research Database (Denmark)

    Buchmann, Kurt; Dalsgaard, Inger; Nielsen, Michael Engelbrecht

    1997-01-01

    Baltic salmon (Salmo salar) of the Finnish Iijoki stock were hatched and reared in freshwater in a salmon hatchery on the Danish island of Bornholm in the Baltic sea. Salmon parr were divided in three groups each comprising 22 000 fish. One group was vaccinated by intraperitoneal injection....... In contrast, no increase of titres was seen in the bath vaccinated and untreated groups. Marked cellular reactions in the abdominal cavity of injected fish were registered. A total of 3000 fish have been tagged and released to evaluate the effect of vaccination on the recapture rate. The implications...

  12. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    1990-09-01

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most common life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.

  13. Migratory behavior of Chinook salmon microjacks reared in artificial and natural environments

    Science.gov (United States)

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2015-01-01

    Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P<0.01). In addition, they differed significantly (P<0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P<0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.

  14. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.

    Science.gov (United States)

    Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K

    2014-06-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of

  15. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    Science.gov (United States)

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  16. Survival of radio-tagged Atlantic salmon ( Salmo salar L.) and trout ( Salmo trutta L.) smolts passing a reservoir during seaward migration

    DEFF Research Database (Denmark)

    Jepsen, Niels; Aarestrup, Kim; Økland, F.

    1998-01-01

    tagged with internal miniature radio-transmitters, and released in the river just upstream the reservoir on May 1, 1996. The salmon smelts were hatchery-reared, while the trout smelts were wild fish, caught in a smelt trap. The tagged smelts were tracked daily for 3 weeks, and when possible the cause...

  17. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  18. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  19. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  20. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  1. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service

    2009-08-18

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relative frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory

  2. AFSC/RACE/SAP/Long: Data on the effects of release density on release success in hatchery-reared red king crab

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data is from an experiment designed to test the viability of using hatchery reared crab to supplement wild stocks and to determine the optimal density for...

  3. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  4. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation

  5. Sherman Creek Hatchery; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch [Washington Dept. of Fish and Wildlife, Olympia, WA (United States). Hatcheries Program

    1997-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations of the SCH have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were implemented to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary change has been to replace the kokanee fingerling program with a kokanee yearling (post smolt) program. The second significant change has been to rear 120,000 rainbow trout fingerling at SCH from July through October to enable the Spokane Tribal Hatchery (STH) to rear additional kokanee for the yearling program.

  6. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  7. Dispersal and survival of stocked juvenile hatchery-reared Atlantic sturgeon (Acipenser oxyrinchus

    Directory of Open Access Journals (Sweden)

    Kapusta Andrzej

    2016-12-01

    Full Text Available The post-stocking dispersal of juvenile Atlantic sturgeon (Acipenser oxyrinchus Mitchill in the Wis3oka River (southern Poland was investigated using biotelemetry. Thirty-five hatchery-reared juvenile A. oxyrinchus were tagged with radio or acoustic transmitters and tracked using mobile surveys and fixed receivers. Daily movement patterns were similar in 2009 and 2010. The sturgeon migrated with a mean speed of 1.42 km h-1 in 2009 and of 2.06 km h-1 in 2010. Migration rate was not regarded as being dependent on juvenile sturgeon size. The confirmed survival of individuals from the two field seasons differed slightly over the course of this study. Short-term survival of A. oxyrinchus was 86.7 and 90% in 2009 and 2010, respectively.

  8. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. (National Marine Fisheries Service)

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  9. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.

    Directory of Open Access Journals (Sweden)

    Bobbi M Johnson

    Full Text Available The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha. Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed "the four H's": habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins

  10. Umatilla Hatchery Monitoring and Evaluation, 1992-1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Hayes, Michael C.; Groberg, Jr., Warren J. (Oregon Department of Fish and Wildlife)

    1994-06-01

    The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing summer steelhead in the Umatilla River and expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmonid production in the Columbia Basin. This report covers the second year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary.

  11. Maintenance of Genetic Diversity in Natural Spawning of Captively-Reared Endangered Sockeye Salmon, Oncorhynchus nerka

    Directory of Open Access Journals (Sweden)

    Ruth E. Withler

    2014-06-01

    Full Text Available Captive propagation of Pacific salmon is routine, but few captive breeding programs have been conducted to successfully re-establish extirpated wild populations. A captive breeding program for endangered Sakinaw Lake sockeye salmon was established from 84 adults between 2002 and 2005, just prior to extirpation of the wild population. After several years of absence, sockeye salmon released from captivity returned to spawn in Sakinaw Lake in 2010 and in all years thereafter. Freshwater survival rates of released hatchery fry and naturally produced progeny of reintroduced sockeye salmon have not limited abundance of the reintroduced population. In contrast, marine survival rates for Sakinaw sockeye salmon have been <1%, a level that precludes population restoration in the absence of supplementation. Genetic diversity commensurate with the number of parental founders has been maintained in captivity. The 517 adult second-generation captive fish that spawned in Sakinaw Lake in 2011 produced a smolt emigration of almost 28,000 juvenile fish with an effective population size of 132. Allelic richness and gene diversity levels in the smolts were similar to those observed in captivity. This indicates genetic contributions from all or most founding parents have been retained both in captivity and in the nascent reintroduced natural population.

  12. Study of Disease and Physiology in the 1978 Homing Study Hatchery Stocks: A Supplement to "Imprinting Salmon and Steelhead Trout for Homing" by Slatick, Novotny, and Gilbreath, January 1979.

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Anthony J.; Zaugg, Waldo S.

    1979-11-01

    The main functions of the National Marine Fisheries Service (NMFS) Aquaculture Task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might effect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. Hatcheries and stocks sampled are listed in Table 1. The health status of the stocks was quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will effect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. The analyses conducted by the veterinary pathologist indicate that overall there was no evidence of serious pathological conditions that might be disastrous to any given stock, but at this time it is also difficult to interpret the results of certain types of clinical pathology that have either not been previously reported or extensively studied. For example, if the 77% incidence of basophillic granular organisms in the gills of the Carson coho salmon does represent an infestation of microsporidian protozoan parasites, is the intensity of infestation severe enough to cause irreparable damage that might affect survival? The results of the viral assays are questionable because the Rangen Laboratory is the only one that found evidence of viruses in these stocks (however, the veterinary pathologist did find evidence

  13. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha from Diverse Genetic Stocks and a Large Spatial Extent.

    Directory of Open Access Journals (Sweden)

    Pascale A L Goertler

    Full Text Available Life history variation in Pacific salmon (Oncorhynchus spp. supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha from the Columbia River estuary over a two-year period (2010-2012. We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  14. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, 1995-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Flagg, Thomas A.

    2001-01-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstocks to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the US Endangered Species Act (ESA). Captive broodstock programs are a form of artificial propagation and are emerging as an important component of restoration efforts for ESA-listed salmon populations. However, they differ from standard hatchery techniques in one important respect: fish are cultured in captivity for the entire life cycle. The high fecundity of Pacific salmon, coupled with their potentially high survival in protective culture, affords an opportunity for captive broodstocks to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of this stock: sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS research from January 1995 to August 2000 on the Redfish Lake sockeye salmon captive broodstock program and summarizes results since the beginning of the study in 1991. Since initiating captive brood culture in 1991, NMFS has returned 742,000 eyed eggs, 181 pre-spawning adults, and over 90,000 smolts to Idaho for recovery efforts. The first adult returns to the Stanley Basin from the captive brood program began with 7 in 1999, and increased to about 250 in 2000. NMFS currently has broodstock in culture from year classes 1996, 1997, 1998, and 1999 in both the captive broodstock program, and an adult release program. Spawn from NMFS Redfish Lake sockeye salmon captive broodstocks is being returned to Idaho to aid recovery efforts for the species.

  15. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J.; Williamson, Kevin S. [Northwest Fisheries Science Center

    2009-05-28

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on

  16. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  17. The Chief Joseph Hatchery Program 2013 Annual Report

    Science.gov (United States)

    Baldwin, Casey; Pearl, Andrea; Laramie, Matthew; Rohrback, John; Phillips, Pat; Wolf, Keith

    2016-01-01

    The Chief Joseph Hatchery is the fourth hatchery obligated under the Grand Coulee Dam/Dry Falls project, originating in the 1940s. Leavenworth, Entiat, and Winthrop National Fish Hatcheries were built and operated as mitigation for salmon blockage at Grand Coulee Dam, but the fourth hatchery was not built, and the obligation was nearly forgotten. After the Colville Tribes successfully collaborated with the United States to resurrect the project, planning of the hatchery began in 2001 and construction was completed in 2013. The monitoring program began in 2012 and adult Chinook Salmon were brought on station for the first time in June 2013. BPA is the primary funding source for CJH, and the Mid-Columbia PUDs (Douglas, Grant and Chelan County) have entered into cost-share agreements with the tribes and BPA in order to meet some of their mitigation obligations. The CJH production level was set at 60% in 2013 in order to train staff and test hatchery facility systems during the first year of operation. Leavenworth National Fish Hatchery (LNFH) provided 422 Spring Chinook broodstock in June, 2013; representing the official beginning of CJH operations. In July and August the CCT used a purse seine vessel to collect 814 summer/fall Chinook as broodstock that were a continuation and expansion of the previous Similkameen Pond program. In-hatchery survival for most life stages exceeded survival targets and, as of April 2014, the program was on track to exceed the 60% production target for its start-up year. The CJH monitoring project collected field data to determine Chinook population status, trend, and hatchery effectiveness centered on five major activities; 1) rotary screw traps (juvenile outmigration, natural-origin smolt PIT tagging) 2) beach seine (naturalorigin smolt PIT tagging) 3) lower Okanogan adult fish pilot weir (adult escapement, proportion of hatchery-origin spawners [pHOS], broodstock) 4) spawning ground surveys (redd and carcass surveys)(viable salmonid

  18. Integrated Hatchery Operations Team: Policies and Procedures for Columbia Basin Anadromous Salmonid Hatcheries, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Integrated Hatchery Operations Team (Northwest Power Planning Council, Portland, OR)

    1995-01-01

    This document outlines regional policies and procedures for hatchery operations in the Columbia River Basin. The purpose of these policies is to provide regional guidelines by which all anadromous fish hatcheries will be operated. These policies will be adopted by the fisheries co-managers, and will provide guidance to operate hatcheries in an efficient and biologically sound manner. The hatchery policies presented in this manual are not intended to establish production priorities. Rather, the intent is to guide hatchery operations once production numbers are established. Hatchery operations discussed in this report include broodstock collection, spawning, incubation of eggs, fish rearing and feeding, fish release, equipment maintenance and operations, and personnel training. Decisions regarding production priorities must be provided by fishery managers through a comprehensive plan that addresses both natural and hatchery fish production. The Integrated Hatchery Operations Team is a multi-agency group called for by the Northwest Power Planning Council. This team was directed to develop new basinwide policies for managing and operating all existing and future anadromous fish hatcheries in the Columbia River Basin. The parties pledge to confer with each other and to use their authorities and resources to accomplish these mutually acceptable hatchery practices.

  19. Infectious Hematopoietic Necrosis Virus Transmission and Disease among Juvenile Chinook Salmon Exposed in Culture Compared to Environmentally Relevant Conditions

    Directory of Open Access Journals (Sweden)

    J. Scott Foott

    2006-02-01

    Full Text Available The dynamics of IHNV infection and disease were followed in a juvenile Chinook salmon population both during hatchery rearing and for two weeks post-release. Cumulative weekly mortality increased from 0.03%–3.5% as the prevalence of viral infection increased from 2%–22% over the same four-week period. The majority of the infected salmon was asymptomatic. Salmon demonstrating clinical signs of infection shed 1000 pfu mL-1 of virus into the water during a 1 min observation period and had a mean concentration of 106 pfu mL-1 in their mucus. The high virus concentration detected in mucus suggests that it could act as an avenue of transmission in high density situations where dominance behavior results in nipping. Infected smolts that had migrated 295 km down river were collected at least two weeks after their release. The majority of the virus positive smolts was asymptomatic. A series of transmission experiments was conducted using oral application of the virus to simulate nipping, brief low dose waterborne challenges, and cohabitation with different ratios of infected to naïve fish. These studies showed that asymptomatic infections will occur when a salmon is exposed for as little as 1 min to >102 pfu mL-1, yet progression to clinical disease is infrequent unless the challenge dose is >104 pfu mL-1. Asymptomatic infections were detected up to 39 d post-challenge. No virus was detected by tissue culture in natural Chinook juveniles cohabitated with experimentally IHNV-infected hatchery Chinook at ratios of 1:1, 1:10, and 1:20 for either 5 min or 24 h. Horizontal transmission of the Sacramento River strain of IHNV from infected juvenile hatchery fish to wild cohorts would appear to be a low ecological risk. The study results demonstrate key differences between IHNV infections as present in a hatchery and the natural environment. These differences should be considered during risk assessments of the impact of IHNV infections on wild salmon and

  20. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    Science.gov (United States)

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  1. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. © 2014 The Fisheries Society of the British Isles.

  2. Research Plan to Determine Timing, Location, Magnitude and Cause of Mortality for Wild and Hatchery Spring/Summer Chinook Salmon Smolts Above Lower Granite Dam. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lower Granite Migration Study Steering Committee

    1993-10-01

    From 1966 to 1968, Raymond estimated an average survival rate of 89% for yearling chinook salmon (Oncorhynchus tshawytscha) migrating from trap sites on the Salmon River to Ice Harbor Dam, which was then the uppermost dam on the Snake River. During the 1970s, the estimated survival rate declined as the proportion of hatchery fish increased and additional dams were constructed. Recent survival indices for yearling chinook salmon smolts in the Snake River Basin indicate that substantial mortalities are occurring en route to Lower Granite Dam, now the uppermost dam on the Snake River. Detection rates for wild and hatchery PIT-tagged smolts at Lower Granite Dam have been much lower than expected. However, for wild fish, there is considerable uncertainty whether overwinter mortality or smolt loss during migration is the primary cause for low survival. Efforts to rebuild these populations will have a better chance of success after the causes of mortality are identified and addressed. Information on the migrational characteristics and survival of wild fish are especially needed. The goal of this initial planning phase is to develop a research plan to outline potential investigations that will determine the timing, location, magnitude, and cause of smolt mortality above Lower Granite Dam.

  3. Research on Captive Broodstock Programs for Pacific Salmon, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. (National Marine Fisheries Service)

    2005-11-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report and those since the last project review period (FY 2003) are listed below by major objective. Objective 1: (i) Developed tools for monitoring the spawning success of captively reared Chinook salmon that can now be used for evaluating the reintroduction success of ESA-listed captive broodstocks in their natal habitats. (ii) Developed an automated temperature controlled rearing system to test the effects of seawater rearing temperature on reproductive success of Chinook salmon. Objective 2: (i) Determined that Columbia River sockeye salmon imprint at multiple developmental stages and the length of exposure to home water is important for successful imprinting. These results can be utilized for developing successful reintroduction strategies to minimize straying by ESA-listed sockeye salmon. (ii) Developed behavioral and physiological assays for imprinting in sockeye salmon. Objective 3: (i) Developed growth regime to reduce age-two male maturation in spring Chinook salmon, (ii) described reproductive cycle of returning hatchery Snake River spring Chinook salmon relative to captive broodstock, and (iii) found delays in egg development in captive broodstock prior to entry to fresh water. (iv) Determined that loss of Redfish Lake sockeye embryos prior to hatch is largely due to lack of egg fertilization rather than embryonic mortality. Objective 4 : (i) Demonstrated safety and efficacy limits against bacterial kidney disease (BKD) in fall Chinook of attenuated R. salmoninarum vaccine and commercial vaccine Renogen, (ii) improved prophylactic and therapeutic

  4. Floodplain farm fields provide novel rearing habitat for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Jacob V E Katz

    Full Text Available When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha. Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g were reared on two hectares for six weeks (Feb-March between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

  5. Nez Perce Tribal Hatchery Program. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-06-01

    Bonneville Power Administration, the Bureau of Indian Affairs, and the Nez Perce Tribe propose a supplementation program to restore chinook salmon to the Clearwater River Subbasin in Idaho. The Clearwater River is a tributary to the Snake River, which empties into the Columbia River. The Nez Perce Tribe would build and operate two central incubation and rearing hatcheries and six satellite facilities. Several environmental issues were identified during scoping: the possibility that the project would fail if mainstem Columbia river juvenile and adult passage problems are not solved; genetic risks to fish listed as endangered or threatened; potential impacts to wild and resident fish stocks because of increased competition for food and space; and water quality. The Proposed Action would affect several important aspects of Nez Perce tribal life, primarily salmon harvest, employment, and fisheries management. Impacts to cultural resources can be avoided so impacts would be low. Soil impacts would be localized and their effects would be local and temporary during construction. Impacts to water quality would be low. Mitigation would be used if impacts to groundwater or surface water are greater than anticipated. No impacts to floodplains are expected. Impacts to all categories of fish range from no to high impacts

  6. Salmon vulnerability maps - Effect of Climate Change on Salmon Population Vulnerability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead (Oncorhynchus mykiss) and other Pacific salmon are threatened by unsustainable levels of harvest, genetic introgression from hatchery stocks and...

  7. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  8. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  9. 78 FR 18967 - Walla Walla Basin Spring Chinook Hatchery Program

    Science.gov (United States)

    2013-03-28

    ... and various agencies to improve stream flow and fish habitat in the Walla Walla basin. The hatchery is... rearing, and water treatment); sixteen outdoor rearing raceways; a smolt release channel; a shop building...

  10. Research on Captive Broodstock Programs for Pacific Salmon; Assessment of Captive Broodstock Technologies, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  11. Spatio-temporal migration patterns of Pacific salmon smolts in rivers and coastal marine waters.

    Directory of Open Access Journals (Sweden)

    Michael C Melnychuk

    Full Text Available BACKGROUND: Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. METHODOLOGY/PRINCIPAL FINDINGS: Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations were tagged between 2004-2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. CONCLUSIONS/SIGNIFICANCE: Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong

  12. Lyons Ferry Hatchery - Summer Steelhead, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Summer Steelhead). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead, and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  13. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12

    Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be

  14. Effects of salmon lice infection and salmon lice protection on fjord migrating Atlantic salmon and brown trout post-smolts

    DEFF Research Database (Denmark)

    Sivertsgard, Rolf; Thorstad, Eva B.; Okland, Finn

    2007-01-01

    Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed...... to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice...... development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km...

  15. A comparison of gene transcription profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions.

    Science.gov (United States)

    Bicskei, Beatrix; Bron, James E; Glover, Kevin A; Taggart, John B

    2014-10-09

    Atlantic salmon have been subject to domestication for approximately ten generations, beginning in the early 1970s. This process of artificial selection will have created various genetic differences between wild and farmed stocks. Each year, hundreds of thousands of farmed fish escape into the wild. These escapees may interbreed with wild conspecifics raising concerns for both the fish-farming industry and fisheries managers. Thus, a better understanding of the interactions between domesticated and wild salmon is essential to the continued sustainability of the aquaculture industry and to the maintenance of healthy wild stocks. We compared the transcriptomes of a wild Norwegian Atlantic salmon population (Figgjo) and a Norwegian farmed strain (Mowi) at two life stages: yolk sac fry and post first-feeding fry. The analysis employed 44 k oligo-microarrays to analyse gene expression of 36 farmed, wild and hybrid (farmed dam x wild sire) individuals reared under identical hatchery conditions. Although some of the transcriptional differences detected overlapped between sampling points, our results highlighted the importance of studying various life stages. Compared to the wild population, the Mowi strain displayed up-regulation in mRNA translation-related and down regulation in nervous and immune system -related pathways in the sac fry, whereas up-regulation of digestive and endocrine activities, carbohydrate, energy, amino acid and lipid metabolism and down-regulation of environmental information processing and immune system pathways were evident in the feeding fry. Differentially regulated pathways that were common among life stages generally belonged to environmental information processing and immune system functional groups. In addition, we found indications of strong maternal effects, reinforcing the importance of including reciprocal hybrids in the analysis. In agreement with previous studies we showed that domestication has caused changes in the transcriptome of

  16. Sockeye salmon evolution, ecology, and management

    Science.gov (United States)

    Woody, Carol Ann

    2007-01-01

    This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement." 

  17. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    Science.gov (United States)

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  18. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  19. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  20. Study of Disease and Physiology in the 1979 Homing Study Hatchery Stocks: A Supplement to "Imprinting Salmon and Steelhead Trout for Homing", 1979 by Slatick, Gilbreath, and Walch.

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Anthony J.; Zaugg, Waldo S.

    1981-09-01

    The National Marine Fisheries Service (NMFS), under contract to the Bonneville Power Administration, is conducting research on imprinting salmon and steelhead for homing (Slatick et al. 1979, 1980; Novotny and Zaugg 1979). The studies were begun with little background knowledge of the effects of disease or certain physiological functions on imprinting and homing in salmonids. Consequently, work aimed at filling this void was begun by the authors in 1978 (Novotny and Zaugg 1979) and continued in 1979. In 1979, we examined random samples of normal populations of homing test fish at the hatcheries to determine the physiological readiness to migrate and adapt to seawater and general fish health. At the Manchester Marine Experimental Station, Manchester, Washington, we determined the survival of samples of the test fish maintained in marine net-pens after release from the hatcheries. Hatcheries and stocks sampled are listed in Table 1.

  1. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    Science.gov (United States)

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  2. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of oxygen supplementation on broiler eggs in a hatchery at high altitude on the growth performance and ascites syndrome of broilers reared at low altitude. The treatment groups were low altitude with no oxygen supplemented in the hatchery (LA-NOX); high altitude with ...

  3. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    Science.gov (United States)

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  4. Associations between piscine reovirus infection and life history traits in wild-caught Atlantic salmon Salmo salar L. in Norway.

    Science.gov (United States)

    Garseth, Ase Helen; Biering, Eirik; Aunsmo, Arnfinn

    2013-10-01

    Piscine Reovirus (PRV), the putative causative agent of heart and skeletal muscle inflammation (HSMI), is widely distributed in both farmed and wild Atlantic salmon (Salmo salar L.) in Norway. While HSMI is a common and commercially important disease in farmed Atlantic salmon, the presence of PRV has so far not been associated with HSMI related lesions in wild salmon. Factors associated with PRV-infection were investigated in returning Atlantic salmon captured in Norwegian rivers. A multilevel mixed-effect logistic regression model confirmed clustering within rivers and demonstrated that PRV-infection is associated with life-history, sex, catch-year and body length as a proxy for sea-age. Escaped farmed salmon (odds ratio/OR: 7.32, p<0.001) and hatchery-reared salmon (OR: 1.69 p=0.073) have higher odds of being PRV-infected than wild Atlantic salmon. Male salmon have double odds of being PRV infected compared to female salmon (OR: 2.11, p<0.001). Odds of being PRV-infected increased with body-length measured as decimetres (OR: 1.20, p=0.004). Since body length and sea-age are correlated (r=0.85 p<0.001), body length serves as a proxy for sea-age, meaning that spending more years in sea increases the odds of being PRV-infected. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  5. Assessing the prevalence of Salmonella enterica in poultry hatcheries by using hatched eggshell membranes.

    Science.gov (United States)

    Chao, M-R; Hsien, C-H; Yeh, C-M; Chou, S-J; Chu, C; Su, Y-C; Yu, C-Y

    2007-08-01

    Salmonella enterica causes a number of significant poultry diseases and is also a major pathogen in humans. Most poultry infected by Salmonella become carriers; infection may also be fatal, depending on the particular serovar and the age of the bird at infection. Younger birds are more susceptible to infection by Salmonella, so it is critical that hatcheries monitor birds. We developed a method to use hatched eggshell membranes (HEM) to assess contamination by Salmonella in poultry hatching cabinets and to evaluate the prevalence of Salmonella in a goose hatchery and rearing farm. Comparison of the Salmonella isolation rate in hatching cabinets using 3 sampling methods showed that the highest Salmonella contamination was detected in HEM, and that these results differed significantly from those obtained from fluff samples and cabinet swab samples (P chicken, and duck hatcheries. The lowest Salmonella-positive rate was found for the chicken hatchery, followed by the goose and the duck hatcheries (P hatcheries: A, B, C1, C2, D, and E. The distribution of these serogroups differed among the hatcheries. Salmonella serogroup C1 was the major serogroup found in geese, compared with serogroup B in chickens and ducks. However, Salmonella Typhimurium was dominant in 1 goose hatchery and also in geese from this hatchery that had been transferred to a farm. Antibiotic susceptibility analysis showed that Salmonella Typhimurium strains isolated from the farm geese with diarrhea showed significantly higher resistance to doxycycline, colistin, sulfamethoxazole-trimethoprin, and cephalothin than those isolated from the hatchery (P hatcheries and rearing farms.

  6. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  7. Fish Research Project Oregon; Umatilla Hatchery Monitoring and Evaluation, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Carmichael, Richard W.; French, Rod A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1993-03-01

    This report covers the first year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary. The most crucial data for evaluating the success of the hatchery program, the data on post-release performance and survival, is yet unavailable. In addition, several years of data are necessary to make conclusions about rearing performance at Umatilla Hatchery. The conclusions drawn in this report should be viewed as preliminary and should be used in conjunction with additional information as it becomes available. A comprehensive fish health monitoring regimen was incorporated into the monitoring and evaluation study for Umatilla Hatchery. This is a unique feature of the Umatilla Hatchery evaluation project.

  8. Columbia River Hatchery Reform System-Wide Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Dan [Hatchery Scientific Review Group

    2009-04-16

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations

  9. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from

  10. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  11. Migratory characteristics of juvenile spring chinook salmon in the Willamette River. Completion report 1994

    International Nuclear Information System (INIS)

    Schreck, C.B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate

  12. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

    2009-03-31

    The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatchery (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional

  13. Methow River Steelhead - Methow River Steelhead hatchery reform research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead in Pacific Northwest hatcheries are typically reared for release as 1-year-old smolts, rather than the 2and 3-year-old smolt life history patterns found in...

  14. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, S.L. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA); Rau, J.A. (Cle Elum Supplementation Research, Cle Elum, WA)

    2003-01-01

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environments during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.

  15. Willamette Hatchery Oxygen Supplementation Studies : Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1993-11-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present adult runs from 2.5 million to 5.0 million fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults.

  16. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29

  17. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  18. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

  19. Outbreaks of phaeohyphomycosis in the chinook salmon (Oncorhynchus tshawytscha) caused by Phoma herbarum.

    Science.gov (United States)

    Faisal, Mohamed; Elsayed, Ehab; Fitzgerald, Scott D; Silva, Victor; Mendoza, Leonel

    2007-01-01

    Phoma herbarum has been associated with two outbreaks of systemic mycosis in hatchery-reared chinook salmon (Oncorhynchus tshawytscha) fingerlings. Affected fish exhibited abnormal swimming behavior, exophthalmia, multiple rounded areas of muscle softening, protruded hemorrhagic vents, and abdominal swelling. In all affected fish, swimbladders were filled with whitish creamy viscous fungal mass, surrounded by dark red areas in swimbladder walls, kidneys, and musculature. Clinical and histopathological examinations suggest that the infection may have started primarily in the swimbladder and then spread to the kidneys, gastrointestinal tract, and surrounding musculature. Consistent microscopical findings included broad septate branched fungal hyaline hyphae, 5-12 microm in diameter within the swimbladder, stomach, and often within and adjacent to blood vessels. Profuse growths of woolly brown fungal colonies were obtained from swimbladders and kidneys on Sabouraud medium. On corn meal agar the formation of pycnidia, characteristic of Phoma spp., was detected within 10 days of incubation. Morphological and molecular analyses identified this fungus as Phoma herbarum. This report underscores systemic fungal infections as a threat to raceway-raised salmon.

  20. Umatilla Satellite and Release Sites Project : Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  1. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  2. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    Science.gov (United States)

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  3. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992; FINAL

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  4. Fish Research Project Oregon; Umatilla Hatchery Monitoring and Evaluation, 1993-1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael C.; Onjukka, Sam T.; Focher, Shannon M. (Oregon Department of Fish and Wildlife, Portland, OR)

    1995-01-01

    This report covers the first three years of comprehensive monitoring and evaluation of the Umatilla Hatchery. Because the hatchery and the evaluation study and the fish health monitoring investigations are in the early stages of implementation, much of the information contained in this report is preliminary. The majority of the data that is crucial for evaluating the success of the hatchery program, the data on post-release performance and survival, is yet unavailable. In addition, several years of data are necessary to make conclusions about rearing performance at Umatilla Hatchery. The conclusions drawn in this report should be viewed as preliminary and should be used in conjunction with additional information as it becomes available.

  5. Research and Recovery of Snake River Sockeye Salmon, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1996-09-01

    In 1991, the National Marine Fisheries Service (NMFS) listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game (IDFG) Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye salmon conducted by IDFG during the period of April 1994 to April 1995 are covered by this report. One female anadromous adult returned to the Redfish Lake Creek trap this year. She was spawned at Eagle Fish Hatchery on October 21, 1994. Her fecundity was 2,896. The mean fertilization rate and percent swim-up were 96% and 95%, respectively. Four hundred eighty eyed eggs were shipped to the NMFS Big Beef Creek Fish Hatchery in Washington state, leaving 2,028 fish on site at Eagle. Additionally, captive broodstock and wild residual sockeye salmon (captured at Redfish Lake) were spawned. Spawning data from 234 females spawned during this period are included in this report. Other spawning data (i.e., genetic cross and incubation temperature) are included in the Captive Broodstock Research section of this report.

  6. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: Consequences for juvenile fitness and smolt migration

    DEFF Research Database (Denmark)

    Larsen, Martin Hage; Johnsson, Jörgen I.; Winberg, Svante

    2015-01-01

    -reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural...... suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess...... characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had...

  7. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers

  8. The Kuril Islands as a potential region for aquaculture: Trace elements in chum salmon

    International Nuclear Information System (INIS)

    Khristoforova, Nadezhda K.; Tsygankov, Vasiliy Yu.; Lukyanova, Olga N.; Boyarova, Margarita D.

    2016-01-01

    The Kuril Islands region is considered promising for development of salmon aquaculture. There are 41 salmon fish hatcheries in the Sakhalin Island and the Kuril Islands, 34 of them are hatcheries of the chum. Therefore, concentrations of six elements (Zn, Cu, Cd, Pb, As, and Hg) were determined in chum salmon were caught in this region. The contents of toxic elements (Cd, Pb, As, and Hg) don't exceed their maximum permissible concentrations (MPC) according to the Russian sanitary standards, but concentration of Pb are closely to MPC. Increased concentrations of Pb in wild chum have the natural origin. The unusual conditions of the Western Pacific are formed under the influence such factors as volcanism and upwelling. - Highlights: • High content of Pb, found in chum from the Kuril Islands, is caused by natural sources. • The content of elements do not exceed maximum permissible concentrations in Russia. • Kuril region is considered as promising zone for development of salmon aquaculture. - Kuril region is suitable for aquaculture development of Pacific salmon.

  9. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  10. Umatilla hatchery satellite facilities operation and maintenance. Annual report 1996

    International Nuclear Information System (INIS)

    Rowan, G.D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996

  11. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  12. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-10-15

    spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of LCR chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce extinction risks to the Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction into the Chinook River basin. The Duncan Creek project was developed using the same recovery strategy implemented for LCR chum. Biologists with the WDFW and Pacific States Marine Fisheries Commission (PSMFC) identified Duncan Creek as an ideal upriver location below Bonneville Dam for chum re-introduction. It has several attributes that make it a viable location for a re-introduction project: historically chum salmon were present, the creek is low gradient, has numerous springs/seeps, has a low potential for future development and is located close to a donor population of Lower Gorge chum. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high-quality spawning and incubation areas, and (2) to simultaneously evaluate natural recolonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. For supplementation, eggs are incubated and the fry reared at the Washougal Hatchery to be released back into Duncan Creek. The tasks associated with re-establishing a naturally self-sustaining population include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to the channels to stabilize the banks, trap

  13. Relying on fin erosion to identify hatchery-reared brown trout in a Tennessee river

    Science.gov (United States)

    Meerbeek, Jonathan R.; Bettoli, Phillip William

    2012-01-01

    Hatchery-induced fin erosion can be used to identify recently stocked catchable-size brown trout Salmo trutta during annual surveys to qualitatively estimate contributions to a fishery. However, little is known about the longevity of this mark and its effectiveness as a short-term (≤ 1 year) mass-marking technique. We evaluated hatchery-induced pectoral fin erosion as a mass-marking technique for short-term stocking evaluations by stocking microtagged brown trout in a tailwater and repeatedly sampling those fish to observe and measure their pectoral fins. At Dale Hollow National Fish Hatchery, 99.1% (228 of 230) of microtagged brown trout in outdoor concrete raceways had eroded pectoral fins 1 d prior to stocking. Between 34 and 68 microtagged and 26-35 wild brown trout were collected during eight subsequent electrofishing samples. In a blind test based on visual examination of pectoral fins at up to 322 d poststocking, one observer correctly identified 91.7% to 100.0% (mean of 96.9%) of microtagged brown trout prior to checking for microtags. In the laboratory, pectoral fin length and width measurements were recorded to statistically compare the fin measurements of wild and microtagged hatchery brown trout. With only one exception, all pectoral fin measurements on each date averaged significantly larger for wild trout than for microtagged brown trout. Based on the number of pectoral fin measurements falling below 95% prediction intervals, 93.7% (148 of 158) of microtagged trout were correctly identified as hatchery fish based on regression models up to 160 d poststocking. Only 72.2% (70 of 97) of microtagged trout were identified correctly after 160 d based on pectoral fin measurements and the regression models. We concluded that visual examination of pectoral fin erosion was a very effective way to identify stocked brown trout for up to 322 d poststocking.

  14. Stream flow and temperature maps - Effect of Climate Change on Salmon Population Vulnerability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Steelhead (Oncorhynchus mykiss) and other Pacific salmon are threatened by unsustainable levels of harvest, genetic introgression from hatchery stocks and...

  15. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  16. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  17. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Science.gov (United States)

    2012-04-02

    ... broodstock origin, history, and genetics for these three Chinook salmon hatchery stocks and concluded that... Science Center, USFWS, and U.S. Forest Service with expertise in the biology, genetics, and ecology of... specific expertise on UKTR Chinook salmon genetics, and the other reviewer has expertise in the ecology of...

  18. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  19. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pravecek, Jay J.

    1997-07-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game`s Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game at the Eagle Fish Hatchery during the period April 1, 1995 to April 1, 1996 are covered by this report. The performance of all captive broodstock groups held at Eagle Fish Hatchery is included in this report. No anadromous adults returned to Redfish Lake in 1995. Three adult residual males were captured in a merwin trap and used in the spawning of captive residual females held at Eagle Fish Hatchery.

  20. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Wildlife, Olympia, WA)

    2002-10-01

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River basin. The

  1. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  2. An overview of diseases in fish hatcheries and nurseries

    Directory of Open Access Journals (Sweden)

    Md. Ali Reza Faruk

    2017-12-01

    Full Text Available Quality and healthy fish seed is the prerequisite for sustainable aquaculture. A major challenge to the expansion of aquaculture production is the outbreak of diseases. Disease induced mortality is a serious issue for the fish seed industry. The immature immune system in fish makes the early developmental stages more susceptible to infectious diseases. Common fish diseases in hatcheries and in early rearing systems are caused by protozoan, ciliates, myxosporodians, worms, opportunistic bacteria and fungi. Production of healthy fish seed and survivality depends on the proper health management, maintenance of good water quality, proper nutrition and application of biosecurity measures. The paper highlighted the different types of diseases, causative agents and their prevention and control measures in fish hatcheries and nurseries. [Fundam Appl Agric 2017; 2(3.000: 311-316

  3. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  4. The influence of cage conditioning on the performance and behavior of Japanese flounder reared for stock enhancement: Burying, feeding, and threat response

    Science.gov (United States)

    Walsh, Michelle L.; Masuda, Reiji; Yamashita, Yoh

    2014-01-01

    Flatfish reared for stock enhancement often exhibit irregular behavioral patterns compared with wild conspecifics. These “deficits”, mostly attributed to the unnatural characteristics of the hatchery environment, are assumed to translate to increased predation risk. Initially releasing fish in predator-free conditioning cages may help flatfish adjust to the wild environment, establish burial skills, begin pigment change, recover from transport stress, and experience natural (live) food sources before full release into the wild. However, the impact of cage conditioning on the performance and behavior of flatfish has yet to be fully assessed. We conducted video trials with 10-cm, hatchery-reared Japanese flounder, Paralichthys olivaceus, in sand-bottomed aquaria to assess four treatments of flounder: (1) reared fish cage conditioned for 7 d in the shallow coast, (2) reared fish directly from hatchery tanks, (3) wild fish, and (4) reared fish released directly from hatchery tanks into the wild and then recaptured after 6 d at large. Burying ability, predation, and threat response to a model predator were examined. Wild fish buried most, followed by cage conditioned, and released-then-recaptured and non-conditioned (directly from tank) fish. Wild and conditioned fish revealed much lower variation in total movement duration, which corresponded with lower levels and variation in prey vertical movement. Fish of all condition types exhibited a lower number of attacks and off-bottom swimming events, and a lower movement duration when the model predator was in motion versus when it was still. This study is the first to evaluate the behavioral mechanisms of hatchery-reared flatfish that have been cage-conditioned or released-then-recaptured. In addition, we provide evidence that cage conditioning can enhance the performance of released flatfish.

  5. Fish research project -- Oregon: Umatilla Hatchery monitoring and evaluation, project period 1 November 1993--30 October 1994. Annual report 1994

    International Nuclear Information System (INIS)

    Hayes, M.C.; Carmichael, R.W.; Focher, S.M.; Keefe, M.L.; Love, G.W.; Groberg, W.J. Jr.; Hurtado, N.L.; Onjukka, S.T.; Waln, K.

    1994-01-01

    This report covers the first three years of comprehensive monitoring and evaluation of the Umatilla Hatchery. Because the hatchery and the evaluation study and the fish health monitoring investigations are in the early stages of implementation, much of the information contained in this report is preliminary. The majority of the data that is crucial for evaluating the success of the hatchery program, the data on post-release performance and survival, is yet unavailable. In addition, several years of data are necessary to make conclusions about rearing performance at Umatilla Hatchery. The conclusions drawn in this report should be viewed as preliminary and should be used in conjunction with additional information as it becomes available

  6. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

  7. An Enriched Environment Promotes Shelter-Seeking Behaviour and Survival of Hatchery-Produced Juvenile European Lobster (Homarus gammarus)

    Science.gov (United States)

    Aspaas, Stian; Grefsrud, Ellen Sofie; Fernö, Anders; Jensen, Knut Helge; Trengereid, Henrik; Agnalt, Ann-Lisbeth

    2016-01-01

    The high loss of newly released hatchery-reared European lobster (Homarus gammarus) juveniles for stock enhancement is believed to be the result of maladaptive anti-predator behaviour connected to deprived stimuli in the hatchery environment. Our objective was to learn if an enriched hatchery environment enhances shelter-seeking behaviour and survival. In the “naïve” treatment, the juveniles were raised in single compartments without substrate and shelter whereas juveniles in the “exposed” treatment experienced substrate, shelter and interactions with conspecifics. Three experiments with increasing complexity were conducted. Few differences in shelter-seeking behaviour were found between treatments when one naïve or one exposed juvenile were observed alone. When observing interactions between one naïve and one exposed juvenile competing for shelter, naïve juveniles more often initiated the first aggressive encounter. The third experiment was set up to simulate a release for stock enhancement. Naïve and exposed juveniles were introduced to a semi-natural environment including substrate, a limited number of shelters and interactions with conspecifics. Shelter occupancy was recorded three times during a period of 35 days. Exposed juveniles occupied more shelters, grew larger and had higher survival compared with naïve juveniles. Our results demonstrate that experience of environmental complexity and social interactions increase shelter-seeking ability and survival in hatchery reared lobster juveniles. PMID:27560932

  8. An Enriched Environment Promotes Shelter-Seeking Behaviour and Survival of Hatchery-Produced Juvenile European Lobster (Homarus gammarus).

    Science.gov (United States)

    Aspaas, Stian; Grefsrud, Ellen Sofie; Fernö, Anders; Jensen, Knut Helge; Trengereid, Henrik; Agnalt, Ann-Lisbeth

    2016-01-01

    The high loss of newly released hatchery-reared European lobster (Homarus gammarus) juveniles for stock enhancement is believed to be the result of maladaptive anti-predator behaviour connected to deprived stimuli in the hatchery environment. Our objective was to learn if an enriched hatchery environment enhances shelter-seeking behaviour and survival. In the "naïve" treatment, the juveniles were raised in single compartments without substrate and shelter whereas juveniles in the "exposed" treatment experienced substrate, shelter and interactions with conspecifics. Three experiments with increasing complexity were conducted. Few differences in shelter-seeking behaviour were found between treatments when one naïve or one exposed juvenile were observed alone. When observing interactions between one naïve and one exposed juvenile competing for shelter, naïve juveniles more often initiated the first aggressive encounter. The third experiment was set up to simulate a release for stock enhancement. Naïve and exposed juveniles were introduced to a semi-natural environment including substrate, a limited number of shelters and interactions with conspecifics. Shelter occupancy was recorded three times during a period of 35 days. Exposed juveniles occupied more shelters, grew larger and had higher survival compared with naïve juveniles. Our results demonstrate that experience of environmental complexity and social interactions increase shelter-seeking ability and survival in hatchery reared lobster juveniles.

  9. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  10. Effects of salinity on trace elements in otoliths of Masu salmon

    International Nuclear Information System (INIS)

    Nagata, Yoshihisa; Arai, Nobuaki; Sakamoto, Wataru; Tago, Yasuhiko; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in otoliths of Masu salmon Oncorhynchus masou masou to examine relationship between trace elements and environmental salinity. The otoliths were removed from salmon juveniles reared in four values of salinity and wild ones. The otolith Sr concentrations of reared individuals are positively related to salinity and there is significant difference between freshwater and seawater. The otoliths of smolts contain more Sr than those of parrs. It seems that the Sr concentrations in otoliths of Masu salmon reflect salinity where they had stayed and show the migration pattern. (author)

  11. Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding

    Science.gov (United States)

    Sahlmann, Christian; Gu, Jinni; Kortner, Trond M.; Lein, Ingrid; Krogdahl, Åshild; Bakke, Anne Marie

    2015-01-01

    Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight. PMID:25923375

  12. Growth-Enhanced Transgenic Coho Salmon (Oncorhynchus kisutch Strains Have Varied Success in Simulated Streams: Implications for Risk Assessment.

    Directory of Open Access Journals (Sweden)

    Rosalind A Leggatt

    Full Text Available Growth hormone (GH transgenic fish have accelerated growth and could improve production efficiency in aquaculture. However, concern exists regarding potential environmental risks of GH transgenic fish should they escape rearing facilities. While environmental effects have been examined in some GH transgenic models, there is a lack of information on whether effects differ among different constructs or strains of transgenic fish. We compared growth and survival of wild-type coho salmon (Oncorhynchus kisutch fry, a fast-growing GH transgenic strain containing a metallothionein promoter (TMT, and three lines/strains containing a reportedly weaker histone-3 promoter (TH3 in hatchery conditions and semi-natural stream tanks with varying levels of natural food and predators. Rank order of genotype size and survival differed with varying environmental conditions, both within and among experiments. Despite accelerated growth in hatchery conditions, TMT fry gained little or no growth enhancement in stream conditions, had enhanced survival when food was limiting, and inconsistent survival under other conditions. Rank growth was inconsistent in TH3 strains, with one strain having highest, and two strains having the lowest growth in stream conditions, although all TH3 strains had consistently poor survival. These studies demonstrate the importance of determining risk estimates for each unique transgenic model independent of other models.

  13. Colville Tribal Fish Hatchery, annual report 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for fish to survive to spawning maturity, to spawn

  14. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  15. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled

  16. Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine

    Science.gov (United States)

    Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.

    2014-01-01

    Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.

  17. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  18. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  19. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    Science.gov (United States)

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  20. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    -channel' was extended westward and connected to Bradbury Slough to create a second outlet to the main river. New intertidal channels were constructed from the existing 'T-channel' and tidal mudflats became inundated at high tide to increase rearing habitat for juvenile salmonids. The restoration action resulted in a 95-percent increase in available juvenile salmon rearing habitat. We collected juvenile salmon and other fishes at Crims Island and a nearby reference site using beach seines and fyke nets annually from March through August during all years. Benthic invertebrates were collected with sediment corers and drift invertebrates were collected with neuston nets. Juvenile salmon stomach contents were sampled using lavage. Vegetation and sediments characteristics were surveyed and we conducted a topographic/bathymetric survey using a RTK (real time kinematic) GPS (global positioning system). The fish assemblage at Crims Island, composed primarily of threespine stickleback (Gasterosteus aculeatus), non-native banded killifish (Fundulus diaphanus), peamouth chub (Mylocheilus caurinus), subyearling Chinook salmon (Oncorhynchus tshawytscha) (hereinafter referred to as subyearlings), and small numbers of juvenile chum salmon (Oncorhynchus keta), did not differ appreciably pre- and post-restoration. Subyearlings were the primary salmonid collected and were seasonally abundant from April through May during all years. The abundance of juvenile salmon declined seasonally as water temperature exceeded 20 degrees C in the Reference site by mid-June; however, subyearlings persisted at the Mainstem site and in subtidal channels of the Restoration site through the summer in water temperatures exceeding 22 degrees C. Residence times of subyearlings in Crims Island backwaters generally were short consisting of one or two tidal cycles. Median residence time was longer in the Restoration site than in the Reference site pre- and post-restoration. Small (mean = 55.7 millimeters) subyea

  1. Coded-Wire Tag Expansion Factors for Chinook Salmon Carcass Surveys in California: Estimating the Numbers and Proportions of Hatchery-Origin Fish

    Directory of Open Access Journals (Sweden)

    Michael S. Mohr

    2013-12-01

    Full Text Available Recovery of fish with adipose fin clips (adc and coded-wire tags (cwt in escapement surveys allows calculation of expansion factors used in estimation of the total number of fish from each adc,cwt release group, allowing escapement to be resolved by age and stock of origin. Expanded recoveries are used to derive important estimates such as the total number and proportion of hatchery-origin fish present. The standard estimation scheme assumes accurate visual classification of adc status, which can be problematic for decomposing carcasses. Failure to account for this potential misclassification can lead to significant estimation bias. We reviewed sample expansion factors used for the California Central Valley Chinook salmon 2010 carcass surveys in this context. For upper Sacramento River fall-run and late fall-run carcass surveys, the estimated proportions of adc,cwt fish for fresh and non-fresh carcasses differed substantially, likely from the under-recognition of adc fish in non-fresh carcasses. The resulting estimated proportions of hatchery-origin fish in the upper Sacramento River fall-run and late fall-run carcass surveys were 2.33 to 2.89 times higher if only fresh carcasses are considered. Similar biases can be avoided by consideration of only fresh carcasses for which determination of adc status is relatively straightforward; however, restricting the analysis entirely to fresh carcasses may limit precision because of reduced sample size, and is only possible if protocols for sampling and recording data ensure that the sample data and results for fresh carcasses can be extracted. Thus we recommend sampling protocols that are clearly documented and separately track fresh versus non-fresh carcasses, either collecting only definitively adc fish or that carefully track non-fresh carcasses that are definitively adc versus those that are possibly adc. This would allow judicious use of non-fresh carcass data when sample sizes are otherwise

  2. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that

  3. Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities in the rearing water of Penaeus monodon larvae.

    Science.gov (United States)

    Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal

    2011-04-01

    Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p  0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.

  4. Colville Tribal Fish Hatchery, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Arteburn, John; Christensen, David (Colville Confederated Tribes, Nespelem, WA)

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for

  5. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  6. Research and Recovery of Snake River Sockeye Salmon, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1993-05-01

    Significant changes were made in the fish rearing facilities at the Idaho Department of Fish and Game`s (IDFG) Eagle Hatchery during the contract period. Rearing and develop sampling protocols for genetics and pathology were developed. The rearing protocol was derived with assistance of the Technical Oversight Committee, the scientific advisory group, and several fish culturists and nutritionists who were consulted informally. The standards were incorporated into the Research and Propagation Permit from National Marine Fisheries Service was applied for during this project period. Pathology and genetics samples have been taken and processed from each fish which died during the rearing phase.

  7. Research and Recovery of Snake River Sockeye Salmon, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.

    1994-11-01

    Significant changes were made in the fitah rearing facilities at the Idaho Department of Fish and Game's (IDFG) Eagle Hatchery during the contract period. An outside rearing area was enclosed with fence and chicken wire and covered with 70% shade cloth. Seven circular tanks were installed to hold the outmigrante in separate groups while the inside of the hatchery building was modified. The concrete vats were removed and a concrete floor with drains was poured. Twenty 2-m and eight l-m semisquare fiberglass tanks were installed. The original water supply and degassing tower were left intact since they have functioned well. The pump and back-up generator were serviced. Water level sensors were installed for the alarm system, which was linked to the local ADT Security Systems operator to call both staff telephone numbers and pagers. This system has worked well. No photoperiod control has been used to date. At this phase of the project, no attempt to control water temperature was installed. The other option was to move any maturing fish to Sawtooth Fish Hatchery to complete maturation. This was not necessary for the first year of the project. Project security has been increased at Eagle by having the fish culturist and one temporary employee live on-site. This also decreases response time in emergencies. The second requirement for rearing juveniles was to design a rearing protocol and develop sampling protocols for genetics and pathology. The rearing protocol was derived with assistance of the Technical Oversight Committee (TOC), the scientific advisory group, and several fish culturists and nutritionists who were consulted informally. The standards were incorporated into the Research and Propagation Permit from National Marine Fisheries Service (NMFS), which was applied for during this project period (Appendix A). Pathology and genetics samples have been taken and processed from each fish which died during the rearing phase. These have been distributed in a

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  9. Colville Tribal Fish Hatchery, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Arteburn, John; Christensen, David (Colville Confederated Tribes, Nespelem, WA)

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a major negative impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas have been completely blocked to anadromous fish by dams, destroying the primary food resource (salmon) for many native people forcing them to rely heavily upon resident fish to replace these lost resources. The Colville Tribal Fish Hatchery is an artificial production program that addresses the loss of anadromous fish resources in the Upper Columbia Sub-Region within the ''blocked area'' created by the construction of Chief Joseph and Grand Coulee Dams. This project enhances resident fisheries located in the Intermountain and Columbia Cascade Provinces, specifically within the Colville Reservation portion of the Upper Columbia, SanPoil and Oakanogan Sub-Basins. The project partially mitigates for anadromous fish losses through protection/augmentation of resident fish populations to enhance fishery potential (i.e. in-place, out-of-kind mitigation) pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 and the hatchery was completed in 1990. The Colville Tribal Hatchery (CTH) is located on the northern bank of the Columbia River just down stream of the town of Bridgeport, Washington that is just down stream of Chief Joseph Dam. The hatchery is located on land owned by the Colville Tribes. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout annually. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence/recreational fishery for Colville Tribal members and provide for a successful nonmember sport fishery. The majority of the fish distributed from the facility are intended to support &apos

  10. Research on Captive Broodstock Technology for Pacific Salmon, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Penny; Pascho, Ronald; Hershberger, William K. (Northwest and Alaska Fisheries Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1996-01-01

    This report summarizes research on captive broodstock technologies conducted during 1995 under Bonneville Power Administration Project 93-56. Investigations were conducted by the National Marine Fisheries Service (NMFS) in cooperation with the US Fish and Wildlife Service, University of Washington, and Northwest Biological Science Center (US Geological Survey). Studies encompassed several categories of research, including fish husbandry, reproductive physiology, immunology, pathology, nutrition, and genetics. Captive broodstock programs are being developed and implemented to aid recovery of endangered Pacific salmon stocks. Like salmon hatchery programs, however, captive broodstock programs are not without problems and risks to natural salmon populations. The research projects described in this report were developed in part based on a literature review, Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. The work was divided into three major research areas: (1) research on sockeye salmon; (2) research on spring chinook salmon; and (3) research on quantitative genetic problems associated with captive broodstock programs. Investigations of nutrition, reproductive physiology, fish husbandry, and fish health were integrated into the research on sockeye and spring chinook salmon. A description of each investigation and its major findings and conclusions is presented.

  11. The role of emergent wetlands as potential rearing habitats for juvenile salmonids

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Flemming, Ian A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration.

  12. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    general, upriver brights differ from tules by at least one locus. Steelhead stocks can be divided into two main groups: (1) those stocks found east of the Cascades; and (2) those stocks found west of the Cascade Mountains. Steelhead from west of the Cascades are divisable into three subgroups of closely related stocks: (1) a group comprised mainly of wild winter steelhead from the lower Columbia River; (2) Willamette River hatchery and wild winter steelhead; and (3) summer and winter hatchery steelhead stocks from both the lower Columbia and Willamette Rivers. Steelhead from east of the Cascades are separable into three subgroups of closely related stocks: (1) wild summer steelhead; (2) a group comprised mainly of hatchery summer steelhead stocks; and (3) other hatchery and wild steelhead from Idaho. Streams east and west of the Cascades can be differentiated using characters including precipitation, elevation, distance from the mouth of the Columbia, number of frost-free days and minimum annual air temperature. There are significant differences among the stocks of chinook salmon and steelhead trout for each of the meristic and body shape characters. Between year variation does not account for differences among the stocks for the meristic and body shape characters with the exception of pelvic fin ray number in steelhead trout. Characters based on body shape are important for discriminating between the groups of hatchery and wild steelhead stocks. We could not determine whether the basis for the differences were genetic or environmental. The reason for the variation of the characters among stocks is as yet unclear. Neutrality or adaptiveness has not been firmly demonstrated.

  13. Control strategy for viral diseases of salmonid fish, flounders and shrimp at hatchery and seed production facility in Japan

    OpenAIRE

    Yoshimizu, Mamoru

    2009-01-01

    Salmonid fish are important species for hatchery reared and released fish. Flounders and shrimp are also important species for seed production and sea-farming in Japan. Viral disease is one of the limitations of successful propagation of these species. Methods currently used to control viral diseases are 1) hygiene and sanitation in facilities, 2) disinfection of rearing and waste water using U. V. irradiation, ozonization and electrolyzation, 3) selection of pathogen-free brood stock by cell...

  14. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    International Nuclear Information System (INIS)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L.; Eie, J.A.

    1993-01-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0 + fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1 + salmon was about 30%. Experiments that included adding 115 g wheat/m 2 resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  15. Outplanting Anadromous Salmonids, A Lilterature Study.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eugene M.

    1985-10-01

    This paper presents a list of more than 200 references on topics associated with offstation releases of hatchery stocks of anadromous fish used to supplement or reestablish wild rearing. The narrative briefly reviews influences of genetics, rearing density of fish in the natural environment, survival rates observed from outplanted stocks, and estimation procedures for stocking rates and rearing densities. We have attempted to summarize guidelines and recommendations for fishery managers to consider. Based on tagging studies, a typical smolt release from a Willamette River hatchery would return 0.29% of the smolts to the stream of release as adults. Catch to escapement ratios for adult Willamette chinook vary widely between broods, but on average two fish are caught for each fish that escapes. The catch is about evenly divided between offshore and freshwater harvest. British Columbia is the primary location of offshore harvest, and the lower Willamette River is the primary location of freshwater harvest. Review of departmental policy indicates that only Willamette stock spring chinook are currently acceptable for use in a proposed outplant study within the Willamette basin. Further, most Oregon Department of Fish and Wildlife district management biologists would prefer not to transfer any stocks of spring chinook between drainage subbasins. State fishery managers identified 16 Willamette basin streams as being suitable for supplementation with spring chinook from hatcheries. We reviewed the potential for rearing salmon in reservoirs throughout the basin. Use of the Carmen-Smith spawning channel, which was constructed on the upper McKenzie River in 1960, has generally declined with the decline in populations of chinook salmon in this river. The Carmen-Smith channel still provides a spawning place for those relatively few adult chinook that still return each year, but more fishery benefits may result from other uses of this facility. 7 figs., 8 tabs.

  16. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, Annual Report 1998

    International Nuclear Information System (INIS)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-01-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m ± 0.2 m and 0.26 m/s ± 0.19 m/s, and during the fall 0.5 m ± 0.2 m and 0.24 m/s ± 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree

  17. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  18. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada.

    Directory of Open Access Journals (Sweden)

    Alexandra Morton

    Full Text Available The disease Heart and Skeletal Muscle Inflammation (HSMI is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV, is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp. from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097. PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008 where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002. These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

  19. Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

    2008-12-01

    Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-native stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of

  20. A comparative study of diploid versus triploid Atlantic salmon (Salmo salar L.). The effects of rearing temperatures (5, 10 and 15°C) on raw material characteristics and storage quality.

    Science.gov (United States)

    Lerfall, Jørgen; Hasli, Pål Rune; Skare, Even Flønes; Olsen, Rolf Erik; Rotabakk, Bjørn Tore; Roth, Bjørn; Slinde, Erik; Egelandsdal, Bjørg

    2017-06-15

    Several major market operators argue that the current level of knowledge about quality is too scant to justify a switch to a large-scale production of triploid salmon. The aim of the present study was, therefore, to elucidate how rearing conditions (5, 10 and 15°C) affect the flesh quality of triploid Atlantic salmon (Salmo salar L., 1.6±0.3kg). As a reference, diploid salmon kept under equal conditions and with equal genetics were used. The main design discriminant was the holding temperature; increased temperature gave increased blood lactate, rigor index (I r ), drip loss (DL), content of astaxanthin and intensity of redness, but reduced muscle pH, cathepsin activity and fillet lightness. Salmon kept at 10°C grew the fastest. It is concluded that ploidy gave less variation than temperature. Triploids were characterized by lower blood haematocrit (Hct) and I r , higher DL and collagenase activity, and on average, paler and less yellowish fillets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. FISH HATCHERY IN THE MUNICIPALITY OF BOSANSKA KRUPA IN NORTHWESTERN BOSNIA AND HERZEGOVINA: A SUSTAINABLE DEVELOPMENT PILOT PROJECT

    Directory of Open Access Journals (Sweden)

    N. Ajanovic

    2010-04-01

    Full Text Available The Norwegian Government financed the project GCP/BIH/003/NOR “Support to Income Generation through establishment of a Fish Hatchery in Bosnia and Herzegovina”, worth one million US dollars, that includes the construction of a fish hatchery on the banks of the River Krusnica in order to create jobs and incomes for people living with disability in Bosanska Krupa. The hatchery is dedicated to producing local strains of brown trout (Salmo trutta m. fario, grayling (Thymallus thymallus and Danube salmon (Hucho hucho for re–stocking the natural waters of the Krusnica/Una River catchments (and larger Bosnia and Herzegovina and Danube basin, support the rehabilitation of fish populations and to help revitalize local tourism. The Regional Office for Europe and Central Asia (REU of the Food and Agricultural Organization of the United Nations (FAO, based in Budapest, Hungary implements the project in close collaboration with the Sport Fishermen’s Association of Krusnica, which currently has 351 members. A fish hatchery, a pilot Recirculation Aquaculture System (RAS in the valley of the River Krusnica, is the first of its kind in Bosnia and Herzegovina. It is suitable for production of 250,000 to 450,000 fingerlings annually. Five war invalids are employed at the hatchery continuously since fish production began in November of 2008. The production technology learned by the staff abroad was adapted to the local conditions. The hatchery is expected to be self–sustainable in its operation from sale of fingerlings. Since the hatchery activity has received wider publicity, anglers’ interest in the River Krusnica and River Una has increased. Further increase in the number of visitors is expected after restocking the fish into the river, since the bigger fish populations will attract more and more anglers.

  2. Captive rearing initiative for Salmon River chinook salmon; Report period: January 1998-January 1999; Annual report

    International Nuclear Information System (INIS)

    Hassemer, Peter; Kline, Paul; Heindel, Jeff; Plaster, Kurtis

    1999-01-01

    The IDFG initiated a captive rearing program for populations at high risk of extinction to maintain metapopulation structure. Captive rearing is a short-term approach to species preservation. The main goal of the captive rearing approach is to avoid demographic and environmental risks of cohort extinction; maintaining the genetic identity of the breeding unit is an important but secondary objective

  3. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    Energy Technology Data Exchange (ETDEWEB)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L. (Oslo Univ. (Norway). Zoological Museum); Kaasa, H. (Statkraft, Hoevik (Norway)); Eie, J.A. (Norwegian Water Resources and Energy Administration, Oslo (Norway))

    1993-05-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0[sup +] fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1[sup +] salmon was about 30%. Experiments that included adding 115 g wheat/m[sup 2] resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  4. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1985 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, Edward C.

    1986-07-01

    Mid-water trawling techniques were used during September to estimate kokanee population abundance, structure and survival. Abundance in 1985 was estimated at 4.5 million fish (198 per hectare), down from over 12 million kokanee in 1974 when the population was first monitored. Hatchery fry production (<6 million annually) has stabilized kokanee abundance since its initial decline in the late 1960s. Wild fry recruitment has remained relatively stable at 1.8 million since 1978; whereas recruitment of hatchery-reared fry has ranged from 0.09 to 1.98 million. The 1985 creel survey indicated that kokanee harvest rates remain low, with approximately one kokanee harvested per hour of effort from April to August. Catch rates were as high as 3.5 fish per hour during the mid-1960s. The zooplankton community was monitored with periodic plankton tows. Zooplankton composition in 1985 was similar to previous years and appears to have stabilized following the introduction of mysids, with peak cladoceran production occurring several weeks after peak kokanee emergence. Delayed release of hatchery fry resulted in higher survival of hatchery (7.3%) than wild (0.43%) kokanee fry. Other release strategies will be tested as more fry become available.

  5. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  6. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  7. Physiological Assessment and Behavioral Interaction of Wild and Hatchery Juvenile Salmonids : The Relationship of Fish Size and Growth to Smoltification in Spring Chinook Salmon.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, Brian R.; Larsen, Donald A.; Lee-Pawlak, Beeda; Dickhoff, Walton W.

    1996-10-01

    Experiments were performed to determine the relative influence of size and growth rate on downstream migratory disposition and physiology in yearling spring chinook salmon (Oncorhynchus tshawtscha) smolts. A group of juvenile chinook salmon was size graded into small and large categories with half the fish in each group reared at an elevated temperature, resulting in four distinct treatment groups: Large Warm (LW), Large Cool (LC), Small Warm (SW), and Small Cool (SC). Fish from warm-water treatment groups displayed significantly higher growth rates than cool-water groups. Fish were tagged and released into a natural creek where downstream movement was monitored. For each of the two releases, fish that migrated past a weir within the first 5 days postrelease had significantly higher spring growth rates than fish that did not migrate within that period. Significant differences in length for the same fish were only found in the second release. Also for the second release, fish from the warm water treatment groups were recovered in higher proportions than fish from cool water groups. The results indicate that increased growth rate in the spring has a positive relation to downstream migratory disposition. Furthermore, there is a relation between smolt size and migration; however, this relation is weaker than that found between growth rate and migration.

  8. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  9. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries

    Directory of Open Access Journals (Sweden)

    Toms C. Joseph

    2015-09-01

    Full Text Available Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV, Hepatopancreatic Parvo Virus (HPV, Monodon Baculo Virus (MBV and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae.

  10. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    Science.gov (United States)

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  11. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  12. Effect of rearing density on poststocking survival of lake trout in Lake Ontario

    Science.gov (United States)

    Elrod, Joseph H.; Ostergaard, David E.; Schneider, Clifford P.

    1989-01-01

    Six paired lots of yearling lake trout (Salvelinus namaycush) reared at densities of 41,000 and 51,000 fish per raceway during their last 9 months in the hatchery were stocked in Lake Ontario. Poststocking survival of the high-density (HD) and low-density (LD) fish was not different for the 1982 year-class. However, for the 1983 year-class, mean survival was significantly different between HD and LD fish (P Mean survival of HD fish was only 76% that of LD fish (P Mean size at stocking was not different for HD and LD fish of the 1982 year-class, but for the 1983 year-class, the LD fish were 6% longer and 22% heavier than the HD fish. Mean lengths and weights of LD and HD fish were not different in samples collected in Lake Ontario at age 2 and older. Size at stocking was not likely the factor that caused the difference in survival. Rather, the rearing conditions (probably water exchange rate in relation to number of fish in the raceway) that resulted in slower growth of the HD fish of the 1983 year-class also caused them to be poorer physiologically than the LD fish. The number of yearling lake trout per rearing unit that will result in maximum contribution to populations in the Great Lakes after stocking may be lower than the rearing densities customarily used at some hatcheries.

  13. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin (Pearsons et al. 2004). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs

  14. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  15. 75 FR 35440 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-06-22

    ... Chinook salmon population through removal of escaping hatchery-origin Chinook salmon adults to increase productivity and intra-population diversity and promote local adaptation, and (3) use Chinook salmon... hatchery-origin Chinook salmon removal on natural Chinook salmon productivity and develop an adaptive...

  16. Loma salmonae (Protozoa: Microspora) infections in seawater reared coho salmon Oncorhynchus kisutch

    Science.gov (United States)

    Kent, M.L.; Elliott, D.G.; Groff, J.M.; Hedrick, R.P.

    1989-01-01

    Loma salmonae (Putz et al., 1965) infections were observed in five groups of coho salmon, Oncorhynchus kisutch, reared in seawater net-pens in Washington State, U.S.A. in 1984–1986. Ultrastructural characteristics, size of spores, tissues and host infected, and geographical location identified the microsporidium as Loma salmonae. Preserved spores measured 4.4×2.3 (4–5.6×2–2.4) μm and exhibited 14–17 turns of the polar filament. Infections were evident in the gills of some fish before seawater entry, but few parasites were observed and they caused little tissue damage. Infections observed in fish after transfer to seawater were associated with significant pathological changes in the gills. A mixed inflammatory infiltrate was associated with ruptured microsporidian xenomas within the vessels and interstitium of the primary lamellae. Microsporidian spores were dispersed throughout the lesions and were often seen inside phagocytes. The parasite was also observed in the heart, spleen, kidney and pseudobranchs; however, the inflammatory lesions were common only in the heart.Monthly examination of fish after transfer to seawater showed peak prevalences (33–65%) of gill infections during the summer. Although moribund fish were often infected with other pathogens, the high prevalence of L. salmonae infections and the severity of the lesions it caused, suggested that this parasite significantly contributed to the recurrent summer mortalities observed at this net-pen site.

  17. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  18. Spawning distribution of fall chinook salmon in the Snake River : annual report 1998.; ANNUAL

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    1999-01-01

    In 1998 data was collected on the spawning distribution of the first adult fall chinook salmon to return from releases of yearling hatchery fish upriver of Lower Granite Dam. Yearling fish were released at three locations with the intent of distributing spawning throughout the existing habitat. The project was designed to use radio-telemetry to determine if the use of multiple release sites resulted in widespread spawning

  19. The evolution of the clear water hatchery system for Macrobrachium rosenbergii in the French West Indies from 1979 to 1984

    OpenAIRE

    Lacroix, Denis; Robin, Thierry; Sica Aquacole De Martinique,; Aquacop,

    1985-01-01

    The clearwater larval rearing method for Macrobrachium rosenbergii was perfected in the french research center of Tahiti in 1977 nad carried on to improve the technique especially on recirculating system. This aquaculture is launched in Martinique by the regional council in 1976. A first "green water" hatchery is built and provides juveniles to the first ponds.

  20. Effect of diets containing dogfish (Squalus acanthias) meal on the mercury content and growth of pen-reared coho salmon (Oncorhynchus kisutch)

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, J [National Oceanic and Atmospheric Administration, Seattle; Mahnken, C

    1976-08-01

    The use of dogfish (Squalus acanthias) meal as a complete replacement for herring or other low mercury (Hg) content fish meal in rations intended for rearing cultured salmon introduces the risk of producing fish that exceed the current U.S. FDA tolerance level of 0.5 ppM Hg. The amount of Hg that accumulates in the muscle is related not only to the total Hg content of the fish, but is probably also related to the form in which it is present in the diet and to other constituents that may react with the Hg in the diet. Our results indicate that dogfish meal may be used as a partial (<50%) replacement for the fish meal portion of the diet without encountering Hg values (in the muscle) that exceed 0.5 ppM Hg. No evidence was found that naturally occurring chelating agents in dehydrated orange peel or polygalacturonic acid--cellulose complexes (PG) have the ability to chelate and prevent the deposition of Hg in either the muscle or the liver of the fish. It was observed that growth is decreased in coho salmon (Oncorhynchus kisutch) fed OMP-type diets in which 50% or more of herring meal was replaced with dogfish meal. (auth)

  1. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  2. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  3. Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin: annual progress report project period 1 September 1998 to 31 August 1999; ANNUAL

    International Nuclear Information System (INIS)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  4. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    2002-08-01

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, egg size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.

  5. Influences of Stocking Salmon Carcass Analogs on Salmonids in Yakima River Tributaries, 2001-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-04-01

    The benefits that marine derived nutrients from adult salmon carcasses provide to juvenile salmonids are increasingly being recognized. Current estimates suggest that only 6-7% of marine-derived nitrogen and phosphorus that were historically available to salmonids in the Pacific Northwest are currently available. Food limitation may be a major constraint limiting the restoration of salmonids. A variety of methods have been proposed to offset this nutrient deficit including: allowing greater salmon spawning escapement, stocking hatchery salmon carcasses, and stocking inorganic nutrients. Unfortunately, each of these methods has some ecological or socio-economic shortcoming. We intend to overcome many of these shortcomings by making and evaluating a pathogen free product that simulates a salmon carcass (analog). Abundant sources of marine derived nutrients are available such as fish offal from commercial fishing and salmon carcasses from hatcheries. However, a method for recycling these nutrients into a pathogen free analog that degrades at a similar rate as a natural salmon carcass has never been developed. We endeavored to (1) develop a salmon carcass analog that will increase the food available to salmonids, (2) determine the pathways that salmonids use to acquire food from analogs, and (3) determine the benefits to salmonids and the potential for application to salmonid restoration. We used a before-after-control-impact-paired design in six tributaries of the upper Yakima basin to determine the utility of stocking carcass analogs. Our preliminary results suggest that the introduction of carcass analogs into food-limited streams can be used to restore food pathways previously provided by anadromous salmon. The analogs probably reproduced both of the major food pathways that salmon carcasses produce: direct consumption and food chain enhancement. Trout and salmon fed directly on the carcass analogs during the late summer and presumably benefited from the increased

  6. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  7. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  8. GENETIC DIVERSITY OF Vibrio harveyi ISOLATED FROM TIGER PRAWN Penaeus monodon HATCHERIES AND GROW OUT PONDS

    OpenAIRE

    Muliani Muliani; Ince Ayu Khairana Kadriah; Andi Parenrengi; Sulaeman Sulaeman

    2006-01-01

    ibrio harveyi is known as one among the most harmful bacteria infecting tiger prawn at every stage of its life’s. The present research was aimed to reveal the genetic diversity of Vibrio harveyi isolated from tiger prawn (Penaeus monodon) culture. The samples of bacteria were collected from hatchery (brood-stock, larvae, natural feed, artemia, and larval rearing water) and grow-out (juveniles, water, shrimp, sediment, plankton, crab, mollusc, microalgae, and wild fish).  The taxonomic identif...

  9. Origin of broodstock and effects on the deformities of gilthead sea bream (Sparus aurata L. 1758 in a Mediterranean commercial hatchery

    Directory of Open Access Journals (Sweden)

    John A. Theodorou

    2016-08-01

    Full Text Available Abstract The use of broodstock of different origin as a method to improve fry production performance and consequently to minimize deformities was examined at industrial scale in a commercial gilthead sea bream hatchery. The outcome of fry production from three different broodstock groups (BA: broodfish (Mediterranean with multiannual hatchery presence, BB: selected offspring originating from the BA group, and BC: broodfish of Atlantic origin was investigated in the same rearing conditions and feeding protocol. Performance factors assessed were the survival and weaning of the larvae; the mortality rates from the “weaning until the end of the hatchery stage” of the larvae/fry; the percentage of fry without swim bladder; the percentage of fry with skeletal deformities and the feed conversion ratio. In all factors, no statistical differences among the experimental groups were detected. However, due to early rejection of the deformed individuals, benefits are expected from the decrease of the supplied amount of food and the reduced labor cost.

  10. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  11. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  12. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  13. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  14. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  15. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  16. Fish Research Project, Oregon : Evaluation of the Success of Supplementing Imnaha River Steelhead with Hatchery Reared Smolts: Phase One : Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Whitesel, Timothy A.; Jonasson, Brian C.

    1995-08-01

    Two streams in the Imnaha River subbasin (Camp Creek and Little Sheep Creek) and eight streams in the Grande Ronde River subbasin (Catherine, Deer, Five Points, Fly, Indian, Lookingglass, Meadow, and Sheep creeks) were selected as study streams to evaluate the success and impacts of steelhead supplementation in northeast Oregon. The habitat of the study streams was inventoried to compare streams and to evaluate whether habitat might influence the performance parameters we will measure in the study. The mean fecundity of hatchery and natural steelhead 1-salts returning to Little Sheep Creek fish facility in 1990 and 1991 ranged from 3,550 to 4,663 eggs/female; the mean fecundity of hatchery and natural steelhead 2-salts ranged from 5,020 to 5,879 eggs/female. Variation in length explained 57% of the variation in fecundity of natural steelhead, but only 41% to 51% of the variation in fecundity of hatchery steelhead. Adult steelhead males had an average spermatocrit of 43.9% at spawning. We were also able to stain sperm cells so that viable cells could be distinguished from dead cells. Large, red disc tags may be the most useful for observing adults on the spawning grounds. The density of wild, juvenile steelhead ranged from 0 fish/l00{sup 2} to 35.1 (age-0) and 14.0 (age-1) fish/l00m{sup 2}. Evidence provided from the National Marine Fisheries Service suggests that hatchery and wild fish within a subbasin are genetically similar. The long-term experimental design is presented as a component of this report.

  17. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  18. Hindrances to upstream migration of atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric power-station

    International Nuclear Information System (INIS)

    Rivinoja, P.; Lundqvist, H.

    2001-01-01

    Many Baltic salmon rivers have lost their natural juvenile production due to human activities blocking or reducing access to their spawning grounds, e.g. damming, power generation, partial hinders, etc.. One such hindrance is a hydroelectric complex located in the lower reaches of River Umeaelven in northern Sweden. Water from the forbay created by the dam Norrfors is directed to the Stornorrfors power-station. At times, 100 per cent of the river is directed to the power-station. Water from the power-station then flows via a tunnel and outlet channel to the river. From the point of the tunnel's discharge into the river, the old river bed acts as a bypass channel directing migrating adult fish to a fish ladder located at the base of the dam. In this study, the effect that an additional turbine, that was installed at the power-station in 1986, had on fish passage run-time was examined. Changes in run-time were compared for two periods 1974-1985 and 1986-1995. In 1997, 55 wild and 25 hatchery salmon were captured in the Umeaelven estuary, radio tagged with uniquely coded tags, and tracked upstream. Both manual and automatic loggers were used to locate fish daily. The main findings show that only 26 per cent of the wild salmon and none of the hatchery salmon found the fish ladder. It is suggested that the salmon followed the main water discharge from the power-station outlet and are thus directed away from the entrance to the bypass channel leading to the fish ladder. Salmon respond by moving upstream or downstream depending on the current flow regimes. The bypass channel consists of partial hinders that may explain why it takes on average 52 days for the salmon to migrate 32 km from the estuary to the fish ladder. Adding a fourth turbine at the power-station did not appear to have changed the timing of the migration or the seasonal distribution of the migrating wild salmon through the fish ladder. There was no significant effect of the fourth turbine on the duration

  19. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  20. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  1. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  2. Short- and long-term effects of dietary l-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Basic, D.; Krogdahl, T.; Scholden, J.

    2013-01-01

    . Basal plasma cortisol levels were lower among non-stressed fish at 1 and 10. days post dietary Trp supplementation. By comparison, stressed fish displayed stimulatory post-stress plasma cortisol responses at 1 and 2. days after the Trp regimen was terminated. However, a reversed pattern was observed...... as well as habituation to seawater involves the neuroendocrine stress response, suggesting that such environmental factors may modulate the stress-reducing effects of Trp. To date, studies that have investigated the neuroendocrine effects of dietary Trp have only been conducted in rainbow trout...... (. Oncorhynchus mykiss), a salmonid species, under conditions featuring social isolation in the freshwater environment. Here, we address the effects of dietary Trp on post-stress plasma cortisol and hypothalamic monoamines in seawater-adapted Atlantic salmon (. Salmo salar), reared at densities relevant...

  3. Lake Roosevelt Fisheries Monitoring Program; Measurement of Thyroxin Concentration as an Indicator of the Critical Period for Imprinting in the Kokanee Salmon (Orcorhynchus Nerka) Implications for Operating Lake Roosevelt Kokanee Hatcheries; 1991 Supplement Report.

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Allan T.; White, Ronald J.; Koehler, Valerie A. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

    1992-05-01

    Previous investigations have determined that thyroid hormone surges activate olfactory imprinting in anadromous salmonid smolts. The mechanism of action appears to require binding of thyroid hormones to receptors in brain cell nuclei, which stimulates neuron differentiation and wires a pattern of neuron circuitry that allows for the permanent storage of the imprinted olfactory memory. In this study, thyroxine concentrations [T{sub 4}] were measured in 487 Lake Whatcom stock and 70 Lake Roosevelt stock Kokanee salmon to indicate the critical period for imprinting. Eggs, alevins and fry, reared at the Spokane Indian Kokanee Hatchery, were collected from January through August 1991. Sampled fish were flash frozen on dry ice and stored at {minus}80{degrees}C until T{sub 4} was extracted and concentrations determined by radioimmunassay. Mean concentration {+-} SEM of 10--20 individual fish (assayed in duplicate) were determined for each time period. T{sub 4} concentration peaked on the day of hatch at 16.8 ng/g body weight and again at swim-up at 16.0 {+-} 4.7 ng/g body weight. T{sub 4} concentration was 12.5 to 12.9 ng/g body weight in eggs, 7.1 to 15.2 ng/g body weight in. alevins, 4.5 to 11.4 ng/g body weight in 42 to 105 day old fry and 0.1 to 2.9 ng/g body weight in 112 to 185 day old fry. T{sub 4} concentrations were highest in eggs at 13.3 {+-} 2.8 ng/g body weight, then steadily decreased to 0.1 {+-} 0.1 ng/g body weight in older fry. Fry were released in Lake Roosevelt tributaries in July and August 1991, at about 170--180 days post hatching, in order to imprint them to those sites. The results of this study indicate that the time of release was not appropriate for imprinting. If T{sub 4} levels are an accurate guide for imprinting in kokanee, our results suggest that the critical period for imprinting in kokanee is at hatching or swim-up stages.

  4. StreamNet Query System: Hatchery Returns

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — These trends include all counts of fish obtained at a hatchery or one of its satellite facilities. The only method allowed is hatchery rack / weir, and the count...

  5. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    Science.gov (United States)

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  6. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  7. Global assessment of extinction risk to populations of Sockeye salmon Oncorhynchus nerka.

    Directory of Open Access Journals (Sweden)

    Peter S Rand

    Full Text Available BACKGROUND: Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN. The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. METHODS/PRINCIPAL FINDINGS: We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5% are already extinct. We analyzed the risk for 62 out of 93 extant populations (67% and found that 17 of these (27% are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. CONCLUSIONS/SIGNIFICANCE: Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct.

  8. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  9. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    . 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  10. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  11. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1α) and consecutive gene expression

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.M.; Soitamo, Arto; Vuorinen, Pekka J.; Nikinmaa, Mikko

    2004-01-01

    Baltic salmon (Salmo salar) suffer from abnormally high yolk-sac fry mortality designated as M74-syndrome. In 1990s, 25-80% of salmon females, which ascended rivers to spawn, produced yolk-sac fry suffering from the syndrome. Symptoms of M74-affected fry include neurological disturbances, impaired vascular development and abnormal haemorrhages. The latter symptoms are observed in mammalian embryos if the function of hypoxia inducible transcription factor (HIF-1α), its dimerization partner aryl hydrocarbon nuclear translocator (ARNT) or target gene vascular endothelial growth factor (VEGF) is disturbed. To study the possible involvement of HIF-1α and its target gene VEGF in the development of the syndrome, we collected healthy and M74-affected wild Baltic salmon yolk-sac fry and analyzed HIF-1α mRNA and protein expression, HIF-1α DNA-binding, target gene VEGF protein expression, and blood vessel density in both groups at different stages of yolk-sac fry development. In addition, since Baltic salmon females contain organochlorine contaminants, which have been suggested to be the cause of M74 syndrome via the aryl hydrocarbon receptor (AhR)-dependent gene expression pathway, we studied AhR protein expression, AhR DNA-binding and target gene CYP1A protein expression. Since the parents of both healthy and M74-affected wild fry will have experienced the organochlorine load from the Baltic Sea, hatchery-reared fry were included in the studies as an additional control. The results show that the vascular defects observed in fry suffering from M74 are associated with reduced DNA-binding activity of HIF-1α and subsequent downregulation of its target gene vascular endothelial growth factor (VEGF). In addition, also AhR function is decreased in diseased fry making it unlikely that symptoms of M74-affected fry would be caused by an upregulation of xenobiotically induced AhR-dependent gene expression pathway

  12. 9 CFR 147.23 - Hatchery sanitation.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Hatchery sanitation. 147.23 Section... AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT PLAN Sanitation Procedures § 147.23 Hatchery sanitation. An effective program for the prevention and control of Salmonella...

  13. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  14. Unlocking the secrets of Lake Clark sockeye salmon

    Science.gov (United States)

    Woody, Carol Ann

    2003-01-01

    Sockeye salmon are a cornerstone species in many Alaska watersheds. Each summer, adults lay eggs in rocky nests called “redds,” and they die soon after. In spring, their fry emerge from gravels and then rear in a nearby freshwater lake for one year or more before migrating as smolt to the sea. During this smolt phase, an olfactory map of their route is imprinted on their memories. Sockeye salmon spend one to four years in the ocean feeding and growing. Then, some innate cue sends them back in a mass migration to their natal lake systems, which they find using the olfactory map made years before. They complete their life cycle by spawning, then dying in habitats of their birth.

  15. Protecting salmon and trout in the Capilano River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Capilano Reservoir and Cleveland Dam were constructed in 1954 in order to supply energy to a growing urban region. The dam became a barrier for trout and salmon trying to migrate from the reservoir behind the dam into the lower Capilano River. Studies have indicated that up to 90 per cent of the fish do not survive the drop into the rocky pool at the base of the dam. This paper discussed a project being conducted to improve the fish habitat in the lower Capilano River and reduce the mortality of smolt or young fish during their passage over the dam. A trap-and-truck project was launched to catch migrating trout and salmon in rotary screw traps in the upper portion of the river as well as in the reservoir. The fish were measured, weighed and tagged and then trucked to the base of the dam near the fish hatchery. It was concluded that more traps will be used to increase the capture rate in 2009. Habitat assessments are also being conducted in order to design long-term fish passage systems. 10 figs.

  16. Atlantic salmon brood stock management and breeding handbook

    Science.gov (United States)

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  17. Fish Culture Data - Captive Broodstock Gene Rescue Program for Odd Year Class Elwha River Pink Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct captive brood stock gene rescue program for Elwha River odd-year class pink salmon. Raw data on rearing density, loading density, water temperature, ration,...

  18. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  19. Hood River Steelhead Genetics Study; Relative Reproductive Success of Hatchery and Wild Steelhead in the Hood River, Final Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Blouin, Michael

    2003-05-01

    There is a considerable interest in using hatcheries to speed the recovery of wild populations. The Bonneville Power Administration (BPA), under the authority of the Northwest Power Planning Act, is currently funding several hatchery programs in the Columbia Basin as off-site mitigation for impacts to salmon and steelhead caused by the Columbia River federal hydropower system. One such project is located on the Hood River, an Oregon tributary of the Columbia. These hatchery programs cost the region millions of dollars. However, whether such programs actually improve the status of wild fish remains untested. The goal of this project was to evaluate the effectiveness of the Hood River hatchery program as required by the Northwest Power Planning Council Fish and Wildlife Program, by the Oregon Plan for Coastal Salmonids, by NMFS ESA Section 4(d) rulings, and by the Oregon Department of Fish and Wildlife (ODFW) Wild Fish Management Policy (OAR 635-07-525 through 529) and the ODFW Hatchery Fish Gene Resource Management Policy (OAR 635-07-540 through 541). The Hood River supports two populations of steelhead, a summer run and a winter run. They spawn only above the Powerdale Dam, which is a complete barrier to all salmonids. Since 1991 every adult passed above the dam has been measured, cataloged and sampled for scales. Therefore, we have a DNA sample from every adult steelhead that went over the dam to potentially spawn in the Hood River from 1991 to the present. Similar numbers of hatchery and wild fish have been passed above the dam during the last decade. During the 1990's 'old' domesticated hatchery stocks of each run (multiple generations in the hatchery, out-of-basin origin; hereafter H{sub old}) were phased out, and conservation hatchery programs were started for the purpose of supplementing the two wild populations (hereafter 'new' hatchery stocks, H{sub new}). These samples gave us the unprecedented ability to estimate, via

  20. Evidence of damage to pink salmon inhabiting Prince William Sound, Alaska, three generations after the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Bue, B.G.; Miller, G.D.; Seeb, J.E.; Sharr, S.

    1995-01-01

    Investigations into the environmental effects of the 1 989 Exxon Valdez oil spill lead us to conclude that chronic damage occurred in some pink salmon populations. Differences in survival between streams contaminated by oil and uncontaminated streams have been observed annually since the spill for pink salmon embryos incubating in the intertidal portions of Prince William Sound. The authors assessed the environmental influence on these findings by collecting gametes from both contaminated and uncontaminated streams, transporting them to a hatchery where intra-stream crosses were made, and incubating the resulting embryos under identical conditions. Lower survival was detected in the embryos originating from the oil-contaminated streams indicating that the agent responsible for the differences detected in the field was genetic rather than environmental

  1. Handling and Treatment of Poultry Hatchery Waste: A Review

    Directory of Open Access Journals (Sweden)

    Belinda Rodda

    2011-01-01

    Full Text Available A literature review was undertaken to identify methods being used to handle and treat hatchery waste. Hatchery waste can be separated into solid waste and liquid waste by centrifuging or by using screens. Potential methods for treating hatchery waste on site include use of a furnace to heat the waste to produce steam to run a turbine generator or to use an in line composter to stabilise the waste. There is also potential to use anaerobic digestion at hatcheries to produce methane and fertilisers. Hatcheries disposing wastewater into lagoons could establish a series of ponds where algae, zooplankton and fish utilise the nutrients using integrated aquaculture which cleans the water making it more suitable for irrigation. The ideal system to establish in a hatchery would be to incorporate separation and handling equipment to separate waste into its various components for further treatment. This would save disposal costs, produce biogas to reduce power costs at plants and produce a range of value added products. However the scale of operations at many hatcheries is too small and development of treatment systems may not be viable.

  2. Loss of genetic variation in Greek hatchery populations of the European sea bass (Dicentrarchus labrax L. as revealed by microsatellite DNA analysis

    Directory of Open Access Journals (Sweden)

    D. LOUKOVITIS

    2014-10-01

    Full Text Available Genetic variation in four reared stocks of European sea bass Dicentrarchus labrax L., originating from Greek commercial farms, was assessed using five polymorphic microsatellite markers and was compared with that of three natural populations from Greece and France. The total number of alleles per marker ranged from 8 to 22 alleles, and hatchery samples showed the same levels of observed heterozygosity with samples from the wild but substantially smaller allelic richness and expected heterozygosity. The genetic differentiation of cultivated samples between them as well as from the wild origin fish was significant as indicated by Fst analysis. All population pairwise comparisons were statistically significant, except for the pair of the two natural Greek populations. Results of microsatellite DNA analysis herein showed a 37 % reduction of the mean allele number in the hatchery samples compared to the wild ones, suggesting random genetic drift and inbreeding events operating in the hatcheries. Knowledge of the genetic variation in D. labrax cultured populations compared with that in the wild ones is essential for setting up appropriate guidelines for proper monitoring and management of the stocks either under traditional practices or for the implementation of selective breeding programmes.

  3. 75 FR 15430 - Chief Joseph Hatchery Program

    Science.gov (United States)

    2010-03-29

    ... production program and hatchery facilities. The National Oceanic and Atmospheric Administration's National... DEPARTMENT OF ENERGY Bonneville Power Administration Chief Joseph Hatchery Program AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of availability of Record...

  4. Cobia (Rachycentron canadum hatchery-to-market aquaculture technology: recent advances at the University of Miami Experimental Hatchery (UMEH Tecnologia da criação de beijupirá (Rachycentron canadum: recentes avanços do Laboratório de Larvicultura Experimental da Universidade de MIAMI (UMEH

    Directory of Open Access Journals (Sweden)

    Daniel Benetti

    2010-07-01

    Full Text Available Among warm-water marine fishes, cobia is one of the best aquaculture candidate species in the world. Currently there are commercial culture operations in several Asian countries and the industry has started developing elsewhere, including the Western Central Atlantic region. Significant research has been conducted at the University of Miami's Aquaculture Program / University of Miami Experimental Hatchery (UMEH during the last eight years, involving research to develop and optimize advanced technology to demonstrate the viability of raising hatchery-reared cobia in collaboration with the private sector. This paper reviews some of this recent advances for the development of Hatchery-to-Market Aquaculture Technology for commercial production of cobia.Dentre os peixes marinhos de águas quentes, o bijupirá é um dos grandes candidatos para a aquacultura no mundo. Atualmente, existem operações comerciais em vários países Asiáticos e a indústria iniciou suas operações em outros locais, incluindo a região do Atlântico Central. Pesquisas têm sido realizadas no "University of Miami's Aquaculture Program / University of Miami Experimental Hatchery (UMEH" durante os últimos oito anos envolvendo o desenvolvimento e otimização de tecnologia avançada para demonstrar a viabilidade da criação de bijupirá com colaboração com o setor privado. Este artigo revisa alguns destes avanços recentes para o desenvolvimento da tecnologia da larvicultura para o mercado para a produção comercial de bijupirá.

  5. Vibrio infections among marine and fresh-water fish

    Science.gov (United States)

    1959-01-01

    In 1951. B. J. Earpio found a vibrio infection among salmon fingerlings being reared in saltwater at the Deception Pass Biological Station of the Washington State Department of Fisheries. The disease waa characterized by erythema at the base of fins and on the sides of the fish, necrotic areas in the Inusculature, inflammation of the intestinal tract, and general septicernia. The disease reappeared the next year, killing nearly all of the churn salmon (Oncorhynchus keta) fingerlings, killing about half of the pink salmon (O. gorbuscha) fingerlings, and affecting to a lesser degree the chinook salmon (O. tshawytscha) fingerlings. Also, late in 1952. R. R. Rucker and E. J. Ordal found the same disease at a rainbow trout hatchery of the Washington State Department of Game at Vancouver. The disease caused severe losses there among the rainbow trout (Salmo gairdneri) and among the sea-run form of the same species (called steelhead trout). The disease was manifested by bloody, necrotic areas in the musculature and inflammation of the viscera, відоіШат to furumaculoвiв,

  6. Evaluation of the Reproductive Success of Wild and Hatchery Steelhead in Hatchery and Natural and Hatchery Environments : Annual Report for 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas P.; Seamons, todd; Hauser, Lorenz; Naish, Kerry

    2008-12-05

    This report summarizes the field, laboratory, and analytical work from December 2007 through November 2008 on a research project that investigates interactions and comparative reproductive success of wild and hatchery origin steelhead (Oncorhynchus mykiss) trout in Forks Creek, a tributary of the Willapa River in southwest Washington. First, we continued to successfully sample hatchery and wild (i.e., naturally spawned) adult and wild smolt steelhead at Forks Creek. Second, we revealed microsatellite genotype data for adults and smolts through brood year 2008. Finally, four formal scientific manuscripts were published in 2008 and two are in press, one is in revision and two are in preparations.

  7. Analysis of the Exxon Valdez oil spill impacts on Prince William Sound pink salmon

    International Nuclear Information System (INIS)

    Brannon, E.L.; Moulton, L.L.; Maki, A.W.

    1996-01-01

    The impact of the Exxon Valdez oil spill on pink salmon in Prince William Sound (PWS), was studied. Since the incident, numerous and extensive field and laboratory studies have been completed by various scientists. This paper synthesized information on the post-spill salmon harvests, the concentration of petroleum that entered the water column, the number of streams oiled, and stream sediment chemistry, to determine the potential for oil spill effects. Results from this study showed that oiling to the extent experienced during incubation and rearing during both the spring and fall of 1989 through the spring of 1991, resulted in no measurable effects on the PWS pink salmon. The estimated losses predicted earlier, likely exceeded actual losses. 16 refs., 4 tabs., 4 figs

  8. Establishment and Efficiency Evaluation of a Simple Mini hatchery for production of Oreochromis niloticus (GIFT strain seeds

    Directory of Open Access Journals (Sweden)

    M.P.K.S.K. De Silva

    2015-06-01

    Full Text Available A simple technology mini hatchery was established for small scale farmers to meet their own GIFT seed requirements. Different shapes and sizes of jars were trialed for incubation of eggs and yolk-sac larvae. Concaved bottom round plastic bottles (4 L and rectangular (3 L plastic trays gave the best hatchability of eggs and survival of yolk-sac larvae respectively. The best stocking density was 500 eggs/larvae L-1. Optimised flow rate into the incubation bottles and rearing trays were 2.70±0.18 L min-1 and 5.40±0.14 L min-1 respectively. Two gravel filters (15 L and 20 L made with discarded and low cost material purified the water from the incubation containers and directed into a water recirculation system. Production efficiency of this mini hatchery was compared with a hapa breeding method. Two hapas having 10 m3 size and 1.6 mm mesh were positioned in an earthen pond. Each hapa was stocked with 40 GIFT broodfish at 1:1 female to male ratio. In Phase I of the study (60 days, eggs collected from Hapa I were placed in incubation bottles and hatchability and survival rate were determined. In parallel, free-swimming fry were collected and counted from the Hapa II at every 14 days. The study continued in the same way for Phase II (next 60 days by interchanging the brood fish between Hapa I and Hapa II. Yield from the mini hatchery (24,000 fry was significantly different (P≤0.05 from hapa method (4,879 fry indicating that this established mini hatchery could serve as a productive model to support small scale farmers in GIFT seed production.

  9. Responses of pink salmon to CO2-induced aquatic acidification

    Science.gov (United States)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  10. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  11. 1992 Columbia River salmon flow measures Options Analysis/EIS: Appendices

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices

  12. A critical assessment of the ecological assumptions underpinning compensatory mitigation of salmon-derived nutrients

    Science.gov (United States)

    Collins, Scott F.; Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2015-01-01

    We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.

  13. High-flow, low-head pumps provide safe passage for Pacific salmon

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    The installation of 29 ultra-low head, high capacity submersible pump and auxiliary equipment at the Rocky Reach Dam in Washington State to allow juvenile salmon safe passage on their journey down the Columbia River to the Pacific Ocean is described. The reputed cost of the project is US$160 million; its purpose is to get juvenile salmon safely around the Rocky Reach Dam without interfering with the dam's original mission of generating electric power. The project is the most expensive fish bypass on any Columbia River dam. Getting the salmon safely around the dam is intended to reduce the impact of hydroelectric power projects on the basin's salmon stocks which are now estimated at less than 10 per cent of their historic size, despite major hatchery programs. The Columbia River has the second largest volume flow of any river in the United States, and millions of people depend on it for employment in water-related industries, and for transportation. The new horizontally installed propeller pump was developed by ITT Flygt; it utilizes planetary gear reduced to match the motor speed with the propeller rpm. Each 90 kW propeller pump has a flow rate of seven cubic meters per second at a head of 0.55 metres. The auxiliary equipment includes 10 racks of flap gates to prevent reverse flow, electric controls, remote supervision, testing, installation and maintenance facilities. It is anticipated that the new bypass will allow the Chelan County Public Utility Department, owners of the facility, to phase out all current spills, except for a 16 per cent spill for 40 days each spring for Sockeye salmon which tend to travel too deep to use the bypass. Prior to installation of this new facility, 60 to 70 per cent of average daily flow in the spring and summer had to be sacrificed to accommodate all species of salmon and steelhead, with corresponding losses of power generating capacity

  14. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  15. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01

    interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  16. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  17. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    Science.gov (United States)

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  18. Evidence of deepwater spawning of fall chinook salmon (Oncorhynchus tshawytscha): spawning near Ives and Pierce Island of the Columbia River, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Mueller, Robert P.; Dauble, Dennis D.

    2000-01-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin

  19. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  20. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  1. Delousing efficiency of farmed ballan wrasse (Labrus bergylta) against Lepeophtheirus salmonis infecting Atlantic salmon (Salmo salar) post-smolts.

    Science.gov (United States)

    Leclercq, Eric; Davie, Andrew; Migaud, Hervé

    2014-08-01

    Cleaner-fish (wrasse, Labridae) are increasingly deployed within the Atlantic salmon (Salmo salar L.) industry as a biological control against sea-lice (Lepeophtheirus salmonis Krøyer). Two tank-based trials were performed to test the effect of farmed ballan wrasse (Labrus bergylta Ascanius) body mass and supplementary feeding on the delousing of Atlantic salmon post-smolts with an initial infection level of ∼12 lice salmon(-1) and a ∼5% wrasse:salmon ratio. Sea-louse levels below 0.5 lice salmon(-1) were obtained within 84 h, and preferential preying upon larger motile stages was found. The wrasse body mass and the availability of fresh, opened blue mussels (Mytilus edulis L.) did not significantly affect delousing efficiency. The functional predator response was linear, showing no minimum prey density threshold for sea-louse foraging and no satiation plateau, in spite of the high consumption rates measured. Sea-louse infection levels declined following a one-phase exponential decay model, with a standardised decline time constant of 0.8-1.3% h(-1) for each wrasse stocked per 100 salmon. Farmed ballan wrasse are confirmed as highly effective therapeutic and preventive biological controls against sea-lice. The study supports the current minimum hatchery size target (10 mm total length) and the use of supplementary feeding to sustain the wrasse stocks in operation. The functional predator response and the standardised decline time constant of sea-louse abundance are proposed as useful indicators of delousing efficiency. © 2013 Society of Chemical Industry.

  2. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  3. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  4. Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Monica Favnebøe Solberg

    Full Text Available The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1-15 degree-days (0-3 days, as water temperatures were c. 5-6°C, these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.

  5. The Effects of Chicken Box, Chick Paper Type and Flock Age on Sound Level and Leg Abnormalities in One-Day Old Chicks in the Hatchery

    OpenAIRE

    SALAHI, Ahmad; ESMAILIZADEH, ALI K.

    2014-01-01

    Abstract: Chicken box and chick paper are two important factors affecting quality of delivered chicks after hatching and packaging until arrival in rearing farms. In this study, characteristics of 70 samples of chicken boxes collected during two years in four hatcheries in Iran were surveyed. Winter and summer types of chicken boxes each with seven replicates including five chicken boxes were studied. The capacity, length, width, height, weight, area, total ventilation ducts  of  the boxes in...

  6. A laboratory-calibrated model of coho salmon growth with utility for ecological analyses

    Science.gov (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Plumb, John M.

    2018-01-01

    We conducted a meta-analysis of laboratory- and hatchery-based growth data to estimate broadly applicable parameters of mass- and temperature-dependent growth of juvenile coho salmon (Oncorhynchus kisutch). Following studies of other salmonid species, we incorporated the Ratkowsky growth model into an allometric model and fit this model to growth observations from eight studies spanning ten different populations. To account for changes in growth patterns with food availability, we reparameterized the Ratkowsky model to scale several of its parameters relative to ration. The resulting model was robust across a wide range of ration allocations and experimental conditions, accounting for 99% of the variation in final body mass. We fit this model to growth data from coho salmon inhabiting tributaries and constructed ponds in the Klamath Basin by estimating habitat-specific indices of food availability. The model produced evidence that constructed ponds provided higher food availability than natural tributaries. Because of their simplicity (only mass and temperature are required as inputs) and robustness, ration-varying Ratkowsky models have utility as an ecological tool for capturing growth in freshwater fish populations.

  7. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    Science.gov (United States)

    McCormick, S.D.; Keyes, A.; Nislow, K.H.; Monette, M.Y.

    2009-01-01

    We conducted field studies to determine the levels of acid and aluminum (Al) that affect survival, smolt development, ion homeostasis, and stress in Atlantic salmon (Salmo salar) smolts in restoration streams of the Connecticut River in southern Vermont, USA. Fish were held in cages in five streams encompassing a wide range of acid and Al levels for two 6-day intervals during the peak of smolt development in late April and early May. Physiological parameters were unchanged from initial sampling at the hatchery and the high water quality reference site (pH > 7.0, inorganic Al pH (5.4-5.6) and highest inorganic Al (50-80 μg·L-1). Moderate loss of plasma chloride, increased plasma cortisol and glucose, and moderately elevated gill Al occurred at less severely impacted sites. Gill Al was a better predictor of integrated physiological impacts than water chemistry alone. The results indicate that Al and low pH under field conditions in some New England streams can cause mortality and impair smolt development in juvenile Atlantic salmon and provide direct evidence that episodic acidification is impacting conservation and recovery of Atlantic salmon in the northeastern USA.

  8. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    Science.gov (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses

  9. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  10. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  11. Estuarine chinook capacity - Estimating changes in juvenile Chinook rearing area and carrying capacity in estuarine and freshwater habitats of the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project has two objectives: 1. Estimate the amount of rearing habitat available to juvenile Chinook salmon currently and historically (i.e., ~1850s) throughout...

  12. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    Science.gov (United States)

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  13. Effectiveness and retention of thiamine and its analogs administered to steelhead and landlocked Atlantic salmon

    Science.gov (United States)

    Ketola, H.G.; Isaacs, G.R.; Robins, J.S.; Lloyd, R.C.

    2008-01-01

    We investigated the feasibility of enhancing the reproduction of steelhead Oncorhynchus mykiss and landlocked Atlantic salmon Salmo salar in lakes where the consumption of alewives Alosa pseudoharengus and other forage fishes containing thiaminase can cause them to become thiamine deficient and thereby reduce the survival of their fry. We evaluated feeding fingerling steelhead excess thiamine hydrochloride (THCl) for 1 or 2 weeks or equimolar amounts of thiamine mononitrate, thiamine-tetrahydrofurfuryl-disulfide, benfotiamine, or dibenzoyl thiamine (DBT). We found minimal internal reserves of thiamine after 6 months. We also compared the ability of injections of thiamine and its analogs to prevent mortality in thiamine-deficient steelhead and Atlantic salmon sac fry and found all forms to be effective, although benfotiamine was the least effective on an equimolar basis. Further, we injected yearling steelhead and found that DBT was tolerated at approximately 11,200 nmol/g of body weight, about 10 times more than thiamine in any other form. When yearling steelhead were injected with near-maximal doses of thiamine hydrochloride and several analogs and then fed a thiamine-deficient diet, DBT was retained for approximately 2 years - in contrast to other forms, which were retained for less than about 6 months. Therefore, these results suggest that neither feeding nor injecting young hatchery salmonids with DBT is likely to enhance their reproduction for more than 2 years after stocking. However, injecting DBT in nearly mature fish (either cultured fish from hatcheries or wild fish captured in lakes) may provide them with enough thiamine to successfully spawn within 2 years even though they consume mainly thiaminase-containing forage fishes. ?? Copyright by the American Fisheries Society 2008.

  14. Monitoring the hygene of chicken hatcheries in Taiwan during 1999-2001.

    Science.gov (United States)

    Chen, Su-Jen; Lee, Tsui-Er; Wang, Eve-Ming; Cho, Ta-Jen; Wang, Ching-Ho

    2002-12-01

    Microorganism contamination in hatcheries and eggs has a serious impact on the viability and quality of chicks as well as on the overall growth performance of chickens. Microbiological agents are present in the fluff when chicks hatch. Detecting microorganisms in fluff is a convenient method for evaluating the hygienic status in a hatchery. Fluff samples from 31 hatcheries collected over 3 years were tested for the total bacterial count, the presence of Salmonella spp., and fungus to evaluate the hygienic status of hatcheries in Taiwan from 1999 through 2001. The total bacterial score from the fluff samples was calculated and expressed as a bacterial score in a log scale. Most hatcheries had a bacterial count ranged from scale 1 to 3. Among the hatcheries, 13% to 29% were contaminated with Salmonella spp.; and 33% to 73% were contaminated with fungi in different quarters. The third quarter of each year was the most contaminated period (phatcheries keep their hygienic status and supply good quality chicks by cleaning and disinfecting.

  15. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  16. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  17. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  18. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Newsome, Todd; Nugent, Michael (Washington Department of Fish and Wildlife, Olympia, WA)

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  19. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the

  20. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  1. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  2. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  3. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Todd M. [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)], E-mail: tmhurd@ship.edu; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)

    2008-11-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in {delta}{sup 13}C relative to autotrophs and wild fish. Spring creek sediments were enriched in {delta}{sup 13}C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in {delta}{sup 34}S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in {delta}{sup 15}N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with {delta}{sup 13}C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of

  4. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    International Nuclear Information System (INIS)

    Hurd, Todd M.; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David

    2008-01-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in δ 13 C relative to autotrophs and wild fish. Spring creek sediments were enriched in δ 13 C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in δ 34 S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in δ 15 N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with δ 13 C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and potential exposure

  5. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    Science.gov (United States)

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  6. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  7. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  8. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  9. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    International Nuclear Information System (INIS)

    Teuscher, D.

    1996-01-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout

  10. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  11. Environmental endocrinology of salmon smoltification

    Science.gov (United States)

    Bjornsson, Bjorn Thrandur; Stefansson, S.O.; McCormick, S.D.

    2011-01-01

    Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry. ?? 2010.

  12. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake ontario, 2003 to 2006

    Science.gov (United States)

    Ketola, H.G.; Rinchard, J.; O'Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W.

    2009-01-01

    Early mortality syndrome in fry of Great Lakes salmonines is linked to reduced levels of thiamine in eggs, which reflects maternal consumption of forage fishes such as alewife (Alosa pseudoharengus) that contain thiaminase, an enzyme that destroys thiamine. We assessed annual variations in abundance and condition of alewives and thiamine status of coho salmon (Oncorhynchus kisutch) in Lake Ontario. We analyzed total thiamine in eggs of 20 coho salmon collected annually between 2003 and 2006 at the Salmon River Hatchery on the Salmon River, New York. Alewife abundance was assessed annually in southern and eastern Lake Ontario with bottom trawls during late April and early May. Mean thiamine concentration in eggs varied annually, with those collected in 2003 (2.5 nmol/g) being significantly higher than those collected in 2004 to 2006 (1.5 to 1.7 nmol/g). Although we did not test survival of fry, if reported threshold levels of thiamine for preventing mortality of Lake Michigan coho salmon fry apply, then many or most Lake Ontario coho salmon produced fry were likely to incur thiamine-deficiency mortality, especially during years 2004 to 2006. Comparison to indices of annual abundance of alewife in Lake Ontario with thiamine concentration in coho salmon eggs failed to show any significant correlations (P > 0.05). However, total length of female spawning coho salmon was positively correlated (P < 0.05) with increasing condition and estimated energy content of adult alewives in the previous spring. These results suggest that growth of coho salmon in Lake Ontario was first limited by energy intake, whereas the amount of thiamine provided by alewives was sufficient for growth (in length) but not for producing thiamine-adequate eggs.

  13. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    Science.gov (United States)

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  15. Effect of pancreas disease (PD) on quality attributes of raw and smoked fillets of Atlantic salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Lerfall, Jørgen; Larsson, Thomas; Birkeland, Sveinung

    2012-01-01

    The impact of pancreas disease (PD) on fillet quality of raw and cold-smoked Atlantic salmon was investigated. Commercially reared fish were sorted into six groups: (1) Control (healthy fish), (2) SAV (infection with salmonid alphavirus, without PD outbreak), (3) PD0 (PD diagnosis at slaughter), (4...

  16. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A.; Tezak, E.P. (National Marine Fisheries Service); Endicott, Rick (Long Live the Kings, Seattle, WA)

    2002-08-01

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) and sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.

  17. Observations on the distribution and control of Salmonella in commercial duck hatcheries in the UK.

    Science.gov (United States)

    Martelli, F; Birch, C; Davies, R H

    2016-01-01

    Salmonella infection causes a significant number of cases of gastroenteritis and more serious illnesses in people in the UK and EU. The serovars Salmonella Enteritidis and Salmonella Typhimurium are most frequently associated with foodborne illness in Europe. Whilst control programmes exist to monitor these serovars in the chicken and turkey sectors, no regulatory programme is currently in place for the duck sector. A voluntary industry scheme (Duck Assurance Scheme) was launched in the UK in 2010. Hatcheries act as focal points of Salmonella contamination, in particular if Salmonella-contaminated eggs from positive breeding farms enter the hatchery. Five duck hatcheries were visited in this study and four were positive for Salmonella. S. Typhimurium DT8 and S. Indiana were isolated from hatchery 1 and S. Typhimurium DT41 and S. Senftenberg were isolated from hatchery 3. S. Kottbus, S. Bovismorbificans and S. Senftenberg were isolated from hatchery 2 and S. Kedougou was isolated from hatchery 4. Advice on the control/elimination of Salmonella was provided at each visit and a longitudinal study was undertaken to monitor its effectiveness. Extensive sampling was carried out in the hatcheries visited and the tray wash area and waste/external areas had the highest probability of being contaminated. The hatcher area was also found to be a primary focus of contamination. Improvements of farm and hatchery biosecurity standards have resulted in a reduction of hatchery contamination in this study and in previous investigations. Hatcheries 1 and 5 were cleared of Salmonella, demonstrating that elimination of Salmonella contamination from duck hatcheries is achievable.

  18. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  19. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  20. The Addition of Hatchery Liquid Waste to Dairy Manure Improves Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    WRT Lopes

    Full Text Available ABSTRACT The objective of this study was to determine the optimal inclusion level of liquid egg hatchery waste for the anaerobic co-digestion of dairy cattle manure. A completely randomized experimental was applied, with seven treatments (liquid hatchery waste to cattle manure ratios of0: 100, 5:95, 10:90, 15:85, 20:80, 25:75 and 30:70, with five replicates (batch digester model each. The evaluated variables were disappearance of total solids (TS, volatile solids (VS, and neutral detergent fiber (NDF, and specific production of biogas and of methane. Maximum TS and VS disappearance of 41.3% and 49.6%, were obtained at 15.5% and 16.0% liquid hatchery waste inclusion levels. The addition of 22.3% liquid hatchery considerably reduced NDF substrate content (53.2%. Maximum specific biogas production was obtained with 17% liquid hatchery waste, with the addition of 181.7 and 229.5 L kg-1TS and VS, respectively. The highest methane production, at 120.1 and 151.8 L CH4 kg-1TS and VS, was obtained with the inclusion of 17.5 and 18.0% liquid hatchery waste, respectively. The addition of liquid hatchery waste atratios of up to 15.5%in co-digestion with cattle manure reduced solid and fiber levels in the effluent, and improved biogas and methane production.

  1. Effects of release procedures on the primary stress response and post-release survival and growth of hatchery-reared spotted seatrout Cynoscion nebulosus.

    Science.gov (United States)

    Guest, T W; Rakocinski, C F; Evans, A N; Blaylock, R B

    2017-03-01

    To help explain the apparent poor post-release success of hatchery-reared (HR) spotted seatrout Cynoscion nebulosus, this study examined the effects of handling, transport and release procedures on the stress response of two age classes [48 and 80 day post-hatch (dph)] of HR C. nebulosus, as measured by cortisol concentrations and the post-release survival and growth of 48 and 80 dph HR C. nebulosus. As a proxy for stress, tissue cortisol was measured at various times during the handling, tagging (80 dph), transport, acclimation and release process. To consider the implications of the pre-release stressors, growth and survival were monitored in separate field experiments for each age class of acclimated post-transport C. nebulosus using control C. nebulosus that only experienced anaesthesia, transport, acclimation and a net release v. experimental C. nebulosus that underwent the entire routine procedure, including anaesthesia, tagging, transport, acclimation and gravity release through a pipe. For 48 dph C. nebulosus, mean cortisol varied significantly throughout handling and transport, increasing more than six-fold from controls before decreasing in mean concentration just prior to release. For 80 dph C. nebulosus, cortisol varied throughout handling, tagging and transport, first increasing more than three-fold compared with control C. nebulosus, before decreasing and rising slightly just prior to release. For 48 dph C. nebulosus within field enclosures, survival was high and similar for control and experimental groups; experimental C. nebulosus, however, were shorter, lighter and lower in condition than control C. nebulosus. For 80 dph C. nebulosus within field enclosures, fewer experimental C. nebulosus survived and those that did survive were of lower condition than C. nebulosus from the control group. Small untagged C. nebulosus may survive the release procedure better than larger C. nebulosus carrying a coded-wire tag. These findings document

  2. Identifying salmon lice transmission characteristics between Faroese salmon farms

    DEFF Research Database (Denmark)

    Kragesteen, Trondur J.; Simonsen, Knud; Visser, AW

    2018-01-01

    Sea lice infestations are an increasing challenge in the ever-growing salmon aquaculture sector and cause large economic losses. The high salmon production in a small area creates a perfect habitat for parasites. Knowledge of how salmon lice planktonic larvae disperse and spread the infection...... between farms is of vital importance in developing treatment management plans to combat salmon lice infestations. Using a particle tracking model forced by tidal currents, we show that Faroese aquaculture farms form a complex network. In some cases as high as 10% of infectious salmon lice released at one...... for the entire Faroese salmon industry...

  3. Willamette oxygen supplementation studies. Annual progress report

    International Nuclear Information System (INIS)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery

  4. Willamette Oxygen Supplementation Studies : Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery.

  5. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  6. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  7. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the

  8. Salmon lice – impact on wild salmonids and salmon aquaculture

    Science.gov (United States)

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  9. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1986 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, Edward C.

    1987-02-01

    Estimated kokanee (Oncorhynchus nerka) abundance in Lake Pend Oreille was 4.3 million during September 1986. This estimate was similar to 1985 and indicates continued suppression of the kokanee population since initial decline in the late 1960s. Atypically high survival of wild fry resulted in similar fry recruitment in 1986 as 1985, whereas hatchery-reared fry contributed only 8% to total fry recruitment as a result of low post-release survival (3%). Fry released into the Clark Fork River from Cabinet Gorge Hatchery had very low survival during emigration to Lake Pend Oreille, resulting from poor flow conditions and potentially high predation. Fry survival during emigration was twice as high during nighttime flows of 16,000 cfs than 7,800 cfs. Emigration also was faster during higher flows. Several marks were tested to differentially mark fry release groups to help determine impacts of flow and other factors on fry survival. Survival of fry marked with tetracycline and fluorescent dye was high (>99%) during the 10-week study. In contrast, survival of fry marked with fluorescent grit marks ranged from 5 to 93%, depending on application pressure and distance from the fry. Retention was high (>96%) for tetracycline and grit marks during the study, whereas dye marks were discernible (100%) for only one week. 23 refs., 20 figs., 10 tabs.

  10. Fish Research Project, Oregon, Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin, Annual Progress Report, Project Period: September 1, 1996 - August 31, 1997; ANNUAL

    International Nuclear Information System (INIS)

    Brian C. Jonasson; J. Vincent Tranquilli; MaryLouise Keefe; Richard W. Carmichael

    1998-01-01

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  11. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  12. Occurrence, size, and tag retention of sneaker male hatchery rainbow trout

    Science.gov (United States)

    Isely, J.J.; Grabowski, T.B.

    2004-01-01

    One alternative reproductive tactic involving early-maturing, cryptic males is referred to as "sneaking." Although sneakers tend to be easily detectable upon close inspection, little is known about the proportion of a fish population consisting of sneakers. We examined 15,400 age-1 rainbow trout Oncorhynchus mykiss in a hatchery. Total length (mm), wet weight (g), and sex (sneaker male or unknown) were recorded for each fish. We also individually tagged each sneaker male with soft visual implant alphanumeric (VIalpha) tags that were sequentially numbered and held the fish for 25 d before inspection. Sneakers constituted 2.8% of the hatchery rainbow trout population and were smaller in total length and weight than typical rainbow trout of the same age. Retention of the VIalpha tags in sneakers was 58.9%, significantly lower than has been reported under similar circumstances. We found that sneaker males may contribute substantially to hatchery populations. Reduced tag retention in sneakers may bias studies evaluating the effect of hatchery fish on wild populations. We believe that hatchery-produced sneaker males have the potential to contribute importantly to the genetic composition of wild populations.

  13. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State) Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  14. Evaluation of 1991--1992 brood overwinter-reared coho released from net pens in Youngs Bay, Oregon. Final completion report

    International Nuclear Information System (INIS)

    Hirose, P.S.

    1997-01-01

    Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council's Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay

  15. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  16. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    Science.gov (United States)

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  17. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  18. Snake River sockeye salmon captive broodstock program hatchery element, Annual Progress Report: January 1, 1998 - December 31, 1998

    International Nuclear Information System (INIS)

    Kline A, Paul; Heindel A, Jeff

    1999-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and NMFS initiated efforts to conserve and rebuild populations in Idaho. Captive broodstock program activities conducted between January 1, 1998 and December 31, 1998, are presented in this report

  19. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  20. Poached Salmon

    Science.gov (United States)

    ... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...

  1. Exterior indicators and physiological signs' indices of juveniles Salmo salar L. in the rivers of the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Anokhina V. S.

    2017-06-01

    Full Text Available The range of background values of main parameters of the exterior and indices of morphophysiological features of autumn juvenile salmon Salmon salar L. in four rivers of the Kola Peninsula not affected by hatchery production have been investigated. The importance of such studies is associated with intensification of artificial reproduction of salmon and occurrence of hatchery fish with characters different from wild individuals in the rivers. Currently hatchery reproduction of Atlantic salmon is not carried out in the European North of Russia, however, the need to choose a local salmon population for further hatchery reproduction is obvious. Accumulation of biological data on salmon in the rivers of the Kola Peninsula is important for population monitoring of wild stocks. Samples of juveniles widely varying in size have been collected by electrofishing in the Rivers Pechenga, Zapadnaya Litsa and Titovka of the Barents Sea basin, as well as in the tributaries of the River Varzuga inflowing the White Sea. For each sample individual and group indices of elongation, girth and massiveness have been calculated. The physiological state of the fish has been assessed with allowance for the fatness factor (according to Clark and indices of internal organs. It has been found that in the autumn season (September the average statistical values of the morphological indices characterizing the appearance of the fry from four rivers differ with a high degree of reliability. Individual fluctuations in morphological parameters are in the range of values: elongation – from 311 to 725 %; girth – from 41 to 85 %; massiveness – from 150 to 530 %. The mean values of morphophysiological indices for each of the four river populations have been presented. The obtained values of the studied parameters of juveniles of Atlantic salmon can be used for subsequent monitoring of populations.

  2. Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska

    Science.gov (United States)

    Richardson, Natura; Beaudreau, Anne H.; Wipfli, Mark S.; Finkle, Heather

    2017-01-01

    Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake-rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.

  3. Paramyxoviruses of fish: Chapter 17

    Science.gov (United States)

    Meyers, Theodore R.; Batts, William N.; Kibenge, Frederick S. B.; Godoy, Marcos

    2016-01-01

    The first fish paramyxovirus was isolated from normal adult Chinook salmon returning to a coastal hatchery in Oregon in the fall of 1982. Subsequently, the virus was isolated from other stocks of adult Chinook salmon and one stock of adult coho salmon in California, Oregon, Washington and Alaska, leading to its designation as the Pacific salmon paramyxovirus (PSPV). The slow-growing virus can be isolated from tissues and ovarian fluids of healthy adult fish returning to spawn and apparently causes no clinical signs of disease or mortality. In 1995, a different and widely disseminated paramyxovirus was isolated from farmed Atlantic salmon in Norway and was designated as Atlantic salmon paramyxovirus (ASPV). Although this virus caused no disease or mortality when injected into juvenile Atlantic salmon, ASPV has been associated with proliferative gill inflammation in sea-reared yearling fish; however, additional infectious agents may be involved in the etiology of the condition. Sequence analysis of PSPV and ASPV isolates using the polymerase gene established their placement in the family Paramyxoviridaeand has shown the two viruses to be closely related but sufficiently different from each other and from other known paramyxoviruses to possibly represent new genera within the family. The viruses can be diagnosed by isolation in cell culture with final confirmation by molecular methods. Other paramyxovirus-like agents have been observed or isolated from rainbow trout in Germany, from seabream in Japan associated with epithelial necrosis, from turbot in Spain associated with erythrocytic inclusion bodies and buccal/opercular hemorrhaging and from koi and common carp associated with gill necrosis in the European Union.

  4. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as

  5. Merits and Limits of Ecosystem Protection for Conserving Wild Salmon in a Northern Coastal British Columbia River

    Directory of Open Access Journals (Sweden)

    Aaron C. Hill

    2010-06-01

    Full Text Available Loss and degradation of freshwater habitat reduces the ability of wild salmon populations to endure other anthropogenic stressors such as climate change, harvest, and interactions with artificially propagated fishes. Preservation of pristine salmon rivers has thus been advocated as a cost-effective way of sustaining wild Pacific salmon populations. We examine the value of freshwater habitat protection in conserving salmon and fostering resilience in the Kitlope watershed in northern coastal British Columbia - a large (3186 km2 and undeveloped temperate rainforest ecosystem with legislated protected status. In comparison with other pristine Pacific Rim salmon rivers we studied, the Kitlope is characterized by abundant and complex habitats for salmon that should contribute to high resilience. However, biological productivity in this system is constrained by naturally cold, light limited, ultra-oligotrophic growing conditions; and the mean (± SD density of river-rearing salmonids is currently low (0.32 ± 0.27 fish per square meter; n = 36 compared to our other four study rivers (grand mean = 2.55 ± 2.98 fish per square meter; n = 224. Existing data and traditional ecological knowledge suggest that current returns of adult salmon to the Kitlope, particularly sockeye, are declining or depressed relative to historic levels. This poor stock status - presumably owing to unfavorable conditions in the marine environment and ongoing harvest in coastal mixed-stock fisheries - reduces the salmon-mediated transfer of marine-derived nutrients and energy to the system's nutrient-poor aquatic and terrestrial food webs. In fact, Kitlope Lake sediments and riparian tree leaves had marine nitrogen signatures (δ15N among the lowest recorded in a salmon ecosystem. The protection of the Kitlope watershed is undoubtedly a conservation success story. However, "salmon strongholds" of pristine watersheds may not adequately sustain salmon populations and foster

  6. Annual coded wire tag program (Washington) missing production groups : annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Dammers, Wolf; Mills, Robin D.

    2002-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho

  7. Ichthyobodo salmonis sp. n. (Ichthyobodonidae, Kinetoplastida), an euryhaline ectoparasite infecting Atlantic salmon (Salmo salar L.)

    Science.gov (United States)

    ISAKSEN, TROND E.; KARLSBAKK, EGIL; WATANABE, KUNINORI; NYLUND, ARE

    2011-01-01

    SUMMARY Phylogenetic analyses of SSU rDNA sequences have previously revealed the existence of 2 Ichthyobodo species able to infect Atlantic salmon (Salmo salar L.). Ichthyobodo necator sensu stricto (s.s.) is assumed to be a freshwater parasite, while a genetically distinct but undescribed species, Ichthyobodo sp. II sensu Todal et al. (2004) have been detected on Atlantic salmon in both fresh- and seawater. In the present study a morphological description of Ichthyobodo sp. II from the gills of salmon reared in fresh-, brackish- and seawater is presented, using both light- and electron microscopy. Comparative morphometry show that Ichthyobodo sp. II from both freshwater and seawater displays a different cell shape, and is significantly smaller than I. necator s.s. Also, ultrastructural characteristics distinguish these two species, notably differences in the attachment region and the presence of spine-like surface projections in Ichthyobodo sp. II. Based on both unique SSU rDNA sequences and morphological characteristics, we conclude that Ichthyobodo sp. II. represents a novel species for which we propose the name Ichthyobodo salmonis sp. n. PMID:21756424

  8. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  9. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  10. Framework for Assessing Viability of Threatened and Endangered Chinook Salmon and Steelhead in the Sacramento–San Joaquin Basin

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2007-02-01

    Full Text Available Protected evolutionarily significant units (ESUs of salmonids require objective and measurable criteria for guiding their recovery. In this report, we develop a method for assessing population viability and two ways to integrate these population-level assessments into an assessment of ESU viability. Population viability is assessed with quantitative extinction models or criteria relating to population size, population growth rate, the occurrence of catastrophic declines, and the degree of hatchery influence. ESU viability is assessed by examining the number and distribution of viable populations across the landscape and their proximity to sources of catastrophic disturbance. Central Valley spring-run and winter-run Chinook salmon ESUs are not currently viable, according to the criteria-based assessment. In both ESUs, extant populations may be at low risk of extinction, but these populations represent a small portion of the historical ESUs, and are vulnerable to catastrophic disturbance. The winter-run Chinook salmon ESU, in the extreme case, is represented by a single population that spawns outside of its historical spawning range. We are unable to assess the status of the Central Valley steelhead ESU with our framework because almost all of its roughly 80 populations are classified as data deficient. The few exceptions are those populations with a closely associated hatchery, and the naturally-spawning fish in these streams are at high risk of extinction. Population monitoring in this ESU is urgently needed. Global and regional climate change poses an additional risk to the survival of salmonids in the Central Valley. A literature review suggests that by 2100, mean summer temperatures in the Central Valley region may increase by 2-8°C, precipitation will likely shift to more rain and less snow, with significant declines in total precipitation possible, and hydrographs will likely change, especially the the southern Sierra Nevada mountains

  11. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages.

    Science.gov (United States)

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria , mainly family Enterobacteriaceae , was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L . vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  12. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei Larvae and Rearing Water across Different Growth Stages

    Directory of Open Access Journals (Sweden)

    Yanfen Zheng

    2017-07-01

    Full Text Available Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy and growth stages (i.e., zoea, mysis, and early postlarvae periods were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85% in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  13. Successful large-scale hatchery culture of sandfish (Holothuria scabra using micro-algae concentrates as a larval food source

    Directory of Open Access Journals (Sweden)

    Thane A. Militz

    2018-02-01

    Full Text Available This paper reports methodology for large-scale hatchery culture of sandfish, Holothuria scabra, in the absence of live, cultured micro-algae. We demonstrate how commercially-available micro-algae concentrates can be incorporated into hatchery protocols as the sole larval food source to completely replace live, cultured micro-algae. Micro-algae concentrates supported comparable hatchery production of sandfish to that of live, cultured micro-algae traditionally used in large-scale hatchery culture. The hatchery protocol presented allowed a single technician to achieve production of more than 18,800 juvenile sandfish at 40 days post-fertilisation in a low-resource hatchery in Papua New Guinea. Growth of auricularia larvae fed micro-algae concentrates was represented by the equation length (μm = 307.8 × ln(day + 209.2 (R2 = 0.93 while survival over the entire 40 day hatchery cycle was described by the equation survival = 2 × day−1.06 (R2 = 0.74. These results show that micro-algae concentrates have great potential for simplifying hatchery culture of sea cucumbers by reducing infrastructural and technical resources required for live micro-algae culture. The hatchery methodology described in this study is likely to have applicability to low-resource hatcheries throughout the Indo-Pacific and could support regional expansion of sandfish hatchery production.

  14. 1998-1999 evaluation of fall chinook and chum salmon spawning below Bonneville, The Dalles, John Day and McNary dams

    International Nuclear Information System (INIS)

    Naald, W.D. van der

    2001-01-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6

  15. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    Science.gov (United States)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  16. Streamflow effects on spawning, rearing, and outmigration of fall-run chinook salmon (Oncorhynchus tshawytscha) predicted by a spatial and individual-based model

    International Nuclear Information System (INIS)

    Jager, H.I.; Sale, M.J.; Cardwell, H.E.; Deangelis, D.L.; Bevelhimer, M.J.; Coutant, C.C.

    1994-01-01

    The thread posed to Pacific salmon by competing water demands is a great concern to regulators of the hydropower industry. Finding the balance between fish resource and economic objectives depends on our ability to quantify flow effects on salmon production. Because field experiments are impractical, simulation models are needed to predict the effects of minimum flows on chinook salmon during their freshwater residence. We have developed a model to simulate the survival and development of eggs and alevins in redds and the growth, survival, and movement of juvenile chinook in response to local stream conditions (flow, temperature, chinook and predator density). Model results suggest that smolt production during dry years can be increased by raising spring minimum flows

  17. Health effects of exposure to organic dust in workers of a modern hatchery.

    Science.gov (United States)

    Skórska, Czesława; Mackiewicz, Barbara; Golec, Marcin; Cholewa, Grazyna; Chmielowiec-Korzeniowska, Anna; Dutkiewicz, Jacek

    2007-01-01

    The aim of the presented study was to determine the health status of workers occupationally exposed to moderate amounts of organic dust, employed in a modern hatchery with an efficient ventilation system. A group of 32 hatchery workers was examined. As a reference group, 50 urban dwellers not exposed to any kind of organic dust were examined. All people were interviewed for the presence of work-related symptoms and subjected to physical and spirometric examinations. Blood sera were examined for the presence of precipitins against 13 antigens associated with organic dust, and for the presence of total and chicken-specific No significant differences were found between the spirometric values in the group of hatchery workers and the reference group. Positive precipitin reactions were noted mostly with the antigens of Gram-negative bacteria associated with organic dust. The frequencies of positive reactions to antigens of Escherichia coli and Acinetobacter baumannii in hatchery workers were significantly greater compared to the reference group (phatchery workers were significantly greater compared to the reference group (phatchery workers was nearly 3 times greater compared to the reference group, and the difference proved to be statistically significant (pchicken feathers were detected in the blood of hatchery workers and referents. In conclusion, the examined hatchery workers showed a moderate frequency of work-related symptoms, no decline in lung function and low reactivity to most microbial and bird protein allergens. These results suggest that the effects of exposure to organic dust in workers of modern hatcheries with an efficient ventilation system are less compared to the workers of poultry farms, such as broiler or egg laying houses.

  18. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vernon, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcmichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after

  19. 75 FR 60804 - Nimbus Hatchery Fish Passage Project, Lower American River, California

    Science.gov (United States)

    2010-10-01

    ...). Reclamation maintains the Hatchery to meet mitigation obligations for spawning areas blocked by construction of Nimbus Dam. CDFG operates the Hatchery under a contract with Reclamation and is responsible for... mitigation obligations for spawning areas blocked by the construction of Nimbus Dam. Other objectives are to...

  20. Snake River sockeye salmon habitat and limnological research: Annual report 1997

    International Nuclear Information System (INIS)

    Taki, D.; Lewis, B.; Griswold, B.

    1999-01-01

    Since the late 1980's, Snake River sockeye Oncorhynchus nerka adults have only returned to Redfish Lake, one of five lakes in the Sawtooth Basin which historically reared sockeye. 1997 project objectives included (1) characterization of the limnology of Sawtooth Valley lakes; (2) fertilization of Redfish, Pettit, and Alturas lakes; (3) O.nerka lake population surveys; (4) estimation of kokanee escapement and fry production in Alturas Lake Creek, Stanley Lake Creek, and Fishhook Creek; (5) reduce the number of spawning kokanee in Fishook Creek; (6) evaluate hatchery rainbow trout overwinter survival and potential competition and predation interactions with O.nerka in Pettit Lake; (7) assess predation from bull trout Salvelinus malma, brook trout S.fontinalis, and northern squawfish Ptychocheilus oregonsis on lentic O.nerka; (8) establish screw tap and weir sites to monitor smolt emigration

  1. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    Directory of Open Access Journals (Sweden)

    Eric J Ward

    Full Text Available The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii and some wild Pacific salmon populations (Oncorhynchus spp. in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1 density dependence, (2 the EVOS event, (3 changing environmental conditions, (4 interspecific competition on juvenile fish, and (5 predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the

  2. Hatchery-borne Salmonella enterica serovar Tennessee infections in broilers

    DEFF Research Database (Denmark)

    Christensen, J.P.; Brown, D.J.; Madsen, Mogens

    1997-01-01

    . Restriction enzyme analysis of the plasmid ensured that the plasmids from broilers and the hatchery were identical. By analysis of cleaning and disinfection procedures and by sampling of different control points in the hatchery it was shown that S. enterica ser. Tennessee had colonized areas of the hatchers...... which were protected from routine cleaning and disinfection. Subsequent inclusion of these areas into the sanitation programme resulted in the elimination of S. enterica ser. Tennessee from the hatchers, and a decreasing prevalence of S. enterica ser. Tennessee was observed in broiler flocks during...

  3. Snake River sockeye salmon habitat and limnological research, annual report 1998

    International Nuclear Information System (INIS)

    Lewis, Bert

    2000-01-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized

  4. Environmental impact assessment of fish farm hatcheries ...

    African Journals Online (AJOL)

    Environmental impact assessment of fish farm hatcheries management in lower ... Environmental impact assessments were taken to determine the causes of ... Of significance of impact assessment were activities like air, traffic, noise, had ...

  5. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  6. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  7. Migrational Characteristics, Biological Observations, and Relative Survival of Juvenile Salmonids Entering the Columbia River Estuary, 1966-1983, 1985 Final Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, Earl M.

    1986-04-01

    Natural runs of salmonids in the Columbia River basin have decreased as a result of hydroelectric-dam development, poor land- and forest-management, and over-fishing. This has necessitated increased salmon culture to assure adequate numbers of returning adults. Hatchery procedures and facilities are continually being modified to improve both the efficiency of production and the quality of juveniles produced. Initial efforts to evaluate changes in hatchery procedures were dependent upon adult contributions to the fishery and returns to the hatchery. Procedures were developed for sampling juvenile salmon and steelhead entering the Columbia River estuary and ocean plume. The sampling of hatchery fish at the terminus of their freshwater migration assisted in evaluating hatchery production techniques and identifying migrational or behavioral characteristics that influence survival to and through the estuary. The sampling program attempted to estimate survival of different stocks and define various aspects of migratory behavior in a large river, with flows during the spring freshet from 4 to 17 thousand cubic meters per second (m/sup 3//second).

  8. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  9. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    International Nuclear Information System (INIS)

    Weston, D.P.; Asbell, A.M.; Hecht, S.A.; Scholz, N.L.; Lydy, M.J.

    2011-01-01

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: → Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. → Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. → Two creeks contained concentrations acutely lethal to sensitive invertebrates. → Bifenthrin was of greatest concern, though less than in prior studies. → Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  10. Effects of vitamin nutrition on the immune response of hatchery-reared salmonids. Annual report, 1984

    International Nuclear Information System (INIS)

    Leith, D.; Holmes, J.; Kaattari, S.; Yui, M.; Jones, T.

    1985-09-01

    Results demonstrate that immunological assays. Lymphocytes from both of the major lymphoid organs (spleen and anterior kidney) produce significant in vitro antibody responses to the antigen, trinitrophenyl-lipopolysaccharide. These cells also demonstrate significant mitogenic stimulation (proliferation) in response to bacterial lipopolysaccharide, phytohemagglutinin, and to a novel mitogen, Vibrio anguillarum extract. As an assessment of cell-mediated immunity, we have found that lymphocytes are capable of responding in a mixed lymphocyte reaction as demonstrated by increased incorporation of tritiated thymidine. Results also indicate that phagocytosis can be quantified by the uptake of radioiodinated Renibacterium salmoninarum and that production of migration inhibition factor (MIF)-like activity can be induced in immunized animals. Polyclonal activation of chinook lymphocytes was elicited by both Vibrio anguillarum extract and E. coli lipopolysaccharide. Groups of spring chinook salmon were fed a formula diet containing five dietary levels of pyridoxine (15, 30, 60, 120, and 1500 mg/kg diet). Data collected on growth and feed efficiency in the first eighteen weeks show no significant difference between these formulations. 46 refs., 20 figs., 7 tabs

  11. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    Science.gov (United States)

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.

  12. A rapid assessment method to estimate the distribution of juvenile Chinook Salmon in tributary habitats using eDNA and occupancy estimation

    Science.gov (United States)

    Matter, A.; Falke, Jeffrey A.; López, J. Andres; Savereide, James W.

    2018-01-01

    Identification and protection of water bodies used by anadromous species are critical in light of increasing threats to fish populations, yet often challenging given budgetary and logistical limitations. Noninvasive, rapid‐assessment, sampling techniques may reduce costs and effort while increasing species detection efficiencies. We used an intrinsic potential (IP) habitat model to identify high‐quality rearing habitats for Chinook Salmon Oncorhynchus tshawytscha and select sites to sample throughout the Chena River basin, Alaska, for juvenile occupancy using an environmental DNA (eDNA) approach. Water samples were collected from 75 tributary sites in 2014 and 2015. The presence of Chinook Salmon DNA in water samples was assessed using a species‐specific quantitative PCR (qPCR) assay. The IP model predicted over 900 stream kilometers in the basin to support high‐quality (IP ≥ 0.75) rearing habitat. Occupancy estimation based on eDNA samples indicated that 80% and 56% of previously unsampled sites classified as high or low IP (IP Salmon DNA from three replicate water samples was high (p = 0.76) but varied with drainage area (km2). A power analysis indicated high power to detect proportional changes in occupancy based on parameter values estimated from eDNA occupancy models, although power curves were not symmetrical around zero, indicating greater power to detect positive than negative proportional changes in occupancy. Overall, the combination of IP habitat modeling and occupancy estimation provided a useful, rapid‐assessment method to predict and subsequently quantify the distribution of juvenile salmon in previously unsampled tributary habitats. Additionally, these methods are flexible and can be modified for application to other species and in other locations, which may contribute towards improved population monitoring and management.

  13. Evidence of Atlantic salmon Salmo salar fry movement between fresh water and a brackish environment.

    Science.gov (United States)

    Taal, I; Rohtla, M; Saks, L; Svirgsden, R; Kesler, M; Matetski, L; Vetemaa, M

    2017-08-01

    This study reports descent of Atlantic salmon Salmo salar fry from their natal streams to brackish waters of the Baltic Sea and their use of this environment as an alternative rearing habitat before ascending back to freshwater streams. To the authors' knowledge, residency in a brackish environment has not previously been demonstrated in S. salar fry. Recruitment success and evolutionary significance of this alternative life-history strategy are presently not known. © 2017 The Fisheries Society of the British Isles.

  14. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    Science.gov (United States)

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  15. Post-release attributes and survival of hatchery and natural fall chinook salmon in the Snake River : annual report 2000-2001

    International Nuclear Information System (INIS)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.

    2003-01-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001

  16. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  17. Organic salmon

    DEFF Research Database (Denmark)

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    . This study identifies the price premium on organic salmon in the Danish retail sale sector using consumer panel scanner data for households by applying the hedonic price model while permitting unobserved heterogeneity between households. A premium of 20% for organic salmon is found. Since this premium...... is closer to organic labeled agriculture products than to ecolabelled capture fisheries products, it indicates that consumers value organic salmon as an agriculture product more than fisheries product....

  18. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    Science.gov (United States)

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  19. Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon.

    Directory of Open Access Journals (Sweden)

    Luke A Rogers

    Full Text Available Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis on domesticated populations of Atlantic salmon (Salmo salar in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity, local host density (measured as cohort surface area, and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March-June juvenile wild Pacific salmon (Oncorhynchus spp. migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.

  20. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Paragamian, Vaughn L.

    1991-01-01

    Initially, rehabilitation of kokanee Oncorhynchus nerka met with apparent success reaching a peak abundance of 10.2 million fishTl988. However, a decline of 47% followed from 1988 through 1991 to 5.4 million fish. The decreased population was attributed to poor recruitment of wild fish, poor egg take, thus, low stocking of hatchery fry (7.3 million in 1990 and 5.0 million in 1991 compared to about 13.0 million in 1981), and poor survival of fish ages 3 and 4 (average survival of the older fish was only 35% in 1990 compared to 72% in prior years but it was 68% in 1991). In addition, standing stocks of kokanee have remained relatively stable (x = 8.6 kg/hectare) since 1986 despite the dramatic changes in density. Prior to this study (1985) standing stocks were substantially higher (x = 13.6 kg/hectare). The kokanee population is probably operating below carrying capacity. Hatchery fry comprised 59% of the total kokanee recruitment in 1991 (93% of fry biomass). This contribution of 1.06 million fry ranked fifth behind 1988 (3.74 million), 1989 (2.25 million), 1982 (1.89 million), and 1990 (1.56 million) since hatchery supplementation began in the 1970s. Survival of hatchery fry was 21% in 1991, the second highest since this investigation began. Two release strategies were tested in 1991 of which the best survival was recorded for the Sullivan Springs release at 23% while the early Clark Fork River release continued to have lowest survival at 18%. Survival of hatchery reared kokanee fry is still below the goal of 30% and it appears that this goal may not be attainable most years. Statistical analysis between number of days from fry release to recapture day and fry survival did not reveal a relationship (P = 0.43). Survival of fry from late releases is higher (P = 0.05) than early releases but no difference (P L 0.71) was detected between stocking locations. Good survival of fry from the Sullivan Springs releases was attributed to large size of kokanee fry (55 mm), warm

  1. Hatchery Vaccination Against Poultry Viral Diseases: Potential Mechanisms and Limitations.

    Science.gov (United States)

    Abdul-Cader, Mohamed Sarjoon; Palomino-Tapia, Victor; Amarasinghe, Aruna; Ahmed-Hassan, Hanaa; De Silva Senapathi, Upasama; Abdul-Careem, Mohamed Faizal

    Commercial broiler and layer chickens are heavily vaccinated against economically important viral diseases with a view of preventing morbidity, mortality, and production impacts encountered during short production cycles. Hatchery vaccination is performed through in ovo embryo vaccination prehatch or spray and subcutaneous vaccinations performed at the day of hatch before the day-old chickens are being placed in barns with potentially contaminated environments. Commercially, multiple vaccines (e.g., live, live attenuated, and viral vectored vaccines) are available to administer through these routes within a short period (embryo day 18 prehatch to day 1 posthatch). Although the ability to mount immune response, especially the adaptive immune response, is not optimal around the hatch, it is possible that the efficacy of these vaccines depends partly on innate host responses elicited in response to replicating vaccine viruses. This review focuses on the current knowledge of hatchery vaccination in poultry and potential mechanisms of hatchery vaccine-mediated protective responses and limitations.

  2. Annual coded wire tag program (Washington) missing production groups: annual report for 1997; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.; Ashbrook, C.

    1998-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Councils (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-97 was met with few modifications to the original FY-97 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-97 were decoded. Under Objective 3, survival, contribution and stray rate estimates for the 1991-96 broods of chinook and 1993-96 broods of coho have not been made because recovery data for 1996-97 fisheries and escapement are preliminary. This report summarizes recovery information through 1995

  3. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  4. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W. (Oregon State University, Oregon Cooperative Fishery Research Unit, Corvallis, OR)

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  5. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    Science.gov (United States)

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  6. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    Science.gov (United States)

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  7. Discovering Alaska's Salmon: A Children's Activity Book.

    Science.gov (United States)

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  8. Cowlitz Falls fish passage

    International Nuclear Information System (INIS)

    1995-09-01

    The upper Cowlitz was once home to native salmon and steelhead. But the combined impacts of overharvest, farming, logging and road building hammered fish runs. And in the 1960s, a pair of hydroelectric dams blocked the migration path of ocean-returning and ocean-going fish. The lower Cowlitz still supports hatchery runs of chinook, coho and steelhead. But some 200 river miles in the upper river basin--much of it prime spawning and rearing habitat--have been virtually cut off from the ocean for over 26 years. Now the idea is to trap-and-haul salmon and steelhead both ways and bypass previously impassable obstacles in the path of anadromous fish. The plan can be summarized, for the sake of explanation, in three steps: (1) trap and haul adult fish--collect ocean-returning adult fish at the lowermost Cowlitz dam, and truck them upstream; (2) reseed--release the ripe adults above the uppermost dam, and let them spawn naturally, at the same time, supplement these runs with hatchery born fry that are reared and imprinted in ponds and net pens in the watershed; (3) trap and haul smolts--collection the new generation of young fish as they arrive at the uppermost Cowlitz dam, truck them past the three dams, and release them to continue their downstream migration to the sea. The critical part of any fish-collection system is the method of fish attraction. Scientists have to find the best combination of attraction system and screens that will guide young fish to the right spot, away from the turbine intakes. In the spring of 1994 a test was made of a prototype system of baffles and slots on the upriver face of the Cowlitz Falls Dam. The prototype worked at 90% efficiency in early tests, and it worked without the kind of expensive screening devices that have been installed on other dams. Now that the success of the attraction system has been verified, Harza engineers and consultants will design and build the appropriate collection part of the system

  9. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    Science.gov (United States)

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  10. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  11. Utilization of smoked salmon trim in extruded smoked salmon jerky.

    Science.gov (United States)

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2012-06-01

    During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®

  12. Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.

    Science.gov (United States)

    Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A

    2012-10-01

    Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.

  13. Assessing the impact of stocking northern-origin hatchery brook trout on the genetics of wild populations in North Carolina

    Science.gov (United States)

    Kazyak, David C.; Rash, Jacob; Lubinski, Barbara A.; King, Tim L.

    2018-01-01

    The release of hatchery-origin fish into streams with endemics can degrade the genetics of wild populations if interbreeding occurs. Starting in the 1800s, brook trout descendent from wild populations in the northeastern United States were stocked from hatcheries into streams across broad areas of North America to create and enhance fishery resources. Across the southeastern United States, many millions of hatchery-origin brook trout have been released into hundreds of streams, but the extent of introgression with native populations is not well resolved despite large phylogeographic distances between these groups. We used three assessment approaches based on 12 microsatellite loci to examine the extent of hatchery introgression in 406 wild brook trout populations in North Carolina. We found high levels of differentiation among most collections (mean F′ST = 0.718), and among most wild collections and hatchery strains (mean F′ST = 0.732). Our assessment of hatchery introgression was consistent across the three metrics, and indicated that most wild populations have not been strongly influenced by supplemental stocking. However, a small proportion of wild populations in North Carolina appear to have been strongly influenced by stocked conspecifics, or in some cases, may have been founded entirely by hatchery lineages. In addition, we found significant differences in the apparent extent of hatchery introgression among major watersheds, with the Savannah River being the most strongly impacted. Conversely, populations in the Pee Dee River watershed showed little to no evidence of hatchery introgression. Our study represents the first large-scale effort to quantify the extent of hatchery introgression across brook trout populations in the southern Appalachians using highly polymorphic microsatellite markers.

  14. Vibrio Bacteria Counts from Hatcheries and Shellfish Beds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1996 to the present samples of water, sediment and macerated oyster set (Crassostrea virginica, Gmelin) taken at low tide at a Long Island oyster hatchery were...

  15. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested

  16. Blood types in Pacific salmon

    Science.gov (United States)

    Ridgway, G.L.; Klontz, G.W.

    1961-01-01

    Intraspecific differences in erythrocyte antigens (blood types) were shown to occur in four species of Pacific salmon, the sockeye or red salmon (Oncorhynchus nerka), the chinook or king salmon (0. tshawytscha), the chum salmon (O. keta), and the pink salmon (O. gorbuscha). Antisalmon-erythrocyte sera prepared in rabbits and chickens were used after absorption of species-specific antibodies. Some of these blood types were shown to differ in their frequency of occurrence between different geographic races. In addition, isoimmunizations were conducted on one race of sockeye salmon. Antisera of seven different specificities were prepared and at least eight different patterns of antigenic composition were displayed by the cells tested.

  17. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  18. Business plan Hatchery Facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a hatchery, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of the

  19. Effect of exposure on salmon lice Lepeophtheirus salmonis population dynamics in Faroese salmon farms

    DEFF Research Database (Denmark)

    Patursson, Esbern J.; Simonsen, Knud; Visser, Andre

    2017-01-01

    We assessed variations in salmon lice Lepeophtheirus salmonis population dynamics in Faroese salmon farms in relationship to their physical exposure to local circulation patterns and flushing with adjacent waters. Factors used in this study to quantify physical exposure are estimates...... of the freshwater exchange rate, the tidal exchange rate and dispersion by tidal currents. Salmon farms were ranked according to the rate of increase in the average numbers of salmon lice per fish. In a multiple linear regression, physical exposure together with temperature were shown to have a significant effect...... threshold of salmon stocking numbers for outbreaks of infection. The study presents a simple method of characterizing salmon farming fjords in terms of their different exposure levels and how they relate to potential self-infection at these sites...

  20. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    Science.gov (United States)

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  1. Snake River Sockeye Salmon Captive Broodstock; Research Element, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1995-12-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game during the period of April 1993 to April 1994 are covered by this report. Eight anadromous adults (two female and six male) returned to the Redfish Lake Creek trap this year and were spawned at the Sawtooth Hatchery near Stanley, Idaho. Fecundity was 3160 for each female. The mean fertilization rate was 52% for female {open_quotes}A{close_quotes} and 65% for female {open_quotes}B.{close_quotes} Captive broodstock also spawned as well as residual sockeye captured in a Merwin trap in Redfish Lake. Spawning data from 72 fish spawned during this period is included in this report. Captive broodstock also matured later than normal (winter and spring 1994). Fish were spawned and samples were taken to investigate reasons for poor fertilization rates. Twenty-four out migrants of 1991 were selected for return to Redfish Lake for volitional spawning. Releases were made in August of 1993. All fish were implanted with sonic tags and tracking of this group began soon after the release to identify spawning-related activities. A research project is being conducted on captive broodstock diets. The project will investigate the effect of diet modification on spawn timing, gamete quality, and fertilization rates. A second project used ultrasound to examine fish for sexual maturity. The goal was to obtain a group a fish to be released f or volitional spawning. A total of 44 fish were found to be mature. The performance of all captive groups held at Eagle are included in this report.

  2. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    within wetland habitats fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites and coincident with high water temperatures that approached or exceeded 19 C by mid-summer. Wetland habitats were used primarily by small subyearling Chinook salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the wetland rearing season) at scrub/shrub forested sites above rkm 50. Wetland sites of all types were utilized by a diversity of genetic stock groups, including less abundant groups such as Interior Summer/Fall Chinook.

  3. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  4. Calcitonin Salmon Injection

    Science.gov (United States)

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  5. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    Science.gov (United States)

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  6. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.

    2006-01-01

    We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.

  7. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  8. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    Science.gov (United States)

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  9. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Anja Bråthen Kristoffersen

    2018-06-01

    Full Text Available The Norwegian government recently implemented a new management system to regulate salmon farming in Norway, aiming to promote environmentally sustainable growth in the aquaculture industry. The Norwegian coast has been divided into 13 production zones and the volume of salmonid production in the zones will be regulated based on salmon lice effects on wild salmonids. Here we present a model for assessing salmon louse-induced mortality of seaward-migrating post-smolts of Atlantic salmon. The model quantifies expected salmon lice infestations and louse-induced mortality of migrating post-smolt salmon from 401 salmon rivers draining into Norwegian coastal waters. It is assumed that migrating post-smolts follow the shortest path from river outlets to the high seas, at constant progression rates. During this migration, fish are infested by salmon lice of farm origin according to an empirical infestation model. Furthermore, louse-induced mortality is estimated from the estimated louse infestations. Rivers draining into production zones on the West Coast of Norway were at the highest risk of adverse lice effects. In comparison, rivers draining into northerly production zones, along with the southernmost production zone, were at lower risk. After adjusting for standing stock biomass, estimates of louse-egg output varied by factors of up to 8 between production zones. Correlation between biomass adjusted output of louse infestation and densities of farmed salmon in the production zones suggests that a large-scale density-dependent host-parasite effect is a major driver of louse infestation rates and parasite-induced mortality. The estimates are sensitive to many of the processes in the chain of events in the model. Nevertheless, we argue that the model is suited to assess spatial and temporal risks associated with farm-origin salmon lice. Keywords: Density dependent, Sea lice, Transmission, Farmed salmon, Migration pathway, Migration time

  10. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    Science.gov (United States)

    Nyqvist, Daniel; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; Ardren, William R.; Castro-Santos, Theodore R.

    2017-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  11. Back to the Roots: The Integration of a Constructed Wetland into a Recirculating Hatchery - A Case Study

    Science.gov (United States)

    Buřič, Miloš; Bláhovec, Josef; Kouřil, Jan

    2015-01-01

    Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations. PMID:25853416

  12. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  13. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  14. Vertical self-sorting behavior in juvenile Chinook salmon (Oncorhynchus tshawytscha): evidence for family differences and variation in growth and morphology

    Science.gov (United States)

    Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.

    2018-01-01

    Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.

  15. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    Science.gov (United States)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  16. Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein

    Science.gov (United States)

    Puvanendran, Velmurugu; Riesen, Guido; Seim, Rudi Ripman; Hagen, Ørjan; Martínez-Llorens, Silvia; Falk-Petersen, Inger-Britt; Fernandes, Jorge M. O.; Jobling, Malcolm

    2018-01-01

    Diploid and triploid Atlantic salmon, Salmo salar were fed high-protein, phosphorus-rich diets (56–60% protein; ca 18g phosphorus kg-1 diet) whilst being reared at low temperature from start-feeding until parr-smolt transformation. Performances of salmon fed diets based on fish meal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) as the major protein sources were compared in terms of mortality, diet digestibility, growth and skeletal deformities. Separate groups of diploids and triploids were reared in triplicate tanks (initially 3000 fish per tank; tank biomass ca. 620 g) from 0–2745 degree-days post-start feeding (ddPSF). Growth metrics (weight, length, condition factor) were recorded at ca. 4 week intervals, external signs of deformities to the operculum, jaws and spinal column were examined in parr sampled at 1390 ddPSF, and external signs of deformity and vertebral anomalies (by radiography) were examined in fish sampled at the end of the trial (2745 ddPSF). The triploid salmon generally had a lower mass per unit length, i.e. lower condition factor, throughout the trial, but this did not seem to reflect any consistent dietary or ploidy effects on either dietary digestibility or the growth of the fish. By the end of the trial fish in all treatment groups had achieved a weight of 50+ g, and had completed the parr-smolt transformation. The triploids had slightly, but significantly, fewer vertebrae (Triploids STD 58.74 ± 0.10; HFM 58.68 ± 0.05) than the diploids (Diploids STD 58.97 ± 0.14; HFM 58.89 ± 0.01), and the incidence of skeletal (vertebral) abnormalities was higher in triploids (Triploids STD 31 ± 0.90%; HFM 15 ± 1.44%) than in diploids (Diploids STD 4 ± 0.80%; HFM 4 ± 0.83%). The HFM diet gave a significant reduction in the numbers of triploid salmon with vertebral anomalies in comparison with the triploids fed the STD diet possibly as a result of differences in phosphorus bioavailability between the two diets. Overall, the

  17. Salmon tracing: Genotyping to trace back escapees from salmon aquaculture

    NARCIS (Netherlands)

    Blonk, R.J.W.

    2014-01-01

    The overall objective of the project is to assign an escaped salmon back to the farm responsible for the escape with near 100% accuracy. In this report, the potential of a set of genetic markers to assign an escaped salmon was determined for a set of 12 polymorphic microsatellite markers, provided

  18. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  19. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  20. Constraints to adoption of improved hatchery management practices among catfish farmers in Lagos State

    Directory of Open Access Journals (Sweden)

    Oghenetejiri DIGUN-AWETO

    2017-11-01

    Full Text Available Aquaculture has shown capacities to serve as means of livelihood, improve living standards, provide employment and generate foreign exchange in many countries. Recent investment in Nigerian aquaculture has been target towards catfish farming. However, small quantity and poor quality fish seeds are one of the problems limiting production. Consequently, Lagos State government introduced improved breeding and hatchery management practices as a package to fish hatchery operators with the aim of improving fish seed quantity and quality in the state. Nevertheless, the dissemination of the package has not yielded the desired result. This study assessed the constraints to adoption of improved hatchery management practices among catfish farmers in Lagos State. With structured questionnaire, 150 catfish farmers, randomly selected from 12 local government areas spread across Lagos State were interviewed. Despite that majority of the respondents strongly agreed or agreed to the fact that improved hatchery management practices have positive impacts on breeding, hatching, and survival of fish fry, majority of them affirmed that high cost of acquisition, high technicality in using the improved management practices as well as inadequate information about the improved management practices are primary reasons for non-adoption of some of the improved practices. Some of the limitations faced by the respondents include insufficient capital, lack of technical expertise to use the methods adequately, non-availability of inputs, expensive cost of facility maintenance, poor information dissemination and insufficient technical support from the extension agents and the state government. Although the adoption of improved practices has not been total, due to these constraints, the farmers’ knowledge of the improved hatchery management practices is broad. There is a need for the state government to subsidize the improved hatchery technologies and inputs, in addition to

  1. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume XVII : Effects of Ocean Covariates and Release Timing on First Ocean-Year Survival of Fall Chinook Salmon from Oregon and Washington Coastal Hatcheries.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin; Skalski, John R.

    2001-05-01

    Effects of oceanographic conditions, as well as effects of release-timing and release-size, on first ocean-year survival of subyearling fall chinook salmon were investigated by analyzing CWT release and recovery data from Oregon and Washington coastal hatcheries. Age-class strength was estimated using a multinomial probability likelihood which estimated first-year survival as a proportional hazards regression against ocean and release covariates. Weight-at-release and release-month were found to significantly effect first year survival (p < 0.05) and ocean effects were therefore estimated after adjusting for weight-at-release. Negative survival trend was modeled for sea surface temperature (SST) during 11 months of the year over the study period (1970-1992). Statistically significant negative survival trends (p < 0.05) were found for SST during April, June, November and December. Strong pairwise correlations (r > 0.6) between SST in April/June, April/November and April/December suggest the significant relationships were due to one underlying process. At higher latitudes (45{sup o} and 48{sup o}N), summer upwelling (June-August) showed positive survival trend with survival and fall (September-November) downwelling showed positive trend with survival, indicating early fall transition improved survival. At 45{sup o} and 48{sup o}, during spring, alternating survival trends with upwelling were observed between March and May, with negative trend occurring in March and May, and positive trend with survival occurring in April. In January, two distinct scenarios of improved survival were linked to upwelling conditions, indicated by (1) a significant linear model effect (p < 0.05) showing improved survival with increasing upwelling, and (2) significant bowl-shaped curvature (p < 0.05) of survival with upwelling. The interpretation of the effects is that there was (1) significantly improved survival when downwelling conditions shifted to upwelling conditions in January (i

  2. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  3. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  4. BACTERIAL FLORA OF HATCHERY ENVIRONMENT AND THEIR IN-VITRO SUSCEPTIBILITY TO ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    F. M. Khan, H. Afzal and F. Deeba

    2003-04-01

    Full Text Available Four hatcheries, located in and around Faisalabad, were sampled a day before hatch out in six batches for environmental bacterial flora. Hatchery air, egg-shell surface, surfaces of selected locations and water supply samples were taken for this purpose. The percent (relative occurrence of various bacterial species recovered from hatchery environment revealed that Bacillus subtilis was the predominant isolate (26.93%. followed by Escherichia coli (24.08%, Staphylococcus epidermidis (16.32%, Staphylococcus aureus (8.16%, Paratyphoid salmonellae (6.93%, Pseudomonas aeruginosa (4.48%, Citrobacter jreundii (4.08%, Enterococcus faecalis (3.26%, Klebsiella pneumoniae (3.26%, Bordetella avium (1.63% and Proteus vulgaris (0.81%. In second part of the study, bacterial isolates were subjected to in-vitro antibiotic sensitivity to 8 antibiotics of common poultry use. It was found that 98.92, 79.56. 65.59, 61.29, 61.29, 61.29, 53.76 and 38.70 percent of bacterial isolates were sensitive to Norfloxacin, Gentamicin, Neomycin, Chloramphenicol, Doxycycline, Flumequine, Erythromycin, and Ampicillin, respectively. In the final part of the study, bacterial isolates were tested for resistance to 3 commerical hatchery disinfectants (TH4®, Aldekol Des® 0.2, and Bromosept 10% soln. ®. Only 3.22% of the isolates showed resistance at manufacturer's recommended dilution (MRD levels while 11.82% of the isolates showed resistance at concentrations below the MRD levels.

  5. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho

  6. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    Science.gov (United States)

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  7. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    Science.gov (United States)

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  8. Nature versus nurture? Consequences of short captivity in early stages.

    Science.gov (United States)

    Horreo, Jose L; Valiente, America G; Ardura, Alba; Blanco, Aida; Garcia-Gonzalez, Claudia; Garcia-Vazquez, Eva

    2018-01-01

    Biological changes occurring as a consequence of domestication and/or captivity are not still deeply known. In Atlantic salmon (S almo salar ), endangered (Southern Europe) populations are enhanced by supportive breeding, which involves only 6 months of captive rearing following artificial spawning of wild-collected adults. In this work, we assess whether several fitness-correlated life-history traits (migratory behavior, straying rate, age at maturity, and growth) are affected by early exposure to the captive environment within a generation, before reproduction thus before genetic selection. Results showed significant differences in growth and migratory behavior (including straying), associated with this very short period of captivity in natural fish populations, changing even genetic variability (decreased in hatchery-reared adults) and the native population structure within and between rivers of the species. These changes appeared within a single generation, suggesting very short time of captivity is enough for initiating changes normally attributed to domestication. These results may have potential implications for the long-term population stability/viability of species subjected to restoration and enhancement processes and could be also considered for the management of zoo populations.

  9. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    Science.gov (United States)

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  10. Role of the GH-IGF-1 system in Atlantic salmon and rainbow trout postsmolts at elevated water temperature.

    Science.gov (United States)

    Hevrøy, Ernst M; Tipsmark, Christian K; Remø, Sofie C; Hansen, Tom; Fukuda, Miki; Torgersen, Thomas; Vikeså, Vibeke; Olsvik, Pål A; Waagbø, Rune; Shimizu, Munetaka

    2015-10-01

    A comparative experiment with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) postsmolts was conducted over 35 days to provide insight into how growth, respiration, energy metabolism and the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) system are regulated at elevated sea temperatures. Rainbow trout grew better than Atlantic salmon, and did not show reduced growth at 19 °C. Rainbow trout kept at 19 °C had increased blood hemoglobin concentration compared to rainbow trout kept at 13 °C, while salmon did not show the same hemoglobin response due to increased temperature. Both species showed reduced length growth and decreased muscle glycogen stores at 19 °C. Circulating IGF-1 concentration was higher in rainbow trout than in Atlantic salmon, but was not affected by temperature in either species. Plasma IGF-binding protein 1b (IGFBP-1b) concentration was reduced in Atlantic salmon reared at 19 °C after 15 days but increased in rainbow trout at 19 °C after 35 days. The igfbp1b mRNA level in liver showed a positive correlation to plasma concentrations of glucose and IGFBP-1b, suggesting involvement of this binding protein in carbohydrate metabolism at 19 °C. At this temperature muscle igfbp1a mRNA was down-regulated in both species. The muscle expression of this binding protein correlated negatively with muscle igf1 and length growth. The plasma IGFBP-1b concentration and igfbp1b and igfbp1a expression suggests reduced muscle igf1 signaling at elevated temperature leading to glucose allostasis, and that time course is species specific due to higher thermal tolerance in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dust exposure and health of workers in duck hatcheries

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Guillam

    2017-07-01

    Hatchery workers were at increased risk of compromised respiratory health due to dust exposure, particularly those who work in sorting rooms. Asthma and rhinitis were in excess in this population of workers. Thorough clinical examination of these workers should be performed and all exposures assessed.

  12. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    Science.gov (United States)

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P  0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  13. Calcitonin Salmon Nasal Spray

    Science.gov (United States)

    Calcitonin salmon is used to treat osteoporosis in women who are at least 5 years past menopause and cannot ... a human hormone that is also found in salmon. It works by preventing bone breakdown and increasing ...

  14. Assessing genetic diversity of wild and hatchery samples of the Chinese sucker (Myxocyprinus asiaticus) by the mitochondrial DNA control region.

    Science.gov (United States)

    Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin

    2016-01-01

    To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River.

  15. Snake River sockeye salmon habitat and limnological research, annual report 1999

    International Nuclear Information System (INIS)

    Griswold, Robert G.

    2001-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity

  16. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.

    Directory of Open Access Journals (Sweden)

    Colin S Shanley

    Full Text Available Global climate change may become one of the most pressing challenges to Pacific Salmon conservation and management for southeast Alaska in the 21st Century. Predicted hydrologic change associated with climate change will likely challenge the ability of specific stocks to adapt to new flow regimes and resulting shifts in spawning and rearing habitats. Current research suggests egg-to-fry survival may be one of the most important freshwater limiting factors in Pacific Salmon's northern range due to more frequent flooding events predicted to scour eggs from mobile spawning substrates. A watershed-scale hydroclimatic sensitivity index was developed to map this hypothesis with an historical stream gauge station dataset and monthly multiple regression-based discharge models. The relative change from present to future watershed conditions predicted for the spawning and incubation period (September to March was quantified using an ensemble global climate model average (ECHAM5, HadCM3, and CGCM3.1 and three global greenhouse gas emission scenarios (B1, A1B, and A2 projected to the year 2080. The models showed the region's diverse physiography and climatology resulted in a relatively predictable pattern of change: northern mainland and steeper, snow-fed mountainous watersheds exhibited the greatest increases in discharge, an earlier spring melt, and a transition into rain-fed hydrologic patterns. Predicted streamflow increases for all watersheds ranged from approximately 1-fold to 3-fold for the spawning and incubation period, with increased peak flows in the spring and fall. The hydroclimatic sensitivity index was then combined with an index of currently mapped salmon habitat and species diversity to develop a research and conservation priority matrix, highlighting potentially vulnerable to resilient high-value watersheds. The resulting matrix and observed trends are put forth as a framework to prioritize long-term monitoring plans, mitigation

  17. Growth and osmoregulation in Salmo salar L. juveniles 1+, 1½ + and 2+ reared under restrained salinity

    Directory of Open Access Journals (Sweden)

    José Fernando Magalhães Gonçalves

    2013-02-01

    Full Text Available The freshwater phase of Atlantic salmon Salmo salar L vary between one and eight years. The reduction of the freshwater phase is desirable to reduce freshwater usage, human resources and to increase year round availability of pan-sized salmon. Three trials were conducted to investigate the possibility of supply the market in a year-round basis, with pan-sized Atlantic salmon Salmo salar L. (250-300 g in Portugal (southern limit of the natural distribution of this species. This study primarily aimed to compare the osmoregulatory ability and growth of different fish sizes, smolts 1+ (trial 1, 1.5+ (trial 2 and 2+ (trial 3, in freshwater and seawater conditions. Additionally, effects of photoperiod were determined in smolts 1.5+ (trial 2 for both freshwater and seawater groups. The increments in the plasma osmolality and chlorine concentrations after seawater transfer suggest an identical development in the hypo-osmoregulation capacity among the different age classes. In all trials, weight gain was smaller after 30 d of saltwater transfer when compared to fish reared in freshwater. However, the growth depression was temporary. Seawater group showed a compensatory growth in the immediate months, which permitted an improvement in growth rates. At the end of trials there were minor differences on growth performance between freshwater and seawater groups. Specific growth rates varied between 0.7 and 1.0 % day-1, according to the age and /or size and transfer season.

  18. Microhabitat selection of Gyrodactylus salaris  with reference to susceptibility status of the salmonid host

    DEFF Research Database (Denmark)

    Heinecke, Rasmus Demuth; Buchmann, Kurt

    Five strains of salmon Salmo salar and a strain of Danish rainbow trout Oncorhynchus mykiss were experimentally infected with the ectoparasite Gyrodactylus salaris (Lærdalselva strain, Norway). All fish were hatchery-reared and the genetic origins were from the East Atlantic: River Conon (Scotland......), Storå (western Denmark) and Ätran (western Sweden) and from the Baltic: River Lule and Ume (Sweden). The rainbow trout used were from a Danish fish farm. Three replicate aquaria infested with G. salaris were established containing 10 fish of every strain. The numbers of parasites were assessed...... on anesthetized fish once a week from week 0 to week 8 and concurrently the location of every parasite on each of twelve regions on the fish was recorded. The mean abundance of G. salaris steadily increased on the East Atlantic Conon, Storå and Ätran strains until the end of the experiment. The mean abundance...

  19. Comparación del crecimiento de Argopecten purpuratus entre cohortes obtenidas de captación de larvas en ambiente natural y de hatchery Comparison of growth among cohorts obtained Argopecten purpuratus larval recruitment in natural and hatchery

    Directory of Open Access Journals (Sweden)

    Eduardo P Pérez

    2012-11-01

    Full Text Available En Chile los cultivos del ostión del norte Argopecten purpuratus han sido desarrollados intensivamente a partir de la captación de semillas en ambiente natural y desde principios de 1980 con semillas obtenidas en hatchery. Para aportar información sobre el desempeno de semillas de ostión del norte en este estudio se comparó, mediante ANCOVA, el crecimiento en longitud entre cohortes producidas a partir de semillas de ambiente natural y de hatchery en Tongoy, Chile. Se evaluó la consistencia de esta comparación en distintos anos y estaciones, comparándose parejas de cohortes producidas simultáneamente en los anos 2003 (primavera, 2005 (invierno y 2006 (verano. El análisis estadístico mostró que existen diferencias estadísticas significativas entre cohortes obtenidas en ambiente natural y aquellas obtenidas en hatchery. La prueba de Tukey evidenció diferencias significativas entre CN2003 y CH2003 como también entre CN2005 y CH2005, pero no así entre CN2006 y CH2006. Estas diferencias indican que las cohortes de semillas de ambiente natural crecieron más rápido que las de hatchery. La comparación interanual evidenció diferencias estadísticas significativas. Estos resultados son discutidos a la luz de dos factores: la temperatura de cultivo y la heterocigocidad de la población de cultivo.In Chile crops of the northern scallop Argopecten purpuratus have been developed intensively from seeds obtained in natural environment, and since 1980 from hatchery's seed, when this technique could be controlled and developed. In order to provide information on the performance of seeds of northern scallops in this study growth in length between cohorts produced from seeds obtained in natural environment (CN and hatchery (CH in Tongoy (Chile was compared using ANCOVA. We assessed the consistency of this comparison in different years and seasons. The compared cohorts are pairs of cohorts produced simultaneously in the years 2003 (spring, 2005

  20. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  1. Microsatellite and mitochondrial DNA polymorphism reveals life history dependent interbreeding between hatchery and wild brown trout ( Salmo trutta L.)

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Ruzzante, D.E.; Eg Nielsen, Einar

    2000-01-01

    The effects of stocking hatchery trout into wild populations were studied in a Danish river, using microsatellite and mitochondrial DNA (mtDNA) markers. Baseline samples were taken from hatchery trout and wild trout assumed to be unaffected by previous stocking. Also, samples were taken from...... resident and sea trout from a stocked section of the river. Genetic differentiation between the hatchery strain and the local wild population was modest (microsatellite F-ST = 0.06). Using assignment tests, more than 90% of individuals from the baseline samples were classified correctly. Assignment tests...... involving samples from the stocked river section suggested that the contribution by hatchery trout was low among sea trout (trout. Hybrid index analysis and a high percentage of mtDNA haplotypes specific to indigenous trout observed among resident trout that were assigned...

  2. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2005-10-01

    Basin developed with the efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha) coho salmon and (O. kisutch) and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (BOR 1988). The most notable development was the construction and operation of Three-Mile Falls Dam (3MD) and other irrigation projects that dewatered the Umatilla River during salmon migrations. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and the Oregon Department of Fish and Wildlife (ODFW) developed the Umatilla Hatchery Master Plan to restore the historical fisheries in the basin. The plan was completed in 1990 and included the following objectives: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Produce almost 48,000 adult returns to Three-Mile Falls Dam. The goals were reviewed in 1999 and were changed to 31,500 adult salmon and steelhead returns (Table 2). We conduct core long-term monitoring activities each year as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), genetic monitoring (Currens & Schreck 1995, Narum et al. 2004), and habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998). Our project goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. This is the only project that monitors the restoration of naturally producing salmon and

  3. 21 CFR 161.170 - Canned Pacific salmon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned Pacific salmon. 161.170 Section 161.170... § 161.170 Canned Pacific salmon. (a) Identity. (1) Canned Pacific salmon is the food prepared from one... forms of canned Pacific salmon are processed from fish prepared by removing the head, gills, and tail...

  4. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  5. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  6. Ectoparasite Caligus rogercresseyi modifies the lactate response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch).

    Science.gov (United States)

    Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A

    2017-08-30

    Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lessons from sea louse and salmon epidemiology.

    Science.gov (United States)

    Groner, Maya L; Rogers, Luke A; Bateman, Andrew W; Connors, Brendan M; Frazer, L Neil; Godwin, Sean C; Krkošek, Martin; Lewis, Mark A; Peacock, Stephanie J; Rees, Erin E; Revie, Crawford W; Schlägel, Ulrike E

    2016-03-05

    Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. © 2016 The Author(s).

  8. Low levels of very-long-chain n-3 PUFA in Atlantic salmon (Salmo salar) diet reduce fish robustness under challenging conditions in sea cages.

    Science.gov (United States)

    Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Ruyter, Bente

    2017-01-01

    The present study aimed to determine the minimum requirements of the essential n -3 fatty acids EPA and DHA in Atlantic salmon ( Salmo salar ) that can secure their health under challenging conditions in sea cages. Individually tagged Atlantic salmon were fed 2, 10 and 17 g/kg of EPA + DHA from 400 g until slaughter size (about 3·5 kg). The experimental fish reared in sea cages were subjected to the challenging conditions typically experienced under commercial production. Salmon receiving the lowest EPA + DHA levels showed lower growth rates in the earlier life stages, but no significant difference in final weights at slaughter. The fatty acid composition of various tissues and organs had remarkably changed. The decreased EPA + DHA in the different tissue membrane phospholipids were typically replaced by pro-inflammatory n -6 fatty acids, most markedly in the skin. The EPA + DHA levels were maintained at a higher level in the liver and erythrocytes than in the muscle, intestine and skin. After delousing at high water temperatures, the mortality rates were 63, 52 and 16 % in the salmon fed 2, 10 and 17 g/kg EPA + DHA. Low EPA + DHA levels also increased the liver, intestinal and visceral fat amount, reduced intervertebral space and caused mid-intestinal hyper-vacuolisation. Thus, 10 g/kg EPA + DHA in the Atlantic salmon diet, a level previously regarded as sufficient, was found to be too low to maintain fish health under demanding environmental conditions in sea cages.

  9. Activities and Ergonomics of Workers in Broiler Hatcheries

    Directory of Open Access Journals (Sweden)

    CCS Carvalho

    2015-06-01

    Full Text Available The objective this study was to assess ergonomic factors, posture and biomechanics of workers of a broiler egg hatchery. The analysis of ergonomic factors was based on physical work load, thermal environment, and exposure to light and noise. The posture of workers was analyzed using photographic records which were evaluated by the software program OWAS (Ovako Working Posture Analysing System. A biomechanics analysis was also performed based on the photographs taken of the employee at various angles, which were used as inputs to the Michigan two-dimensional biomechanical model software program. The results show that certain activities can be considered unhealthy due to the exposure of employees to physical and thermal overload. The continuous noise levels and lighting were outside the range considered adequate by the regulations of the Brazilian Ministry of Labor. The manner in which certain activities are carried out when associated with weight and poor posture can result in body lesions in broiler hatchery employees. It is therefore necessary to apply specific ergonomic programs, including scheduled breaks, training, and other measures in order to reduce or to eliminate the risks involved in these activities.

  10. On the Frontline: Tracking Ocean Acidification in an Alaskan Shellfish Hatchery

    Science.gov (United States)

    Evans, Wiley; Mathis, Jeremy T.; Ramsay, Jacqueline; Hetrick, Jeff

    2015-01-01

    The invasion of anthropogenic carbon dioxide (CO2) into the ocean is shifting the marine carbonate system such that saturation states of calcium carbonate (CaCO3) minerals are decreasing, and this is having a detrimental impact on early life stages of select shellfish species. The global, secular decrease in CaCO3 saturation states is occurring on top of a backdrop of large natural variability in coastal settings; progressively shifting the envelope of variability and leading to longer and more frequent exposure to adverse conditions. This is a great concern in the State of Alaska, a high-latitude setting vulnerable to rapid changes in the marine carbonate system, where an emerging shellfish industry plans major growth over the coming decades. Currently, the Alutiiq Pride Shellfish Hatchery (APSH) in Seward, Alaska is the only hatchery in the state, and produces many shellfish species with early life stages known to be sensitive to low CaCO3 saturation states. Here we present the first land-based OA measurements made in an Alaskan shellfish hatchery, and detail the trends in the saturation state of aragonite (Ωarag), the more soluble form of CaCO3, over a 10-month period in the APSH seawater supply. These data indicate the largest changes are on the seasonal time scale, with extended periods of sub-optimal Ωarag levels (Ωarag < 1.5) in winter and autumn associated with elevated water column respiration and short-lived runoff events, respectively. The data pinpoint a 5-month window of reprieve with favorable Ωarag conditions above the sub-optimal Ωarag threshold, which under predicted upper-bound CO2 emissions trajectories is estimated to close by 2040. To date, many species in production at APSH remain untested in their response to OA, and the data presented here establish the current conditions at APSH as well as provide a framework for hatchery-based measurements in Alaska. The current and expected conditions seen at APSH are essential to consider for this

  11. Idaho supplementation studies : five year report : 1992-1996

    International Nuclear Information System (INIS)

    Walters, Jody P.; Idaho. Dept. of Fish and Game; United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake

  12. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  13. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  14. Pacific Coastal Salmon Recovery Fund

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Congress established the Pacific Coastal Salmon Recovery Fund (PCSRF) to monitor the restoration and conservation of Pacific salmon and steelhead populations and...

  15. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1990 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Paragamian, Vaughn L.

    1991-03-01

    Rehabilitation of kokanee Oncorhynchus nerka in Lake Pend Oreille met with some success in 1990, but unexpected results have raised new questions. Estimated kokanee abundance during late August of 1990 was about 6.9 million fish. This is a decline of 19% from 1989, a continued decrease since 1988. The decreased population was attributed to low stocking of hatchery fry (7.3 million), lower wild fry survival in 1990 (1.5%), and exceptionally poor survival of fish ages 3+ and 4+. Average survival of the older fish was only 11% in 1990 compared to 72% in prior years. Compensatory survival was noted for kokanee ages 1+ and 2+, with an average of 81% in 1990 compared to 44% in 1989. Hatchery fry comprised 47% of the total kokanee fry recruitment in 1990 (80% of fry biomass). This contribution ranked third behind 1988 and 1989 since hatchery supplementation began in the 1970s. Survival of hatchery fry was 20%, the second highest since this investigation began. Findings of 1990 indicate a more comprehensive approach to managing kokanee must take into account predator stockings and predator/prey interaction. An unexpected low adult escapement was responsible for an egg-take of only 5.6 million eggs in 1990, 58% of the previous year, which will limit experimental stocking in 1991. Modification of the fish ladder at the Cabinet Gorge Fish Hatchery to improve adult escapement is strongly recommended to increase egg-take. 27 refs., 28 figs., 6 tabs.

  16. Analysis of piscicultural-biological results of works with Russian sturgeon brood fish at the sturgeon hatchery “Lebyazhy” (Astrakhan region, Russia

    Directory of Open Access Journals (Sweden)

    R. V. Kononenko

    2013-04-01

    Full Text Available The state of world stocks of sturgeons is on the edge of catastrophe. These species are either extinct or under threat of extinction under human impacts. At the same time, there are enterprises, fish hatcheries, which deal with restoration and replenishment of natural stocks with of endangered fish species. One of such hatcheries is the sturgeon hatchery “Lebyazhy” (Astrakhan region, Russian Federation. The aim of the study was an analysis of piscicultural-biological features of the Russian sturgeon brood fish. During the study, which was conducted in April–May 2011, 34 Russian sturgeon females were used in two rounds, 17 individuals each. For stimulating gametes maturation, the Derzhavin’s physiological method was used. Caviar was obtained by stripping the eggs under strict hygienic and sanitary norms. Eggs fertilization with the semi-dry method used the male milt that bought at the “Raskat” LLC. Egg stickiness elimination was performed with the aid of talc and apparatuses for the egg stickiness elimination. Eggs incubation was performed in the “Osetr” apparatuses until yolk-sac larvae hatching. The domesticated fish were subjected to bonitation for determining their readiness for spawning. As a result of this bonitation, the brood fish were separated into two groups: first round of rearing works: females with mean weight of 34.8 kg and age of 9 years; second round: females with mean weight of 32.3 kg and the same age. Among injected females of the first round, 100% positive reaction for the stimulating injection was observed, but 95% – among females of the second round. Maturation time of females of both rounds varied from 25 to 30 hours. The maturation state of gametes of sturgeon females or males was determined based on samples obtained. 90.2 kg of eggs were obtained from females of the first round. At the same time, the maximum quantity was observed in the female of 50.5 kg – 9.2 kg of caviar, and the least quantity

  17. Juvenile salmon usage of the Skeena River estuary.

    Science.gov (United States)

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  18. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    Directory of Open Access Journals (Sweden)

    Cleo Woelfle-Erskine

    2017-03-01

    Full Text Available In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work.

  19. 77 FR 75101 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Science.gov (United States)

    2012-12-19

    .... 120813333-2647-01] RIN 0648-BC28 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS proposes regulations to implement Amendment 17 to the Pacific Coast Salmon Fishery...

  20. 76 FR 81851 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Science.gov (United States)

    2011-12-29

    .... 101206604-1758-02] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National...) to implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and...