WorldWideScience

Sample records for harvesting ankle-foot orthosis

  1. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    Directory of Open Access Journals (Sweden)

    Chin Robin

    2009-06-01

    Full Text Available Abstract Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1. Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle.

  2. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    Science.gov (United States)

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  3. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  4. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    Science.gov (United States)

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  6. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.

    Science.gov (United States)

    Nolan, Karen J; Yarossi, Mathew

    2011-03-01

    Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic

  7. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    Science.gov (United States)

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  8. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  9. Use and tolerability of a side pole static ankle foot orthosis in children with neurological disorders.

    Science.gov (United States)

    Delvert, Céline; Rippert, Pascal; Margirier, Françoise; Vadot, Jean-Pierre; Bérard, Carole; Poirot, Isabelle; Vuillerot, Carole

    2017-04-01

    Transverse-plane foot deformities are a frequently encountered issue in children with neurological disorders. They are the source of many symptoms, such as pain and walking difficulties, making their prevention very important. We aim to describe the use and tolerability of a side pole static ankle foot orthosis used to prevent transverse-plane foot deformities in children with neurologic disorders. Monocentric, retrospective, observational study. Medical data were collected from 103 children with transverse-plane foot deformities in one or both feet caused by a neurological impairment. All children were braced between 2001 and 2010. Unilateral orthosis was prescribed for 32 children and bilateral orthosis for 71. Transverse-plane foot deformities were varus in 66% of the cases and an equinus was associated in 59.2% of the cases. Mean age for the first prescription was 8.6 years. For the 23 patients present at the 4-year visit, 84.8% still wore the orthosis daily, and 64.7% wore the orthosis more than 6 h per day. The rate of permanent discontinuation of wearing the orthosis was 14.7%. The side pole static ankle foot orthosis is well tolerated with very few side effects, which promotes regular wearing and observance. Clinical relevance Side pole static ankle foot orthoses are well tolerated and can be safely used for children with foot abnormalities in the frontal plane that have a neurological pathology origin.

  10. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  11. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  12. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.

    Science.gov (United States)

    Burdett, R G; Borello-France, D; Blatchly, C; Potter, C

    1988-08-01

    The effects of the Air-Stirrup (AS) standard ankle brace on the gait of 19 subjects with hemiplegia resulting from a cerebrovascular accident who exhibited excessive subtalar joint motion were studied. Videotaped trials and footprint analyses were used to measure subjects' hip, knee, and ankle sagittal plane angles; inversion and eversion of the calcaneus; and time-distance gait characteristics. A one-way analysis of variance for repeated measures was used to compare the gait of 19 subjects with the AS brace and unbraced and 11 subjects with the AS brace, unbraced, and with an ankle-foot orthosis. The AS brace was associated with more calcaneal stability during standing than the unbraced condition. The ankle-foot orthosis was associated with less plantar flexion at foot-strike than either the AS brace or unbraced condition. Both the AS brace and the ankle-foot orthosis were associated with less mid-swing plantar flexion and increased step length on the paretic side compared with no brace. These results support the effectiveness of the AS brace in controlling inversion and eversion instability in patients with hemiplegia.

  13. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    Science.gov (United States)

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  14. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.

    Science.gov (United States)

    Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven

    2015-10-01

    Accurate and precise mediolateral foot placement is important for balance during gait, but is impaired post stroke. Mediolateral foot placement may be improved with ankle-foot orthosis use. The purpose of this study was to determine whether an ankle-foot orthosis improves mediolateral foot-placement ability during post-stroke ambulation. Crossover trial with randomized order of conditions tested. The accuracy and precision of mediolateral foot placement was quantified while subjects targeted four different randomized step widths. Subjects were tested with and without their regular non-rigid ankle-foot orthosis in two separate visits (order randomized). While ankle-foot orthosis use corrected foot and ankle alignment (i.e. significantly decreased mid-swing plantar flexion, p = 0.000), effects of ankle-foot orthosis use on hip hiking (p = 0.545), circumduction (p = 0.179), coronal plane hip range of motion (p = 0.06), and mediolateral foot-placement ability (p = 0.537) were not significant. While ankle-foot orthosis-mediated equinovarus correction of the affected foot and ankle was not associated with improved biomechanics of walking (i.e. proximal ipsilateral hip kinematics or mediolateral foot-placement ability), it may affect other aspects of balance that were not tested in this study (e.g. proprioception, cerebellar, vestibular, and cognitive mechanisms). Studies that investigate the effect of ankle-foot orthosis on gait can help advance stroke rehabilitation by documenting the specific gait benefits of ankle-foot orthosis use. In this study, we investigated the effect of ankle-foot orthosis use on mediolateral foot-placement ability, an aspect of gait important for maintaining balance. © The International Society for Prosthetics and Orthotics 2014.

  15. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    Science.gov (United States)

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  16. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  17. Effect of Ankle-foot Orthosis on Lower Limb Muscle Activities and Static Balance of Stroke Patients Authors’ Names

    OpenAIRE

    Lee, Youngmin; Her, Jin Gang; Choi, Youngeun; Kim, Heesoo

    2014-01-01

    [Purpose] This study examined the effects of an ankle-foot orthosis worn during balance training on lower limb muscle activity and static balance of chronic stroke patients. [Subjects] The subjects were twenty-five inpatients receiving physical therapy for chronic stroke. [Methods] The chronic stroke patients were divided into two groups: thirteen patients were assigned to the ankle-foot orthosis group, while the remaining twelve patients wore only their shoes. Each group performed balance tr...

  18. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    Science.gov (United States)

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  19. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  20. Development of an Active Ankle Foot Orthosis to Prevent Foot Drop and Toe Drag in Hemiplegic Patients: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Jungyoon Kim

    2011-01-01

    Full Text Available We developed an active ankle-foot orthosis (AAFO that controls dorsiflexion/plantarflexion of the ankle joint to prevent foot drop and toe drag during hemiplegic walking. To prevent foot slap after initial contact, the ankle joint must remain active to minimize forefoot collision against the ground. During late stance, the ankle joint must also remain active to provide toe clearance and to aid with push-off. We implemented a series elastic actuator in our AAFO to induce ankle dorsiflexion/plantarflexion. The activator was controlled by signals from force sensing register (FSR sensors that detected gait events. Three dimensional gait analyses were performed for three hemiplegic patients under three different gait conditions: gait without AFO (NAFO, gait with a conventional hinged AFO that did not control the ankle joint (HAFO, and gait with the newly-developed AFO (AAFO. Our results demonstrate that our newly-developed AAFO not only prevents foot drop by inducing plantarflexion during loading response, but also prevents toe drag by facilitating plantarflexion during pre-swing and dorsiflexion during swing phase, leading to improvement in most temporal-spatial parameters. However, only three hemiplegic patients were included in this gait analysis. Studies including more subjects will be required to evaluate the functionality of our newly developed AAFO.

  1. An ankle-foot orthosis powered by artificial pneumatic muscles.

    Science.gov (United States)

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  2. Effects on foot external rotation of the modified ankle-foot orthosis on post-stroke hemiparetic gait.

    Science.gov (United States)

    Kim, Ha Jeong; Chun, Min Ho; Kim, Hong Min; Kim, Bo Ryun

    2013-08-01

    To evaluate the effects of heel-opened ankle foot orthosis (HOAFO) on hemiparetic gait after stroke, especially on external foot rotation, and to compare the effects of HOAFO with conventional plastic-AFO (pAFO) and barefoot during gait. This cross-over observational study involved 15 hemiparetic patients with external rotation of the affected foot. All subjects were able to walk independently, regardless of their usual use of a single cane, and had a less than fair-grade in ankle dorsiflexion power. Each patient was asked to walk in three conditions with randomized sequences: 1) barefoot, 2) with a pAFO, and 3) with an HOAFO. Their gait patterns were analyzed using a motion analysis system. Fifteen patients consisted of nine males and six females. On gait analysis, hip and foot external rotation were significantly greater in pAFO (-3.35° and -23.68°) than in barefoot and HOAFO conditions (pexternal rotation compared with pAFO; although there was no significant difference between HOAFO and barefoot walking. Walking speed and percentage of single limb support were significantly greater for HOAFO than in barefoot walking. HOAFO was superior to pAFO in reducing hip and foot external rotation during the stance phase in patients with post-stroke hemiparesis. HOAFO may, therefore, be useful in patients with excessive external rotation of the foot during conventional pAFO.

  3. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  4. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  5. Development of Ankle Foot Orthosis (AFO Using Pneumatic Artificial Muscle for Disabled Children

    Directory of Open Access Journals (Sweden)

    Ishak N.Z.

    2017-01-01

    Full Text Available Ankle foot orthosis (AFO are commonly used to correct the instabilities and joint weakness of lower limb. In this research, AFO was developed by using pneumatic artificial muscle (PAM to prevent plantarflexion to occur and also to correct the foot from the inversion syndrome. The research started with designing the AFO by using SolidWorks software based on anthropometry measurement data (n=5, age=12 years old. The mechanical simulation was conducted by using Autodesk Inventor software to obtain a safety factor before the fabrication process was conducted. The AFO was fabricated using 3D printer and the thermoplastic elastomer (TPE rubber was selected as the material. PAM was tested by using test bed machine to generate the force and contraction by muscle. The result shows that the PAM was suitable for low speed as the displacement was greater. The AFO could be valuable for the gait rehabilitation.

  6. The Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2015-09-01

    Full Text Available Objectives: Ankle Foot Orthoses (AFOs are widely utilized to improve walking ability in hemiplegic patients. The present study aimed to evaluate the effect of Rocker bar Ankle Foot Orthosis (RAFO on functional mobility in post-stroke hemiplegic patients. Methods: Fifteen hemiplegic patients (men and women who were at least 6-months post-stroke and able to walk without assistive device for at least 10 meters voluntarily participated in this study. The patients were examined with and without RAFO. Their functional mobility was evaluated through 10-meter walk test and Timed Up and Go (TUG test. Also, paired t-test was used to analyze obtained data. Results: When patients used RAFO, their gait speed significantly increased (P<0.05. Also, the time of performing TUG test experienced a significant decrease using RAFO compared with utilizing shoe only (P<0.05. Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patient’s secondary to stroke. It seems that, it has been due to the positive effect of rocker modification on improving push off and transferring weight during stance phase of gait.

  7. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy

    NARCIS (Netherlands)

    Brehm, M.A.; Harlaar, J.; Schwartz, M.

    2008-01-01

    Objective: To determine the effect of ankle-foot orthoses on walking efficiency and gait in a heterogeneous group of children with cerebral palsy, using barefoot walking as the control condition. Design: A retrospective study. Methods: Barefoot and ankle-foot orthosis data for 172 children with

  8. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients' satisfaction, walking speed and physical activity level.

    NARCIS (Netherlands)

    Swigchem, R. van; Vloothuis, J.; Boer, J. de; Weerdesteijn, V.G.M.; Geurts, A.C.H.

    2010-01-01

    OBJECTIVE: The aim of this study was to evaluate whether community-dwelling chronic stroke patients wearing an ankle-foot orthosis would benefit from changing to functional electrical stimulation of the peroneal nerve. METHODS: In 26 community-dwelling chronic (> 6 months post-onset) patients after

  9. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    Science.gov (United States)

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  10. AN ANALYSIS OF THE MANUFACTURING POSSIBILITY OF SPECIAL ANKLE FOOT ORTHOSIS COMPONENTS BY OMPARISON BETWEEN THE REQUIRED PRECISION AND THE VAILABLE PRECISION ON A VERTICAL MACHINING CENTER PROGRAMED WITH TOPSOLID

    Directory of Open Access Journals (Sweden)

    Alexandru STANIMIR

    2010-06-01

    Full Text Available Validation of different solutions adopted to achieve new ankle foot orthosis involves among others their prototyping. In these paper we developed a representative part for two axis machining that requires the use of the main features of TopSolid Cad and Cam modules, and that assumes the use of the main manufacturing processes that usually may be met on a vertical machining center. Also, in order to determine the dimensional and geometrical deviations of the part this was done on the YMC 1050 machining center. After comparing the measured deviations with the requirements of various components of orthesis, we concluded that the available precision meets the requirements and that the machining center with TopSolid software that we have will enable us to realize special ankle foot orthosis of quality, for experimental research .

  11. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis

    Directory of Open Access Journals (Sweden)

    Angélique Slijper

    2012-01-01

    Full Text Available Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO and a standard carbon composite ankle foot orthosis (C-AFO. Methods. Twelve participants, mean age 56 years (range 26–72, with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW, walking velocity, the Physiological Cost Index (PCI, and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76, PCI −0.09 beats/m (95% CI −0.27, 0.95, velocity 0.04 m/s (95% CI −0.01, 0.097, and in the Stairs Test −11.8 s (95% CI −19.05, −4.48. All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  12. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study

    OpenAIRE

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van De Walle, Patricia; Seyler, J

    2006-01-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (wit...

  13. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  14. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.

    Science.gov (United States)

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J

    2006-10-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.

  15. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  16. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  17. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.

    Science.gov (United States)

    Schmalz, Thomas; Pröbsting, Eva; Auberger, Roland; Siewert, Gordon

    2016-04-01

    The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee-ankle-foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety. © The International Society for Prosthetics and Orthotics 2014.

  18. Minimally invasive soft tissue release of foot and ankle contracture secondary to stroke.

    Science.gov (United States)

    Boffeli, Troy J; Collier, Rachel C

    2014-01-01

    Lower extremity contracture associated with stroke commonly results in a nonreducible, spastic equinovarus deformity of the foot and ankle. Rigid contracture deformity leads to gait instability, pain, bracing difficulties, and ulcerations. The classic surgical approach for stroke-related contracture of the foot and ankle has been combinations of tendon lengthening, tendon transfer, osteotomy, and joint fusion procedures. Recovery after traditional foot and ankle reconstructive surgery requires a period of non-weightbearing that is not typically practical for these patients. Little focus has been given in published studies on minimally invasive soft tissue release of contracture. We present the case of a 61-year-old female with an equinovarus foot contracture deformity secondary to stroke. The patient underwent Achilles tendon lengthening, posterior tibial tendon Z lengthening, and digital flexor tenotomy of each toe with immediate weightbearing in a walking boot, followed by transition to an ankle-foot orthosis. The surgical principles and technique tips are presented to demonstrate our minimally invasive approach to release of foot and ankle contracture secondary to stroke. The main goal of this approach is to improve foot and ankle alignment for ease of bracing, which, in turn, will improve gait, reduce the risk of falls, decrease pain, and avoid the development of pressure sores. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Visualisation to enhance biomechanical tuning of ankle-foot orthoses (AFOs in stroke: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Carse Bruce

    2011-12-01

    Full Text Available Abstract Background There are a number of gaps in the evidence base for the use of ankle-foot orthoses for stroke patients. Three dimensional motion analysis offers an ideal method for objectively obtaining biomechanical gait data from stroke patients, however there are a number of major barriers to its use in routine clinical practice. One significant problem is the way in which the biomechanical data generated by these systems is presented. Through the careful design of bespoke biomechanical visualisation software it may be possible to present such data in novel ways to improve clinical decision making, track progress and increase patient understanding in the context of ankle-foot orthosis tuning. Methods A single-blind randomised controlled trial will be used to compare the use of biomechanical visualisation software in ankle-foot orthosis tuning against standard care (tuning using observation alone. Participants (n = 70 will have experienced a recent hemiplegia (1-12 months and will be identified by their care team as being suitable candidates for a rigid ankle-foot orthosis. The primary outcome measure will be walking velocity. Secondary outcome measures include; lower limb joint kinematics (thigh and shank global orientations & kinetics (knee and hip flexion/extension moments, ground reaction force FZ2 peak magnitude, step length, symmetry ratio based on step length, Modified Ashworth Scale, Modified Rivermead Mobility Index and EuroQol (EQ-5D. Additional qualitative measures will also be taken from participants (patients and clinicians at the beginning and end of their participation in the study. The main aim of the study is to determine whether or not the visualisation of biomechanical data can be used to improve the outcomes of tuning ankle-foot orthoses for stroke patients. Discussion In addition to answering the primary research question the broad range of measures that will be taken during this study are likely to contribute to a

  20. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    Science.gov (United States)

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  1. Prototyping of Individual Ankle Orthosis Using Additive Manufacturing Technologies

    Directory of Open Access Journals (Sweden)

    Natalia Wierzbicka

    2017-09-01

    Full Text Available The paper presents design and manufacturing process of an individualized ankle orthosis using additive manufacturing technologies and reverse engineering. Conventional processes of manufacturing of orthosesareexpensive and time consuming -an alternative method was proposed. The patient’s leg was 3D scanned and the orthosis was designed using a CAD system. It was then manufactured using the Fused Deposition Modelling technology, assembled and fully tested. Positive results were obtained.

  2. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  3. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  4. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy.

    Science.gov (United States)

    Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap

    2014-12-01

    A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.

  5. The effect of ankle foot orthosis stiffness on the energy cost of walking : A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  6. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study.

    NARCIS (Netherlands)

    Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background: In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  7. Proximal Tibia Bone Graft: An alternative Donor Source especially for Foot and Ankle Procedures

    Directory of Open Access Journals (Sweden)

    Jia TY

    2015-03-01

    Full Text Available Among the many donor sites for harvesting autologous bone graft, the iliac crest has been the most commonly used. However, for foot and ankle procedures the proximal tibia has gained popularity as an alternative donor site due to its anatomic proximity to the primary surgical site. In this article we evaluated the possible complications associated with harvesting proximal tibia bone graft. Our study showed the low incidence of morbidity in harvesting proximal tibia bone graft, thereby providing a good alternative donor for foot and ankle procedures.

  8. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    OpenAIRE

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to comm...

  9. The influence of ankle joint mobility when using an orthosis on stability in patients with spinal cord injury: a pilot study.

    Science.gov (United States)

    Arazpour, M; Bani, M A; Hutchins, S W; Curran, S; Javanshir, M A

    2013-10-01

    Perceived risk of falling is an important factor for people with spinal cord injury (SCI). This study investigated the influence of ankle joint motion on postural stability and walking in people with SCI when using an orthosis. Volunteer subjects with SCI (n=5) participated in this study. Each subject was fitted with an advanced reciprocating gait orthosis (ARGO) equipped with either solid or dorsiflexion-assist type ankle-foot orthosis (AFOs) and walked at their self-selected speed along a flat walkway to enable the comparison of walking speed, cadence and endurance. A force plate system and a modified Falls Efficacy Scale (MFES) were utilized to measure postural sway and the perceived fear of falling, respectively. There were significant differences in the mean MFES scores between two types of orthosis (P=0.023). When using two crutches, there was no significant difference in static standing postural sway in the medio-lateral (M/L) direction (P=0.799), but significant difference in the antero-posterior (A/P) direction (P=0.014). However, during single crutch support, there was a significant difference in both M/L (P=0.019) and A/P (P=0.022) directions. Walking speed (7%) and endurance (5%) significantly increased when using the ARGO with dorsi flexion assisted AFOs. There was no significant deference between two types of orthoses in cadence (P=0.54). Using an ARGO with dorsiflexion-assisted AFOs increased the fear of falling, but improved static postural stability and increased walking speed and endurance, and should therefore be considered as an effective orthosis during the rehabilitation of people with SCI.

  10. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    Science.gov (United States)

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  11. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    Science.gov (United States)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  12. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  13. Can an ankle-foot orthosis change hearts and minds?

    Science.gov (United States)

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Blair, James A; Hsu, Joseph R

    2011-01-01

    The current military conflicts of Operation Enduring Freedom and Operation Iraqi Freedom have been characterized by high-energy explosive wounding patterns, with the majority affecting the extremities. While many injuries have resulted in amputation, surgical advances have allowed the orthopaedic surgeon to pursue limb salvage in the face of injuries once considered unsalvageable. The military limb salvage patient is frequently highly active and motivated and expresses significant frustration with the slow nature of limb salvage rehabilitation and continued functional deficits. Inspired by these patients, efforts at this institution began to provide them with a more dynamic orthosis. Utilizing techniques and technology resulting from cerebral palsy, stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To date, this device has significantly improved the functional capabilities of the limb salvage wounded warrior population when combined with a high-intensity rehabilitation program. Clinical and biomechanical research is currently underway at this institution in order to fully characterize the device, its effect on patients, and what can be done to modify future generations of the device to best serve the combat-wounded limb salvage population.

  14. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  15. What Is a Foot and Ankle Surgeon?

    Science.gov (United States)

    ... A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle surgeons are the surgical ... every age. What education has a foot and ankle surgeon received? After completing undergraduate education, the foot ...

  16. Role of three side support ankle–foot orthosis in improving the ...

    African Journals Online (AJOL)

    Cerebral palsy (CP) is a heterogeneous group of permanent, non-progressive motor disorders of movement and posture. Ankle–foot orthoses (AFOs) are frequently prescribed to correct skeletal misalignments in spastic CP. The present study aims to evaluate the effect of the three side support ankle–foot orthosis on ...

  17. Gait COP trajectory of left side hip-dislocation and scoliotic patient using ankle-foot orthoses

    Science.gov (United States)

    Chong, Albert K.; Alrikabi, Redha; Milburn, Peter

    2017-07-01

    Plantar pressure-sensing mats and insole plantar sensor pads are ideal low-cost alternatives to force plates for capturing plantar COP excursion during gait. The acquired COP traces, in the form of pedobarographic images are favored by many clinicians and allied health professionals for evaluation of foot loading and balance in relation to foot biomechanics, foot injury, foot deformation, and foot ulceration. Researchers have recommended the use of COP trace for the biomechanical study of the deformed foot and lower-limb to improve orthosis design and testing. A correctly designed orthoses improves mobility and reduces pain in the foot, lower limb and lower spine region during gait. The research was carried out to evaluate the performance of two types of orthosis, namely: a custom-molded orthosis and an over-the-counter molded orthosis to determine the quality of gait of an adult scoliotic patient. COP trace patterns were compared with those of a healthy adult and showed the design of the custom-molded orthosis resulted in an improved quality of movements and provided enhanced stability for the deformed left foot during gait.

  18. The foot and ankle

    International Nuclear Information System (INIS)

    Berquist, T.H.

    1985-01-01

    Imaging of the foot and ankle can be difficult because of the complex anatomy. Familiarity with the bony and ligamentous anatomy is essential for proper evaluation of radiographic findings. Therefore, pertinent anatomy is discussed as it applies to specific injuries. Special views, tomography, arthrography, and other techniques may be indicated for complete evaluation of foot and ankle trauma

  19. Foot and ankle problems in Thai monks.

    Science.gov (United States)

    Vaseenon, Tanawat; Wattanarojanaporn, Thongaek; Intharasompan, Piyapong; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Foot and ankle problems in Thai monks have not been explored. This is an unshod population, and its members have a unique lifestyle living among others in our modern era. Beginning at their ordainment, they follow strict rules about barefoot walking, the amount of daily walking, and their sitting position, practices that theoretically can increase their risk of developing foot and ankle problems. To evaluate the prevalence ofcommon foot and ankle problems in Thai monks. A cross-sectional survey was conducted in combination with foot and ankle examinations of monks living in northern Thailand Foot morphology was examined using a Harris mat footprint. Results of the interviews and the foot and ankle examinations were evaluated. Two hundred and nine monks from 28 temples were included in this study. Common foot and ankle problems found included callosity (70.8%), toe deformities (18.2%), plantar fasciitis (13.4%), metatarsalgia (3.8%), and numbness (2.9%). Callosity and toe deformities were associated with prolonged barefoot walking over extended periods since ordainment (p < 0.05). The callosity was found on the forefoot (47.3%), lateral malleolus (40.7%), and heel (12%). Arch types were considered normal in 66.4% of cases, high in 21.6%, and low in 12%. No association was found between arch type and foot and ankle problems. Callosity and toe deformity were the most common foot and ankle problems found in Thai monks, especially those with prolonged period of barefoot walking and long-term duration ofordainment. The unique pattern of walking and sitting of Thai monks may have contributed to the development of those feet and ankle problems.

  20. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.

    Science.gov (United States)

    Ramsey, Jason Allan

    2011-03-01

    A non-articulated plantarflexion resist ankle foot orthosis (AFO), commonly known as a posterior leaf spring AFO, is indicated for patients with motor impairment to the dorsiflexors. The AFO is often custom molded to a patient's lower limb anatomy and fabricated from polypropylene. There are no established guidelines for fabricating this type of AFO with predetermined stiffness of the ankle region for normal walking speeds. Therefore an AFO may not meet the biomechanical needs of the patient. Quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment and develop a method for fabricating an AFO with ankle stiffness to meet that requirement. Experimental, bench research. The literature on sagittal biomechanics of non-pathological adults was reviewed to derive the stiffness of the ankle during loading response. Computer models of 144 AFOs were created with geometric variations to account for differences in human anthropometrics. Computer-based finite element analysis was employed to determine the stiffness and safety factor of the models. Stiffness of the AFOs ranged from 0.04 to 1.8 Nm/deg. This ample range is expected to account for the stiffness required for most adults with complete dorsiflexor impairment. At 5° deflection the factor of safety (ratio of strength to stress) ranged from 2.8 to 9.1. A computer program was generated that computes AFO stiffness from user-input variables of AFO geometry. The stiffness is compared to a theoretically appropriate stiffness based on the patient mass. The geometric variables can be modified until there is a close match, resulting in AFO design specification that is appropriate for the patient. Through validation on human subjects, this method may benefit patient outcomes in clinical practice by avoiding the current uncertainty surrounding AFO performance and reducing the labor and time involved in rectifying a custom AFO post-fabrication. This method provides an avenue for

  1. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  2. Foot and ankle problems in Muay Thai kickboxers.

    Science.gov (United States)

    Vaseenon, Tanawat; Intharasompan, Piyapong; Wattanarojanapom, Thongaek; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Muay Thai kickboxing is a common sport that uses the foot and ankle in fighting. Muay Thai kickboxing trainees usually receive training in Thailand Foot and ankle problems in this group ofpeople who usually train barefoot remain unexplored To evaluate the prevalence of common foot and ankle problems in Muay Thai kick boxers. The present study is a cross-sectional survey of Muay Thai kick boxers practicing in northern Thailand. Interviews were conducted and foot and ankle examinations were evaluated Foot morphology was examined using a Harris mat footprint. One hundred and twenty-three Muay Thai kickbox ersinnine training gyms were included in this study. Common foot and ankle problems found in the Muay Thai kick boxers were callosity (59%), gastrocnemius contracture (57%), toe deformities (49.3%), wounds (10%) and heel pain (9%). Callosity was most commonly found on the forefoot (77.5%), on the plantar first metatarsal (55.3%) and on the big toe (33.3%). An association was found between a tight heel cord and a history of foot injury with prolonged periods of weekly training. Toe deformities such as hallux rigidus (37.6%) were also associated with prolonged periods of training (p = 0.001). No correlation was found between type of foot arch and foot and ankle problems. Plantar forefoot callosities and wounds as well as toe deformities including tight heel cords are some of the foot and ankle problems commonly found in Muay Thai kick boxers. They are associated with prolonged periods of barefoot training. The unique pattern of training and of the kicks in Muay Thai might be a path mechanism, leading to the development of foot and ankle problems.

  3. Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study

    Directory of Open Access Journals (Sweden)

    Oosterwaal Michiel

    2011-11-01

    Full Text Available Abstract Background Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic. Methods/Design Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot. Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI of the foot and ankle. Imaging data will be segmented to derive the geometry of the bones and the orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models. Discussion This protocol will lead to the generation of unique datasets which will be used

  4. Effect of medial arch support foot orthosis on plantar pressure distribution in females with mild-to-moderate hallux valgus after one month of follow-up.

    Science.gov (United States)

    Farzadi, Maede; Safaeepour, Zahra; Mousavi, Mohammad E; Saeedi, Hassan

    2015-04-01

    Higher plantar pressures at the medial forefoot are reported in hallux valgus. Foot orthoses with medial arch support are considered as an intervention in this pathology. However, little is known about the effect of foot orthoses on plantar pressure distribution in hallux valgus. To investigate the effect of a foot orthosis with medial arch support on pressure distribution in females with mild-to-moderate hallux valgus. Quasi-experimental. Sixteen female volunteers with mild-to-moderate hallux valgus participated in this study and used a medial arch support foot orthosis for 4 weeks. Plantar pressure for each participant was assessed using the Pedar-X(®) in-shoe system in four conditions including shoe-only and foot orthosis before and after the intervention. The use of the foot orthosis for 1 month led to a decrease in peak pressure and maximum force under the hallux, first metatarsal, and metatarsals 3-5 (p hallux and the first metatarsal head by transferring the load to the other regions. It would appear that this type of foot orthosis can be an effective method of intervention in this pathology. Findings of this study will improve the clinical knowledge about the effect of the medial arch support foot orthosis used on plantar pressure distribution in hallux valgus pathology. © The International Society for Prosthetics and Orthotics 2014.

  5. Bone grafting in surgery about the foot and ankle: indications and techniques.

    Science.gov (United States)

    Fitzgibbons, Timothy C; Hawks, Michael A; McMullen, Scott T; Inda, David J

    2011-02-01

    Bone grafting is a common procedure in foot and ankle surgery. Historically, autogenous bone graft has most often been harvested from the ipsilateral iliac crest. However, other sites offer similar volumes of cancellous bone and are associated with fewer complications. The ipsilateral proximal tibia, distal tibia, and calcaneus provide adequate amounts of bone graft material for most arthrodesis procedures about the foot and ankle. Emerging techniques have enabled the development of a seemingly unlimited supply of alternative bone graft materials with osteoconductive properties. The osteoprogenitor cells in bone marrow aspirates can be concentrated by use of selective retention systems. These aspirate-matrix composites may be combined with allograft preparations, resulting in a product that promotes osteoconduction, osteoinduction, and osteogenesis with limited morbidity.

  6. Immediate effects of using ankle-foot orthoses in the kinematics of gait and in the balance reactions in Charcot-Marie-Tooth disease

    OpenAIRE

    Pereira, Rouse Barbosa; Felício, Lílian Ramiro; Ferreira, Arthur de Sá; Menezes, Sara Lúcia de; Freitas, Marcos Raimundo Gomes de; Orsini, Marco

    2014-01-01

    The Charcot-Marie-Tooth (CMT) disease is a peripheral hereditary neuropathy with progressive distal muscle atrophy and weakness, mainly in lower limbs, that evolves limiting the gait and balance. The objective of the study was to analyse the immediate effects of using Ankle-Foot Orthosis (AFO) in the gait's kinematics and balance in patients with CMT. Nine individuals were evaluated by Tinetti scales and Dynamic Gait Index (DGI) and gait's kinematics parameters through the motion capturing sy...

  7. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    Science.gov (United States)

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  8. Benign and malignant tumors of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Datir, Abhijit; Langley, Travis [Emory University Hospital, Department of Radiology, Section of Musculoskeletal Imaging, Atlanta, GA (United States); Tresley, Jonathan [University of Wisconsin, Department of Radiology, Madison, WI (United States); Clifford, Paul D.; Jose, Jean; Subhawong, Ty K. [University of Miami, Department of Radiology, Miami, FL (United States)

    2016-03-15

    Pain and focal masses in the foot and ankle are frequently encountered and often initiate a workup including imaging. It is important to differentiate benign lesions from aggressive benign or malignant lesions. In this review, multiple examples of osseous and soft tissue tumors of the foot and ankle will be presented. Additionally, the compartmental anatomy of the foot and ankle will be discussed in terms of its relevance for percutaneous biopsy planning and eventual surgery. Finally, a general overview of the surgical management of benign, benign aggressive and malignant tumors of the foot and ankle will be discussed. (orig.)

  9. Prospective study of ankle and foot fractures in elderly women

    Directory of Open Access Journals (Sweden)

    Yadagiri Surender Rao

    2015-01-01

    Full Text Available The epidemiology of ankle fractures in old people is changing as time passes on. The incidence of ankle fractures increases with advancing age. The study conducted was among a rural popula-tion which comprised of 68 women (32 women with ankle fractures & 36 women with foot fractures. Patients studied were in the age group more than 50 years. The study highlights the etiological & risk factors for fractures of ankle & foot. The commonest ankle fracture was the lateral malleolar fracture & the commonest foot fracture was the 5th Metatarsal fracture. Diabetes is a risk factor which increases the occurrence of ankle and foot injuries.

  10. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  11. The ankle-foot orthosis improves balance and reduces fall risk of chronic spastic hemiparetic patients.

    Science.gov (United States)

    Cakar, E; Durmus, O; Tekin, L; Dincer, U; Kiralp, M Z

    2010-09-01

    Ankle foot orthoses (AFO) are commonly used orthotic device in order to restore the ankle foot function and to improve the balance and gait in post-stroke hemiparetic patients. However, there remain some discussions about their effectiveness on long term hemiparetic patients who had mild to moderate spasticity. To investigate the relative effect of prefabricated thermoplastic posterior leaf spring AFO (PLS-AFO) on balance and fall risk. A cross-over interventional study The Department of PMR of a tertiary hospital. Twenty-five chronic post-stroke long duration hemiparetic patients who had Ashworth grade 1-2 spasticity at affected calf muscles and lower limb Brunnstrom stage 2-3 and also able to walk independently without an assistive device. Berg Balance Scale (BERG), and the postural stability test (PST) and the fall risk test (FRT) of Biodex balance systems were used for the assessments. All of the patients were assessed with AFO and without AFO. All assessments were made with footwear. The mean post-stroke duration was 20,32±7,46 months. The BERG scores were 42,12±9,05 without AFO and 47,52±7,77 with AFO; the overall stability scores of FRT were 3,35±1,97 without AFO and 2,69±1,65 with AFO (Pbalance and provide fall risk reduction in chronic post-stroke ambulatory hemiparetic patients who had mild to moderate spasticity on their affected lower limb. These results encourage the usage of AFO on long duration hemiparetic patients in order to provide better balance and lesser fall risk.

  12. A new approach to implement a customized anatomic insole in orthopaedic footwear of lower limb orthosis

    Science.gov (United States)

    Peixoto, J.; Flores, P.; Souto, A. P.

    2017-10-01

    This paper concerns the development of a new approach for orthopaedic footwear to apply in KAFO orthosis (acronym for Knee Ankle Foot Orthosis). This procedure starts with full characterization of the problem with the purpose to characterize a plantar of a patient’s foot with polio. A 3D Scanner was used to collect their feet’s data to produce an anatomic insole. After this step, the patient performs a study of his gait using a static and dynamic study with the aim of characterizing the parameters to improve quality in the footwear. The insole was produced using a 3D printing technology. It was essential to optimize manufacturing processes and it was developed a footwear prototype with innovative characteristics, which is 25% lighter, allowing the user to consume less energy in daily routines.

  13. Validity and reliability of Thai version of the Foot and Ankle Outcome Score in patients with arthritis of the foot and ankle.

    Science.gov (United States)

    Angthong, Chayanin

    2016-12-01

    Although the Foot and Ankle Outcome Score (FAOS) is commonly used in several languages for a variety of foot disorders, it has not been validated specifically for foot and ankle arthritic conditions. The aims of the present study were to translate the original English FAOS into Thai and to evaluate the validity and reliability of the Thai version of the FAOS for the foot and ankle arthritic conditions. The original FAOS was translated into Thai using forward-backward translation. The Thai FAOS and validated Thai Short Form-36 (SF-36 ® ) questionnaires were distributed to 44 Thai patients suffering from arthritis of the foot and ankle to complete. For validation, Thai FAOS scores were correlated with SF-36 scores. Test-retest reliability and internal consistency were also analyzed in this study. The Thai FAOS score demonstrated sufficient correlation with SF-36 total score in Pain (Pearson's correlation coefficient (r)=0.45, p=0.002), Symptoms (r=0.45, p=0.002), Activities of Daily Living (ADL) (r=0.47, p=0.001), and Quality of Life (QOL) (r=0.38, p=0.011) subscales. The Sports and Recreational Activities (Sports & Rec) subscale did not correlate significantly with the SF-36 ® (r=0.20, p=0.20). Cronbach's alpha, a measure of internal consistency, for the five subscales was as follows: Pain, 0.94 (pvalidity for the evaluation of foot and ankle arthritis. Although reliability was satisfactory for the major subscale ADL, it was not sufficient for the minor subscales. Our findings suggest that it can be used as a disease-specific instrument to evaluate foot and ankle arthritis and can complement other reliable outcome surveys. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  14. Ultrasound Findings of the Painful Ankle and Foot

    Directory of Open Access Journals (Sweden)

    Suheil Artul

    2014-01-01

    Full Text Available Objectives: To document the prevalence and spectrum of musculoskeletal ultrasound (MSKUS findings at different parts of the foot. Materials and Methods: All MSKUS studies conducted on the foot during a 2-year period (2012-2013 at the Department of Radiology were reviewed. Demographic parameters including age, gender, and MSKUS findings were documented. Results: Three hundred and sixty-four studies had been conducted in the 2-year period. Ninety-three MSKUS evaluations were done for the ankle, 30 studies for the heel, and 241 for the rest of the foot. The most common MSKUS finding at the ankle was tenosynovitis, mostly in female patients; at the heel it was Achilles tendonitis, also mostly in female patients; and for the rest of the foot it was fluid collection and presence of foreign body, mainly in male patients. The number of different MSKUS abnormalities that were reported was 9 at the ankle, 9 at the heel, and 21 on the rest of the foot. Conclusions: MSKUS has the potential for revealing a huge spectrum of abnormalities. The most common finding was collection/hematoma and foreign bodies at the foot, tenosynovitis at the ankle, and Achilles tendinitis at the heel.

  15. Effects of ankle foot orthoses on body functions and activities in people with floppy paretic ankle muscles : a systematic review

    NARCIS (Netherlands)

    Wilk, van der Dymphy; Dijkstra, Pieter Ubele; Postema, Klaas; Verkerke, Gijsbertus Jacob; Hijmans, Juha Markus

    2015-01-01

    Background: People with floppy ankle muscles paresis use ankle foot orthoses to improve their walking ability. Ankle foot orthoses also limit ankle range of motion thereby introducing additional problems. Insight in effects of ankle foot orthoses on body functions and activities in people with

  16. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak.Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide

  17. Postoperative infection in the foot and ankle.

    LENUS (Irish Health Repository)

    Chan, Victoria O

    2012-07-01

    Our discussion highlights the commonly performed surgical procedures in the foot and ankle and reviews the various imaging modalities available for the detection of infection with graphic examples to better enable radiologists to approach the radiological evaluation of postoperative infection in the foot and ankle. Discrimination between infectious and noninfectious inflammation remains a diagnostic challenge usually needing a combination of clinical assessment, laboratory investigations, and imaging studies to increase diagnostic accuracy.

  18. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  19. Can an Ankle-Foot Orthosis Change Hearts and Minds?

    Science.gov (United States)

    2011-01-01

    the commercial brace in both comfort and function. He continued to progress in his therapy, returning to recre- ational softball with a local team of...this design, we have been able to return patients with fused ankles to running, basketball, softball , skydiving, and combat arms deployments. We have

  20. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    Science.gov (United States)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  1. Foot trajectory approximation using the pendulum model of walking.

    Science.gov (United States)

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  2. Ankle and foot tuberculosis: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Biswaranjan Nayak

    2014-01-01

    Full Text Available Aim and Objective: To know the biological behavior of ankle and foot tuberculosis (AFTB and to know the reasons for delay in diagnosis and treatment of AFTB in our population. Materials and Methods: Patients with non-healing ulcers/sinuses/swellings in the ankle and foot region are the subjects of present study. Detailed clinical history, physical examination and relevant investigations were done in all cases. Pus/wound discharge for acid fast bacillus (AFB study and biopsy from wound margin/sinus tract was taken in all the cases. Results: During the period from July 2007-June 2012, 20 cases of AFTB were treated. Out of them five cases were difficult to diagnose and a mean period of 6 month to 5year was elapsed before final diagnosis was established. Out of these five cases - three cases were diabetic with ulcers and sinuses in the heel and ankle region. One case was wrongly diagnosed as angiodysplasia with A-V malformation of foot and diagnosis was delayed for 5 year. In one case of rheumatoid arthritis with abscess in ankle joint, the diagnosis was delayed for 1year. Conclusion: AFTB is very rare condition. AFTB is suspected in cases with long standing pain/swelling/discharging sinus in the foot and thorough investigations is must to differentiate from other foot diseases. Diagnosis is delayed due to lack of clinical suspicion and non-confirmatory biopsy reports. Early diagnosis and ATT for 9-18 months is must in all cases of AFTB to prevent joint involvement and other complications.

  3. Effect of pneumatic compressing powered orthosis in stroke patients: preliminary study.

    Science.gov (United States)

    Kim, Eun Sil; Yoon, Yong-Soon; Sohn, Min Kyun; Kwak, Soo-Hyun; Choi, Jong Ho; Oh, Ji Sun

    2015-04-01

    To evaluate the feasibility and effectiveness of a knee-ankle-foot orthosis powered by artificial pneumatic muscles (PKAFO). Twenty-three hemiplegic patients (age, 59.6±13.7 years) were assessed 19.7±36.6 months after brain lesion. The 10-m walking time was measured as a gait parameter while the individual walked on a treadmill. Walking speed (m/s), step cycle (cycle/s), and step length (m) were also measured on a treadmill with and without PKAFO, and before and after gait training. Clinical parameters measured before and after gait training included Korean version of Modified Bathel Index (K-MBI), manual muscle test (MMT), and Modified Ashworth Scale (MAS) of hemiplegic ankle. Gait training comprised treadmill walking for 20 minutes, 5 days a week for 3 weeks at a comfortable speed. The 10-m walking time, walking speed, step length, and step cycle were significantly greater with PKAFO than without PKAFO, and after gait training (both p<0.05). K-MBI was improved after gait training (p<0.05), but MMT and MAS were not. PKAFO may improve gait function in hemiplegic patients. It can be a useful orthosis for gait training in hemiplegic patients.

  4. Ankle and subtalar synovitis in a ball-and-socket ankle joint causing posterolateral painful coarse crepitus: a case report.

    Science.gov (United States)

    Fan, Ka Yuk; Lui, Tun Hing

    2014-01-01

    A 17-year-old girl with bilateral ball-and-socket ankles reported left medial heel pain. Her left heel had gone into a varus position on tiptoeing, and a painful clunk had occurred when returning to normal standing. The clunk persisted after physiotherapy and treatment with an orthosis. Subtalar arthroscopy and peroneal tendoscopy showed mild diffuse synovitis of the ankle joint, especially over the posterior capsule, and a patch of inflamed and fibrotic synovium at the posterolateral corner of the subtalar joint. The clunk subsided immediately after arthroscopic synovectomy and had not recurred during 5 years of follow-up. We found no other reported cases of ankle and subtalar synovitis occurring in patients with a ball-and-socket ankle joint. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Find an Orthopaedic Foot and Ankle MD/DO

    Science.gov (United States)

    ... All Site Content AOFAS / FootCareMD / Find a Surgeon Find a Foot & Ankle Orthopaedic Surgeon Page Content Who ... your prescribed treatment (surgical and/or non-surgical) ​ Find a Surgeon ​ Click here to find a foot ...

  6. Guillain-Barre Syndrome – rehabilitation outcome, residual deficits and requirement of lower limb orthosis for locomotion at 1 year follow-up.

    Science.gov (United States)

    Gupta, Anupam; Taly, Arun B; Srivastava, Abhishek; Murali, Thyloth

    2010-01-01

    To analyse long-term functional recovery, deficits and requirement of lower limb orthosis (LLO) for locomotion in patients with Guillain-Barre Syndrome (GBS). Prospective longitudinal follow-up study. Neurological Rehabilitation unit of university hospital. Sixty-nine patients of GBS admitted for inpatient rehabilitation. Thirty-five patients (M:F, 19:16) reporting after 1 year follow-up (50.72%) were included in study (between September 2005 and July 2009). Their residual deficits and requirement of LLO were recorded and analysed. Age ranged from 4 to 65 year (29.74 ± 15.75). Twenty-seven patients had typical GBS and eight patients had acute motor axonal neuropathy variant. Twenty-eight patients (80%) had neuropathic pain needing medication with 11 required more than one drug. Twenty-one patients (60%) had foot drop and advised ankle-foot orthosis-AFO (20 bilateral AFO). Thirty patients (85.71%) needed assistive devices also for locomotion at discharge. After 1 year, foot drop was still present in 12 patients (34.28%) using orthosis. Modified Barthel Index scores, Modified Rankin Scale and Hughes Disability Scale were used to assess functional disabilities. Significant recovery was observed at the time of discharge and after 1 year (p < 0.001 each). Patients with GBS continue to show significant functional recovery for long period. They have residual deficits even after 1 year with requirement of orthosis in large number of patients.

  7. Restoration of ankle movements with the ActiGait implantable drop foot stimulator: a safe and reliable treatment option for permanent central leg palsy.

    Science.gov (United States)

    Martin, Klaus Daniel; Polanski, Witold Henryk; Schulz, Anne-Kathrin; Jöbges, Michael; Hoff, Hansjoerg; Schackert, Gabriele; Pinzer, Thomas; Sobottka, Stephan B

    2016-01-01

    OBJECT The ActiGait drop foot stimulator is a promising technique for restoration of lost ankle function by an implantable hybrid stimulation system. It allows ankle dorsiflexion by active peroneal nerve stimulation during the swing phase of gait. In this paper the authors report the outcome of the first prospective study on a large number of patients with stroke-related drop foot. METHODS Twenty-seven patients who experienced a stroke and with persisting spastic leg paresis received an implantable ActiGait drop foot stimulator for restoration of ankle movement after successful surface test stimulation. After 3 to 5 weeks, the stimulator was activated, and gait speed, gait endurance, and activation time of the system were evaluated and compared with preoperative gait tests. In addition, patient satisfaction was assessed using a questionnaire. RESULTS Postoperative gait speed significantly improved from 33.9 seconds per 20 meters to 17.9 seconds per 20 meters (p < 0.0001), gait endurance from 196 meters in 6 minutes to 401 meters in 6 minutes (p < 0.0001), and activation time from 20.5 seconds to 10.6 seconds on average (p < 0.0001). In 2 patients with nerve injury, surgical repositioning of the electrode cuff became necessary. One patient showed a delayed wound healing, and in another patient the system had to be removed because of a wound infection. Marked improvement in mobility, social participation, and quality of life was confirmed by 89% to 96% of patients. CONCLUSIONS The ActiGait implantable drop foot stimulator improves gait speed, endurance, and quality of life in patients with stroke-related drop foot. Regarding gait speed, the ActiGait system appears to be advantageous compared with foot orthosis or surface stimulation devices. Randomized trials with more patients and longer observation periods are needed to prove the long-term benefit of this device.

  8. Diabetic charcot neuroarthropathy of the foot and ankle with osteomyelitis.

    Science.gov (United States)

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2014-10-01

    One of the most devastating foot and/or ankle complications in the diabetic population with peripheral neuropathy is the presence of Charcot neuroarthropathy (CN). In recent years, diabetic limb salvage has been attempted more frequently as opposed to major lower extremity amputation for CN of the foot and ankle with ulceration and/or deep infection. Treatment strategies for osteomyelitis in the diabetic population have evolved. This article reviews some of the most common surgical strategies recommended for the diabetic patient with CN of the foot and/or ankle and concomitant osteomyelitis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A

  10. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Y.L.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Harlaar, J.; Brehm, M.A.

    2015-01-01

    Introduction: Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off

  11. Welcome to Journal of Foot and Ankle Research: a new open access journal for foot health professionals

    Directory of Open Access Journals (Sweden)

    Borthwick Alan M

    2008-07-01

    Full Text Available Abstract Journal of Foot and Ankle Research (JFAR is a new, open access, peer-reviewed online journal that encompasses all aspects of policy, organisation, delivery and clinical practice related to the assessment, diagnosis, prevention and management of foot and ankle disorders. JFAR will cover a wide range of clinical subject areas, including diabetology, paediatrics, sports medicine, gerontology and geriatrics, foot surgery, physical therapy, dermatology, wound management, radiology, biomechanics and bioengineering, orthotics and prosthetics, as well the broad areas of epidemiology, policy, organisation and delivery of services related to foot and ankle care. The journal encourages submission from all health professionals who manage lower limb conditions, including podiatrists, nurses, physical therapists and physiotherapists, orthopaedists, manual therapists, medical specialists and general medical practitioners, as well as health service researchers concerned with foot and ankle care. All manuscripts will undergo open peer review, and all accepted manuscripts will be freely available on-line using the open access platform of BioMed Central.

  12. Validation of Patient-Reported Outcomes Measurement Information System Computerized Adaptive Tests Against the Foot and Ankle Outcome Score for 6 Common Foot and Ankle Pathologies.

    Science.gov (United States)

    Koltsov, Jayme C B; Greenfield, Stephen T; Soukup, Dylan; Do, Huong T; Ellis, Scott J

    2017-08-01

    The field of foot and ankle surgery lacks a widely accepted gold-standard patient-reported outcome instrument. With the changing infrastructure of the medical profession, more efficient patient-reported outcome tools are needed to reduce respondent burden and increase participation while providing consistent and reliable measurement across multiple pathologies and disciplines. The primary purpose of the present study was to validate 3 Patient-Reported Outcomes Measurement Information System computer adaptive tests (CATs) most relevant to the foot and ankle discipline against the Foot and Ankle Outcome Score (FAOS) and the Short Form 12 general health status survey in patients with 6 common foot and ankle pathologies. Patients (n = 240) indicated for operative treatment for 1 of 6 common foot and ankle pathologies completed the CATs, FAOS, and Short Form 12 at their preoperative surgical visits, 1 week subsequently (before surgery), and at 6 months postoperatively. The psychometric properties of the instruments were assessed and compared. The Patient-Reported Outcomes Measurement Information System CATs each took less than 1 minute to complete, whereas the FAOS took 6.5 minutes, and the Short Form 12 took 3 minutes. CAT scores were more normally distributed and had fewer floor and ceiling effects than those on the FAOS, which reached as high as 24%. The CATs were more precise than the FAOS and had similar responsiveness and test-retest reliability. The physical function and mobility CATs correlated strongly with the activities subscale of the FAOS, and the pain interference CAT correlated strongly with the pain subscale of the FAOS. The CATs and FAOS were responsive to changes with operative treatment for 6 common foot and ankle pathologies. The CATs performed as well as or better than the FAOS in all aspects of psychometric validity. The Patient-Reported Outcomes Measurement Information System CATs show tremendous potential for improving the study of patient

  13. Incidence and variance of foot and ankle injuries in elite college football players.

    Science.gov (United States)

    Kaplan, Lee D; Jost, Patrick W; Honkamp, Nicholas; Norwig, John; West, Robin; Bradley, James P

    2011-01-01

    We conducted a study on the risk for foot and ankle injuries in college football players on the basis of injury type and player position. In February 2006, we evaluated 320 intercollegiate football players at the National Football League Combine. All pathologic conditions and surgical procedures of the foot and ankle were recorded, and data were analyzed by player position to detect any trends. Seventy-two percent (n = 231) of the players had a history of foot and ankle injuries, with a total of 287 foot and ankle injuries (1.24 injuries/player injured). The most common injuries were lateral ankle sprain (n = 115), syndesmotic sprain (50), metatarsophalangeal dislocation/turf toe (36), and fibular fracture (25). Foot and ankle injuries were most common in kickers/punters (100% incidence), special teams (100%), running backs (83%), wide receivers (83%), and offensive linemen (80%). Lateral ankle sprains, the most common injuries, were treated surgically only 2.6% of the time. Offensive linemen were most likely to have had syndesmotic sprains (32%), and quarterbacks had the highest incidence of fibular fractures (16%). Foot and ankle injuries are common in collegiate football players, affecting 72% of players. Thirteen percent underwent surgical treatment. Trends are seen in the types of injuries for the different player positions.

  14. Gait kinematics of subjects with ankle instability using a multisegmented foot model.

    Science.gov (United States)

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark; Pataky, Todd; Roosen, Philip

    2013-11-01

    Many patients who sustain an acute lateral ankle sprain develop chronic ankle instability (CAI). Altered ankle kinematics have been reported to play a role in the underlying mechanisms of CAI. In previous studies, however, the foot was modeled as one rigid segment, ignoring the complexity of the ankle and foot anatomy and kinematics. The purpose of this study was to evaluate stance phase kinematics of subjects with CAI, copers, and controls during walking and running using both a rigid and a multisegmented foot model. Foot and ankle kinematics of 77 subjects (29 subjects with self-reported CAI, 24 copers, and 24 controls) were measured during barefoot walking and running using a rigid foot model and a six-segment Ghent Foot Model. Data were collected on a 20-m-long instrumented runway embedded with a force plate and a six-camera optoelectronic system. Groups were compared using statistical parametric mapping. Both the CAI and the coper group showed similar differences during midstance and late stance compared with the control group (P foot segment showed a more everted position during walking compared with the control group. Based on the Ghent Foot Model, the rear foot also showed a more everted position during running. The medial forefoot showed a more inverted position for both running and walking compared with the control group. Our study revealed significant midstance and late stance differences in rigid foot, rear foot, and medial forefoot kinematics The multisegmented foot model demonstrated intricate behavior of the foot that is not detectable with rigid foot modeling. Further research using these models is necessary to expand knowledge of foot kinematics in subjects with CAI.

  15. Reliability, validity and responsiveness of the German self-reported foot and ankle score (SEFAS) in patients with foot or ankle surgery.

    Science.gov (United States)

    Arbab, Dariusch; Kuhlmann, Katharina; Schnurr, Christoph; Bouillon, Bertil; Lüring, Christian; König, Dietmar

    2017-10-10

    Patient-reported outcome measures are a critical tool in evaluating the efficacy of orthopedic procedures and are increasingly used in clinical trials to assess outcomes of health care. The intention of this study was to develop and culturally adapt a German version of the Self-reported Foot and Ankle Score (SEFAS) and to evaluate reliability, validity and responsiveness. According to Cross Cultural Adaptation of Self-Reported Measure guidelines forward and backward translation has been performed. The German SEFAS was investigated in 177 consecutive patients. 177 Patients completed the German SEFAS, Foot and Ankle Outcome Score (FAOS), Short-Form 36 and numeric scales for pain and disability (NRS) before and 118 patients 6 months after foot or ankle surgery. Test-Retest reliability, internal consistency, floor and ceiling effects, construct validity and minimal important change were analyzed. The German SEFAS demonstrated excellent test-retest reliability with ICC values of 0.97. Cronbach's alpha (α) value of 0.89 demonstrated strong internal consistency. No floor or ceiling effects were observed for the German version of the SEFAS. As hypothesized SEFAS correlated strongly with FAOS and SF-36 domains. It showed moderate (ES/SRM > 0.5) responsiveness between preoperative assessment and postoperative follow-up. The German version of the SEFAS demonstrated good psychometric properties. It proofed to be a valid and reliable instrument for use in foot and ankle patients. DRKS00007585.

  16. Dedicated extremity MR imaging of the foot and ankle

    International Nuclear Information System (INIS)

    Hottya, G.A.; Peterfy, C.G.; Uffmann, M.; Haeckl, F.O.; LeHir, P.; Redei, J.; Gindele, A.U.; Dion, E.; Genant, H.K.

    2000-01-01

    The purpose of this review is to provide illustrative examples of diseases of the foot and ankle when imaged with a low-field MR imaging system. A retrospective review of 268 foot and ankle examinations, performed in our institution within the past 3 years with a 0.2-T (Artoscan Esaote, Genoa, Italy) dedicated extremity MR system was done. Additionally, illustrative comparison with conventional radiography and high-field MR imaging is presented in patients in whom these examinations were also performed. Although motion artifact limited the value of a few studies, in the majority of examinations low-field MR imaging provided diagnostic image quality for the full spectrum of disorders affecting the foot and ankle and seemed to be a feasible alternative to high-field MR imaging in establishing an accurate diagnosis. (orig.)

  17. Fleet of Foot: Adolescent Foot and Ankle Mobility

    Science.gov (United States)

    Legacy, Kelly Bromley

    2018-01-01

    In today's world of advanced technologies, accessible transportation, and fingertip talking, adolescents are spending too many hours each day sedentary. The purpose of this article is to underscore the importance of foot and ankle mobility in an adolescent population that spends very little time on their feet. Physical educators and athletic…

  18. Comparison of Multisegmental Foot and Ankle Motion Between Total Ankle Replacement and Ankle Arthrodesis in Adults.

    Science.gov (United States)

    Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Lee, Dong Yeon

    2017-09-01

    Total ankle replacement (TAR) and ankle arthrodesis (AA) are usually performed for severe ankle arthritis. We compared postoperative foot segmental motion during gait in patients treated with TAR and AA. Gait analysis was performed in 17 and 7 patients undergoing TAR and AA, respectively. Subjects were evaluated using a 3-dimensional multisegmental foot model with 15 markers. Temporal gait parameters were calculated. The maximum and minimum values and the differences in hallux, forefoot, hindfoot, and arch in 3 planes (sagittal, coronal, transverse) were compared between the 2 groups. One hundred healthy adults were evaluated as a control. Gait speed was faster in the TAR ( P = .028). On analysis of foot and ankle segmental motion, the range of hindfoot sagittal motion was significantly greater in the TAR (15.1 vs 10.2 degrees in AA; P = .004). The main component of motion increase was hindfoot dorsiflexion (12.3 and 8.6 degrees). The range of forefoot sagittal motion was greater in the TAR (9.3 vs 5.8 degrees in AA; P = .004). Maximum ankle power in the TAR (1.16) was significantly higher than 0.32 in AA; P = .008). However, the range of hindfoot and forefoot sagittal motion was decreased in both TAR and AA compared with the control group ( P = .000). Although biomechanical results of TAR and AA were not similar to those in the normal controls, joint motions in the TAR more closely matched normal values. Treatment decision making should involve considerations of the effect of surgery on the adjacent joints. Level III, case-control study.

  19. Assessment of acute foot and ankle sprains.

    Science.gov (United States)

    Lynam, Louise

    2006-07-01

    Acute ankle and foot trauma is a regular emergency presentation and prompt strategic assessment skills are required to enable nurses to categorise and prioritise these injuries appropriately. This article provides background information on the anatomy and physiology of the lower limb to help nurses to identify various grades of ankle sprain as well as injuries that are limb threatening

  20. MRI diagnosis of soft ganglion cyst in the foot and ankle

    International Nuclear Information System (INIS)

    Zhang Zhaohui; Liang Manqiu; Li Zhuhao

    2011-01-01

    Objective: To explore the clinical and MR imaging features of soft tissue ganglion cyst in the foot and ankle. Methods: Clinical and MR imaging data of 12 patients (male to female ratio 1:5, mean age 47 years) with soft tissue ganglion cysts in the feet and ankles were retrospectively analyzed. Results: The 12 ganglion cysts were located near the first metatarsophalangeal joint (2), in the medial dorsum of foot (4), in the ankle (5) and in the heel (1). Compared with muscle, all lesions showed homogeneous slight T 1 hypointensity and T 2 hyperintensity with thin mural enhancement following the injection of Gd-DTPA. Ten cases were multilocular, and 5 showed mild pericystic edema. Conclusion: Soft tissue ganglion cyst of the foot and ankle are more common in middle aged women. They are frequently located in the ankle and medial dorsum of foot. On MRI they usually appear as multilocular cysts with homogeneous slightly low signal intensity relative to muscle on T 1 WI, high signal intensity on T 2 WI and contrast enhancement of the thin wall. (authors)

  1. [Dutch-language patient-reported outcome measures for foot and ankle injuries; a systematic review].

    Science.gov (United States)

    Weel, Hanneke; Zwiers, Ruben; Sierevelt, Inger N; Haverkamp, Daniel; van Dijk, C Niek; Kerkhoffs, Gino M M J

    2015-01-01

    To investigate which valid and reliable patient-reported outcome measures (PROMs) are available for foot and ankle disorders in the Dutch population, and which of these is the most suitable for uniform use. Systematic review. PubMed, Embase and Google Scholar were systematically searched for relevant articles; subsequently two researchers screened first the title and the abstract, and then the full article within a selection of these articles. Studies that described a validation process for foot- and ankle-PROMs in a Dutch population were included. Data on measurement characteristics and translation procedure were extracted, and methodological quality of the studies was assessed using the COSMIN checklist. ('COSMIN' stands for 'Consensus-based standards for the selection of health status measurement instruments'.) Two general foot- and ankle-PROMs in the Dutch language were validated: the Foot and Ankle Outcome Score (FAOS) and the Foot and Ankle Ability Measurement (FAAM); two foot-PROMs: the Manchester Foot Pain and Disability Index (MFPDI) and the 5-point Foot Function Index (FFI-5pt) were also validated. There were also two disorder-specific PROMs available in Dutch: the Victorian Institute of Sports Assessment-Achilles (VISA-A) for Achilles tendinopathies and the Foot Impact Scale for Rheumatoid Arthritis (FIS-RA) for rheumatoid arthritis patients. The FAOS and the FFI-5pt showed the strongest evidence for having good measurement characteristics. Currently, we regard the FAOS as the most appropriate foot- and ankle-PROM for general foot and ankle problems. Further studies of higher methodological quality are, however, required to draw firmer conclusions.

  2. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO).

    Science.gov (United States)

    Yatsuya, Kanan; Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanaka, Hirotaka; Eguchi, Masayuki; Katoh, Masaki; Shimizu, Yasuhiro; Uno, Akito; Kagaya, Hitoshi

    2018-01-01

    To compare the energy efficiency of Wearable Power-Assist Locomotor (WPAL) with conventional knee-ankle-foot orthoses (MSH-KAFO) such as Hip and Ankle Linked Orthosis (HALO) or Primewalk. Cross over case-series. Chubu Rosai Hospital, Aichi, Japan, which is affiliated with the Japan Organization of Occupational Health and Safety. Six patients were trained with MSH-KAFO (either HALO or Primewalk) and WPAL. They underwent 6-minute walk tests with each orthosis. Energy efficiency was estimated using physiological cost index (PCI) as well as heart rate (HR) and modified Borg score. Trial energy efficiency with MSH-KAFO was compared with WPAL to assess if differences in PCI became greater between MSH-KAFO and WPAL as time goes on during the 6-minute walk. Spearman correlation coefficient of time (range: 0.5-6.0 minutes) with the difference was calculated. The same statistical procedures were repeated for HR and modified Borg score. Greater energy efficiency, representing a lower gait demand, was observed in trials with WPAL compared with MSH-KAFO (Spearman correlation coefficients for PCI, HR and modified Borg were 0.93, 0.90 and 0.97, respectively, all P energy efficient type of robotics that may be used by patients with paraplegia.

  3. Reliability, validity and responsiveness of the Spanish Manchester-Oxford Foot Questionnaire (MOXFQ) in patients with foot or ankle surgery.

    Science.gov (United States)

    Garcés, Juan B Gerstner; Winson, Ian; Goldhahn, Sabine; Castro, Michael D; Swords, Michael P; Grujic, Leslie; Rammelt, Stefan; Sands, Andrew K

    2016-03-01

    The Manchester-Oxford Foot Questionnaire (MOXFQ) has been validated in Spanish for use in patients undergoing foot and ankle surgery. 120 patients completed the MOXFQ and the SF-36 before surgery and 6 and 12 months postoperative. Surgeons completed the American Orthopaedic Foot and Ankle Society (AOFAS) Clinical Rating System. Psychometric properties were assessed for all three MOXFQ dimensions, and for the MOXFQ Index. The Spanish MOXFQ demonstrated consistency with Cronbach's alpha values between 0.65 and 0.90, and reliability ([ICCs] >0.95). It shows a moderate to strong correlation between the Walking/standing dimension and the related domains of the SF-36 (|r|>0.6), the AOFAS Ankle-Hindfoot Scale (|r|>0.47) and Hallux-MTP-IP Scale (|r|>0.64). Responsiveness was excellent, (effect sizes >2.1). The respective minimal detectable change (MDC90) was 14.18 for the MOXFQ Index. The Spanish version of the MOXFQ showed good psychometric properties in patients with foot and ankle disorders. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  4. Quality of research and level of evidence in foot and ankle publications.

    Science.gov (United States)

    Barske, Heather L; Baumhauer, Judith

    2012-01-01

    The quality of research and evidence to support medical treatments is under scrutiny from the medical profession and the public. This study examined the current quality of research and level of evidence (LOE) of foot and ankle surgery papers published in orthopedic and podiatric medical journals. Two independent evaluators performed a blinded assessment of all foot and ankle clinical research articles (January 2010 to June 2010) from seven North American orthopedic and podiatric journals. JBJS-A grading system was used for LOE. Articles were assessed for indicators of study quality. The data was stratified by journal and medical credentials. A total of 245 articles were published, 128 were excluded based on study design, leaving 117 clinical research articles. Seven (6%) were Level I, 14 (12%) Level II, 18 (15%) Level III, and 78 (67%) Level IV. The orthopedic journals published 78 studies on foot and ankle topics. Of the podiatric journals, the Journal of the American Podiatric Medical Association (JAPMA) published 12 clinical studies and the Journal of Foot and Ankle Surgery (JFAS) published 27, 21 (78%) of which were Level IV studies. When the quality of research was examined, few therapeutic studies used validated outcome measures and only 38 of 96 (40%) gathered data prospectively. Thirty (31%) studies used a comparison group. Eighty-seven articles (74%) were authored by a MD and 22 (19%) by a DPM. Foot & Ankle International (FAI) published higher quality studies with a higher LOE as compared to podiatry journals. Regardless of the journal, MDs produced the majority of published clinical foot and ankle research. Although improvements have been made in the quality of some clinical research, this study highlights the need for continued improvement in methodology within foot and ankle literature.

  5. Spanish Translation, Cross-Cultural Adaptation, and Validation of the American Academy of Orthopaedic Surgeons Foot and Ankle Outcomes Questionnaire in Mexican-Americans With Traumatic Foot and Ankle Injuries.

    Science.gov (United States)

    Zelle, Boris A; Francisco, Ben S; Bossmann, James P; Fajardo, Roberto J; Bhandari, Mohit

    2017-05-01

    Hispanics represent the largest minority group within the US population accounting for an estimated 55.4 million individuals. Enrolling Hispanics into clinical outcome studies is important in order for study populations to be externally valid and representative of the US population. Inclusion of Mexican-Americans in clinical studies is frequently limited by the lack of validated outcome measures. The goal of this study was to validate a Spanish version of the American Academy of Orthopaedic Surgeons Foot and Ankle Outcomes Questionnaire (AAOS-FAOQ) in Mexican-Americans with traumatic foot and ankle injuries. The translation and cross-cultural adaptation procedure was performed by a committee of bilingual speakers using the following steps: (1) forward translation and adaptation, (2) synthesis, (3) back translation, (4) committee review, and (5) pilot testing. The validation was performed in 100 Mexican-Americans with traumatic foot and ankle injuries. A total of 41 females and 59 males were enrolled in this study. The mean age was 42.98 years (range 18-88). The Spanish version of the Global Foot and Ankle Scale of the AAOS-FAOQ showed statistically significant correlations with all 8 subscales of the Spanish SF-36 as well as the Physical Component Summary scale and the Mental Component Summary scale (P Foot and Ankle scale of the Spanish AAOS-FAOQ demonstrated a test-retest reliability of 0.68. We provide a Spanish translation and cross-cultural adaptation of the AAOS-FAOQ. The instrument demonstrates appropriate psychometric properties in Mexican-Americans with traumatic foot and ankle injuries.

  6. PEMF as treatment for delayed healing of foot and ankle arthrodesis.

    Science.gov (United States)

    Saltzman, Charles; Lightfoot, Andrew; Amendola, Annunziato

    2004-11-01

    Arthrodesis is the most common surgical treatment for foot and ankle arthritis. In adults, these procedures are associated with a 5% to 10% rate of nonunion. Pulsed electromagnetic field (PEMF) stimulation was approved by the Federal Drug Administration (FDA) for treatment of delayed unions after long-bone fractures and joint arthrodesis. The purpose of this study was to examine the results of PEMF treatment for delayed healing after foot and ankle arthrodesis. Three hundred and thirty-four foot and ankle arthrodeses were done. Nineteen resulted in delayed unions that were treated with a protocol of immobilization, limited weightbearing, and PEMF stimulation for a median of 7 (range 5 to 27) months. All patients were followed clinically and radiographically. The use of PEMF, immobilization, and limited weightbearing to treat delayed union after foot and ankle arthrodesis was successful in 5 of 19 (26%) patients. Of the other 14 patients with nonunions, nine had revision surgery with autogenous grafting, continued immobilization, and PEMF stimulation. Seven of these eventually healed at a median of 5.5 (range 2 to 26) months and two did not heal. One patient had a below-knee amputation, and four refused further treatment. The protocol of PEMF, immobilization, and limited weightbearing had a relatively low success rate in this group of patients. We no longer use this protocol alone to treat delayed union after foot and ankle arthrodesis.

  7. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work

    NARCIS (Netherlands)

    Bregman, D.J.J.; Harlaar, J.; Meskers, C.G.M.; de Groot, V.

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the

  8. Minimally important change was estimated for the Manchester-Oxford Foot Questionnaire after foot/ankle surgery.

    Science.gov (United States)

    Dawson, Jill; Boller, Irene; Doll, Helen; Lavis, Grahame; Sharp, Robert; Cooke, Paul; Jenkinson, Crispin

    2014-06-01

    To ascertain the smallest amounts of change for the three Manchester-Oxford Foot Questionnaire (MOXFQ) domains that are likely to be clinically meaningful and beyond measurement error for conditions affecting the foot/ankle. Estimates were compared with those from the Short-Form 36 (SF-36). A prospective observational study of 671 consecutive patients undergoing foot or ankle surgery at an orthopedic hospital. Before and 9 months after surgery, patients completed the MOXFQ and SF-36; transition items (anchor) asked about perceived changes in foot/ankle pain or problems since the surgery. Four hundred ninety-one patients completed pre- and postoperative questionnaires. Anchor-based minimal clinically important change (MCIC) values were ~13 points for each of the MOXFQ Walking/standing (W/S), Pain, and Social Interaction (S-I) domains [and greater than the standard error of measurement (SEM)]. MCIC values for all SF-36 domains fell within the SEM. Between-group MCIDs for the MOXFQ were W/S, 16.2; Pain, 9.9; S-I, 9.3. Distribution-based minimal detectable change (MDC90) values for the MOXFQ were ~11, ~12, and ~16 score points for the W/S, Pain, and S-I scales, respectively. This article provides information for aiding the interpretability of MOXFQ outcomes data and for planning future studies. The SF-36 is not recommended as a primary outcome for foot/ankle surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO)

    International Nuclear Information System (INIS)

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-01-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  10. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  11. Epidemiology of ankle and foot overuse injuries in sports : A systematic review

    NARCIS (Netherlands)

    Sobhani, S.; Dekker, R.; Postema, K.; Dijkstra, P. U.

    2013-01-01

    Studies regarding ankle and foot overuse injuries are quite diverse in research methodology, data reporting, and outcomes. The aims of this systematic review were to analyze the methodology of published studies regarding ankle and foot overuse injuries in different sports disciplines and to

  12. Validity and Reliability of Visual Analog Scale Foot and Ankle: The Turkish Version.

    Science.gov (United States)

    Gur, Gozde; Turgut, Elif; Dilek, Burcu; Baltaci, Gul; Bek, Nilgun; Yakut, Yavuz

    The present study tested the reliability and validity of the Turkish version of the visual analog scale foot and ankle (VAS-FA) among healthy subjects and patients with foot problems. A total of 128 participants, 65 healthy subjects and 63 patients with foot problems, were evaluated. The VAS-FA was translated into Turkish and administered to the 128 subjects on 2 separate occasions with a 5-day interval. The test-retest reliability and internal consistency were assessed with the intraclass correlation coefficient and Cronbach's α. The validity was assessed using the correlations with Turkish versions of the Foot Function Index, the Foot and Ankle Outcome Score, and the Short-Form 36-item Health Survey. A statistically significant difference was found between the healthy group and the patient group in the overall score and subscale scores of the VAS-FA (p Foot Function Index, Foot and Ankle Outcome Score, and Short-Form 36-item Health Survey scores in the healthy and patient groups both. The Turkish version of the VAS-FA is sensitive enough to distinguish foot and ankle-specific pathologic conditions from asymptomatic conditions. The Turkish version of the VAS-FA is a reliable and valid method and can be used for foot-related problems. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Analysis of 213 currently used rehabilitation protocols in foot and ankle fractures.

    Science.gov (United States)

    Pfeifer, Christian G; Grechenig, Stephan; Frankewycz, Borys; Ernstberger, Antonio; Nerlich, Michael; Krutsch, Werner

    2015-10-01

    Fractures of the ankle, hind- and midfoot are amongst the five most common fractures. Besides initial operative or non-operative treatment, rehabilitation of the patients plays a crucial role for fracture union and long term functional outcome. Limited evidence is available with regard to what a rehabilitation regimen should include and what guidelines should be in place for the initial clinical course of these patients. This study therefore investigated the current rehabilitation concepts after fractures of the ankle, hind- and midfoot. Written rehabilitation protocols provided by orthopedic and trauma surgery institutions in terms of recommendations for weight bearing, range of motion (ROM), physiotherapy and choice of orthosis were screened and analysed. All protocols for lateral ankle fractures type AO 44A1, AO 44B1 and AO 44C1, for calcaneal fractures and fractures of the metatarsal as well as other not specific were included. Descriptive analysis was carried out and statistical analysis applied where appropriate. 209 rehabilitation protocols for ankle fractures type AO 44B1 and AO 44C1, 98 for AO 44A1, 193 for metatarsal fractures, 142 for calcaneal fractures, 107 for 5(th) metatarsal base fractures and 70 for 5(th) metatarsal Jones fractures were evaluated. The mean time recommended for orthosis treatment was 6.04 (SD 0.04) weeks. While the majority of protocols showed a trend towards increased weight bearing and increased ROM over time, the best consensus was noted for weight bearing recommendations. Our study shows that there exists a huge variability in rehabilitation of fractures of the ankle-, hind- and midfoot. This may be contributed to a lack of consensus (e.g. missing publication of guidelines), individualized patient care (e.g. in fragility fractures) or lack of specialization. This study might serve as basis for prospective randomized controlled trials in order to optimize rehabilitation for these common fractures. Copyright © 2015 Elsevier Ltd

  14. Welcome to Journal of Foot and Ankle Research: a new open access journal for foot health professionals

    OpenAIRE

    Borthwick Alan M; Potter Mike J; Menz Hylton B; Landorf Karl B

    2008-01-01

    Abstract Journal of Foot and Ankle Research (JFAR) is a new, open access, peer-reviewed online journal that encompasses all aspects of policy, organisation, delivery and clinical practice related to the assessment, diagnosis, prevention and management of foot and ankle disorders. JFAR will cover a wide range of clinical subject areas, including diabetology, paediatrics, sports medicine, gerontology and geriatrics, foot surgery, physical therapy, dermatology, wound management, radiology, biome...

  15. Outcomes of Foot and Ankle Surgery in Diabetic Patients Who Have Undergone Solid Organ Transplantation.

    Science.gov (United States)

    Zou, Richard H; Wukich, Dane K

    2015-01-01

    Foot and ankle problems are highly prevalent in patients with diabetes mellitus (DM). Increased rates of surgical site infections and noninfectious complications, such as malunion, delayed union, nonunion, and hardware failure, have also been more commonly observed in diabetic patients who undergo foot and ankle surgery. DM is a substantial contributor of perioperative morbidity in patients with solid organ transplantation. To the best of our knowledge, postoperative foot and ankle complications have not been studied in a cohort of diabetic patients who previously underwent solid organ transplantation. The aim of the present study was to evaluate the outcomes of foot and ankle surgery in a cohort of diabetic transplant patients and to compare these outcomes with those of diabetic patients without a history of transplantation. We compared the rates of infectious and noninfectious complications after foot and ankle surgery in 28 diabetic transplant patients and 56 diabetic patients without previous transplantation and calculated the odds ratios (OR) for significant findings. The diabetic transplant patients who underwent foot and ankle surgery in the present cohort were not at an increased risk of overall complications (OR 0.83, 95% confidence interval [CI] 0.33 to 2.08, p = .67), infectious complications (OR 0.54, 95% CI 0.09 to 3.09, p = .49), or noninfectious complications (OR 1.14, 95% CI 0.41 to 3.15, p = .81). Four transplant patients (14.3%) died of non-orthopedic surgery-related events during the follow-up period; however, no deaths occurred in the control group. Diabetic patients with previous solid organ transplantation were not at an increased risk of developing postoperative complications after foot and ankle surgery, despite being immunocompromised. The transplant patients had a greater mortality rate, but their premature death was unrelated to their foot and ankle surgery. Surgeons treating transplant patients can recommend foot and ankle surgery when

  16. Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review.

    Science.gov (United States)

    Barg, Alexej; Bailey, Travis; Richter, Martinus; de Cesar Netto, Cesar; Lintz, François; Burssens, Arne; Phisitkul, Phinit; Hanrahan, Christopher J; Saltzman, Charles L

    2018-03-01

    In the last decade, cone-beam computed tomography technology with improved designs allowing flexible gantry movements has allowed both supine and standing weight-bearing imaging of the lower extremity. There is an increasing amount of literature describing the use of weightbearing computed tomography in patients with foot and ankle disorders. To date, there is no review article summarizing this imaging modality in the foot and ankle. Therefore, we performed a systematic literature review of relevant clinical studies targeting the use of weightbearing computed tomography in diagnosis of patients with foot and ankle disorders. Furthermore, this review aims to offer insight to those with interest in considering possible future research opportunities with use of this technology. Level V, expert opinion.

  17. Stress fractures of the foot and ankle.

    Science.gov (United States)

    Welck, M J; Hayes, T; Pastides, P; Khan, W; Rudge, B

    2017-08-01

    Stress fractures occur as a result of microscopic injuries sustained when bone is subjected to repeated submaximal stresses. Overtime, with repeated cycles of loading, accumulation of such injuries can lead to macro-structural failure and frank fracture. There are numerous stress fractures about the foot and ankle of which a trauma and orthopaedic surgeon should be aware. These include: metatarsal, tibia, calcaneus, navicular, fibula, talus, medial malleolus, sesamoid, cuneiform and cuboid. Awareness of these fractures is important as the diagnosis is frequently missed and appropriate treatment delayed. Late identification can be associated with protracted pain and disability, and may predispose to non-union and therefore necessitate operative intervention. This article outlines the epidemiology and risk factors, aetiology, presentation and management of the range of stress fractures in the foot and ankle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Shoes on Stiffness and Energy Efficiency of Ankle-Foot Orthosis: Bench Testing Analysis.

    Science.gov (United States)

    Kobayashi, Toshiki; Gao, Fan; LeCursi, Nicholas; Foreman, K Bo; Orendurff, Michael S

    2017-12-01

    Understanding the mechanical properties of ankle-foot orthoses (AFOs) is important to maximize their benefit for those with movement disorders during gait. Though mechanical properties such as stiffness and/or energy efficiency of AFOs have been extensively studied, it remains unknown how and to what extent shoes influence their properties. The aim of this study was to investigate the effect of shoes on stiffness and energy efficiency of an AFO using a custom mechanical testing device. Stiffness and energy efficiency of the AFO were measured in the plantar flexion and dorsiflexion range, respectively, under AFO-alone and AFO-Shoe combination conditions. The results of this study demonstrated that the stiffness of the AFO-Shoe combination was significantly decreased compared to the AFO-alone condition, but no significant differences were found in energy efficiency. From the results, we recommend that shoes used with AFOs should be carefully selected not only based on their effect on alignment of the lower limb, but also their effects on overall mechanical properties of the AFO-Shoe combination. Further study is needed to clarify the effects of differences in shoe designs on AFO-Shoe combination mechanical properties.

  19. Psychological factors and personality traits associated with patients in chronic foot and ankle pain.

    Science.gov (United States)

    Shivarathre, Deepak Gubbi; Howard, Nicholas; Krishna, Sowmya; Cowan, Chris; Platt, Simon R

    2014-11-01

    The impact of psychosocial factors and personality traits in chronic pain is well established. However, there has been limited literature analyzing the influence of psychological issues in chronic foot and ankle pain. The aim of our study was to identify the association of certain psychosocial factors and personality traits in individuals with chronic painful foot and ankle disorders. Patients with chronic foot and ankle pain were recruited from the specialist foot and ankle clinic. The Eysenck Personality Questionnaire-Revised (EPQ-R), Dysfunctional Attitude Scale (DAS), and Hospital Anxiety Depression (HAD) scale were administered in the form of questionnaires. An age- and sex-matched cohort of healthy volunteers served as the control group. Sample size was determined after power calculation, and a total of 90 participants were recruited with informed consent with 45 participants in each arm. Results were analyzed and statistical analyses were performed using SPSS. Patients with chronic foot and ankle pain had significantly higher neuroticism scores than the control group (P pain (P pain. Clinicians should recognize the influence of these specific psychological issues to provide a more holistic approach to the clinical problem. Level III, case control study. © The Author(s) 2014.

  20. Acute fractures of the pediatric foot and ankle.

    Science.gov (United States)

    Halai, Mansur; Jamal, Bilal; Rea, Paul; Qureshi, Mobeen; Pillai, Anand

    2015-02-01

    Injuries around the foot and ankle are challenging. There is a paucity of literature, outside that of specialist orthopedic journals, that focuses on this subject in the pediatric population. In this review, we outline pediatric foot and ankle fractures in an anatomically oriented manner from the current literature. Our aim is to aid the emergency department doctor to manage these challenging injuries more effectively in the acute setting. These injuries require a detailed history and examination to aid the diagnosis. Often, plain radiographs are sufficient, but more complex injuries require the use of magnetic resonance imaging. Treatment is dependent on the proximity to skeletal maturity and the degree of displacement of fracture. Children have a marked ability to remodel after fractures and therefore mainstay treatment is immobilization by a cast or splint. Operative fixation, although uncommon in this population, may be necessary with adolescents, certain unstable injuries or in cases with displaced articular surface. In the setting of severe foot trauma, skin compromise and compartment syndrome of the foot must be excluded. The integrity of the physis, articular surface and soft tissues are all equally important in treating these injuries.

  1. Lyme Disease Manifestations in the Foot and Ankle: A Retrospective Case Series.

    Science.gov (United States)

    Miller, Jason R; Dunn, Karl W; Braccia, Domenick; Ciliberti, Louis J; Becker, Dina K; Hollinger, Joshua K; Brand, Shelley M

    Lyme disease is the result of Borrelia burgdorferi bacterial infection after exposure from a tick bite. A pathognomonic finding in early-stage Lyme disease is an expanding, red macular ring known as erythema migrans. Lyme arthritis is a late-stage manifestation of this disease, affecting the large, weightbearing joints with intermittent pain and swelling. The existing data on Lyme disease and subsequent arthritis have reported manifestations in the lower extremity, primarily in the knee and ankle and less commonly the small joints of the foot. We present a retrospective case series of 11 cases of painful arthritis in the foot and ankle with confirmatory Lyme disease testing. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. RELIABILITY OF ANKLE-FOOT MORPHOLOGY, MOBILITY, STRENGTH, AND MOTOR PERFORMANCE MEASURES.

    Science.gov (United States)

    Fraser, John J; Koldenhoven, Rachel M; Saliba, Susan A; Hertel, Jay

    2017-12-01

    Assessment of foot posture, morphology, intersegmental mobility, strength and motor control of the ankle-foot complex are commonly used clinically, but measurement properties of many assessments are unclear. To determine test-retest and inter-rater reliability, standard error of measurement, and minimal detectable change of morphology, joint excursion and play, strength, and motor control of the ankle-foot complex. Reliability study. 24 healthy, recreationally-active young adults without history of ankle-foot injury were assessed by two clinicians on two occasions, three to ten days apart. Measurement properties were assessed for foot morphology (foot posture index, total and truncated length, width, arch height), joint excursion (weight-bearing dorsiflexion, rearfoot and hallux goniometry, forefoot inclinometry, 1 st metatarsal displacement) and joint play, strength (handheld dynamometry), and motor control rating during intrinsic foot muscle (IFM) exercises. Clinician order was randomized using a Latin Square. The clinicians performed independent examinations and did not confer on the findings for the duration of the study. Test-retest and inter-tester reliability and agreement was assessed using intraclass correlation coefficients (ICC 2,k ) and weighted kappa ( K w ). Test-retest reliability ICC were as follows: morphology: .80-1.00, joint excursion: .58-.97, joint play: -.67-.84, strength: .67-.92, IFM motor rating: K W -.01-.71. Inter-rater reliability ICC were as follows: morphology: .81-1.00, joint excursion: .32-.97, joint play: -1.06-1.00, strength: .53-.90, and IFM motor rating: K w .02-.56. Measures of ankle-foot posture, morphology, joint excursion, and strength demonstrated fair to excellent test-retest and inter-rater reliability. Test-retest reliability for rating of perceived difficulty and motor performance was good to excellent for short-foot, toe-spread-out, and hallux exercises and poor to fair for lesser toe extension. Joint play measures had

  3. Warrior Transition Leader: Medical Rehabilitation Handbook

    Science.gov (United States)

    2011-01-01

    meter medley relay, swimming the anchor . After observing athletes with one leg competing in track during the 1996 Paralympics, Register was fitted with...down to the toes. Shoes, inserts, anklefoot orthotics, ankle braces, and knee braces are some of the devices commonly prescribed for various...conditions. Lower limb orthotics can be functional, accommodative, or corrective. The anklefoot orthosis fi g u r E 8-5. Wrist–hand orthosis. aSSiStivE

  4. Ambulatory assessment of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Veltink, Petrus H.

    Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates

  5. Repeatability of the Oxford Foot Model for Kinematic Gait Analysis of the Foot and Ankle

    NARCIS (Netherlands)

    van Hoeve, S.; Vos, J.; Weijers, P.; Verbruggen, J.; Willems, P.; Poeze, M.; Meijer, K.

    2015-01-01

    INTRODUCTION: Kinematic gait analysis via the multi-segmental Oxford foot model (OFM) may be a valuable addition to the biomechanical examination of the foot and ankle. The aim of this study is to assess the repeatability of the OFM in healthy subjects. METHODS: Nine healthy subjects, without a

  6. Management of lawn mower injuries to the foot and ankle.

    Science.gov (United States)

    Corcoran, J; Zamboni, W A; Zook, E G

    1993-09-01

    Seventy consecutive patients treated for lawn mower injuries to the foot and ankle were reviewed to determine optimal treatment, functional results, and complications. Injuries were classified into 1 or more functional-anatomical zones (I, digits; II, dorsum; III, plantar nonweight-bearing surface; IV, heel; and V, ankle) for a total of 96 injuries. Thirty-one patients were available for follow-up. Mean age was 36.7 years and 84% were males. Most injuries (67%) involved patients > 16 years old using a push mower; however, 18% involved children Lawn mower injuries to the foot and ankle can be closed primarily after adequate irrigation and debridement without compromise of infection rate or function. Antibiotic prophylaxis is recommended. One-sixth of these injuries involve children < 5 years of age and can be prevented.

  7. Management of high-energy foot and ankle injuries in the geriatric population.

    Science.gov (United States)

    Herscovici, Dolfi; Scaduto, Julia M

    2012-03-01

    By the year 2035 almost 20% of the US population of 389 million people will be 65 years and older. What this group has, compared with aged populations in the past, is better health, more mobility, and more active lifestyles. From January 1989 through December 2010, a total of 494 elderly patients with 536 foot and ankle injuries were identified. Within this group, 237 (48%) patients with 294 injuries were sustained as a result of a high-energy mechanism. These mechanisms consisted of 170 motor vehicle accidents, 30 as a result of high (not ground level) energy falls, 2 from industrial accidents, and 35 classified as other, which included sports, blunt trauma, bicycle, airplane or boating accidents, crush injuries, and injuries resulting from a lawn mower. The injuries produced were 17 metatarsal fractures, 9 Lisfranc injuries, 10 midfoot (navicular, cuneiform, or cuboid) fractures, 23 talus fractures, 63 calcaneal fractures, 73 unimalleolar, bimalleolar, or trimalleolar ankle fractures, 45 pilon fractures, and 3 pure dislocations of the foot or ankle. Overall, 243 (83%) of these injuries underwent surgical fixation and data have shown that when surgery is used to manage high-energy injuries of the foot and ankle in the elderly individuals, the complications and outcomes are similar to those seen in younger patients. Therefore, the decision for surgical intervention for high-energy injuries of the foot and ankle should be based primarily on the injury pattern and not solely on the age of the patient.

  8. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  9. 3D MODELLING OF PROPHYLACTIC FOOTWEAR FOR A HIGH ARCHED FOOT

    Directory of Open Access Journals (Sweden)

    COSTEA Mariana

    2016-05-01

    Full Text Available This article approaches the methodology of designing customized footwear for high arched foot. The authors propose to reconsider the classical structure of footwear bottom components for people with high arched foot and recommend incorporating custom components, with the role of compensation or adjustment. This study continues the authors’ research, starting from a foot’s 3D shape obtained by 3D scanning, the anthropometrical and biomechanical parameters, shoe lasts’ 3D modelling and continuing with 3D footwear design. Including customized orthosis can help to stop the evolution of abnormalities, diminishes sensations of pain during walking and improves performance in various physical activities carried out during the day, walking, running, and standing. The prophylactic footwear has to meet four main requirements: to protect the foot and ankle during walking and static; to ensure the normal resistance systems (bones, muscle and joint of the foot; to prevent the installation of irreversible structural changes by reducing stress on the foot; to contribute to increased performance in conducting regular physical activity. It is presented the steps of modelling an orthosis, a virtual simulation of its cutting process, followed by the integration and development of the insole, filling and sole for a customized shoe. Delcam Crispin CAD system and its applications for orthopaedics are used to design the bottom components of prophylactic footwear for a high arched foot.

  10. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.

    Science.gov (United States)

    Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-06-01

    Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

    Science.gov (United States)

    Takahashi, Kota Z; Stanhope, Steven J

    2013-09-01

    Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Management of foot and ankle injuries in pediatric and adolescent athletes: a narrative review

    Directory of Open Access Journals (Sweden)

    Gill LE

    2018-04-01

    Full Text Available Laura E Gill,1,2 Kevin E Klingele,1,2 1Department of Orthopedic Surgery, Nationwide Children’s Hospital, Columbus, OH, USA; 2Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA Abstract: In this review, we focus on the treatment of injuries to the foot and ankle in the adolescent athlete. While many injuries in the adolescent foot and ankle are similar to or overlap with their counterparts in the adult population, the anatomy of the adolescent ankle, especially the presence of growth plates, results in different injury patterns in many cases and calls for specific management approaches. We discuss the unique anatomy of the pediatric patient as well as the diagnostic evaluation and treatment of common injuries in the young athlete. Keywords: foot, ankle, lower extremity, pediatric athlete, growth plate, Lisfranc injury 

  13. Comparison of the Otto Bock solid ankle cushion heel foot with wooden keel to the low-cost CR-Equipements™ solid ankle cushion heel foot with polypropylene keel: A randomized prospective double-blind crossover study assessing patient satisfaction and energy expenditure.

    Science.gov (United States)

    Lacraz, Alain; Armand, Stéphane; Turcot, Katia; Carmona, Gorki; Stern, Richard; Borens, Olivier; Assal, Mathieu

    2017-06-01

    The International Committee of the Red Cross supports a worldwide program of prosthetic fitting and rehabilitation. In this context, a prosthetic foot was developed and widely distributed in least developed countries. Prospective, randomized, double-blind, controlled study. To compare patient satisfaction and energy expenditure during ambulation between a low-cost prosthetic foot designed with a polypropylene keel (CR-Equipements ™ solid ankle cushion heel, International Committee of the Red Cross) to a well-recognized solid ankle cushion heel foot with a wooden keel (solid ankle cushion heel foot, Otto Bock). A total of 15 participants with unilateral transtibial amputation were evaluated using the two prosthetic feet in a randomized prospective double-blind crossover study. Main outcomes were patient satisfaction questionnaires (Satisfaction with Prosthesis Questionnaire and prosthetic foot satisfaction) and energy expenditure (oxygen consumption-mL/kg/min, oxygen cost-mL/kg/m, and heart rate-bpm). There were no significant differences between the two prosthetic feet for satisfaction and energy expenditure. The low-cost solid ankle cushion heel foot with polypropylene keel provides comparable satisfaction and similar energy expenditure as the solid ankle cushion heel foot with wooden keel. Clinical relevance The results of this study support the application and widespread use of the CR-Equipements ™ solid ankle cushion heel foot. From a cost-effectiveness standpoint, patients are well satisfied and exhibit similar outcomes at a substantially lower cost.

  14. Reliability and validity of the Dutch version of the foot and ankle outcome score (FAOS)

    NARCIS (Netherlands)

    van den Akker-Scheek, Inge; Seldentuis, Arnoud; Reininga, Inge H. F.; Stevens, Martin

    2013-01-01

    Background: The Foot and Ankle Outcome Score (FAOS) is a patient-reported questionnaire measuring symptoms and functional limitations of the foot and ankle. Aim is to translate and culturally adapt the Dutch version of the FAOS and to investigate internal consistency, validity, repeatability and

  15. Foot and Ankle Kinematics During Descent From Varying Step Heights.

    Science.gov (United States)

    Gerstle, Emily E; O'Connor, Kristian; Keenan, Kevin G; Cobb, Stephen C

    2017-12-01

    In the general population, one-third of incidences during step negotiation occur during the transition to level walking. Furthermore, falls during curb negotiation are a common cause of injury in older adults. Distal foot kinematics may be an important factor in determining injury risk associated with transition step negotiation. The purpose of this study was to identify foot and ankle kinematics of uninjured individuals during descent from varying step heights. A 7-segment foot model was used to quantify kinematics as participants walked on a level walkway, stepped down a single step (heights: 5 cm, 15 cm, 25 cm), and continued walking. As step height increased, landing strategy transitioned from the rearfoot to the forefoot, and the rearfoot, lateral and medial midfoot, and medial forefoot became more plantar flexed. During weight acceptance, sagittal plane range of motion of the rearfoot, lateral midfoot, and medial and lateral forefoot increased as step height increased. The changes in landing strategy and distal foot function suggest a less stable ankle position at initial contact and increased demand on the distal foot at initial contact and through the weight acceptance phase of transition step negotiation as step height increases.

  16. Use of and Satisfaction with Ankle Foot Orthoses

    NARCIS (Netherlands)

    Joost van Hoof; Eveline Wouters; Yvonne van Zaalen; F.C. Holtkamp; M.J. Verkerk

    2015-01-01

    Objective: The aim of this study was to obtain insight in specific elements influencing the use, non-use, satisfaction, and dissatisfaction of ankle foot orthoses (AFOs) and the presence of underexposed problems with respect to AFOs. Methods: A questionnaire was composed to obtain information from

  17. Use of and satisfaction with ankle foot orthoses

    NARCIS (Netherlands)

    Holtkamp, F.C.; Wouters, E.J.M.; van Hoof, J.; van Zaalen, Y.; Verkerk, M.

    2015-01-01

    Objective: The aim of this study was to obtain insight in specific elements influencing the use, non-use, satisfaction, and dissatisfaction of ankle foot orthoses (AFOs) and the presence of underexposed problems with respect to AFOs. Methods: A questionnaire was composed to obtain information from

  18. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  19. The Dutch version of the Oxford Ankle and Foot Questionnaire for Children: Useful for evaluation of pediatric foot problems in groups.

    Science.gov (United States)

    Burger, Elise; Selles, Ruud; van Nieuwkasteele, Shelly; Bessems, Gert; Pollet, Virginie; Hovius, Steven; van Nieuwenhoven, Christianne

    2017-11-04

    The purpose of this study is to develop a Dutch version of the Oxford Ankle and Foot Questionnaire for Children (OxAFQ-c) to allow evaluation of pediatric foot care. The OxAFQ-c was translated into Dutch, according to the ISPOR-guidelines. Children with different foot and ankle complaints completed the OxAFQ-c at baseline, after two weeks, and after 4-6 months. Measurement properties were assessed in terms of reliability, responsiveness, and construct validity. Test-retest reliability showed moderate intraclass correlation coefficients. Bland-Altman plots showed wide limits of agreement. After 4-6 months, the group that experienced improvement also showed improved questionnaire outcomes, indicating responsiveness. Moderate correlation between the OxAFQ-c and the Kidscreen and foot-specific VAS-scores were observed, indicating moderate construct validity. The Dutch OxAFQ-c showed moderate to good measurement properties. However, because we observed limited sensitivity to changes and wide limits of agreement in individual patients, we think the questionnaire should only be used in groups. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  20. Deep-vein thrombosis prophylaxis in foot and ankle surgery: what is the current state of practice?

    Science.gov (United States)

    Shah, Kalpesh; Thevendran, Gowreeson; Younger, Alastair; Pinney, Stephen J

    2015-04-01

    When contemplating thromboprophylaxis for patients undergoing elective foot and ankle surgery the potential for complications secondary to venous thromboembolism (VTE) must be balanced against the cost, risk, and effectiveness of prophylactic treatment. The incidence of pulmonary embolism (PE) following foot and ankle surgery is considerably lower than after hip or knee surgery. The purpose of this study was to assess current trends in practice regarding VTE prophylaxis among expert orthopaedic foot and ankle surgeons. An e-mail-based survey of active AOFAS (American Orthopaedic Foot and Ankle Society) committee members was conducted (n = 100). Surgeons were questioned as to their use, type, and duration of thromboprophylaxis following elective ankle fusion surgery. Scenarios included the following: (1) A 50-year-old woman with no risk factors; (2) a 50-year-old woman with a history of PE; and (3) a 35-year-old woman actively using birth control pills (BCPs). The response rate for the survey was 80% (80/100). Replies regarding the use of thromboprophylaxis were as follows: (1) in the absence of risk factors, 57% of respondents (45/80) answered, "No prophylaxis required"; (2) for the scenario in which the patient had experienced a previous PE, 97.5% of respondents (78/80) answered, "Yes" to prophylaxis use; (3) for the scenario in which the patient was on BCP, 61.3% of respondents (49/80) stated that they would give some type of thromboprophylaxis. The most commonly recommended methods of prophylaxis were aspirin, 49% (24/49), and low-molecular-weight heparin, 47% (23/49). The recommended length of time for thromboprophylaxis varied widely, from 1 day to more than 6 weeks. . There remains wide variation in the practice of deep-vein thrombosis thromboprophylaxis within the foot and ankle community. Because risks for foot and ankle patients differ from those in the well-studied areas of hip and knee, specific guidelines are needed for foot and ankle surgery. Level V

  1. The role of the reversed oblique radiograph in trauma of the foot and ankle

    International Nuclear Information System (INIS)

    Geusens, E.; Geyskens, W.; Brys, P.; Janzing, H.

    2000-01-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  2. The role of the reversed oblique radiograph in trauma of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Geusens, E.; Geyskens, W.; Brys, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Janzing, H. [Dept. of Traumatology, University Hospitals, Leuven (Belgium)

    2000-03-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  3. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  4. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  5. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR. We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs to matched abled-bodied (AB individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  6. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Science.gov (United States)

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  7. Motion of the foot and ankle during the stance phase in rats

    NARCIS (Netherlands)

    Varejao, ASP; Cabrita, AM; Meek, MF; Bulas-Cruz, J; Gabriel, RC; Filipe, VM; Melo-Pinto, P; Winter, DA

    2002-01-01

    Computerized analysis of rat gait is becoming an invaluable technique used by some peripheral nerve investigators for the evaluation of function. In this article we describe the use of a biomechanical model of the foot and ankle that allows a quantitative assessment and description of the ankle

  8. Imaging in the assessment and management of overuse injuries in the foot and ankle.

    Science.gov (United States)

    Teh, James; Suppiah, Ravi; Sharp, Robert; Newton, Julia

    2011-02-01

    Overuse injuries of the ankle and foot are common in the general and athletic populations. The wide spectrum of overuse injuries includes ligamentous injuries, soft tissue and osseous impingement, osteochondral lesions, tendon injuries, and stress fractures. Some conditions such as impingement syndromes and stress fractures may be missed on initial physical examination, and patients with such injuries often present to a sports or orthopedic clinic with persistent symptoms. With the increasing participation in sports, health-care professionals involved in the care of athletes at all levels must have a thorough understanding of overuse conditions of the foot and ankle, and the use of imaging in the management of these conditions. This article covers the clinical presentation, pertinent anatomy, imaging features, and management of overuse injuries of the foot and ankle. © Thieme Medical Publishers.

  9. The forgotten foot - an assessment of foot and ankle radiograph pathology in final year medical students.

    LENUS (Irish Health Repository)

    Groarke, P J

    2014-04-27

    It has been shown that doctors in Emergency Departments (EDs) have inconsistent knowledge of musculoskeletal anatomy. This is most likely due to a deficiency in focused musculoskeletal modules at undergraduate level in medical school. The aims of this study were to evaluate the knowledge of final year medical students on foot anatomy and common foot and ankle pathology as seen on radiographs.

  10. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.

    Science.gov (United States)

    Lee, Jeffrey D; Mooney, Luke M; Rouse, Elliott J

    2017-07-01

    The majority of commercially available passive prosthetic feet are not capable of providing joint mechanics that match that of the intact human ankle. Due to their cantilever design, their stiffness characteristics contrast with what has been observed in the biological ankle, namely, an increase in stiffness during the stance phase of walking. In this paper, we introduce the design and control of a pneumatic foot-ankle prosthesis that attempts to provide biomimetic mechanics. The prosthesis is comprised of a pneumatic cylinder in series with a fiberglass leaf spring, and a solenoid valve to control the flow of air between the two sides of the cylinder. The solenoid valve acts as a mechanical clutch, enabling resetting of the ankle's equilibrium position. By adjusting the pressure inside the cylinder, the prosthesis can be customized to provide a range of ankle mechanics. A mechanical testing machine is used to compare the torque-angle curve of the pneumatic prosthesis with a low-profile passive prosthetic foot. Finally, data are presented of one transtibial amputee walking with the prosthesis at 1.2 m/s. The testing shows that the pneumatic prosthesis is capable of providing an appropriate range of motion as well a maximum torque of 94 Nm, while returning approximately 11.5 J of energy.

  11. A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies.

    Science.gov (United States)

    Ren, Lei; Howard, David; Ren, Luquan; Nester, Chris; Tian, Limei

    2010-01-19

    The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Diagnostic dilemmas in foot and ankle injuries

    Energy Technology Data Exchange (ETDEWEB)

    Keene, J.S.; Lange, R.H.

    1986-07-11

    Differential diagnosis of foot and ankle injuries should include (1) stress fractures of the great toe sesamoids, the shaft of the fifth metatarsal, and the tarsal navicular bone; (2) transchondral talar-dome fractures; (3) fractures of the os trigonum; and (4) dislocating peroneal tendons. Diagnosis of these injuries is challenging because the initial roentgenograms often are normal, and special clinical tests and ancillary studies are required.

  13. Diagnostic dilemmas in foot and ankle injuries

    International Nuclear Information System (INIS)

    Keene, J.S.; Lange, R.H.

    1986-01-01

    Differential diagnosis of foot and ankle injuries should include (1) stress fractures of the great toe sesamoids, the shaft of the fifth metatarsal, and the tarsal navicular bone; (2) transchondral talar-dome fractures; (3) fractures of the os trigonum; and (4) dislocating peroneal tendons. Diagnosis of these injuries is challenging because the initial roentgenograms often are normal, and special clinical tests and ancillary studies are required

  14. A finite element model of the foot and ankle for automotive impact applications.

    Science.gov (United States)

    Shin, Jaeho; Yue, Neng; Untaroiu, Costin D

    2012-12-01

    A finite element (FE) model of the foot and leg was developed to improve understanding of injury mechanisms of the ankle and subtalar joints during vehicle collisions and to aid in the design of injury countermeasures. The FE model was developed based on the reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male and a commercial anatomical database. While the forefoot bones were defined as rigid bodies connected by ligament models, the surrounding bones of the ankle and subtalar joints and the leg bones were modeled as deformable structures. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The whole foot and leg model was validated in different loading conditions including forefoot impact, axial rotation, dorsiflexion, and combined loadings. Overall results obtained in the model validation indicated improved biofidelity relative to previous FE models. The developed model was used to investigate the injury tolerance of the ankle joint under brake pedal loading for internally and externally rotated feet. Ligament failures were predicted as the main source of injury in this loading condition. A 12% variation of failure moment was observed in the range of axial foot rotations (±15°). The most vulnerable position was the internally rotated (15°) posture among three different foot positions. Furthermore, the present foot and ankle model will be coupled together with other body region FE models into the state-of-art human FE model to be used in the field of automotive safety.

  15. American Orthopaedic Foot and Ankle Society ankle-hindfoot scale: A cross-cultural adaptation and validation study from Iran.

    Science.gov (United States)

    Vosoughi, Amir Reza; Roustaei, Narges; Mahdaviazad, Hamideh

    2017-02-17

    The use of valid and reliable outcome rating scales is essential for evaluating the result of different treatments and interventions. The purposes of this study were to translate and culturally adapt the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale (AOFAS-AHFS) into Persian languages and evaluate its psychometric properties. Forward-backward translation and cultural adaptation method were used to develop Persian version of AOFAS-AHFS. From March to July 2016, one hundred consecutive patients with ankle and hindfoot injuries were included. Internal consistency and reproducibility were evaluated using Cronbach's alpha, Spearman's rank correlation coefficient and Intraclass correlation coefficient (ICC) respectively. Construct validity reported which compare the outcome rating scale measurements with Short Form-36 (SF-36), also convergent and discriminant validity evaluated using Spearman's rank correlation coefficient. Mean age (SD) of the patients was 41.95±13.45years. Cronbach's α coefficient, Spearman's rho and ICC values were 0.71, 0.89 and 0.90 respectively. Total score of AOFAS-AHFS and SF-36 domains has a correlation ranged between 0.17-0.55. Spearman's rank correlation coefficient of 0.4 was exceeded by all items with the exception of stability. The Spearman's rank correlation between each item in functional subscales with its own subscales was higher than the correlation between these items and other subscales. Persian version of AOFAS-AHFS provides additional reliable and valid instrument which can be used to assess broad range of patients with foot and ankle disorders that speaking in Persian. However, it seems that the original version of AOFAS-AHFS needs some revisions. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  16. Reliability and validity of the foot and ankle outcome score: a validation study from Iran.

    Science.gov (United States)

    Negahban, Hossein; Mazaheri, Masood; Salavati, Mahyar; Sohani, Soheil Mansour; Askari, Marjan; Fanian, Hossein; Parnianpour, Mohamad

    2010-05-01

    The aims of this study were to culturally adapt and validate the Persian version of Foot and Ankle Outcome Score (FAOS) and present data on its psychometric properties for patients with different foot and ankle problems. The Persian version of FAOS was developed after a standard forward-backward translation and cultural adaptation process. The sample included 93 patients with foot and ankle disorders who were asked to complete two questionnaires: FAOS and Short-Form 36 Health Survey (SF-36). To determine test-retest reliability, 60 randomly chosen patients completed the FAOS again 2 to 6 days after the first administration. Test-retest reliability and internal consistency were assessed using intraclass correlation coefficient (ICC) and Cronbach's alpha, respectively. To evaluate convergent and divergent validity of FAOS compared to similar and dissimilar concepts of SF-36, the Spearman's rank correlation was used. Dimensionality was determined by assessing item-subscale correlation corrected for overlap. The results of test-retest reliability show that all the FAOS subscales have a very high ICC, ranging from 0.92 to 0.96. The minimum Cronbach's alpha level of 0.70 was exceeded by most subscales. The Spearman's correlation coefficient for convergent construct validity fell within 0.32 to 0.58 for the main hypotheses presented a priori between FAOS and SF-36 subscales. For dimensionality, the minimum Spearman's correlation coefficient of 0.40 was exceeded by most items. In conclusion, the results of our study show that the Persian version of FAOS seems to be suitable for Iranian patients with various foot and ankle problems especially lateral ankle sprain. Future studies are needed to establish stronger psychometric properties for patients with different foot and ankle problems.

  17. [Treatment of Hallux Valgus: Current Diagnostic Testing and Surgical Treatment Performed by German Foot and Ankle Surgeons].

    Science.gov (United States)

    Arbab, Dariusch; Schneider, Lisa-Maria; Schnurr, Christoph; Bouillon, Bertil; Eysel, Peer; König, Dietmar Pierre

    2018-04-01

    Hallux valgus is one of the most prevalent foot deformities, and surgical treatment of Hallux valgus is one of the most common procedures in foot and ankle surgery. Diagnostic and treatment standards show large variation despite medical guidelines and national foot and ankle societies. The aim of this nationwide survey is a description of the current status of diagnostics and therapy of Hallux valgus in Germany. A nationwide online questionnaire survey was sent to two German foot and ankle societies. The participants were asked to answer a questionnaire of 53 questions with four subgroups (general, diagnostics, operation, preoperative management). Surgical treatment for three clinical cases demonstrating a mild, moderate and severe Hallux valgus deformity was inquired. 427 foot and ankle surgeons answered the questionnaire. 388 participants were certified foot and ankle surgeons from one or both foot and ankle societies. Medical history (78%), preoperative radiographs (100%) and preoperative radiographic management (78%) are of high or very high importance for surgical decision pathway. Outcome scores are used by less than 20% regularly. Open surgery is still the gold standard, whereas minimally invasive surgery is performed by only 7%. Our survey showed that diagnostic standards are met regularly. There is a wide variation in the type of procedures used to treat Hallux valgus deformity. TMT I arthrodesis is preferred in severe Hallux valgus, but also used to treat moderate and mild deformities. Minimally invasive surgery is still used by a minority of surgeons. It remains to be seen, to what extent minimally invasive surgery will be performed in the future. Georg Thieme Verlag KG Stuttgart · New York.

  18. Early functional outcome of two different orthotic concepts in ankle sprains: a randomized controlled trial.

    Science.gov (United States)

    Best, Raymond; Böhle, Caroline; Schiffer, Thorsten; Petersen, Wolf; Ellermann, Andree; Brueggemann, Gert Peter; Liebau, Christian

    2015-07-01

    Purpose of the study was the evaluation of the early functional outcome of patients with an acute ankle sprain treated either with a semirigid, variable, phase-adapted modular ankle orthosis or an invariable orthotic reference device. Forty-seven patients with acute ankle sprain grade II or more were included. In addition, 77 healthy controls as a reference were investigated. The injured subjects were treated with one of the two devices by random for 6 weeks. Ankle scores (FAOS, AOFAS) were taken at baseline after injury, 1 and 3 months after injury. Functional performance tests (balance platform, zig zag run, shuttle run, vertical drop jump) were performed at 1 and 3 months after injury. No significant score differences could be found between the two intervention groups except for achieving a preinjury activity level after 3 months only in the modular orthosis group. Postural functional performances (balance test) also showed no significant differences whereas the results of the agility tests revealed small but significant better results in the modular orthosis group in comparison to the invariable orthosis group. Cohen's effect sizes were high. Differences between the two intervention groups were marginal and very small but significant and--regarding Cohen's effect sizes--effective. Especially relating to functional performance, this might be a careful indication that a more effective strategy for promoting a protected, rapid recovery to physical activity after ankle sprains might be achieved by applying a phase-adapted ankle orthosis. Especially in athletic patients, phase-adapted orthosis should be further investigated and considered to ensure fully protected ligament healing as well as to regain early functional recovery.

  19. Foot and Ankle Deformity in Young Acrobatic and Artistic Gymnasts

    Directory of Open Access Journals (Sweden)

    Sobera Anna

    2015-09-01

    Full Text Available Purpose. The aim of the paper was to determine the occurrence of feet and ankle deformities in trampoline and artistic gymnasts. Methods. Ten acrobatic gymnasts (trampolinists and 10 artistic gymnasts aged 6-14 years were recruited. The calcaneal-tibial (rearfoot angle was determined as the angle of the upper calcaneal tendon and the longitudinal heel axis while Clarke angles were determined by podoscopy. Results. The trampolinists showed significantly greater medial angulation (calcaneal valgus than the group of gymnasts. Right and left foot Clark’s angles in both the trampoline and artistic gymnasts were above 55°. Conclusions. Trampolinists exhibit significantly more pronounced calcaneal valgus than artistic gymnasts. The prevalence of foot and ankle deformities in both populations should be addressed by coaches in the gymnastics training of young children.

  20. The American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale; translation and validation of the Dutch language version for ankle fractures.

    Science.gov (United States)

    de Boer, A Siebe; Tjioe, Roderik J C; Van der Sijde, Fleur; Meuffels, Duncan E; den Hoed, Pieter T; Van der Vlies, Cornelis H; Tuinebreijer, Wim E; Verhofstad, Michael H J; Van Lieshout, Esther M M

    2017-08-03

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale is among the most commonly used instruments for measuring outcome of treatment in patients who sustained a complex ankle or hindfoot injury. It consists of a patient-reported and a physician-reported part. A validated, Dutch version of this instrument is currently not available. The aim of this study was to translate the instrument into Dutch and to determine the measurement properties of the AOFAS Ankle-Hindfoot Scale Dutch language version (DLV) in patients with a unilateral ankle fracture. Multicentre (two Dutch hospitals), prospective observational study. In total, 142 patients with a unilateral ankle fracture were included. Ten patients were lost to follow-up. Patients completed the subjective (patient-reported) part of the AOFAS Ankle-Hindfoot Scale-DLV. A physician or trained physician-assistant completed the physician-reported part. For comparison and evaluation of the measuring characteristics, the Foot Function Index and the Short Form-36 were completed by the patient. Descriptive statistics (including floor and ceiling effects), reliability (ie, internal consistency), construct validity, reproducibility (ie, test-retest reliability, agreement and smallest detectable change) and responsiveness were determined. The AOFAS-DLV and its subscales showed good internal consistency (Cronbach's α >0.90). Construct validity and longitudinal validity were proven to be adequate (76.5% of predefined hypotheses were confirmed). Floor effects were not present. Ceiling effects were present from 6 months onwards, as expected. Responsiveness was adequate, with a smallest detectable change of 12.0 points. The AOFAS-DLV is a reliable, valid and responsive measurement instrument for evaluating functional outcome in patients with a unilateral ankle fracture. This implies that the questionnaire is suitable to compare different treatment modalities within this population or to compare outcome across

  1. Robotic gait trainer in water: development of an underwater gait-training orthosis.

    Science.gov (United States)

    Miyoshi, Tasuku; Hiramatsu, Kazuaki; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2008-01-01

    To develop a robotic gait trainer that can be used in water (RGTW) and achieve repetitive physiological gait patterns to improve the movement dysfunctions. The RGTW is a hip-knee-ankle-foot orthosis with pneumatic actuators; the control software was developed on the basis of the angular motions of the hip and knee joint of a healthy subject as he walked in water. Three-dimensional motions and electromyographic (EMG) activities were recorded in nine healthy subjects to evaluate the efficacy of using the RGTW while walking on a treadmill in water. The device could preserve the angular displacement patterns of the hip and knee and foot trajectories under all experimental conditions. The tibialis anterior EMG activities in the late swing phase and the biceps femoris throughout the stance phase were reduced whose joint torques were assisted by the RGTW while walking on a treadmill in water. Using the RGTW could expect not only the effect of the hydrotherapy but also the standard treadmill gait training, in particular, and may be particularly effective for treating individuals with hip joint movement dysfunction.

  2. Journal of Foot and Ankle Research, one year on

    Directory of Open Access Journals (Sweden)

    Borthwick Alan M

    2009-11-01

    Full Text Available Abstract Journal of Foot and Ankle Research was launched one year ago, and a number of its key achievements are highlighted in this editorial. Although the journal is underpinned by professional bodies associated with the podiatry professions in the UK and Australasia, its content is aimed at the wider foot and ankle research community. Nevertheless, the journal's achievements over the past year reflect the development of research in the profession of podiatry. From this perspective, the journal may be viewed as contributing to the overall attainment of some of the profession's key goals and strategic aims over the last decade, across the UK and Australasia. The journal has also witnessed policy changes in the last year, and these are discussed - notably, the decision not to accept case reports for publication. We also report on a few of the key metrics, providing readers with a summary of the journal's performance over the last year.

  3. Factors Influencing Patient Selection of a Foot and Ankle Surgeon.

    Science.gov (United States)

    Manning, Blaine T; Bohl, Daniel D; Wang, Kevin C; Hamid, Kamran S; Holmes, George B; Lee, Simon

    2017-09-01

    An increasingly consumer-centric health insurance market has empowered patients to select the providers of their choice. There is a lack of studies investigating the rationale by which patients select a foot and ankle surgeon. In the present study, 824 consecutive new patients seeking treatment from 3 foot-ankle surgeons were consecutively administered an anonymous questionnaire prior to their first appointment. It included rating the importance of 15 factors regarding specialist selection on a 1 to 10 scale, with 10 designated " Very important" and 1 designated " Not important at all." The remaining questions were multiple choice regarding patient perspectives on other surgeon aspects (appointment availability, waiting room times, clinic proximity, etc). Of 824 consecutive patients administered the survey, 305 (37%) responded. Patients rated board certification (9.24 ± 1.87) and on-site imaging availability (8.48 ± 2.37)-on a 1 to 10 scale, with 10 designated "Very important- as the 2 most important criteria in choosing a foot and ankle surgeon. Patients rated advertisements as least important. Among the patients, 91% responded that a maximum of 30 minutes should elapse between clinic check-in and seeing their physician; 61% responded that a maximum of 20 minutes should elapse between clinic check-in and seeing their physician. In the context of an increasingly consumer-driven paradigm of health care delivery and reimbursement, it is important to understand patients' preferences in specialist selection. Level III: Prospective questionnaire.

  4. A new RF transmit coil for foot and ankle imaging at 7T MRI.

    Science.gov (United States)

    Santini, Tales; Kim, Junghwan; Wood, Sossena; Krishnamurthy, Narayanan; Farhat, Nadim; Maciel, Carlos; Raval, Shailesh B; Zhao, Tiejun; Ibrahim, Tamer S

    2018-01-01

    A four-channel Tic-Tac-Toe (TTT) transmit RF coil was designed and constructed for foot and ankle imaging at 7T MRI. Numerical simulations using an in-house developed FDTD package and experimental analyses using a homogenous phantom show an excellent agreement in terms of B 1 + field distribution and s-parameters. Simulations performed on an anatomically detailed human lower leg model demonstrated an B 1 + field distribution with a coefficient of variation (CV) of 23.9%/15.6%/28.8% and average B 1 + of 0.33μT/0.56μT/0.43μT for 1W input power (i.e., 0.25W per channel) in the ankle/calcaneus/mid foot respectively. In-vivo B 1 + mapping shows an average B 1 + of 0.29μT over the entire foot/ankle. This newly developed RF coil also presents acceptable levels of average SAR (0.07W/kg for 10g per 1W of input power) and peak SAR (0.34W/kg for 10g per 1W of input power) over the whole lower leg. Preliminary in-vivo images in the foot/ankle were acquired using the T2-DESS MRI sequence without the use of a dedicated receive-only array. Copyright © 2017. Published by Elsevier Inc.

  5. A cross-sectional observational study comparing foot and ankle characteristics in people with stroke and healthy controls

    OpenAIRE

    Kunkel, Dorit; Potter, Julia; Mamode, Louis

    2016-01-01

    Purpose: The purpose of this study was to explore and compare foot and ankle characteristics in people with stroke and healthy controls; and between stroke fallers and non-fallers.Methods: Participants were recruited from community groups and completed standardized tests assessing sensation, foot posture, foot function, ankle dorsiflexion and first metatarsal phalangeal joint range of motion (1st MPJ ROM), hallux valgus presence and severity.Results: Twenty-three stroke participants (mean age...

  6. Natural history of sensory nerve recovery after cutaneous nerve injury following foot and ankle surgery

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2015-01-01

    Full Text Available Cutaneous nerve injury is the most common complication following foot and ankle surgery. However, clinical studies including long-term follow-up data after cutaneous nerve injury of the foot and ankle are lacking. In the current retrospective study, we analyzed the clinical data of 279 patients who underwent foot and ankle surgery. Subjects who suffered from apparent paresthesia in the cutaneous sensory nerve area after surgery were included in the study. Patients received oral vitamin B 12 and methylcobalamin. We examined final follow-up data of 17 patients, including seven with sural nerve injury, five with superficial peroneal nerve injury, and five with plantar medial cutaneous nerve injury. We assessed nerve sensory function using the Medical Research Council Scale. Follow-up immediately, at 6 weeks, 3, 6 and 9 months, and 1 year after surgery demonstrated that sensory function was gradually restored in most patients within 6 months. However, recovery was slow at 9 months. There was no significant difference in sensory function between 9 months and 1 year after surgery. Painful neuromas occurred in four patients at 9 months to 1 year. The results demonstrated that the recovery of sensory function in patients with various cutaneous nerve injuries after foot and ankle surgery required at least 6 months

  7. Measurement properties of the most commonly used Foot- and Ankle-Specific Questionnaires: the FFI, FAOS and FAAM. A systematic review.

    Science.gov (United States)

    Sierevelt, I N; Zwiers, R; Schats, W; Haverkamp, D; Terwee, C B; Nolte, P A; Kerkhoffs, G M M J

    2017-10-12

    In the foot and ankle literature, a wide range of patient-reported outcome measures (PROMs) is used, however, consensus as to which PROMs are preferred is lacking. Selection of a PROM is among other reasons, often based on measurement properties without considering the methodological quality of the studies that evaluate these measurement properties. The aim of current study was first to identify the most frequently used foot and ankle-specific PROMs in recent orthopaedic foot and ankle literature, and second to conduct a systematic review to synthesize and critically appraise the measurement properties of these PROMS. Six PubMed indexed journals focussing on foot and ankle research were screened to identify most commonly used foot and ankle-specific PROMs over a 2 year period (2015-2016). Subsequently, a systematic literature search was performed in PubMed, EMBASE, SPORTDiscus and Scopus to identify relevant studies on their measurement properties. Methodological quality assessment was performed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist, criteria for good measurement properties were applied, and a level of evidence was determined for the measurement properties of each domain of the questionnaires. The three most frequently reported PROMs were the Foot Function Index (FFI), the Foot and Ankle Outcome Score (FAOS) and the Foot and Ankle Activity Measure (FAAM). Among 2046 unique citations, 50 studies were included evaluating these PROMs. Evidence to support the measurement properties of the FFI was mainly lacking due to poor methodological quality. More evidence was available for the measurement properties of the FAOS and the FAAM, but overall evidence supporting all measurement properties is not yet sufficient. The best available evidence retrieved in this review showed that the FAOS and the FAAM are promising outcome measures for evaluation of patients with foot and ankle conditions, but their

  8. Cross-Sectional Contrast Between Individuals With Foot/Ankle vs Knee Osteoarthritis for Obesity and Low Education on Health-Related Quality of Life.

    Science.gov (United States)

    Perruccio, Anthony V; Gandhi, Rajiv; Lau, Johnny T C; Syed, Khalid A; Mahomed, Nizar N; Rampersaud, Y Raja

    2016-01-01

    Improving health-related quality of life (HRQoL) necessitates an understanding of the influence of patient characteristics on, and interrelationship among, HRQoL domains. In osteoarthritis (OA), these associations have predominantly been examined in hip/knee populations. We investigated whether there were differences in these associations between foot/ankle and knee OA samples. Individuals seeking orthopedic care for foot/ankle or knee OA completed a questionnaire pre-consultation, including HRQoL domains (bodily pain [BP], physical [PF] and social functioning [SF], and mental [MH] and general health [GH]), obesity, comorbidity, and sociodemographic characteristics. Associations were examined via stratified path analysis (foot/ankle vs knee). Foot/ankle: n = 180, mean age = 55 (range: 25 to 82), 52% female. Knee: n = 253, mean age = 62 (range: 26 to 92), 51% female. The interrelationship among HRQoL domains was generally similar between groups. However, the influence of patient characteristics differed. Low educational status was associated with worse scores for GH, MH, and SF in the foot/ankle group, whereas no significant effects were found in the knee group. Obesity was associated with worse scores for SF, BP, and GH in the foot/ankle compared to the knee group. Patient characteristics explained considerably more of the variation in domain scores in the foot/ankle group. There are significant differences in the impact of patient characteristics on HRQoL domains in foot/ankle versus knee OA patients. Therefore, a universal approach to patient education/intervention to improve HRQoL in lower-extremity OA is not likely to achieve optimal results. Based on these findings, we recommend joint-specific patient education, with a particular emphasis on patient characteristics among the foot/ankle OA population. Level III, retrospective comparative study. © The Author(s) 2015.

  9. Diagnostic accuracy of physical examination tests of the ankle/foot complex: a systematic review.

    Science.gov (United States)

    Schwieterman, Braun; Haas, Deniele; Columber, Kirby; Knupp, Darren; Cook, Chad

    2013-08-01

    Orthopedic special tests of the ankle/foot complex are routinely used during the physical examination process in order to help diagnose ankle/lower leg pathologies. The purpose of this systematic review was to investigate the diagnostic accuracy of ankle/lower leg special tests. A search of the current literature was conducted using PubMed, CINAHL, SPORTDiscus, ProQuest Nursing and Allied Health Sources, Scopus, and Cochrane Library. Studies were eligible if they included the following: 1) a diagnostic clinical test of musculoskeletal pathology in the ankle/foot complex, 2) description of the clinical test or tests, 3) a report of the diagnostic accuracy of the clinical test (e.g. sensitivity and specificity), and 4) an acceptable reference standard for comparison. The quality of included studies was determined by two independent reviewers using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Nine diagnostic accuracy studies met the inclusion criteria for this systematic review; analyzing a total of 16 special tests of the ankle/foot complex. After assessment using the QUADAS-2, only one study had low risk of bias and low concerns regarding applicability. Most ankle/lower leg orthopedic special tests are confirmatory in nature and are best utilized at the end of the physical examination. Most of the studies included in this systematic review demonstrate notable biases, which suggest that results and recommendations in this review should be taken as a guide rather than an outright standard. There is need for future research with more stringent study design criteria so that more accurate diagnostic power of ankle/lower leg special tests can be determined. 3a.

  10. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    Science.gov (United States)

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    Science.gov (United States)

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  12. ANALYSIS OF ANKLE ALIGNMENT ABNORMALITIES AS A RISK FACTOR FOR PEDIATRIC FLEXIBLE FLAT FOOT

    Directory of Open Access Journals (Sweden)

    Dr. Ajai Singh

    2010-01-01

    Full Text Available Majority of paediatric flat feet are flexible and asymptomatic; less than 0.1% of all flat feet are rigid. If these can be diagnosed and managed early, then various complications can be prevented and they will remain asymptomatic. This study was conducted to analyse the ankle rotational mal-alignments in the natural course of flexible flat foot in children. Seventy-six patients of flexible flat foot and one hundred controls were included in this study. The height of foot arches was judged clinically by inspecting the height of the medial arch and by measuring the arch index on weight-bearing podograms. Tibial torsion and bimalleolar angle were assessed in all subjects. Tibial torsion was assessed in the first twenty subjects (ten cases and ten controls both by clinical methods (foot-thigh angle and CT. As no statistical difference in the two methods was observed, tibial torsion was measured by clinical methods only in the remaining subjects. Bimalleolar angle was measured on weight-bearing podograms in all subjects. For a minimum of two years, cases were followed up regularly with a standard conservative protocol and the height of the arches observed. Majority of cases of flexible flat foot were found to have increased tibial torsion and increased foot-bimalleolar angle (high talar spin. The severity of collapse of the medial arch and the response to conservative treatment was found to correlate with these rotational mal-alignments of the ankle. Ankle rotational mal-alignments were seen to make these flexible flat foot deformities more complex and less responsive to conservative treatment.

  13. Validation of the Dutch language version of the Foot and Ankle Outcome Score.

    Science.gov (United States)

    Sierevelt, I N; Beimers, L; van Bergen, C J A; Haverkamp, D; Terwee, C B; Kerkhoffs, G M M J

    2015-08-01

    The aim of this study was to develop a Dutch language version of the Foot and Ankle Outcome Score (FAOS-DLV) and evaluate its measurement properties according to the definitions of the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). After a standard forward-backward translation procedure, the Dutch version of the FAOS was evaluated for reliability and validity in 110 patients with various hind foot and ankle complaints. Reliability was evaluated by calculation of intraclass correlation coefficients (ICC), Cronbach's alpha for internal consistency, and the smallest detectable change (SDC). Construct validity of the FAOS was assessed by calculation of Spearman's correlation coefficients with similar and dissimilar domains of the SF-36 health survey, American Orthopedic Foot and Ankle Society Ankle and Hindfoot Scale, and visual analogue scales for pain and disability. Dimensionality was tested with confirmatory factor analysis. Reliability of the FAOS-DLV was good. The ICC of the subscales ranged from 0.83 to 0.88. The minimal value of Cronbach's alpha was 0.76. The SDC at individual level ranged from 18 to 21 and at group level between 2.1 and 2.5. Construct validity was supported by confirmation of 85 % of the hypothesized correlations. Unidimensionality of the FAOS-DLV domains was moderate. The Dutch version of the FAOS seems to have acceptable measurement properties. The questionnaire can be used for functional assessment of patients with varying hindfoot and ankle symptoms. It is, however, more suitable for clinical evaluation at group level than for monitoring a specific patient. Diagnostic study, Level I.

  14. Lawn mower injuries of the pediatric foot and ankle: observations on prevention and management.

    Science.gov (United States)

    Vosburgh, C L; Gruel, C R; Herndon, W A; Sullivan, J A

    1995-01-01

    We reviewed 32 children with lower extremity injuries caused by power lawn mowers. Functional outcome of 21 patients was evaluated. Anatomical injury patterns provide some guidelines in management and prediction of functional outcome. Consistently, the most severe injuries result from ride-on mowers and wounds to the posterior/plantar foot and ankle. Our experience with pediatric foot and ankle lawn mower injuries permits recommendations for maximum functional outcome with minimal intervention. Public awareness and mower safety devices may be required to decrease the rate of accidents in the future.

  15. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  16. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  17. Definition of coordinate system for three-dimensional data analysis in the foot and ankle.

    LENUS (Irish Health Repository)

    Green, Connor

    2012-02-01

    BACKGROUND: Three-dimensional data is required to have advanced knowledge of foot and ankle kinematics and morphology. However, studies have been difficult to compare due to a lack of a common coordinate system. Therefore, we present a means to define a coordinate frame in the foot and ankle and its clinical application. MATERIALS AND METHODS: We carried out ten CT scans in anatomically normal feet and segmented them in a general purpose segmentation program for grey value images. 3D binary formatted stereolithography files were then create and imported to a shape analysis program for biomechanics which was used to define a coordinate frame and carry out morphological analysis of the forefoot. RESULTS: The coordinate frame had axes standard deviations of 2.36 which are comparable to axes variability of other joint coordinate systems. We showed a strong correlation between the lengths of the metatarsals within and between the columns of the foot and also among the lesser metatarsal lengths. CONCLUSION: We present a reproducible method for construction of a coordinate system for the foot and ankle with low axes variability. CLINICAL RELEVANCE: To conduct meaningful comparison between multiple subjects the coordinate system must be constant. This system enables such comparison and therefore will aid morphological data collection and improve preoperative planning accuracy.

  18. Management strategies of sarcomas of the ankle and foot

    International Nuclear Information System (INIS)

    Douglas, R.M.; Mankin, H.J.; Jennings, L.C.; Gebhardt, M.C.; Harmon, D.; Ancukiewicz, M.; Suit, H.D.; Spiro, Ira J.

    1997-01-01

    Purpose: To evaluate the management and outcomes of 40 patients treated at the Massachusetts General Hospital between 1974 and September 1996 for soft tissue sarcomas of the foot or ankle. Materials and Methods: Seventy seven percent of patients had AJCC stage II or III disease. Primary disease was treated in 28 patients while recurrent disease was addressed in 12. The mean tumor size was 4.6 cm with a median tumor size of 4.0 cm, (range 1 to 15 cm). Seventeen patients were treated with surgery followed by radiation therapy for primary or recurrent disease. Preoperative radiation therapy was employed in 15 patients, 5 of whom received additional postoperative radiation therapy for close or positive margins. Six patients received radiation treatment alone. Amputations were performed in 5 patients. Two amputations were performed due to inadequate surgical margins obtained at the time of resection. Three amputations were performed due to local failure. The median preoperative radiation dose was 48 Gy. The median total dose was 59 Gy (range 22 Gy to 70 Gy). Chemotherapy was incorporated in the therapy of 6 patients. Results: After a mean follow-up of 4.9 years, 28 (70%) patients remain without evidence of disease. Four patients have died of disease. Five patients have died of intercurrent disease or another cancer. Three patients remain alive with disease. There were 5 isolated local failures, 4 distant failures and 1 combined local and distant failure. Of the 5 patients with isolated local failures, 3 were treated with radiation alone. The most common site of distant failure was the lung. Actuarial local control rates are 80% at 5 and 10 years in this population. Actuarial overall survival at 5 and 10 years are 83% and 69% respectively. Wound healing difficulties occurred in 13 patients. Seven patients suffered a wound dehiscence. Five patients required therapy for wound dehiscence and infection and one patient was treated for wound infection only. In six patients

  19. A cross-sectional observational study comparing foot and ankle characteristics in people with stroke and healthy controls.

    Science.gov (United States)

    Kunkel, Dorit; Potter, Julia; Mamode, Louis

    2017-06-01

    The purpose of this study was to explore and compare foot and ankle characteristics in people with stroke and healthy controls; and between stroke fallers and non-fallers. Participants were recruited from community groups and completed standardized tests assessing sensation, foot posture, foot function, ankle dorsiflexion and first metatarsal phalangeal joint range of motion (1st MPJ ROM), hallux valgus presence and severity. Twenty-three stroke participants (mean age 75.09 ± 7.57 years; 12 fallers) and 16 controls (mean age 73.44 ± 8.35 years) took part. Within the stroke group, reduced 1st MPJ sensation (p = 0.016) and 1st MPJ ROM (p = 0.025) were observed in the affected foot in comparison to the non-affected foot; no other differences were apparent. Pooled data (for both feet) was used to explore between stroke/control (n = 78 feet) and stroke faller/non-faller (n = 46 feet) group differences. In comparison to the control group, stroke participants exhibited reduced sensation of the 1st MPJ (p = 0.020), higher Foot Posture Index scores (indicating greater foot pronation, p = 0.008) and reduced foot function (p = 0.003). Stroke fallers exhibited significantly greater foot pronation in comparison to non-fallers (p = 0.027). Results indicated differences in foot and ankle characteristics post stroke in comparison to healthy controls. These changes may negatively impact functional ability and the ability to preserve balance. Further research is warranted to explore the influence of foot problems on balance ability and falls in people with stroke. Implications for Rehabilitation Foot problems are common post stroke. As foot problems have been linked to increased fall risk among the general population we recommend that it would be beneficial to include foot and ankle assessments or a referral to a podiatrist for people with stroke who report foot problems. Further research is needed to explore if we can improve functional

  20. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.

    Science.gov (United States)

    Shepherd, Max K; Rouse, Elliott J

    2017-12-01

    Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.

  1. Clinical negligence in foot and ankle surgery: A 17-year review of claims to the NHS Litigation Authority.

    Science.gov (United States)

    Ring, J; Talbot, C L; Clough, T M

    2014-11-01

    We present a review of litigation claims relating to foot and ankle surgery in the NHS in England during the 17-year period between 1995 and 2012. A freedom of information request was made to obtain data from the NHS litigation authority (NHSLA) relating to orthopaedic claims, and the foot and ankle claims were reviewed. During this period of time, a total of 10 273 orthopaedic claims were made, of which 1294 (12.6%) were related to the foot and ankle. 1036 were closed, which comprised of 1104 specific complaints. Analysis was performed using the complaints as the denominator. The cost of settling these claims was more than £36 million. There were 372 complaints (33.7%) involving the ankle, of which 273 (73.4%) were related to trauma. Conditions affecting the first ray accounted for 236 (21.4%), of which 232 (98.3%) concerned elective practice. Overall, claims due to diagnostic errors accounted for 210 (19.0%) complaints, 208 (18.8%) from alleged incompetent surgery and 149 (13.5%) from alleged mismanagement. Our findings show that the incorrect, delayed or missed diagnosis of conditions affecting the foot and ankle is a key area for improvement, especially in trauma practice. ©2014 The British Editorial Society of Bone & Joint Surgery.

  2. Driving reaction times in patients with foot and ankle pathology before and after image-guided injection: pain relief without improved function.

    Science.gov (United States)

    Talusan, Paul G; Miller, Christopher P; Save, Ameya V; Reach, John S

    2015-04-01

    Foot and ankle pathology is common in the driving population. Local anesthetic steroid injections are frequent ambulatory treatments. Brake reaction time (BRT) has validated importance in motor vehicle safety. There are no prior studies examining the effect of foot and ankle pathology and injection treatment on the safe operation of motor vehicles. We studied BRT in patients with foot and ankle musculoskeletal disease before and after image-guided injection treatment. A total of 37 participants were enrolled. Image-guided injections of local anesthetic and steroid were placed into the pathological anatomical location of the right or left foot and ankles. A driving reaction timer was used to measure BRTs before and after injection. Patients suffering right "driving" and left "nondriving" pathology as well as a healthy control group were studied. All patients reported >90% pain relief postinjection. All injections were confirmed to be accurate by imaging. Post hoc Bonferonni analysis demonstrated significant difference between the healthy group and the right-sided injection group (P = .008). Mean BRT for healthy controls was 0.57 ± 0.11 s. Patients suffering right foot and ankle disease displayed surprisingly high BRTs (0.80 ± 0.23 s preinjection and 0.78 ± 0.16 s postinjection, P > .99). Left nondriving foot and ankle pathology presented a driving hazard as well (BRT of 0.75 ± 0.12 s preinjection and 0.77 ± 0.12 s postinjection, P > .99). Injections relieved pain but did not significantly alter BRT (P > .99 for all). Patients suffering chronic foot and ankle pathology involving either the driving or nondriving side have impaired BRTs. This preexisting driving impairment has not previously been reported and exceeds recommended cutoff safety values in the United States. Despite symptom improvement, there was no statistically significant change in BRT following image-guided injection in either foot and ankle. Therapeutic, Level II: Prospective Comparative Study.

  3. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    Directory of Open Access Journals (Sweden)

    Kelly N. Salb

    2016-01-01

    Full Text Available Ankle instantaneous axis of rotation (IAR measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs were controlled as a function of a vertical ground reaction force (vGRF set at half body weight (356 N and a 50% vGRF (178 N Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions.

  4. SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques.

    Science.gov (United States)

    Mohan, Hosahalli K; Gnanasegaran, Gopinath; Vijayanathan, Sanjay; Fogelman, Ignac

    2010-01-01

    Disorders of the ankle and foot are common and given the complex anatomy and function of the foot, they present a significant clinical challenge. Imaging plays a crucial role in the management of these patients, with multiple imaging options available to the clinician. The American College of radiology has set the appropriateness criteria for the use of the available investigating modalities in the management of foot and ankle pathologies. These are broadly classified into anatomical and functional imaging modalities. Recently, single-photon emission computed tomography and/or computed tomography scanners, which can elegantly combine functional and anatomical images have been introduced, promising an exciting and important development. This review describes our clinical experience with single-photon emission computed tomography and/or computed tomography and discusses potential applications of these techniques.

  5. How Does Ankle-foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?

    Science.gov (United States)

    2014-05-10

    IDEO), is available to injured service members but prescription guidelines are limited. Questions/purposes In this study we ask (1) does dynamic AFO...1.78 97.3 7.5 R LE tissue loss/trauma 4 40 1.81 81.0 9.3 L ankle fracture and osteoarthritis 5 30 1.75 79.1 9.8 L tibia/fibula fracture 6 30 1.76 78.2

  6. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.

    Science.gov (United States)

    Mildren, Robyn L; Bent, Leah R

    2016-04-15

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. Copyright © 2016 the American Physiological Society.

  7. Psychometric properties of the foot and ankle outcome score in a community-based study of adults with and without osteoarthritis

    DEFF Research Database (Denmark)

    Golightly, Yvonne M; Devellis, Robert F; Nelson, Amanda E

    2014-01-01

    Objective. Foot and ankle problems are common in adults, and large observational studies are needed to advance our understanding of the etiology and impact of these conditions. Valid and reliable measures of foot and ankle symptoms and physical function are necessary for this research. This study...

  8. Multisegmental Foot and Ankle Motion Analysis After Hallux Valgus Surgery

    Science.gov (United States)

    Canseco, Karl; Long, Jason; Smedberg, Thomas; Tarima, Sergey; Marks, Richard M.; Harris, Gerald F.

    2015-01-01

    Background Gait changes in patients with hallux valgus, including altered kinematic and temporal-spatial parameters, have been documented in the literature. Although operative treatment can yield favorable clinical and radiographic results, restoration of normal gait in this population remains unclear. Segmental kinematic changes within the foot and ankle during ambulation after operative correction of hallux valgus have not been reported. The aim of this study was to analyze changes in multisegmental foot and ankle kinematics in patients who underwent operative correction of hallux valgus. Methods A 15-camera Vicon Motion Analysis System was used to evaluate 24 feet in 19 patients with hallux valgus preoperatively and postoperatively. The Milwaukee Foot Model was used to characterize segmental kinematics and temporal-spatial parameters (TSPs). Preoperative and postoperative kinematics and TSPs were compared using paired nonparametric methods; comparisons with normative data were performed using unpaired nonparametric methods. Outcomes were evaluated using the SF-36 assessment tool. Results Preoperatively, patients with hallux valgus showed significantly altered temporal-spatial and kinematic parameters. Postoperatively, kinematic analysis demonstrated restoration of hallux position to normal. Hallux valgus angles and intermetatarsal angles were significantly improved, and outcomes showed a significant increase in performance of physical activities. Temporal-spatial parameters and kinematics in the more proximal segments were not significantly changed postoperatively. Conclusion Postoperative results demonstrated significant improvement in foot geometry and hallux kinematics in the coronal and transverse planes. However, the analysis did not identify restoration of proximal kinematics. Clinical Relevance Further investigation is necessary to explore possible causes/clinical relevance and appropriate treatment interventions for the persistently altered kinematics

  9. Adipofascial sural artery flap for foot and ankle reconstruction in children: for better aesthetic outcome

    International Nuclear Information System (INIS)

    Mahmood, F.

    2015-01-01

    Wheel spoke injury of the ankle and foot is very common in children and its reconstruction is challenging. Reverse flow sural artery fasciocutaneous flap is versatile for this area but lead to significant donor site morbidity. Free tissue transfer is an option in children which needs a micro-vascular expertise, expensive equipment and long operating time. Method: Fifteen adipofascial flaps were done for foot and ankle coverage from June 2011 to June 2014 at CH and ICH Lahore. The efficacy of adipofascial sural artery flap for the coverage of these defects was evaluated. Results: Fifteen children presented with defects of foot and ankle, 11 (73%) were male and 4 (27%) were female. Their age ranged from 1 - 13 years. All patients had trauma to the foot due to wheel spoke injury. Flaps were used to cover tendoachilles and malleoli. In one patient there was flap tip necrosis with partial graft loss which healed with dressings. Donor site aesthetic outcome was satisfactory in all cases. Mean follow-up was I year. Conclusion: Adipofascial Sural artery flap is quick and safe with wide arc of rotation, minimal donor site morbidity and better aesthetic outcome and it does not sacrifice major extremity vessel. (author)

  10. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    Science.gov (United States)

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  11. Venous Thromboembolism in Podiatric Foot and Ankle Surgery.

    Science.gov (United States)

    Matthews, Jemma H; Terrill, Alexander J; Barwick, Alex L; Butterworth, Paul A

    2018-01-01

    The extent to which podiatric surgeons follow venous thromboembolism guidelines is unknown. The aim of this study therefore, was 2-fold: (a) to determine the rate of venous thromboembolism following podiatric surgery and (b) to investigate the factors that influence the use of thromboprophylaxis. Data from 4238 patients who underwent foot and ankle surgery over 2 years were analyzed. Venous thromboembolism within the first 30 days following surgery was recorded using the Australasian College of Podiatric Surgeons surgical audit tool. Logistic regression analyses were undertaken to determine the factors that influenced thromboprophylaxis. Of the 4238 patient records, 3677 records (87%) provided complete data (age range 2-94 years; mean ± SD, 49.1 ± 19.7 years; 2693 females). A total of 7 venous thromboembolic events (0.2% rate) were reported. Operative duration and age (OR 12.63, 95% CI 9.47 to 16.84, P < 0.01), postoperative immobilization (OR 6.94, 95% CI 3.95 to 12.20, P < 0.01), and a prior history of VTE (OR 3.41, 95% CI 1.01 to 11.04, P = 0.04) were the strongest predictors of thromboprophylaxis. Podiatric foot and ankle surgery is associated with a low rate of venous thromboembolism. This may be due in part to the thromboprophylaxis regime implemented by podiatric surgeons, which closely aligns with current evidence-based guidelines. Level II: Prospective cohort study.

  12. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients.

    Science.gov (United States)

    Shibuya, Naohiro; Humphers, Jon M; Fluhman, Benjamin L; Jupiter, Daniel C

    2013-01-01

    The incidence of bone healing complications in diabetic patients is believed to be high after foot and ankle surgery. Although the association of hyperglycemia with bone healing complications has been well documented, little clinical information is available to show which diabetes-related comorbidities directly affect bone healing. Our goal was to better understand the risk factors associated with poor bone healing in the diabetic population through an exploratory, observational, retrospective, cohort study. To this end, 165 diabetic patients who had undergone arthrodesis, osteotomy, or fracture reduction were enrolled in the study to assess the risk factors associated with nonunion, delayed union, and malunion after elective and nonelective foot and/or ankle surgery. Bivariate analyses showed that a history of foot ulcer, peripheral neuropathy, and surgery duration were statistically significantly associated with bone healing complications. After adjusting for other covariates, only peripheral neuropathy, surgery duration, and hemoglobin A1c levels >7% were significantly associated statistically with bone healing complications. Of the risk factors we considered, peripheral neuropathy had the strongest association with bone healing complications. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Publication Rates for Oral Manuscript and Poster Presentations From the American College of Foot and Ankle Surgeons: 2010 to 2014.

    Science.gov (United States)

    Rushing, Calvin J; Galan, Gabriel P; Ivankiv, Roman; Oxios, Adam J; Rathnayake, Viraj R; Ramil, Madelin C; Chussid, Fredric; Spinner, Steven M

    2018-04-26

    The American College of Foot and Ankle Surgeons (ACFAS) annual conference has served as a premiere platform to disseminate the latest innovations and research in the field of foot and ankle surgery. The quality of national society conferences is often assessed indirectly by analyzing the the journal publication rate of the abstracts presented. The purpose of this retrospective study was to assess the journal publication rate for abstracts (oral manuscripts and posters) accepted for presentation at the ACFAS conference from 2010 to 2014. All accepted abstracts from this period were compiled by the ACFAS office. PubMed, Google Scholar, and Scopus searches were performed using abstract titles and author names. Overall, the journal publication rate was 76.9% (83 of 108) for oral manuscripts and 23.2% (258 of 1113) for poster abstracts. The mean time to publication was 9.6 (range 0 to 44) months and 19.8 (range 0 to 66) months for oral and poster abstracts, respectively. The most common journal for abstract publication was The Journal of Foot and Ankle Surgery. Notably, the ACFAS oral manuscript publication rate from 2010 to 2014 (76.9%) exceeded its previously reported rate from 1999 to 2008 (67.5%) and the American Orthopaedic Foot and Ankle Society podium publication rate from 2008 to 2012 (73.7%). To the best of our knowledge, the publication incidence for oral abstracts presented at the ACFAS conference is now the highest reported of any national foot and ankle society conference to date. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Reconstruction of soft tissue defects around the ankle and foot

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan Dogra

    2014-01-01

    Full Text Available Introduction: Soft tissue defects over ankle and foot region are encountered quite frequently following road traffic trauma and surgery. Management of such cases is a challenging task for any reconstructive surgeon because of paucity of skin and relative poor vascular status of skin in this region. Hence, invariably such cases require microsurgical free flap coverage, expertise for which may not be available at all the centers, such procedures require long operating hours and suitable recipient vessel may not be available in crush injuries. Materials and Methods: Thirty consecutive patients having soft tissue defects around ankle and foot region who underwent various reconstructive procedures in a medical college hospital during last 2 years form the basis of this study. This study was carried out to enlist various etiological factors and reconstructive surgical procedures employed to manage such cases without microsurgery. Results: The age of these patients ranged from 9 to 72 years. Twenty-five patients were males while 05 were females, with a mean age of 25 years. Road traffic accidents happened to be the primary cause of such defects in as many as 15 patients, cycle spoke trauma in 02 patients, implant exposure following orthopedic surgery in 6 patients, diabetic angiopathy in 4 patients and chronic osteomyelitis in 3 patients. The site of the defect was lower fourth of tibia in 16 patients, dorsum of foot in 2 patients, sole in 5 patients, medial aspect of ankle in 02 cases, lateral aspect in 02 cases and retro calcaneal region in 03 cases. In 10 cases distally based superficial sural artery flap was used to reconstruct the defect. In step rotation flap was used to provide sensory flap cover in the weight bearing heel in 04 cases. Inferiorly based fasciocutanenous flaps in 09 cases and muscle flaps were used in 07 cases. Conclusion: Distally based sural artery based flaps are very handy to provide skin cover around ankle and malleolar

  15. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.

    Science.gov (United States)

    do Nascimento, Breno Gontijo; Vimieiro, Claysson Bruno Santos; Nagem, Danilo Alves Pinto; Pinotti, Marcos

    2008-04-01

    Powered orthosis is a special class of gait assist device that employs a mechanical or electromechanical actuator to enhance movement of hip, knee, or ankle articulations. Pneumatic artificial muscle (PAM) has been suggested as a pneumatic actuator because its performance is similar to biological muscle. The electromyography (EMG) signal interpretation is the most popular and simplest method to establish the patient voluntary control of the orthosis. However, this technique is not suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. For those cases, an alternative control strategy should be provided. The aim of the present study is to develop a gait assistance orthosis for lower limb powered by PAMs controlled by a voluntary activation method based on the angular behavior of hip joint. In the present study, an orthosis that has been molded in a patient was employed and, by taking her anthropometric parameters and movement constraints, the adaptation of the existing orthosis to the powered orthosis was planned. A control system was devised allowing voluntary control of a powered orthosis suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. A pilot clinical study was reported where a patient, victim of poliovirus, successfully tested a hip orthosis especially modified for the gait test evaluation in the parallel bar system. The hip orthosis design and the control circuitry parameters were able to be set to provide satisfactory and comfortable use of the orthosis during the gait cycle.

  16. Incidence of Complex Regional Pain Syndrome I Following Foot and Ankle Fractures Using the Budapest Criteria.

    Science.gov (United States)

    Bullen, Michael; Lang, Coran; Tran, Phong

    2016-12-01

    OBJECTIVE : Fractures are a well-recognized inciting event in the development of complex regional pain syndrome. This study aimed to prospectively determine the incidence of complex regional pain syndrome following foot and ankle fractures. METHODS : A prospective study was conducted of patients presenting to two metropolitan hospitals with plain radiograph diagnosis of fractures to the foot or ankle. Patients were initially screened by phone 3 months after injury using the validated International Association for the Study of Pain Budapest criteria. Patients who fulfilled the screening criteria were then physically examined by a pain specialist to assess clinical signs as part of the Budapest criteria. RESULTS : A total of 306 consecutive eligible patients were included. One hundred and ten patients reported at least one symptom of complex regional pain syndrome; however, only three fulfilled the minimum requirements to necessitate clinical review. Of these three, only one patient fulfilled the combination of symptom and sign criteria for a positive diagnosis according to the validated Budapest criteria. The incidence of complex regional pain syndrome following foot and ankle fracture in this study was 0.3%. CONCLUSION : Although many patients may experience vasomotor, sensory, and sudomotor disturbance following a fracture to the foot and ankle, the observed incidence of complex regional pain syndrome using a prospectively collected validated criteria is significantly lower than previously published. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Home-based Exercise on Functional Outcome of the Donor Lower Extremity in Oral Cancer Patients after Fibula Flap Harvest

    Directory of Open Access Journals (Sweden)

    Ting-Yuan Liu

    2013-04-01

    Full Text Available Background: After harvesting the fibula flap, pain, sensory disturbance, weakness of donor leg, reduced walking endurance, ankle instability, and lower walking speed had been reported. The aim of this study was to quantitatively assess functional outcome of regular home-based exercise on donor ankle strength, endurance, and walking ability after free fibula flap for mandibular reconstruction. Methods: Fourteen patients were recruited. Objective isokinetic testing and a 6-min walk test (6MWT were used to evaluate ankle strength/endurance and walking ability, respectively. Results: There was a significant increase in the peak torque of ankle dorsiflexion/foot inversion of the healthy leg and ankle dorsiflexion/foot eversion of the donor leg after exercise (p < 0.05. After home-based exercise, there was reduced asymmetry in the peak torques of ankle dorsiflexion and foot eversion and the total work of foot eversion between the donor and healthy legs. In 6MWT, no significant difference was found between the walking distances before and after exercise. Conclusion: Regular home-based exercise could improve the strength of ankle dorsiflexion and foot eversion of the donor leg, and get more symmetric ankle motor function between the donor and healthy legs.

  18. A Modified Suture Bridge Technique for Application With Bone Anchors in Foot and Ankle Surgery.

    Science.gov (United States)

    Walters, Jeremy; Correa, Christopher; Moss, Mark

    2015-01-01

    We present a suture bridge technique for reattachment of tendon or ligament to bone for use in foot and ankle surgery. The method is a simple, strong, and reproducible technique that could decrease the risk of irritation of the overlying cutaneous barrier and minimizes the likelihood of tendon strangulation when combined with soft tissue bone anchors. The present report serves as a guide to the use of this suture technique for reattachment of the Achilles tendon. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Chinese cross-cultural adaptation and validation of the Foot Function Index as tool to measure patients with foot and ankle functional limitations.

    Science.gov (United States)

    González-Sánchez, Manuel; Ruiz-Muñoz, Maria; Li, Guang Zhi; Cuesta-Vargas, Antonio I

    2017-05-11

    To perform a cross-cultural adaptation and validation of the Foot Function Index (FFI) questionnaire to develop the Chinese version. Three hundred and six patients with foot and ankle neuromusculoskeletal diseases participated in this observational study. Construct validity, internal consistency and criterion validity were calculated for the FFI Chinese version after the translation and transcultural adaptation process. Internal consistency ranged from 0.996 to 0.998. Test-retest analysis ranged from 0.985 to 0.994; minimal detectable change 90: 2.270; standard error of measurement: 0.973. Load distribution of the three factors had an eigenvalue greater than 1. Chi-square value was 9738.14 (p Foot Function Index (Taiwan Version), Short-Form 12 (Version 2) and EuroQol-5D were used for criterion validity. Factors 1 and 2 showed significant correlation with 15/16 and 14/16 scales and subscales, respectively. Foot Function Index Chinese version psychometric characteristics were good to excellent. Chinese researchers and clinicians may use this tool for foot and ankle assessment and monitoring. Implications for rehabilitation A cross-cultural adaptation of the FFI has been done from original version to Chinese. Consistent results and satisfactory psychometric properties of the Foot Function Index Chinese version have been reported. For Chinese speaking researcher and clinician FFI-Ch could be used as a tool to assess patients with foot disease.

  20. Understanding acute ankle ligamentous sprain injury in sports

    Directory of Open Access Journals (Sweden)

    Fong Daniel TP

    2009-07-01

    Full Text Available Abstract This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms. Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms. The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative

  1. Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living.

    Science.gov (United States)

    Argunsah Bayram, Hande; Bayram, Mehmed B

    2018-03-30

    Exploring ankle joint physiologic functional stiffness is crucial for improving the design of prosthetic feet that aim to mimic normal gait. We hypothesized that ankle joint stiffness would vary among the different activities of daily living and that the magnitude of the stiffness would indicate the degree of energy storage element sufficiency in terms of harvesting and returning energy. We examined sagittal plane ankle moment versus flexion angle curves from 12 healthy subjects during the daily activities. The slopes of these curves were assessed to find the calculated stiffness during the peak energy return and harvest phases. For the energy return and harvest phases, stiffness varied from 0.016 to 0.283 Nm/kg° and 0.025 and 0.858 Nm/kg°, respectively. The optimum stiffness during the energy return phase was 0.111 ± 0.117 Nm/kg° and during the energy harvest phase was 0.234 ± 0.327 Nm/kg°. Ankle joint stiffness varied significantly during the activities of daily living, indicating that an energy storage unit with a constant stiffness would not be sufficient in providing energy regenerative gait during all activities. The present study was directed toward the development of a complete data set to determine the torque-angle properties of the ankle joint to facilitate a better design process. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. MRI abnormalities of foot and ankle in asymptomatic, physically active individuals

    International Nuclear Information System (INIS)

    Lohman, M.; Kivisaari, A.; Kivisaari, L.; Kallio, P.

    2001-01-01

    Objective. To assess MRI changes in the ankle and foot after physical exercise.Design and patients. Nineteen non-professional marathon runners and 19 age- and sex-matched controls volunteered for the study. All had ankle and foot MR images (1.5 T) taken in three perpendicular planes (STIR, T2F and T1FS sequences) within 3 h of running a full-length marathon (42.125 km). Three radiologists independently analysed the groups on a masked basis using a predefined form.Results. Severe bone marrow oedema was seen in one and slight bone marrow oedema in three marathon runners. Slight bone marrow oedema was found in three control subjects. Signal alteration within the soleus muscle, consistent with a grade 1 strain, was found in one marathon runner. Small punctate hyperintensities within the Achilles tendon were seen in 26% of the marathon runners and in 63% of controls (P=0.016). An increased amount of fluid in the retrocalcaneal bursa was found in one control and in none of the marathon runners. Small amounts of fluid in the retrocalcaneal bursa were seen in 68% of marathon runners and in 53% of controls. Grade 1 or 2 peritendinous joint fluid was found around 22% of tendons, among both marathon runners and controls, most often involving the tendon sheath of the flexor hallucis longus muscle. An increased amount of joint fluid was noted in 34% of the joints of the marathon runners, and in 18% of the controls.Conclusion. MRI shows several abnormalities in the ankle and foot both after marathon races and in asymptomatic physically active individuals without any preceding extraordinary strain. Recreational sports may lead to a number of positive MRI findings without correlation with clinical findings. (orig.)

  3. Study of occurrence, demography and pathomorphology of ankle and foot fractures and evaluation of the treatment outcome of calcaneal fractures

    International Nuclear Information System (INIS)

    Sarfraz, A.H.; Masood, F.

    2014-01-01

    This study highlights which injury has greatest burden, how frequent are the injuries of foot and ankle areas, which is an extremely neglected specialty in orthopedics and also the importance of proper diagnosis, classification of fractures, appropriate pre-operative planning and timely conservative as well as surgical intervention of ankle and foot fractures that resulted in a satisfactory outcome Despite the fact, foot and ankle is the most important locomotor unit of our lower limb, there have been few studies addressing the problem and treatment outcome of such fractures. Objective: To determine the occurrence, demography and pathomorphology of ankle and foot fractures, also evaluation of treatment outcome of calcaneal fractures. Methodology: This was a longitudinal interventional study which dealt with acute traumatic ankle and foot fracture patients coming to Accident and Emergency Department of MHL, DOST unit 1, with inclusion and exclusion criteria clearly defined. Results: Total 100 patients were included in the study. Mean age of patients was 35.71+-13.60 years. Minimum age of patients was 14 and maximum age of patients was 70 years respectively. Gender distribution of patients shows that 15 patients were female and the remaining 85 patients were male. Male patients were greater in number as compared to female patients ie. M: F, 6:1. Mechanism of the injury showed that there were 48 patients who suffered from RTA , 37 patients had trauma due to fall from height, 6 patients had industrial injuries, 5 patients had Fire Arm Injury, and 2 patients had injuries due to domestic activity, 1 had trauma due to sports activity and 1 had injury due to agricultural work. There were 41 patients with fractures of calcaneum and out of which 5 had bilateral fracture calcaneum. They were classified according to CT based Sanders classification. Out of these 22 patients were of Sanders type III, 12 patients were of Sander type II, 5 patients were of Sander type IV, 2

  4. [Reconstruction of ankle and foot with combination of free perforator flaps and skin graft].

    Science.gov (United States)

    Yin, Lu; Gong, Ketong; Yin, Zhonggang; Zhang, Bo; Xu, Jianhua

    2017-03-01

    To evaluate the clinical outcomes of free perforator flaps combined with skin graft for reconstruction of ankle and foot soft tissue defects. Between June 2014 and October 2015, 20 cases of ankle and foot soft tissue defects were treated. There were 16 males and 4 females, aged from 19 to 61 years (mean, 43.3 years). Injury was caused by traffic accident in 7 cases, by crashing in 9 cases, and machine twist in 4 cases. The locations were the ankle in 6 cases, the heel in 3 cases, the dorsum pedis in 4 cases, and the plantar forefoot in 7 cases of avulsion injury after toes amputation. The size of wound ranged from 15 cm×10 cm to 27 cm×18 cm. The time from injury to treatment was from 11 to 52 days (mean, 27 days). The anterolateral thigh perforator flap was used in 11 cases, thoracodorsal antery perforator flap in 3 cases, medial sural artery perforator flap in 4 cases, deep inferior epigastric perforator flap in 1 case, and anteromedial thigh perforator flap in 1 case, including 5 chimeric perforator flaps, 5 polyfoliate perforator flaps, 3 flow-through perforator flaps, and 3 conjoined perforator flaps. The size of the perforator flap ranged from 10.0 cm×6.5 cm to 36.0 cm×8.0 cm, the size of skin graft from 5 cm×3 cm to 18 cm×12 cm. Venous crisis occurred in 2 flaps which survived after symptomatic treatment; 18 flaps survived successfully and skin grafting healed well. The follow-up time ranged 4-18 months (mean, 8.3 months). The flaps had good appearance, texture and color, without infection. The patients could walk normally and do daily activities. Only linear scars were observed at the donor sites. Free perforator flap can be used to reconstruct defects in the ankle and foot, especially in the weight-bearing area of the plantar forefoot. A combination of free perforator flap and skin graft is ideal in reconstruction of great soft tissue defects in the ankle and foot.

  5. Accessory ossicles and sesamoid bones of the ankle and foot: imaging findings, clinical significance and differential diagnosis

    International Nuclear Information System (INIS)

    Mellado, J.M.; Ramos, A.; Salvado, E.; Camins, A.; Sauri, A.; Danus, M.

    2003-01-01

    Accessory ossicles and sesamoid bones are frequent findings in routine radiographs of the ankle and foot. They are commonly considered fortuitous and unrelated to the patient's complaint; however, they may eventually cause painful syndromes or degenerative changes in response to overuse and trauma. They may also suffer or simulate fractures. Our aim was to review, illustrate and discuss the imaging findings of some of the more frequent accessory ossicles and sesamoid bones of the ankle and foot region, with particular emphasis on those that may be of clinical significance or simulate fractures. (orig.)

  6. Powered AFO for Achilles tendon rupture.

    Science.gov (United States)

    Yoshizawa, Nobuyuki

    2008-01-01

    This paper proposes a powered ankle foot orthosis (AFO) for the treatment of a ruptured Achilles tendon. Usually, conservative orthosis treatment requires about two months, and a motionless ankle degrades activities of daily living (ADL). It is difficult to go to school or work on foot, and a pair of crutches is needed to go up and down stairs. In order to improve the ADL, an electric powered AFO has been designed to improve the ability to walk with a fixed ankle joint. The sole of the proposed AFO is equipped with an electric actuator. The prototype actuator consists of Nd magnets and electromagnets and is lightweight and battery driven. The actuator can switch the upright posture and the stepped forward posture of the patient. In an experiment, the use of this electric AFO made it possible to walk and to ascend and descend stairs with a fixed ankle joint.

  7. Using the Oxford Foot Model to determine the association between objective measures of foot function and results of the AOFAS Ankle-Hindfoot Scale and the Foot Function Index: a prospective gait analysis study in Germany.

    Science.gov (United States)

    Kostuj, Tanja; Stief, Felix; Hartmann, Kirsten Anna; Schaper, Katharina; Arabmotlagh, Mohammad; Baums, Mike H; Meurer, Andrea; Krummenauer, Frank; Lieske, Sebastian

    2018-04-05

    After cross-cultural adaption for the German translation of the Ankle-Hindfoot Scale of the American Orthopaedic Foot and Ankle Society (AOFAS-AHS) and agreement analysis with the Foot Function Index (FFI-D), the following gait analysis study using the Oxford Foot Model (OFM) was carried out to show which of the two scores better correlates with objective gait dysfunction. Results of the AOFAS-AHS and FFI-D, as well as data from three-dimensional gait analysis were collected from 20 patients with mild to severe ankle and hindfoot pathologies.Kinematic and kinetic gait data were correlated with the results of the total AOFAS scale and FFI-D as well as the results of those items representing hindfoot function in the AOFAS-AHS assessment. With respect to the foot disorders in our patients (osteoarthritis and prearthritic conditions), we correlated the total range of motion (ROM) in the ankle and subtalar joints as identified by the OFM with values identified during clinical examination 'translated' into score values. Furthermore, reduced walking speed, reduced step length and reduced maximum ankle power generation during push-off were taken into account and correlated to gait abnormalities described in the scores. An analysis of correlations with CIs between the FFI-D and the AOFAS-AHS items and the gait parameters was performed by means of the Jonckheere-Terpstra test; furthermore, exploratory factor analysis was applied to identify common information structures and thereby redundancy in the FFI-D and the AOFAS-AHS items. Objective findings for hindfoot disorders, namely a reduced ROM, in the ankle and subtalar joints, respectively, as well as reduced ankle power generation during push-off, showed a better correlation with the AOFAS-AHS total score-as well as AOFAS-AHS items representing ROM in the ankle, subtalar joints and gait function-compared with the FFI-D score.Factor analysis, however, could not identify FFI-D items consistently related to these three

  8. The location of the peroneus longus tendon in the cuboid groove: sonographic study in various positions of the ankle-foot in asymptomatic volunteers.

    Science.gov (United States)

    Choo, Hye Jung; Lee, Sun Joo; Huang, Brady K; Resnick, Donald L

    2018-04-10

    To evaluate the normal location of the peroneus longus tendon (PL) in the cuboid groove in various ankle-foot positions by ultrasonography in asymptomatic volunteers. Ultrasonographic assessment of the PL in the cuboid groove was performed in 20 feet of ten healthy volunteers. Each PL was examined in five ankle-foot positions (i.e., neutral, dorsiflexion, plantar-flexion, supination, and pronation). The PL location was qualitatively categorized as "inside" when the PL was entirely within the cuboid groove, as "overlying" when some part of the PL was perched on the cuboid tuberosity, and as "outside" when the PL was entirely on the cuboid tuberosity. For quantitative evaluation of the PL location, the distance between the PL and the cuboid groove was measured. The width of the cuboid groove was measured in the neutral position. The PL location did not significantly change with changes in the ankle-foot position. Qualitatively, an "overlying" PL was the most common type, regardless of the ankle-foot position. "Inside" PLs were found in only 35, 20, 30, 25, and 35% of feet in neutral, dorsiflexion, plantar-flexion, supination, and pronation positions, respectively. The quantitative PL location was also not significantly different among all ankle-foot positions and it was significantly negatively correlated with the cuboid groove width. In healthy volunteers, 65% or more of the PLs were partially or completely located outside of the cuboid groove, regardless of the ankle-foot position. The PL location relative to the cuboid groove was related to the cuboid groove width.

  9. MDCT classification of osseous ankle and foot injuries

    International Nuclear Information System (INIS)

    Opherk, J.P.; Rosenthal, H.; Galanski, M.

    2007-01-01

    Conventional radiography plays an essential role in the primary evaluation of acute ankle and foot trauma. In the case of complex injuries, however, subsequent computed tomography (CT) is nowadays recommended. In this connection, multidetector computed tomography (MDCT) allows better temporal, spatial, and contrast resolution compared with the conventional single-slice spiral CT. Multiplanar reformation and three-dimensional reconstruction of the acquired data sets are also helpful tools for critical assessment of therapeutic intervention. This report reviews the potential of the MDCT technique for accurate fracture classification, precise illustration of displaced components, and postoperative control of arrangement of typical lesions. (orig.) [de

  10. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis.

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Smith, Stacy E

    2017-09-01

    Stress fractures of the foot and ankle are a commonly encountered problem among athletes and individuals participating in a wide range of activities. This illustrated review, the second of two parts, discusses site-specific etiological factors, imaging appearances, treatment options, and differential considerations of stress fractures of the foot and ankle. The imaging and clinical management of stress fractures of the foot and ankle are highly dependent on the specific location of the fracture, mechanical forces acting upon the injured site, vascular supply of the injured bone, and the proportion of trabecular to cortical bone at the site of injury. The most common stress fractures of the foot and ankle are low risk and include the posteromedial tibia, the calcaneus, and the second and third metatarsals. The distal fibula is a less common location, and stress fractures of the cuboid and cuneiforms are very rare, but are also considered low risk. In contrast, high-risk stress fractures are more prone to delayed union or nonunion and include the anterior tibial cortex, medial malleolus, navicular, base of the second metatarsal, proximal fifth metatarsal, hallux sesamoids, and the talus. Of these high-risk types, stress fractures of the anterior tibial cortex, the navicular, and the proximal tibial cortex may be predisposed to poor healing because of the watershed blood supply in these locations. The radiographic differential diagnosis of stress fracture includes osteoid osteoma, malignancy, and chronic osteomyelitis.

  11. A suggestion of reference data for flow distribution at ankle and foot level using quantitative 99Tc-HDP three-phase bone scintigraphy

    DEFF Research Database (Denmark)

    Tøndevold, Niklas; Reving, Sofie; Møller, Nette

    2012-01-01

    To determine reference intervals for quantitative 99mTc-hydroxymethylene diphosphonate (99mTc-HDP) three-phase bone scintigraphy regarding flow distribution at ankle and mid-foot level.......To determine reference intervals for quantitative 99mTc-hydroxymethylene diphosphonate (99mTc-HDP) three-phase bone scintigraphy regarding flow distribution at ankle and mid-foot level....

  12. Validation of the Dutch language version of the Foot and Ankle Outcome Score

    NARCIS (Netherlands)

    Sierevelt, I.N.; Beimers, L.; van Bergen, C.J.A.; Haverkamp, D.; Terwee, C.B.; Kerkhoffs, G.M.M.J.

    2015-01-01

    Purpose: The aim of this study was to develop a Dutch language version of the Foot and Ankle Outcome Score (FAOS-DLV) and evaluate its measurement properties according to the definitions of the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). Methods: After a

  13. Validation of the Dutch language version of the Foot and Ankle Outcome Score

    NARCIS (Netherlands)

    Sierevelt, I. N.; Beimers, L.; van Bergen, C. J. A.; Haverkamp, D.; Terwee, C. B.; Kerkhoffs, G. M. M. J.

    2015-01-01

    The aim of this study was to develop a Dutch language version of the Foot and Ankle Outcome Score (FAOS-DLV) and evaluate its measurement properties according to the definitions of the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). After a standard

  14. American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score: a study protocol for the translation and validation of the Dutch language version.

    Science.gov (United States)

    Van Lieshout, Esther M M; De Boer, A Siebe; Meuffels, Duncan E; Den Hoed, P Ted; Van der Vlies, Cornelis H; Tuinebreijer, Wim E; Verhofstad, Michael H J

    2017-02-27

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score is among the most commonly used instruments for measuring the outcome of treatment in patients who sustained a complex ankle or hindfoot injury. It combines a clinician-reported and a patient-reported part. A valid Dutch version of this instrument is currently not available. Such a translated and validated instrument would allow objective comparison across hospitals or between patient groups, and with shown validity and reliability it may become a quality of care indicator in future. The main aims of this study are to translate and culturally adapt the AOFAS Ankle-Hindfoot Score questionnaire into Dutch according to international guidelines, and to evaluate the measurement properties of the AOFAS Ankle-Hindfoot Score-Dutch language version (DLV) in patients with a unilateral ankle or hindfoot fracture. The design of the study will be a multicentre prospective observational study (case series) in patients who presented to the emergency department with a unilateral ankle or hindfoot fracture or (fracture) dislocation. A research physician or research assistant will complete the AOFAS Ankle-Hindfoot Score-DLV based on interview for the subjective part and a physical examination for the objective part. In addition, patients will be asked to complete the Foot Function Index (FFI) and the Short Form-36 (SF-36). Descriptive statistics (including floor and ceiling effects), internal consistency, construct validity, reproducibility (ie, test-retest reliability, agreement and smallest detectable change) and responsiveness will be assessed for the AOFAS DLV. This study has been exempted by the Medical Research Ethics Committee (MREC) Erasmus MC (Rotterdam, the Netherlands). Each participant will provide written consent to participate and remain anonymised during the study. The results of the study are planned to be published in an international, peer-reviewed journal. NTR5613. pre-result. Published

  15. Extended ankle and foot fasciotomy as an enhancement to the surgical treatment of patients with prolonged ischemia of the lower extremities

    Directory of Open Access Journals (Sweden)

    Mišović Sidor

    2005-01-01

    Full Text Available Aim. To present the technique and efficacy of extended ankle and foot fasciotomy, as a surgical limb-salvage procedure associated with the successful revascularization after the gold interval. Method. A retrospective review of six patients at the age of 16−79 years (mean 39 in the period from 1996 to 2003, treated with the extended ankle and foot fasciotomy. There were four males undergoing the delayed treatment of war injuries to the lower extremity, and two females with atherosclerotic occlusive disease (a. illiacae dex and a. poplitealis dex.. The average ishemic time in the wounded patients was 22 hours (range, 14−30 hours, and ischemic time in occlusive disease (range, 48−72 hours. Clinical signs, indications, surgical access and the technique of extended ankle and foot fasciotomy was reported. Results. The obtained results were classified as early and late. There was no cases with lethal outcome. Incisional wounds closed 15 days after the intervention, using secondary suture or skin transplant sec. Thiersch. The satisfactory functional results were achieved in 4 of the patients, 1 had a small edema, while amputation was performed in 1 patient. Conclusion. In cases of prolonged foot ischemia with edema and paresthesia in the toes, extended ankle and foot fasciotomy should be performed as a surgical limb-salvage procedure.

  16. Validation of the Foot and Ankle Outcome Score in adult acquired flatfoot deformity.

    Science.gov (United States)

    Mani, Sriniwasan B; Brown, Haydée C; Nair, Pallavi; Chen, Lan; Do, Huong T; Lyman, Stephen; Deland, Jonathan T; Ellis, Scott J

    2013-08-01

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score has been under recent scrutiny. The Foot and Ankle Outcome Score (FAOS) is an alternative subjective survey, assessing outcomes in 5 subscales. It is validated for lateral ankle instability and hallux valgus patients. The aim of our study was to validate the FAOS for assessing outcomes in flexible adult acquired flatfoot deformity (AAFD). Patients from the authors' institution diagnosed with flexible AAFD from 2006 to 2011 were eligible for the study. In all, 126 patients who completed the FAOS and the Short-Form 12 (SF-12) on the same visit were included in the construct validity component. Correlation was deemed moderate if the Spearman's correlation coefficient was .4 to .7. Content validity was assessed in 63 patients by a questionnaire that asked patients to rate the relevance of each FAOS question, with a score of 2 or greater considered acceptable. Reliability was measured using intraclass correlation coefficients (ICCs) in 41 patients who completed a second FAOS survey. In 49 patients, preoperative and postoperative FAOS scores were compared to determine responsiveness. All of the FAOS subscales demonstrated moderate correlation with 2 physical health related SF-12 domains. Mental health related domains showed poor correlation. Content validity was high for the Quality of Life (QoL; mean 2.26) and Sports/Recreation subscales (mean 2.12). All subscales exhibited very good test-retest reliability, with ICCs of .7 and above. Symptoms, QoL, pain, and daily activities (ADLs) were responsive to change in postoperative patients (P validated the FAOS for AAFD with acceptable construct and content validity, reliability, and responsiveness. Given its previous validation for patients with ankle instability and hallux valgus, the additional findings in this study support its use as an alternative to less reliable outcome surveys. Level II, prospective comparative study.

  17. Evaluation of Peripheral Neuropathy of Unknown Origin in an Outpatient Foot and Ankle Practice.

    Science.gov (United States)

    Klein, Sandra E; Chu, Jennifer; McCormick, Jeremy J; Johnson, Jeffrey E

    2015-09-01

    The foot and ankle surgeon can see peripheral neuropathy in the treatment of foot and ankle conditions. The purpose of this study was (1) to evaluate the demographics and presenting complaints of patients diagnosed with idiopathic peripheral neuropathy during an examination by a foot and ankle surgeon and (2) to identify the type and frequency of subsequent diagnosis of medical causes of neuropathy. This was a retrospective study of patients diagnosed with idiopathic peripheral neuropathy in our practice between January 1997 and December 2008. Ninety-five patients were identified, and demographic data, presenting complaints, and medical comorbidities were extracted from the medical record. Examination findings of decreased sensation to Semmes Weinstein 5.07 monofilament testing were documented, and electromyogram and nerve conduction study results were reviewed when available. Laboratory values were noted, as were neurologic evaluations performed to diagnose medical conditions associated with peripheral neuropathy. The most common presentation was foot pain, in 36 patients (38%). Ninety-one patients had Semmes Weinstein 5.07 monofilament testing, with loss of protective sensation reported in 75 of the 91 tested (82%). Only 30 of the 95 patients had electromyogram and nerve conduction study results available, with a test positive for peripheral neuropathy in 20 of the 30 tested. Thirty-two patients were evaluated by a neurologist. A specific cause was identified in 12 of the 32 seen by a neurologist. Of the total group of 95 patients, 31 patients (33%) were diagnosed with a condition that may be associated with peripheral neuropathy. Thirty-three percent of the patients presenting to our clinic and given a diagnosis of idiopathic peripheral neuropathy were ultimately diagnosed with a medical cause of neuropathy-most commonly, diabetes. For those patients with idiopathic neuropathy, a spectrum of disease was encountered, including pain, ulcer, infection, and Charcot

  18. Relationship of body mass index, ankle dorsiflexion, and foot pronation on plantar fascia thickness in healthy, asymptomatic subjects.

    Science.gov (United States)

    Pascual Huerta, Javier; García, Juan Maria Alarcón; Matamoros, Eva Cosin; Matamoros, Julia Cosin; Martínez, Teresa Díaz

    2008-01-01

    We sought to investigate the thickness of plantar fascia, measured by means of ultrasonographic evaluation in healthy, asymptomatic subjects, and its relationship to body mass index, ankle joint dorsiflexion range of motion, and foot pronation in static stance. One hundred two feet of 51 healthy volunteers were examined. Sonographic evaluation with a 10-MHz linear array transducer was performed 1 and 2 cm distal to its insertion. Physical examination was also performed to assess body mass index, ankle joint dorsiflexion, and degree of foot pronation in static stance. Both examinations were performed in a blinded manner. Body mass index showed moderate correlation with plantar fascia thickness at the 1- and 2-cm locations. Ankle dorsiflexion range of motion showed no correlation at either location. Foot pronation showed an inverse correlation with plantar fascia thickness at the 2-cm location and no correlation at the 1-cm location. Body mass index and foot supination at the subtalar joint are related to increased thickness at the plantar fascia in healthy, asymptomatic subjects. Although the changes in thickness were small compared with those in patients with symptomatic plantar fasciitis, they could play a role in the mechanical properties of plantar fascia and in the development of plantar fasciitis.

  19. Stress fractures about the tibia, foot, and ankle.

    Science.gov (United States)

    Shindle, Michael K; Endo, Yoshimi; Warren, Russell F; Lane, Joseph M; Helfet, David L; Schwartz, Elliott N; Ellis, Scott J

    2012-03-01

    In competitive athletes, stress fractures of the tibia, foot, and ankle are common and lead to considerable delay in return to play. Factors such as bone vascularity, training regimen, and equipment can increase the risk of stress fracture. Management is based on the fracture site. In some athletes, metabolic workup and medication are warranted. High-risk fractures, including those of the anterior tibial diaphysis, navicular, proximal fifth metatarsal, and medial malleolus, present management challenges and may require surgery, especially in high-level athletes who need to return to play quickly. Noninvasive treatment modalities such as pulsed ultrasound and extracorporeal shock wave therapy may have some benefit but require additional research.

  20. Evaluation of the Dutch version of the Foot and Ankle Outcome Score (FAOS): Responsiveness and Minimally Important Change

    NARCIS (Netherlands)

    Sierevelt, I. N.; van Eekeren, I. C. M.; Haverkamp, D.; Reilingh, M. L.; Terwee, C. B.; Kerkhoffs, G. M. M. J.

    2016-01-01

    The aim of this study was to evaluate the responsiveness of the Foot and Ankle Outcome Score (FAOS) and provide data on the Minimally Important Change (MIC) in patients 1 year after hindfoot and ankle surgery. Prospective pre-operative and 1 year post-operative FAOS scores were collected from 145

  1. Reverse peroneal artery flap for large defects of ankle and foot: A reliable reconstructive technique

    Directory of Open Access Journals (Sweden)

    Jose Tharayil

    2012-01-01

    Full Text Available Background: Large soft tissue defects around the lower third of the leg, ankle and foot always have been challenging to reconstruct. Reverse sural flaps have been used for this problem with variable success. Free tissue transfer has revolutionised management of these problem wounds in selected cases. Materials and Methods: Twenty-two patients with large defects around the lower third of the leg, ankle and foot underwent reconstruction with reverse peroneal artery flap (RPAF over a period of 7 years. The mean age of these patients was 41.2 years. Results: Of the 22 flaps, 21 showed complete survival without even marginal necrosis. One flap failed, where atherosclerotic occlusion of peroneal artery was evident on the table. Few patients had minor donor site problems that settled with conservative management. Conclusions: RPAF is a very reliable flap for the coverage of large soft tissue defects of the heel, sole and dorsum of foot. This flap adds versatility in planning and execution of this extended reverse sural flap.

  2. Foot Health Facts for Athletes

    Science.gov (United States)

    ... common foot problems affecting athletes: Prevent Foot & Ankle Running Injuries (downloadable PDF) Back-to-School Soccer Season Surgeons ... and Ankle Soccer is hard on the feet! Injuries to the foot and ankle can occur from running and side-to-side cutting, sliding or tackling ...

  3. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex.

    Science.gov (United States)

    Cheung, Jason Tak-Man; Zhang, Ming; An, Kai-Nan

    2004-10-01

    The plantar fascia is one of the major stabilizing structures of the longitudinal arch of human foot, especially during midstance of the gait cycle. Knowledge of its functional biomechanics is important for establishing the biomechanical rationale behind different rehabilitation, orthotic and surgical treatment of plantar fasciitis. This study aims at quantifying the biomechanical responses of the ankle-foot complex with different plantar fascia stiffness. A geometrical detailed three-dimensional finite element model of the human foot and ankle, incorporating geometric and contact nonlinearities was constructed by 3D reconstruction of MR images. A sensitivity study was conducted to evaluate the effects of varying elastic modulus (0-700 MPa) of the plantar fascia on the stress/strain distribution of the bony, ligamentous and encapsulated soft tissue structures. The results showed that decreasing the Young's modulus of plantar fascia would increase the strains of the long and short plantar and spring ligaments significantly. With zero fascia Young's modulus to simulate the plantar fascia release, there was a shift in peak von Mises stresses from the third to the second metatarsal bones and increased stresses at the plantar ligament attachment area of the cuboid bone. Decrease in arch height and midfoot pronation were predicted but did not lead to the total collapse of foot arch. Surgical dissection of the plantar fascia may induce excessive strains or stresses in the ligamentous and bony structures. Surgical release of plantar fascia should be well-planned to minimise the effect on its structural integrity to reduce the risk of developing arch instability and subsequent painful foot syndrome.

  4. The evaluation of off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) randomized controlled trial: study design and rational.

    Science.gov (United States)

    Mohammedi, Kamel; Potier, Louis; François, Maud; Dardari, Dured; Feron, Marilyne; Nobecourt-Dupuy, Estelle; Dolz, Manuel; Ducloux, Roxane; Chibani, Abdelkader; Eveno, Dominique-François; Crea Avila, Teresa; Sultan, Ariane; Baillet-Blanco, Laurence; Rigalleau, Vincent; Velho, Gilberto; Tubach, Florence; Roussel, Ronan; Dupré, Jean-Claude; Malgrange, Dominique; Marre, Michel

    2016-01-01

    Off-loading is essential for diabetic foot management, but remains understudied. The evaluation of Off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) trial aims to evaluate the efficacy of a new removable device "Orthèse Diabète" in the healing of diabetic foot. ORTHODIAB is a French multi-centre randomized, open label trial, with a blinded end points evaluation by an adjudication committee according to the Prospective Randomized Open Blinded End-point. Main endpoints are adjudicated based on the analysis of diabetic foot photographs. Orthèse Diabète is a new removable off-loading orthosis (PROTEOR, France) allowing innovative functions including real-time evaluation of off-loading and estimation of patients' adherence. Diabetic patients with neuropathic plantar ulcer or amputation wounds (toes or transmetatarsal) are assigned to one of 2 parallel-groups: Orthèse Diabète or control group (any removable device) according to a central computer-based randomization. Study visits are scheduled for 6 months (days D7 and D14, and months M1, M2, M3, and M6). The primary endpoint is the proportion of patients whose principal ulcer is healed at M3. Secondary endpoints are: the proportion of patients whose principal ulcer is healed at M1, M2 and M6; the proportion of patients whose initial ulcers are all healed at M1, M2, M3, and M6; principal ulcer area reduction; time-related ulcer-free survival; development of new ulcers; new lower-extremity amputation; infectious complications; off-loading adherence; and patient satisfaction. The study protocol was approved by the French National Agency for Medicines and Health Products Safety, and by the ethics committee of Saint-Louis Hospital (Paris). Comprehensive study information including a Patient Information Sheet has been provided to each patient who must give written informed consent before enrolment. Monitoring, data management, and statistical analyses are providing by UMANIS Life Science (Paris

  5. Footwear recommendations and patterns among orthopaedic foot and ankle surgeons: a survey.

    Science.gov (United States)

    Farber, Daniel C; Knutsen, Elisa J

    2013-12-01

    Foot and ankle surgeons are in a unique position to educate patients about the importance of proper footwear. Neither their recommendations regarding shoe selection nor their own footwear patterns have previously been reported. A total of 866 members of the American Orthopaedic Foot & Ankle Society (AOFAS) were asked to complete a survey via the Internet. Topics included specific shoe brands recommended to patients, how attributes of footwear are communicated, and respondents' footwear habits. In all, 276 (32%) surgeons responded, and 64% recommended New Balance athletic shoes to patients; 26% did not recommend specific brands. It was found that 50% wear New Balance athletic shoes; 25% wear Nike. Rockport (27%) and SAS (27%) were the most recommended dress shoes. In all, 76% are familiar with AOFAS guidelines for proper shoe fit, but only 56% educated their patients about the guidelines; 43% do not consider what patients might think of their shoes when selecting what to wear in the clinical setting. Despite the multitude of different brands, several were commonly recommended. Respondents seem to be aware of the impact of their own shoe selection on patients' perspectives of footwear, but many do not consider themselves role models for proper footwear.

  6. Application of ankle joint adem position combined with foot inclined position in ankle sprain%踝关节正侧位联合足正斜位在足踝扭伤中的应用

    Institute of Scientific and Technical Information of China (English)

    施付强; 胡扬; 刘霞; 汪伟伟

    2015-01-01

    Objective To investigate X-ray examination technique and diagnosis of ankle joint sprain, in order to reduce misdiagnosis rate. Methods There were 8 patients with fractures caused by ankle joint sprain, and they all received ankle joint adem position examination and foot inclined position examination. Examination results were observed. Results Among the 8 patients, there was 1 case with lateral malleolus fracture, whose ankle joint adem position result was worse than foot inclined position, 1 case with lateral malleolus fracture, which was not showed by ankle joint adem position but was clearly showed by foot inclined position, and 1 case with fracture in basilar part of the fifth metatarsal bone, which had ankle joint adem position results better than foot inclined position. Conclusion Application of ankle joint adem position combined with foot inclined position examination can show the fracture line better than single examination by joint adem position or foot inclined position, thereby the coincidence rate of diagnosis can be improved.%目的:探讨踝关节扭伤的X线检查技术及诊断,以降低误诊漏诊率。方法8例足踝扭伤并致骨折的患者,均行踝关节正侧位检查及足正斜位检查,观察检查结果。结果8例患者中,有1例外踝骨折,踝关节正侧位显示不如足正斜位,1例外踝骨折踝关节正侧位未能显示,而足正斜位能清晰显示,1例第五跖骨基底部骨折足正斜位显示不如踝关节正侧位。结论踝关节扭伤患者行踝关节正侧位联合足正斜位检查比单纯踝关节正侧位检查或单纯足正斜位检查能更好的显示骨折线,从而提高诊断符合率。

  7. Validation of the Italian version of the Oxford Ankle Foot Questionnaire for children.

    Science.gov (United States)

    Martinelli, Nicolò; Romeo, Giovanni; Bonifacini, Carlo; Viganò, Marco; Bianchi, Alberto; Malerba, Francesco

    2016-01-01

    The purpose of this study was to translate the Oxford Ankle Foot Questionnaire (OAFQ) into Italian, to perform a cross-cultural adaptation and to evaluate its psychometric properties. The Italian OAFQ was developed according to the recommended forward/backward translation protocol and evaluated in pediatric patients treated for symptomatic flatfoot deformity. Feasibility, reliability, internal consistency, construct validity [comparing OAFQ domains with Child Health Questionnaire (CHQ) domains] and responsiveness to surgical treatment were assessed. A total of 61 children and their parents were enrolled in the study. Results showed satisfactory levels of internal consistency for both children and parent forms. The test-retest reliability was confirmed by high ICC values for both child and parents subscales. Good construct validity was showed by patterns of relationships consistent with theoretically related domains of the CHQ. After surgery, the mean OAFQ scores improved in all the domains after treatment with the subtalar arthroereisis, for both children and parent scales (p valid instrument in order to evaluate interventions used to treat children's foot or ankle problem, but needs further study on different clinical settings.

  8. Human Walk Modeled by PCPG to Control a Lower Limb Neuroprosthesis by High-Level Commands

    Directory of Open Access Journals (Sweden)

    Matthieu Duvinage

    2012-06-01

    Full Text Available Current active leg prostheses do not integrate the most recent advances in Brain-Computer Interfaces (BCI and bipedal robotics. Moreover, their actuators are seldom driven by the subject’s intention. This paper aims at showing a summary of our current results in the field of human gait rehabilitation. In a first prototype, the main focus was on people suffering from foot drop problems, i.e. people who are unable to lift their feet. However, current work is focusing on a full active ankle orthosis. The approach is threefold: a BCI system, a gait model and an orthosis. Thanks to the BCI system, patients are able to generate high-level commands. Typically, a command could represent a speed modification. Then, a gait model based on a programmable central pattern generator is used to generate the adequate kinematics. Finally, the orthosis is tracking this kinematics when the foot is in the air, whereas, the orthosis is mimicking a spring when the foot is on the ground.

  9. Early rehabilitation treatment combined with equinovarus foot deformity surgical correction in stroke patients: safety and changes in gait parameters.

    Science.gov (United States)

    Giannotti, Erika; Merlo, Andrea; Zerbinati, Paolo; Longhi, Maria; Prati, Paolo; Masiero, Stefano; Mazzoli, Davide

    2016-06-01

    Equinovarus foot deformity (EVFD) compromises several prerequisites of walking and increases the risk of falling. Guidelines on rehabilitation following EVFD surgery are missing in current literature. The aim of this study was to analyze safety and adherence to an early rehabilitation treatment characterized by immediate weight bearing with an ankle-foot orthosis (AFO) in hemiplegic patients after EVFD surgery and to describe gait changes after EVFD surgical correction combined with early rehabilitation treatment. Retrospective observational cohort study. Inpatient rehabilitation clinic. Forty-seven adult patients with hemiplegia consequent to ischemic or haemorrhagic stroke (L/R 20/27, age 56±15 years, time from lesion 6±5 years). A specific rehabilitation protocol with a non-articulated AFO, used to allow for immediate gait training, started one day after EVFD surgery. Gait analysis (GA) data before and one month after surgery were analyzed. The presence of differences in GA space-time parameters, in ankle dorsiflexion (DF) values and peaks at initial contact (DF at IC), during stance (DF at St) and swing (DF at Sw) were assessed by the Wilcoxon Test while the presence of correlations between pre- and post-operative values by Spearman's correlation coefficient. All patients completed the rehabilitation protocol and no clinical complications occurred in the sample. Ankle DF increased one month after surgery at all investigated gait phases (Wilcoxon Test, Prehabilitation associated with surgical procedure is safe and may be suitable to correct EVFD by restoring both the neutral heel foot-ground contact and the ankle DF peaks during stance and swing at one month from surgery. The proposed protocol is a safe and potentially useful rehabilitative approach after EVFD surgical correction in stroke patients.

  10. Active lower limb orthosis with one degree of freedom for people with paraplegia.

    Science.gov (United States)

    Gloger, Michal; Obinata, Goro; Genda, Eiichi; Babjak, Jan; Pei, Yanling

    2017-07-01

    The main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this paper. The main idea of this device is based on HALO mechanism. HALO is compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new orthosis is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It is proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the center of gravity were decreased by 40% with significantly smaller standard deviations in case of the active orthosis. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis. The new @halo device is the first active orthosis for lower limbs with just one actuated degree of freedom for users with paraplegia.

  11. Immediate effect of a single anteroposterior talus mobilization on dorsiflexion range of motion in participants with orthopedic dysfunction of the ankle and foot.

    Science.gov (United States)

    Teixeira, Luciana Mundim; Pires, Tatiana; Silva, Rafael Duarte; de Resende, Marcos Antônio

    2013-01-01

    The purpose of this study was to determine the immediate effects of a single anteroposterior mobilization of the talus on the active dorsiflexion range of motion (ROM) in participants with different orthopedic foot and ankle injuries. This study included 30 male and female participants aged 18 to 50 years with unilateral orthopedic foot and ankle dysfunction. All participants underwent 3 sets of active dorsiflexion ROM measurement in both ankles. Measurements included baseline, post-first treatment, and post-second treatment values. Participants received either joint mobilization or manual contact (control) on the affected ankle. Active dorsiflexion ROM was assessed using a biplanar goniometer with participants in the prone position and 90° of knee flexion. Both groups (joint mobilization and manual contact) showed increased active dorsiflexion ROM. However, the mean difference of dorsiflexion measurements before and after mobilization was greater than before and after control treatment. A single session of articular mobilization of the talus did not significantly increase dorsiflexion ROM in participants with orthopedic dysfunctions of the ankle and foot compared with a manual contact procedure. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  12. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.

    Science.gov (United States)

    Wei, Feng; Hunley, Stanley C; Powell, John W; Haut, Roger C

    2011-02-01

    Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe-surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

  13. Evaluation of the validity of the Foot Function Index in measuring outcomes in patients with foot and ankle disorders.

    Science.gov (United States)

    SooHoo, Nelson F; Samimi, David B; Vyas, Raj M; Botzler, Tin

    2006-01-01

    There is uncertainty regarding which outcomes tools should be used to report the results of treatment for patients with foot and ankle disorders. This study evaluates the validity of the Foot Function Index (FFI) by examining its level of correlation to the Medical Outcomes Study Short Form-36 (SF-36). The SF-36 is an extensively validated outcomes tool that has been used as a benchmark in examining the validity of several orthopaedic outcomes tools. Seventy-three patients were recruited at a tertiary referral foot and ankle practice. Patients completed packets which included informed consent forms, the FFI, and the SF-36 questionnaires. The questionnaires were scored and Pearson correlation coefficients were determined between the three domains of the FFI and the eight SF-36 sub-scales, as well as the two SF-36 summary scales. Sixty-nine patients completed an adequate number of items to be included in the study. The mean age of the patient sample was 46 (range 16 to 82) years and 44 were women (64%). Twenty-one patients (30%) had conditions affecting the forefoot, while 48 patients (70%) had conditions affecting the ankle or hindfoot. All three FFI domains had moderate to high levels of correlation to many of the SF-36 scales. The Disability domain of the FFI had the most consistent level of correlation to the SF-36 with Pearson coefficients in the range of -0.23 to -0.69. The Activity Limitation (r=-0.28 to -0.64) and Pain domains (r=-0.10 to -0.61) also demonstrated moderate levels of correlation to several of the SF-36 scales. The consistently moderate to high levels of correlation of the FFI to the SF-36 seen in this study support the FFI as a valid measure of health status. This suggests that the FFI is a reasonable method to monitor patient outcomes. Future studies should focus on determining if the FFI improves responsiveness to clinical change when used in combination with generic instruments like the SF-36.

  14. Proprioception of foot and ankle complex in young regular practitioners of ice hockey, ballet dancing and running.

    Science.gov (United States)

    Li, Jing Xian; Xu, Dong Qing; Hoshizaki, Blaine

    2009-01-01

    This study examined the proprioception of the foot and ankle complex in regular ice hockey practitioners, runners, and ballet dancers. A total of 45 young people with different exercise habits formed four groups: the ice hockey, ballet dancing, running, and sedentary groups. Kinesthesia of the foot and ankle complex was measured in plantarflexion (PF), dorsiflexion (DF), inversion (IV), and eversion (EV) at 0.4 degrees /s using a custom-made device. The results showed the following: (1) significantly better perceived passive motion sense in PF/DF was found as compared with the measurements in IV/EV within each group (P ballet groups perceived significantly better passive motion sense in IV/EV than the running (P ballet dancing on proprioception may be associated with their movement characteristics.

  15. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  16. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  17. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    Full Text Available Abstract Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min, during (5 min and after (5 min exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion. To evaluate modifications in feedforward control, strides with no force field ('catch strides' were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%, subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99. Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%, plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive

  18. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  19. Vacuum-assisted closure to aid wound healing in foot and ankle surgery.

    Science.gov (United States)

    Mendonca, Derick A; Cosker, Tom; Makwana, Nilesh K

    2005-09-01

    Although vacuum-assisted closure (VAC) is a well-established technique in other surgical specialties, its use has not been established in the foot and ankle. The aims of this study were to determine if vacuum-assisted closure therapy (VAC) helps assist closure in diabetic foot ulcers and wounds secondary to peripheral vascular disease, if it helps debride wounds, and if it prevents the need for further surgery. We retrospectively reviewed 15 patients (18 wounds or ulcers) with primary diagnoses of diabetes (10 patients), chronic osteomyelitis (two patients), peripheral vascular disease (two patients), and spina bifida (one patient). Eleven of the 15 patients had serious comorbidities, such as peripheral neuropathy, renal failure, and wound dehiscence. All wounds were surgically debrided before VAC therapy was applied according to the manufacturer's instructions. The main outcome measures were time to satisfactory wound closure, changes in the wound surface area, and the need for further surgery. Satisfactory healing was achieved in 13 of the 18 wounds or ulcers at an average of 2.5 months. VAC therapy failed in five patients (five class III ulcers), three of whom required below-knee amputations. Wound or ulcer size decreased from an average of 7.41 cm(2) before treatment to an average of 1.58 cm(2) after treatment. VAC therapy is a useful adjunct to the standard treatment of chronic wound or ulcers in patients with diabetes or peripheral vascular disease. Its use in foot and ankle surgery leads to a quicker wound closure and, in most patients, avoids the need for further surgery.

  20. Kinematic features of rear-foot motion using anterior and posterior ankle-foot orthoses in stroke patients with hemiplegic gait.

    Science.gov (United States)

    Chen, Chih-Chi; Hong, Wei-Hsien; Wang, Chin-Man; Chen, Chih-Kuang; Wu, Katie Pei-Hsuan; Kang, Chao-Fu; Tang, Simon F

    2010-12-01

    To evaluate the kinematic features of rear-foot motion during gait in hemiplegic stroke patients, using anterior ankle-foot orthoses (AFOs), posterior AFOs, and no orthotic assistance. Crossover design with randomization for the interventions. A rehabilitation center for adults with neurologic disorders. Patients with hemiplegia due to stroke (n=14) and able-bodied subjects (n=11). Subjects with hemiplegia were measured walking under 3 conditions with randomized sequences: (1) with an anterior AFO, (2) with a posterior AFO, and (3) without an AFO. Control subjects were measured walking without an AFO to provide a normative reference. Rear-foot kinematic change in the sagittal, coronal, and transverse planes. In the sagittal plane, compared with walking with an anterior AFO or without an AFO, the posterior AFO significantly decreased plantar flexion to neutral at initial heel contact (P=.001) and the swing phase (PRehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Anterior Transfer of Tibialis Posterior through the Interosseous ...

    African Journals Online (AJOL)

    Postoperative plaster of Paris cast for 6 weeks and ankle foot orthosis were used. We evaluated for correction and ability of the transferred tendon to actively dorsiflex at the ankle joint. Nineteen patients had good results 8 fair and 3 poor there was no neurovascular deficit. The purpose of this paper is to outline our outcome ...

  2. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness

    NARCIS (Netherlands)

    Ploeger, Hilde E.; Bus, Sicco A.; Brehm, Merel-Anne; Nollet, Frans

    2014-01-01

    In polio survivors with calf muscle weakness, dorsiflexion-restricting ankle-foot orthoses (DR-AFOs) aim to improve gait in order to reduce walking-related problems such as instability or increased energy cost. However, evidence on the efficacy of DR-AFOs in polio survivors is lacking. We

  3. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  4. Effect of kinesiotaping, non-elastic taping and bracing on segmental foot kinematics during drop landing in healthy subjects and subjects with chronic ankle instability.

    Science.gov (United States)

    Kuni, B; Mussler, J; Kalkum, E; Schmitt, H; Wolf, S I

    2016-09-01

    To evaluate the effects of kinesiotape, non-elastic tape, and soft brace on segmental foot kinematics during drop landing in subjects with chronic ankle instability and healthy subjects. Controlled study with repeated measurements. Three-dimensional motion analysis laboratory. Twenty participants with chronic ankle instability and 20 healthy subjects. The subjects performed drop landings with 17 retroreflective markers on the foot and lower leg in four conditions: barefoot, with kinesiotape, with non-elastic tape and with a soft brace. Ranges of motion of foot segments using a foot measurement method. In participants with chronic ankle instability, midfoot movement in the frontal plane (inclination of the medial arch) was reduced significantly by non-elastic taping, but kinesiotaping and bracing had no effect. In healthy subjects, both non-elastic taping and bracing reduced that movement. In both groups, non-elastic taping and bracing reduced rearfoot excursion in inversion/eversion significantly, which indicates a stabilisation effect. No such effect was found with kinesiotaping. All three methods reduced maximum plantar flexion significantly. Non-elastic taping stabilised the midfoot best in patients with chronic ankle instability, while kinesiotaping did not influence foot kinematics other than to stabilise the rearfoot in the sagittal plane. ClinicalTrials.gov NCT01810471. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  5. Full text publication rates of papers presented at the British Foot and Ankle Society.

    Science.gov (United States)

    Marsland, D; Mumith, A; Taylor, H P

    2017-07-13

    Techniques in foot and ankle surgery have expanded rapidly in recent years, often presented at national society meetings. It is important that research is published to guide evidence based practice. Many abstracts however do not go on to full text publication. A database was created of all abstracts presented at BOFAS meetings from 2009 to 2013. Computerised searches were performed using PubMed and Google search engines. In total 341 papers were presented, with an overall publication rate of 31.7%. Of 251 clinical papers, 200 were case series (79.6%). Factors associated with publication success included basic science studies, papers related to arthroscopic surgery and research performed outside the UK. A relatively low conversion rate from presentation to publication could be as a result of papers failing to pass the scrutiny of peer review, or that the work is never formally submitted for publication. The information from this study could be used to prioritise future research and promote higher quality research. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Translation, cross-cultural adaption and validation of the German version of the Foot and Ankle Ability Measure for patients with chronic ankle instability.

    Science.gov (United States)

    Nauck, T; Lohrer, H

    2011-08-01

    The evaluation of health-related quality of life and physical function is important for determining therapeutic strategies following ankle injuries. The Anglo-American Foot and Ankle Ability Measure (FAAM) is a valid and reliable self-reported measure to detect functional deficits in chronic lateral ankle instability. The purpose of this study was to translate, cross-culturally adapt and validate the FAAM questionnaire for use with German-speaking patients with chronic lateral ankle instability. Preoperative and conservatively treated patients with chronic lateral ankle instability. Sport students and volleyball athletes served as control groups. The FAAM was forward and back translated, cross-culturally adapted and validated. The study population completed the FAAM-G questionnaire twice within 3-5 days. Additionally, the patients were scored with the Good ankle laxity classification system. Test-Retest reliability, construct validity and internal consistency were calculated. Reliability and validity of the FAAM-G were examined in presurgical chronic ankle instability patients (n=24), conservatively treated chronic ankle instability patients (n=17), university sport students (n=31) and volleyballers (n=37). Test-retest reliability revealed fair, good, or excellent reliability (inter-class correlation coefficient (ICC)=0.590-0.998; ρ=0.528-1.000). Construct validity, tested between the FAAM-G subscores and the Good et al ankle laxity classification system demonstrated strong correlations (ρ = -0.819 to -0.861). The original FAAM questionnaire was successfully translated and cross-culturally adapted from English to German. Corresponding to the Anglo-American version, the FAAM-G is a reliable and valid questionnaire for self-reported assessment of pain and disability in German-speaking patients suffering from chronic ankle instability.

  7. Postural Control Characteristics during Single Leg Standing of Individuals with a History of Ankle Sprain: Measurements Obtained Using a Gravicorder and Head and Foot Accelerometry.

    Science.gov (United States)

    Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki

    2014-03-01

    [Purpose] This study aimed to validate the postural control characteristics of individuals with a history of ankle sprain during single leg standing by using a gravicorder and head and foot accelerometry. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] The anteroposterior, mediolateral, and total path lengths, as well as root mean square (RMS) of each length, were calculated using the gravicorder. The anteroposterior, mediolateral, and resultant acceleration of the head and foot were measured using accelerometers and were evaluated as the ratio of the acceleration of the head to the foot. [Results] There was no significant difference between the two groups in path length or RMS acceleration of the head and foot. However, the ratios of the mediolateral and resultant components were significantly higher in the sprain group than in the control group. [Conclusion] Our findings suggest that individuals with a history of ankle sprain have a higher head-to-foot acceleration ratio and different postural control characteristics than those of control subjects.

  8. Progress in the clinical imaging research of bone diseases on ankle and foot sesamoid bones and accessory ossicles

    Science.gov (United States)

    Li, Xiaozhong; Shi, Lenian; Liu, Taiyun; Wang, Lin

    2012-01-01

    Summary Sesamoid bones and accessory ossicles are research focuses of foot and ankle surgery. Pains of the foot and ankle are related to sesamoid bones and accessory ossicles. The specific anatomical and functional relationship of sesamoid bones and accessory ossicles can cause such bone diseases as the dislocation of sesamoid bones and accessory bones, infection, inflammation and necrosis of sesamoid bones, cartilage softening, tenosynovitis of sesamoid bones and the sesamoid bone syndrome. However, these bone diseases are often misdiagnosed or mistreated. In patients with trauma history, relevant diseases of sesamoid bones and accessory ossicles as above mentioned are highly probable to be misdiagnosed as avulsion fractures. In such cases, radiographic findings may provide a basis for clinical diagnosis. PMID:25343083

  9. Inter-assessor reliability of practice based biomechanical assessment of the foot and ankle

    Directory of Open Access Journals (Sweden)

    Jarvis Hannah L

    2012-06-01

    Full Text Available Abstract Background There is no consensus on which protocols should be used to assess foot and lower limb biomechanics in clinical practice. The reliability of many assessments has been questioned by previous research. The aim of this investigation was to (i identify (through consensus what biomechanical examinations are used in clinical practice and (ii evaluate the inter-assessor reliability of some of these examinations. Methods Part1: Using a modified Delphi technique 12 podiatrists derived consensus on the biomechanical examinations used in clinical practice. Part 2: Eleven podiatrists assessed 6 participants using a subset of the assessment protocol derived in Part 1. Examinations were compared between assessors. Results Clinicians choose to estimate rather than quantitatively measure foot position and motion. Poor inter-assessor reliability was recorded for all examinations. Intra-class correlation coefficient values (ICC for relaxed calcaneal stance position were less than 0.23 and were less than 0.14 for neutral calcaneal stance position. For the examination of ankle joint dorsiflexion, ICC values suggest moderate reliability (less than 0.61. The results of a random effects ANOVA highlight that participant (up to 5.7°, assessor (up to 5.8° and random (up to 5.7° error all contribute to the total error (up to 9.5° for relaxed calcaneal stance position, up to 10.7° for the examination of ankle joint dorsiflexion. Kappa Fleiss values for categorisation of first ray position and mobility were less than 0.05 and for limb length assessment less than 0.02, indicating slight agreement. Conclusion Static biomechanical assessment of the foot, leg and lower limb is an important protocol in clinical practice, but the key examinations used to make inferences about dynamic foot function and to determine orthotic prescription are unreliable.

  10. The health economics of ankle and foot sprains and fractures: A systematic review of English-language published papers. Part 2: The direct and indirect costs of injury.

    Science.gov (United States)

    Bielska, Iwona A; Wang, Xiang; Lee, Raymond; Johnson, Ana P

    2017-07-20

    Ankle and foot sprains and fractures are prevalent injuries, which may result in substantial physical and economic consequences for the patient and place a financial burden on the health care system. Therefore, the objectives of this paper are to examine the direct and indirect costs of treating ankle and foot injuries (sprains, dislocations, fractures), as well as to provide an overview of the outcomes of full economic analyses of different treatment strategies. A systematic review was carried out among seven databases to identify English language publications on the health economics of ankle and foot injury treatment published between 1980 and 2014. The direct and indirect costs were abstracted by two independent reviewers. All costs were adjusted for inflation and reported in 2016 US dollars (USD). Among 2047 identified studies, 32 were selected for analysis. The direct costs of ankle sprain management ranged from $292 to $2268 per patient (2016 USD), depending on the injury severity and treatment strategy. The direct costs of managing ankle fractures were higher ($1908-$19,555). Foot fracture treatment had similar direct costs ranging from $998 to $21,801. The economic evaluations were conducted from the societal or payer's perspectives. The costs of treating ankle and foot sprains and fractures varied among the studies, mostly due to differences in injury type and study characteristics, which impacted the ability of directly comparing the financial burden of treatment. Nonetheless, the review showed that the costs experienced by the patient and the health care system increased with injury complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Experience using the «Shetty test» for initial foot and ankle fracture screening in the Emergency Department.

    Science.gov (United States)

    Ojeda-Jiménez, J; Méndez-Ojeda, M M; Martín-Vélez, P; Tejero-García, S; Pais-Brito, J L; Herrera-Pérez, M

    2018-03-20

    The indiscriminate practice of radiographs for foot and ankle injuries is not justified and numerous studies have corroborated the usefulness of clinical screening tests such as the Ottawa Ankle Rules. The aim of our study is to clinically validate the so-called Shetty Test in our area. A cross-sectional observational study by applying the Shetty test to patients seen in the Emergency Department. We enrolled 100 patients with an average age of 39.25 (16-86). The Shetty test was positive on 14 occasions. Subsequent radiography revealed a fracture in 10 cases: 4 were false positives. The test was negative in the remaining 86 patients and radiography confirmed the absence of fracture (with sensitivity of 100% and specificity of 95.56%, positive predictive value of 71.40%, and negative predictive value of 100%). The Shetty test is a valid clinical screening tool to decide whether simple radiography is indicated for foot and ankle injuries. It is a simple, quick and reproducible test. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Derave, Wim; De Clercq, Dirk

    2014-11-01

    A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15%) at 5 km h(-1) and 5% of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 ± 2.49; 8.14 ± 2.24 mmol L(-1)), heart rate (respectively, 190.00 ± 6.50; 191.78 ± 6.50 bpm), Borg score (respectively, 18.57 ± 0.79; 18.93 ± 0.73) and VO₂ peak (respectively, 40.55 ± 2.78; 40.55 ± 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 ± 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities.

  13. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Directory of Open Access Journals (Sweden)

    Yvette L Kerkum

    Full Text Available Rigid Ankle-Foot Orthoses (AFOs are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP. While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years were prescribed with a ventral shell spring-hinged AFO (vAFO. The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05 was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power

  14. Mitek Anchor System: a new technique for tenodesis and ligamentous repair of the foot and ankle.

    Science.gov (United States)

    Pederson, B; Tesoro, D; Wertheimer, S J; Coraci, M

    1991-01-01

    The authors present an alternative method for securing tendon and ligaments to bone, utilizing the Mitek Anchor System. The description of the Mitek system and technique of application is presented. Technical simplicity and ease of adaptability within the foot and ankle are distinct advantages of this System.

  15. Tradução e validação do questionário FAOS - FOOT and ankle outcome score para língua portuguesa Translation, cultural adaptation and validation of FOOT and ankle outcome score (FAOS questionnaire into portuguese

    Directory of Open Access Journals (Sweden)

    Aline Mizusaki Imoto

    2009-01-01

    Full Text Available OBJETIVOS: (1 traduzir e validar a versão original da avaliação funcional de tornozelo e pé Foot and Ankle Outcome Score (FAOS da língua inglesa para a portuguesa em pacientes com história de entorse de tornozelo em inversão, (2 adaptar culturalmente à população brasileira e (3 correlacionar com o questionário de qualidade de vida SF-36. MÉTODO: O método de tradução e validação utilizado seguiu os critérios descritos por Guillemin et al. Foram incluídos 50 indivíduos com diagnóstico clínico de lesão ligamentar lateral do tornozelo por entorse. RESULTADOS: O questionário FAOS mostrou-se com reprodutibilidade de grau forte para todos os domínios intra e inter-examinador (pOBJECTIVE: (1 to translate and validate the original version of the Foot and Ankle Outcome Score (FAOS questionnaire from English into Portuguese in patients with diagnosis of lateral ligament injuries with ankle sprain history,(2 to provide cultural adaptation for Brazilian patients (3 to correlate it with the quality of life SF_36 questionnaire. METHOD: The method of translation and validation followed the criteria described by Guillemin et al. Fifty patients with ankle sprain were included. RESULTS AND CONCLUSION: FAOS questionnaire showed good reproducibility for patients with ankle sprain and good reliability for all intraand inter-interviewer sub-scales (p<0.05. The translation and cultural adaptation of FAOS questionnaire had its properties of assessment, reliability and validity measured, showing that this questionnaire is suitable for use in Brazilian patients with lateral ligament ankle injuries.

  16. Chronic Ankle Instability

    Science.gov (United States)

    ... top of the talus is dome-shaped and... Softball Injuries to the Foot and Ankle Your feet ... ankles take a beating when you are playing softball. Softball players should be aware of the following ...

  17. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    Science.gov (United States)

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  18. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Domingo Antoinette

    2006-02-01

    Full Text Available Abstract Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s under three conditions: without wearing orthoses, wearing orthoses unpowered (passively, and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without

  19. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Influence of Mulligan Ankle Taping on Dynamic Balance in the Athletes with and without Chronic Ankle Instability

    Directory of Open Access Journals (Sweden)

    Tahereh Pourkhani

    2014-04-01

    Full Text Available Objective: The ankle joint is the most frequently injured anatomical site in athletes. Ankle instability is responsible for 25% of all time lost from sport. Clinical efficacy of the effect of taping in athletes with chronic ankle instability is unknown. So the purpose of this investigation is the study of the influence of Mulligan ankle taping on dynamic balance in the athletes with and without chronic ankle instability. Materials & Methods: 32 athletes participated in this investigation: 16 subjects with chronic ankle instability, 6 women and 10 men (age 23.5±0.3 years, height 175.4±10.3 cm, weight 73.6±14.5 kg, Foot Ankle Disability Index 74.5±8.62% and Foot Ankle Disability Index Sport 63.5±7.86% and 16 healthy subjects, 6 women and 10 men (age 22.81±7.1 years, height 173.6±12.26 cm, weight 66.4±11.4 kg, Foot Ankle Disability Index and Foot Ankle Disability Index Sport 100%. Dynamic balance was assessed with Star Excursion Balance Test in 3 reaching directions (medial, antero-medial and postero-medial before and after Mulligan ankle taping. Independent and paired t-test were used for statistical analysis. Results: Dynamic balance in healthy group significantly was better than injured group (P&le0.05. Application of taping caused significantly improvement in dynamic balance in both groups (reaching in media, antero-medial and postero-medial directions (P&le0.05 (except reaching in antero-medial direction in healthy group (P>0.05. Conclusion: So it seems that Mulligan ankle taping can improve dynamic balance in the athletes with and without chronic ankle instability.

  1. Sprained Ankles

    Science.gov (United States)

    ... away before the ligament is injured. Types of Sprains In young children, the ankle is the most commonly sprained joint, followed by ... A walking cast may be necessary if the ankle or foot injury has been severe. Most grade 1 sprains will heal within two weeks without subsequent complications. ...

  2. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  3. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    Science.gov (United States)

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  4. Use of the ROC anchor in foot and ankle surgery. A retrospective study.

    Science.gov (United States)

    Kuwada, G T

    1999-05-01

    A retrospective study was conducted on the use of the ROC (Radial Osteo Compression) soft-tissue anchor in foot and ankle surgery. This article describes how the anchor is deployed, problematic aspects of using the anchor, and complications and success rates associated with the anchor in ankle stabilizations, posterior tibial tendon reconstruction, peroneus brevis tendon reconstruction after fracture of the base of the fifth metatarsal, and detachment and reattachment of the Achilles tendon. The ROC anchor consists of the anchor with nonabsorbable suture attached to the shaft, the deployment handle, and drill bits. The anchor and shaft are snapped into the deployment handle and inserted into the drill hole. Compression of the trigger deploys the anchor into the hole. The ROC anchor was found to be reliable, useful, and relatively easy to deploy, with outcomes similar to those of other soft-tissue anchors.

  5. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients

    NARCIS (Netherlands)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A. M.; Harlaar, Jaap; Nollet, Frans

    2007-01-01

    Objective: To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. Design: A prospective uncontrolled study with a multiple

  6. Management of diabetic neuropathic foot and ankle malunions and nonunions

    Directory of Open Access Journals (Sweden)

    John J. Stapleton

    2011-05-01

    Full Text Available The management of diabetic neuropathic foot and ankle malunions and/or nonunions is often complicated by the presence of broken or loosened hardware, Charcot joints, infection, osteomyelitis, avascular bone necrosis, unstable deformities, bone loss, disuse and pathologic osteopenia, and ulcerations. The author discusses a rational approach to functional limb salvage with various surgical techniques that are aimed at achieving anatomic alignment, long-term osseous stability, and adequate soft tissue coverage. Emphasis is placed on techniques to overcome the inherent challenges that are encountered when surgically managing a diabetic nonunion and/or malunion. Particular attention is directed to the management of deep infection and Charcot neuroarthropathy in the majority of the cases presented.

  7. Adaptive harvest management for the Svalbard population of Pink-Footed Geese: 2014 progress summary

    Science.gov (United States)

    Johnson, Fred A.; Madsen, J.

    2015-01-01

    This document describes progress to date on the development of an adaptive harvest-management strategy for maintaining the Svalbard population of pink-footed geese (Anser brachyrhynchus) near their agreed target level (60 thousand) by providing for sustainable harvests in Norway and Denmark.  Specifically, this report provides an assessment of the most recent monitoring information and its implications for the harvest management strategy.

  8. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    Science.gov (United States)

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  9. The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants.

    Science.gov (United States)

    De Pauw, Kevin; Cherelle, Pierre; Roelands, Bart; Lefeber, Dirk; Meeusen, Romain

    2018-04-01

    Evaluating the effectiveness of a novel prosthetic device during walking is an important step in product development. To investigate the efficacy of a novel quasi-passive ankle prosthetic device, Ankle Mimicking Prosthetic Foot 4.0, during walking at different speeds, using physiological determinants in transtibial and transfemoral amputees. Nonrandomized crossover design for amputees. Six able-bodied subjects, six unilateral transtibial amputees, and six unilateral transfemoral amputees underwent a 6-min walk test at normal speed, followed by series of 2-min walking at slow, normal, and fast speeds. The intensity of effort and subjective measures were determined. Amputees performed all walking tests on a treadmill with current and novel prostheses. Shapiro-Wilk normality tests and parametric and nonparametric tests were conducted (p 4.0 is a novel quasi-passive ankle prosthesis with state-of-the-art technological parts. Subjective measures show the importance of this technology, but the intensity of effort during walking still remains higher compared to current passive prostheses, especially in transfemoral amputees.

  10. Publications Rates for Podium and Poster Presentations from the American Orthopaedic Foot & Ankle Society.

    Science.gov (United States)

    Williams, Benjamin R; Kunas, Grace C; Deland, Jonathan T; Ellis, Scott J

    2017-01-01

    National orthopaedic meetings are used to disseminate current research through podium and poster abstract presentations. Not all of these abstracts go on to full-text journal publication. The purpose of this study was to determine the publication rates of podium and poster presentations from the American Orthopaedic Foot & Ankle Society (AOFAS) annual meetings between 2008 and 2012. All accepted podium and poster abstracts from the 2008-2012 AOFAS annual meetings were compiled from the AOFAS office, Physician Resource Center website, and hardcopy meeting programs. PubMed and Google Scholar searches were performed for journal publications using key words in the presentation abstracts and authors' names. Full-text journal publication rates for the presentations were calculated per year, as were the most common journals of publication. Overall full-text publication rate was 73.7% for podium presentations and 55.8% for posters. Podium presentations were published in a journal significantly more often than posters ( P poster presentations, respectively ( P = .124). The most common journal for podium and poster publications was Foot & Ankle International. Podium abstracts were significantly more likely to be published compared to posters. The AOFAS overall full-text journal publication rate was one of the higher reported rates compared with other national orthopedic society meetings, which have ranged from 34% to 73%.

  11. Ultrasound-guided therapeutic injections for neural pathology about the foot and ankle: a 4 year retrospective review.

    Science.gov (United States)

    Walter, William R; Burke, Christopher J; Adler, Ronald S

    2017-06-01

    To describe a 4-year clinical experience with ultrasound-guided therapeutic perineural injections of peripheral nerves about the foot and ankle. Retrospective analysis of foot and ankle perineural injections performed between January 2012 and August 2016. Demographics, clinical indications, presence of structural pathology, immediate and interval pain relief, as well as complications were recorded. Fifty-nine therapeutic injections were performed among 46 patients, accounting for multiple injections in a single visit or multiple visits [mean age = 43 years (range 18-75), 31 female (67%) and 15 male (33%)]. Most commonly, perineural injections involved the hallux branch of the medial plantar nerve (n = 17, 22%). Least commonly, perineural injections involved the saphenous nerve (n = 3, 4%). Other injections in our series include sural (10), superficial (11) and deep (7) peroneal, medial (5) and lateral (3) plantar nerves, and the posterior tibial nerve (3). Ultrasound evaluation revealed structural abnormality associated with the nerve in 30 cases (51%)-most commonly thickening with perineural scarring (n = 14). Of 45 injections with complete documentation, immediate relief of symptoms was reported in 43 (96%) cases. Interval symptom relief was achieved in 23 injections [short term (n = 12), intermediate (n = 6), and long term (n = 5)] out of 38 for which follow-up was available (61%). Complications are rare, occurring in only one case. Ultrasound-guided perineural injections about the foot and ankle are safe and provide lasting symptomatic relief for many indications. Concomitant sonographic evaluation identifies structural abnormalities that may contribute to neuropathic symptoms, allowing targeting of injection or clinical therapy.

  12. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-analysis providing direction for future research

    Directory of Open Access Journals (Sweden)

    Sarah Prenton

    2017-10-01

    Full Text Available Objective: To compare the randomized controlled trial evidence for therapeutic effects on walking of functional electrical stimulation and ankle foot orthoses for foot drop caused by central nervous system conditions. Data sources: MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination, Scopus and clinicaltrials.gov. Study selection: One reviewer screened titles/abstracts. Two independent reviewers then screened the full articles. Data extraction: One reviewer extracted data, another screened for accuracy. Risk of bias was assessed by 2 independent reviewers using the Cochrane Risk of Bias Tool. Data synthesis: Eight papers were eligible; 7 involving participants with stroke and 1 involving participants with cerebral palsy. Two papes reporting different measures from the same trial were grouped, resulting in 7 synthesized randomized controlled trials (n= 464. Meta-analysis of walking speed at final assessment (p = 0.46, for stroke participants (p = 0.54 and after 4–6 weeks’ use (p = 0.49 showed equal improvement for both devices. Conclusion: Functional electrical stimulation and ankle foot orthoses have an equally positive therapeutic effect on walking speed in non-progressive central nervous system diagnoses. The current randomized controlled trial evidence base does not show whether this improvement translates into the user’s own environment or reveal the mechanisms that achieve that change. Future studies should focus on measuring activity, muscle activity and gait kinematics. They should also report specific device details, capture sustained therapeutic effects and involve a variety of central nervous system diagnoses.

  13. The Effect of Passive Movement for Paretic Ankle-Foot and Brain Activity in Post-Stroke Patients.

    Science.gov (United States)

    Vér, Csilla; Emri, Miklós; Spisák, Tamás; Berényi, Ervin; Kovács, Kázmér; Katona, Péter; Balkay, László; Menyhárt, László; Kardos, László; Csiba, László

    2016-01-01

    This study aims at investigating the short-term efficacy of the continuous passive motion (CPM) device developed for the therapy of ankle-foot paresis and to investigate by fMRI the blood oxygen level-dependent responses (BOLD) during ankle passive movement (PM). Sixty-four stroke patients were investigated. Patients were assigned into 2 groups: 49 patients received both 15 min manual and 30 min device therapy (M + D), while the other group (n = 15) received only 15 min manual therapy (M). A third group of stroke patients (n = 12) was investigated by fMRI before and immediately after 30 min CPM device therapy. There was no direct relation between the fMRI group and the other 2 groups. All subjects were assessed using the Modified Ashworth Scale (MAS) and a goniometer. Mean MAS decreased, the ankle's mean plantar flexion and dorsiflexion passive range of motion (PROM) increased and the equinovalgus improved significantly in the M + D group. In the fMRI group, the PM of the paretic ankle increased BOLD responses; this was observed in the contralateral pre- and postcentral gyrus, superior temporal gyrus, central opercular cortex, and in the ipsilateral postcentral gyrus, frontal operculum cortex and cerebellum. Manual therapy with CPM device therapy improved the ankle PROM, equinovalgus and severity of spasticity. The ankle PM increased ipsi- and contralateral cortical activation. © 2016 S. Karger AG, Basel.

  14. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.

    Science.gov (United States)

    Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S

    2007-02-01

    Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.

  15. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  16. Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor.

    Science.gov (United States)

    Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn

    2017-10-10

    The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect's ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points' time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t -tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect's higher-dimensional depth data to estimate foot placement locations directly from the foot's point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor.

  17. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  18. Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics.

    Science.gov (United States)

    Sonoda, S; Imahori, R; Saitoh, E; Tomita, Y; Domen, K; Chino, N

    2000-04-15

    This paper describes a motor-driven orthosis for paraplegics which has been developed. This orthosis is composed of a medially-mounted motor-driven hip joint and bilateral knee-ankle-foot orthosis. With the gear mechanism, the virtual axis of the hip joint of this orthosis is almost as high as the anatomical hip joint. A paraplegic patient with an injury level of T10/11 walked using bilateral lofstrand crutches and this new orthosis with or without the motor system. The motor is initiated by pushing a button attached at the edge of the grab of the crutches. Faster cadence and speed and smaller rotation angle of the trunk was obtained in motor walking compared with non-motor walking. The patient did not feel fearful of falling. The benefit of motor orthosis is that it can be used even in patients with lower motor lesions and that it provides stable regulation of hip flexion movement in spastic patients. In conclusion, this motor orthosis will enhance paraplegic walking.

  19. EFFECTS OF COMBINED FOOT/ANKLE ELECTROMYOSTIMULATION AND RESISTANCE TRAINING ON THE IN-SHOE PLANTAR PRESSURE PATTERNS DURING SPRINT IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    François Fourchet

    2011-06-01

    Full Text Available Several studies have already reported that specific foot/ankle muscle reinforcement strategies induced strength and joint position sense performance enhancement. Nevertheless the effects of such protocols on sprint performance and plantar loading distribution have not been addressed yet. The objective of the study is to investigate the influence of a 5-wk foot/ankle strength training program on plantar loading characteristics during sprinting in adolescent males. Sixteen adolescent male athletes of a national training academy were randomly assigned to either a combined foot/ankle electromyostimulation and resistance training (FAST or a control (C group. FAST consisted of foot medial arch and extrinsic ankle muscles reinforcement exercises, whereas C maintained their usual training routine. Before and after training, in-shoe loading patterns were measured during 30-m running sprints using pressure sensitive insoles (right foot and divided into nine regions for analysis. Although sprint times remained unchanged in both groups from pre- to post- training (3.90 ± 0.32 vs. 3.98 ± 0.46 s in FAST and 3.83 ± 0.42 vs. 3.81 ± 0.44 s in C, changes in force and pressure appeared from heel to forefoot between FAST and C. In FAST, mean pressure and force increased in the lateral heel area from pre- to post- training (67.1 ± 44.1 vs. 82.9 ± 28.6 kPa [p = 0.06]; 25.5 ± 17.8 vs. 34.1 ± 14.3 N [p = 0.05] and did not change in the medial forefoot (151.0 ± 23.2 vs. 146.1 ± 30.0 kPa; 142.1 ± 29.4 vs. 136.0 ± 33.8; NS. Mean area increased in FAST under the lateral heel from pre- to post- (4.5 ± 1.3 vs. 5.7 ± 1.6 cm2 [p < 0.05] and remained unchanged in C (5.5 ± 2.8 vs. 5.0 ± 3.0 cm2. FAST program induced significant promising lateral and unwanted posterior transfer of the plantar loads without affecting significantly sprinting performance

  20. Reliability and validity analysis of the open-source Chinese Foot and Ankle Outcome Score (FAOS).

    Science.gov (United States)

    Ling, Samuel K K; Chan, Vincent; Ho, Karen; Ling, Fona; Lui, T H

    2017-12-21

    Develop the first reliable and validated open-source outcome scoring system in the Chinese language for foot and ankle problems. Translation of the English FAOS into Chinese following regular protocols. First, two forward-translations were created separately, these were then combined into a preliminary version by an expert committee, and was subsequently back-translated into English. The process was repeated until the original and back translations were congruent. This version was then field tested on actual patients who provided feedback for modification. The final Chinese FAOS version was then tested for reliability and validity. Reliability analysis was performed on 20 subjects while validity analysis was performed on 50 subjects. Tools used to validate the Chinese FAOS were the SF36 and Pain Numeric Rating Scale (NRS). Internal consistency between the FAOS subgroups was measured using Cronbach's alpha. Spearman's correlation was calculated between each subgroup in the FAOS, SF36 and NRS. The Chinese FAOS passed both reliability and validity testing; meaning it is reliable, internally consistent and correlates positively with the SF36 and the NRS. The Chinese FAOS is a free, open-source scoring system that can be used to provide a relatively standardised outcome measure for foot and ankle studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.

    Science.gov (United States)

    Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael

    2013-01-14

    Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for

  2. The Relationship of Static Anthropometric Measurements to Lower Leg, Ankle, and Foot Injuries in Air Force Academy Cadets: A Prospective Longitudinal Study

    National Research Council Canada - National Science Library

    McMahon, Thomas

    2001-01-01

    The purpose of this prospective cohort study was to investigate the relationship between static anthropometric measures or demographical information and overuse injuries in the lower leg, ankle and foot...

  3. Ankle Fractures Often Not Diagnosed

    Science.gov (United States)

    ... top of the talus is dome-shaped and... Softball Injuries to the Foot and Ankle Your feet ... ankles take a beating when you are playing softball. Softball players should be aware of the following ...

  4. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Science.gov (United States)

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (ppush-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  5. Is there any relationship between orthotic usage and functional activities in children with neuromuscular disorders?

    Science.gov (United States)

    Alemdaroğlu, İpek; Gür, Gozde; Bek, Nilgün; Yilmaz, Öznur T; Yakut, Yavuz; Uygur, Fatma; Karaduman, Ayşe

    2014-02-01

    Contractures of Achilles tendons and gastrocnemius muscle deteriorate the performance in daily living activities of patients with neuromuscular diseases. Ankle-foot orthoses help to prevent the progression of deformities and to obtain optimal position of the joints to support standing and walking. To investigate the relationship between orthotic usage and functional activities in pediatric patients with different neuromuscular diseases. Retrospective study. A total of 127 subjects' physical assessment forms were analyzed. Functional level, type of orthoses, falling frequencies, ankle joint range of motion, and timed performance tests were examined in two consecutive dates with an interval of 3 months. A total of 91 patients were using orthoses while 36 patients were not within assessment dates. A total of 64 of 91 (70.3%) patients were diagnosed with Duchenne muscular dystrophy. A total of 81 (89.0%) subjects were using plastic ankle-foot orthoses for positioning at nights and 10 (11%) were using different types of the orthoses (knee-ankle-foot orthoses, dynamic ankle-foot orthoses, and so on) for gait in the study group. Night ankle-foot orthoses were not found to be effective directly on functional performance in children with neuromuscular diseases, although they protect ankle from contractures and may help to correct gait and balance. This retrospective study shows that the positive effects of using an ankle-foot orthosis at night are not reflected in the functional performance of children with neuromuscular diseases. This may be due to the progressive deteriorating nature of the disease.

  6. The deformity correction and fixator-assisted treatment using Ilizarov versus Taylor spatial frame in the foot and ankle

    Directory of Open Access Journals (Sweden)

    Yudha Manggala

    2018-02-01

    Full Text Available This study was to report the comparison of outcomes between Ilizarov ring fixator (IRF and Taylor Spatial Frame® (Smith & Nephew, Memphis, Tenn.; TSF in terms of the effectiveness of ankle-foot deformities correction, follow-up results, and complications. Fourteen patients with ankle-foot deformities were corrected using circular external fixation (IRF group = 7 patients; TSF group = 7 patients and related procedures. Baseline data and treatment variables were recorded. The patients’ mean age was 42.9 years. Mean follow-up time was 6.5 months. Most common cause of deformity/traumatic condition was posttraumatic equinus. There were successful results in 8 patients (57.1%, partial successful results in 5 patients (35.7%, and revision-needed in 1 patient (7.1%. TSF group demonstrated significantly higher rate of successful results than IRF group (P=0.033. A trend of lower complication rate was found in TSF group (P=0.286. Deformity corrections using TSF provided significantly better clinical scores and higher rate of successful outcome than conventional IRF.

  7. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.

    Science.gov (United States)

    Rahimi, F; Maurer, B T; Enzweiler, M G

    1997-01-01

    The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.

  8. Ankle foot orthoses for people with Charcot Marie Tooth disease--views of users and orthotists on important aspects of use.

    Science.gov (United States)

    Phillips, Margaret; Radford, Kathryn; Wills, Adrian

    2011-01-01

    To explore important aspects of the benefits, important characteristics, barriers to use and disadvantages of using ankle foot orthoses (AFOs) as seen by people with Charcot Marie Tooth disease (CMT) and the orthotists who will fit and supply them. This qualitative study used the nominal group technique and individual semi-structured interviews, according to participant preference and ability to travel. Propositions were put to 15 participants (eight females) with CMT regarding benefits, disadvantages, barriers to use and important characteristics of ankle foot orthoses AFOs and regarding benefits and disadvantages to seven orthotists. Priorities in these areas were ranked and a thematic analysis of the free text was made separately by two observers and a joint decision made of final themes. Fifteen people (eight females) with CMT and seven orthotists participated. Users' themes concerned functional mobility walking, pain/discomfort, choice of AFOs and associated footwear, custom made design, use in practical situations and support for foot and ankle. They noted that AFOs improved walking, but practical aspects of use and provision, as well as consideration of cosmetic aspects, were frequently problematic. Orthotists had similar themes, but with a difference in emphasis, that included prevention of future complications, education regarding device limitations and craftsmanship as a further theme. Users understood the potential benefits of AFOs and could identify disadvantages which might be remedied, but were frustrated by the difficulties in translating this into practice. Further refinement of current orthoses and delivery of orthotic services may assist in addressing these issues. © 2011 Informa UK, Ltd.

  9. Atraumatic Pantalar Avascular Necrosis in a Patient With Alcohol Dependence.

    Science.gov (United States)

    Callachand, Fayaz; Milligan, David; Wilson, Alistair

    2016-01-01

    In the United States, an estimated 10,000 to 20,000 new cases of avascular necrosis are diagnosed each year. We present an unusual case of atraumatic avascular necrosis with widespread hindfoot and midfoot involvement. A 62-year-old female with a history of alcohol dependence and smoking, who had previously been treated for avascular necrosis of the knee, presented with right-sided foot pain and difficulty weightbearing. Imaging studies revealed extensive avascular necrosis of the hindfoot and midfoot, which precluded simple surgical intervention. The patient was followed up for 18 months. In the last 8 months of the 18-month period, the patient managed her symptoms using an ankle-foot orthosis. A diagnosis of avascular necrosis should be considered in patients with atraumatic foot and ankle pain, especially in the presence of risk factors such as alcohol excess and smoking. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Primary ankle arthrodesis for neglected open Weber B ankle fracture dislocation.

    Science.gov (United States)

    Thomason, Katherine; Ramesh, Ashwanth; McGoldrick, Niall; Cove, Richard; Walsh, James C; Stephens, Michael M

    2014-01-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  12. Fixation Strength of Polyetheretherketone Sheath-and-Bullet Device for Soft Tissue Repair in the Foot and Ankle.

    Science.gov (United States)

    Christensen, Jay; Fischer, Brian; Nute, Michael; Rizza, Robert

    Tendon transfers are often performed in the foot and ankle. Recently, interference screws have been a popular choice owing to their ease of use and fixation strength. Considering the benefits, one disadvantage of such devices is laceration of the soft tissues by the implant threads during placement that potentially weaken the structural integrity of the grafts. A shape memory polyetheretherketone bullet-in-sheath tenodesis device uses circumferential compression, eliminating potential damage from thread rotation and maintaining the soft tissue orientation of the graft. The aim of this study was to determine the pullout strength and failure mode for this device in both a synthetic bone analogue and porcine bone models. Thirteen mature bovine extensor tendons were secured into ten 4.0 × 4.0 × 4.0-cm cubes of 15-pound per cubic foot solid rigid polyurethane foam bone analogue models or 3 porcine femoral condyles using the 5 × 20-mm polyetheretherketone soft tissue anchor. The bullet-in-sheath device demonstrated a mean pullout of 280.84 N in the bone analog models and 419.47 N in the porcine bone models. (p = .001). The bullet-in-sheath design preserved the integrity of the tendon graft, and none of the implants dislodged from their original position. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2015-05-01

    Individuals with below-knee amputation have more difficulty balancing during walking, yet few studies have explored balance enhancement through active prosthesis control. We previously used a dynamical model to show that prosthetic ankle push-off work affects both sagittal and frontal plane dynamics, and that appropriate step-by-step control of push-off work can improve stability. We hypothesized that this approach could be applied to a robotic prosthesis to partially fulfill the active balance requirements of human walking, thereby reducing balance-related activity and associated effort for the person using the device. We conducted experiments on human participants (N = 10) with simulated amputation. Prosthetic ankle push-off work was varied on each step in ways expected to either stabilize, destabilize or have no effect on balance. Average ankle push-off work, known to affect effort, was kept constant across conditions. Stabilizing controllers commanded more push-off work on steps when the mediolateral velocity of the center of mass was lower than usual at the moment of contralateral heel strike. Destabilizing controllers enforced the opposite relationship, while a neutral controller maintained constant push-off work regardless of body state. A random disturbance to landing foot angle and a cognitive distraction task were applied, further challenging participants' balance. We measured metabolic rate, foot placement kinematics, center of pressure kinematics, distraction task performance, and user preference in each condition. We expected the stabilizing controller to reduce active control of balance and balance-related effort for the user, improving user preference. The best stabilizing controller lowered metabolic rate by 5.5% (p = 0.003) and 8.5% (p = 0.02), and step width variability by 10.0% (p = 0.009) and 10.7% (p = 0.03) compared to conditions with no control and destabilizing control, respectively. Participants tended to prefer stabilizing controllers

  14. Cross-cultural adaptation and validation of Spanish version of The Foot and Ankle Ability Measures (FAAM-Sp).

    Science.gov (United States)

    Cervera-Garvi, Pablo; Ortega-Avila, Ana Belen; Morales-Asencio, Jose Miguel; Cervera-Marin, Jose Antonio; Martin, Rob Roy; Gijon-Nogueron, Gabriel

    2017-01-01

    The Foot and Ankle Ability Measure (FAAM) is a Patient Reported Outcome (PRO) commonly used to determine the effectiveness of therapeutic interventions for patients with foot and ankle pathologies and associated impairments of body function and structure, activity limitations, and participation restrictions. The aim of this study was to cross-culturally adapt the FAAM into Spanish. Cross-cultural adaptation was performed according to the international guidelines of the International Society for Pharmacoeconomics and Outcomes Research. Cronbach's alpha, test re-test reliability, and item-total and inter-item correlations were analyzed. Confirmatory factor analysis (CFA) was carried out to test construct validity. Pearson correlations were calculated to assess the convergent validity between FAAM and EuroQol-5. Spanish data set comprised 194 patients, with a mean age of 38.45 (16.04) and 130 (67.1%) were female, seeing a podiatrist with a wide variety of foot and ankle related disorders. CFA was carried out to test structure matrix (which has three factors). The test-retest reliability was high with global ICC of 0.95 (95% CI: 0.93 to 0.98). A 15 items version of the FAAM-Sp Activities of Daily Living (ADL) obtained the best fit: relative chi-square ( x 2 /df) of 2.46, GFI 0.90 CFI 0.95, NFI 0.93, and RMSEA 0.08 (90% CI 0.04 to 0.09). For exploratory factor analysis for the FAAM-Sp Sport, a one factor solution was obtained, which explained 76.70% of total variance. CFA corroborated this model with an excellent goodness of fit:: relative chi-square ( x 2 /df) of 0.80, GFI 0.99 CFI 1.00, NFI 0.99, and RMSEA 0.00 (90% CI 0.00 to 0.75). This study validated a new 15-item FAAM-Sp ADL and FAAM-Sp Sport subscales, which can be used as a self-reported outcome measure in clinical practice and research for patients resident in Spain whose main language is Spanish.

  15. Measurement properties of the most commonly used Foot- and Ankle-Specific Questionnaires: the FFI, FAOS and FAAM. A systematic review

    NARCIS (Netherlands)

    Sierevelt, I. N.; Zwiers, R.; Schats, W.; Haverkamp, D.; Terwee, C. B.; Nolte, P. A.; Kerkhoffs, G. M. M. J.

    2017-01-01

    In the foot and ankle literature, a wide range of patient-reported outcome measures (PROMs) is used, however, consensus as to which PROMs are preferred is lacking. Selection of a PROM is among other reasons, often based on measurement properties without considering the methodological quality of the

  16. Clinical examination and magnetic resonance imaging in the assessment of ankle sprains treated with an orthosis.

    Science.gov (United States)

    De Simoni, C; Wetz, H H; Zanetti, M; Hodler, J; Jacob, H; Zollinger, H

    1996-03-01

    This is a prospective clinical study of treatment of ankle sprains with an ankle brace that permits ankle dorsiflexion and plantarflexion of 20 degrees, but limits inversion and eversion for 6 weeks. The ankle brace is followed by physiotherapy for another 6 weeks. Thirty patients were evaluated with clinical examination and magnetic resonance (MR) imaging before treatment and after 12 weeks of treatment. MR imaging revealed acute tears in the anterior talofibular ligament in all 30 ankles (100%) and tears in the calcaneofibular ligament in 25 of 30 ankles (83%). At 12 weeks after injury, MR evidence of healing was present for the anterior talofibular ligament in 22 of 30 ankles (73%) and for the calcaneofibular ligament in 23 of 25 ankles (92%). Postural sway analysis after therapy was used to quantify functional stability of the ankle. There was no correlation with MR findings, but there was a correlation with the subjective impression of functional instability. Twenty-eight of 30 patients (93%) had a functionally stable ankle after 12 weeks of treatment. MR findings after ankle sprain could not predict clinical outcome.

  17. PROMIS Pain Interference and Physical Function Scores Correlate With the Foot and Ankle Ability Measure (FAAM) in Patients With Hallux Valgus.

    Science.gov (United States)

    Nixon, Devon C; McCormick, Jeremy J; Johnson, Jeffrey E; Klein, Sandra E

    2017-11-01

    Traditional patient-reported outcome instruments like the Foot and Ankle Ability Measure (FAAM) quantify patient disability but often are limited by responder burden and incomplete questionnaires. The Patient-Reported Outcome Measurement Information System (PROMIS) overcomes such obstacles through computer-adaptive technology and can capture outcome data from various domains including physical and psychosocial function. Prior work has compared the FAAM with PROMIS physical function; however, there is little evidence comparing the association between foot and ankle-specific tools like the FAAM with more general outcomes measures of PROMIS pain interference and depression in foot and ankle conditions. (1) We asked whether there was a relationship between FAAM Activities of Daily Living (ADL) scores with PROMIS physical function, pain interference, and depression in patients with hallux valgus. (2) Additionally, we asked if we could identify specific factors that are associated with variance in FAAM and PROMIS physical function scores in patients with hallux valgus. Eighty-five new patients with either a primary or secondary diagnosis of hallux valgus based on clinic billing codes from July 2015 to February 2016 were retrospectively identified. Patients completed FAAM ADL paper-based surveys and electronic PROMIS questionnaires for physical function, pain interference, and depression from new patient visits at a single time. Spearman rho correlations were performed between FAAM ADL and PROMIS scores. Analyses then were used to identify differences in FAAM ADL and PROMIS physical function measures based on demographic variables. Stepwise linear regressions then determined which demographic and/or outcome variable(s) accounted for the variance in FAAM ADL and PROMIS physical function scores. FAAM scores correlated strongly with PROMIS physical function (r = 0.70, p hallux valgus. PROMIS tools allow for more-efficient data collection across multiple domains and, moving

  18. Effects of foot and ankle devices on balance, gait and falls in adults with sensory perception loss: a systematic review.

    Science.gov (United States)

    Paton, Joanne; Hatton, Anna L; Rome, Keith; Kent, Bridie

    2016-12-01

    Foot and ankle devices are being developed as a method of preventing people with sensory perception loss sustaining a fall. Such devices are believed to work by reducing the likelihood of a fall by improving the balance and gait of the user. The objective of the review was to evaluate the effectiveness of foot and ankle devices for the prevention of falls and the improvement of balance and gait in adults with sensory perception loss. Participants were community-dwelling adults with bilateral pathological sensory perception loss. The current review evaluated any foot or ankle device, including but not restricted to, all types of footwear (therapeutic and retail), insoles (customized and prefabricated) and ankle-foot orthoses (AFOs). In the absence of randomized controlled trials (RCT), the review considered experimental and epidemiological study designs, except case series, individual case reports and descriptive cross-sectional studies. The primary outcome was number of falls. Secondary outcome measures were clinical or laboratory measures of balance or gait. A search for published and unpublished literature from inception to March 2015 written in the English language was conducted across a number of major electronic databases. A three-step search strategy was developed using MeSH terminology and keywords to ensure all that relevant materials are captured. Methodological quality of included studies was assessed by two reviewers, who appraised each study independently, using standardized Joanna Briggs Institute (JBI) critical appraisal tools. Quantitative data were extracted from the studies that were identified as meeting the criteria for methodological quality using the standardized JBI data extraction tools. Due to the heterogeneity of populations, interventions and outcome measures, meta-analyses were not possible and results are presented in narrative form. Nine trials (from 10 papers) involving 238 participants, (14 with multiple sclerosis and 16 with

  19. Ottawa ankle rules and subjective surgeon perception to evaluate ...

    African Journals Online (AJOL)

    Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of ...

  20. Ottawa Ankle Rules and Subjective Surgeon Perception to Evaluate ...

    African Journals Online (AJOL)

    Abstract. Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the ...

  1. The Cumberland Ankle Instability Tool (CAIT) in the Dutch population with and without complaints of ankle instability.

    Science.gov (United States)

    Vuurberg, Gwendolyn; Kluit, Lana; van Dijk, C Niek

    2018-03-01

    To develop a translated Dutch version of the Cumberland Ankle Instability Tool (CAIT) and test its psychometric properties in a Dutch population with foot and ankle complaints. The CAIT was translated into the Dutch language using a forward-backward translation design. Of the 130 subsequent patients visiting the outpatient clinic for foot and ankle complaints who were asked to fill out a questionnaire containing the CAIT, the Foot and Ankle Outcome Score (FAOS), and the numeric rating scale (NRS) pain, 98 completed the questionnaire. After a 1-week period, patients were asked to fill out a second questionnaire online containing the CAIT and NRS pain. This second questionnaire was completed by 70 patients. With these data, the construct validity, test-retest reliability, internal consistency, measurement error, and ceiling and floor effects were assessed. Additionally, a cut-off value to discriminate between stable and unstable ankles, in patients with ankle complaints, was calculated. Construct validity showed moderate correlations between the CAIT and FAOS subscales (Spearman's correlation coefficient (SCC) = 0.36-0.43), and the NRS pain (SCC = -0.55). The cut-off value was found at 11.5 points of the total CAIT score (range 0-30). Test-retest reliability showed to be excellent with an intraclass correlation coefficient of 0.94. Internal consistency was high (Cronbach's α = 0.86). No ceiling or floor effects were detected. Based on the results, the Dutch version of the CAIT is a valid and reliable questionnaire to assess ankle instability in the Dutch population and is able to differentiate between a functionally unstable and stable ankle. The tool is the first suitable tool to objectify the severity of ankle instability specific complaints and assess change in the Dutch population. Level of evidence II.

  2. Clinical examination results in individuals with functional ankle instability and ankle-sprain copers.

    Science.gov (United States)

    Wright, Cynthia J; Arnold, Brent L; Ross, Scott E; Ketchum, Jessica; Ericksen, Jeffrey; Pidcoe, Peter

    2013-01-01

    Why some individuals with ankle sprains develop functional ankle instability and others do not (ie, copers) is unknown. Current understanding of the clinical profile of copers is limited. To contrast individuals with functional ankle instability (FAI), copers, and uninjured individuals on both self-reported variables and clinical examination findings. Cross-sectional study. Sports medicine research laboratory. Participants consisted of 23 individuals with a history of 1 or more ankle sprains and at least 2 episodes of giving way in the past year (FAI: Cumberland Ankle Instability Tool [CAIT] score = 20.52 ± 2.94, episodes of giving way = 5.8 ± 8.4 per month), 23 individuals with a history of a single ankle sprain and no subsequent episodes of instability (copers: CAIT score = 27.74 ± 1.69), and 23 individuals with no history of ankle sprain and no instability (uninjured: CAIT score = 28.78 ± 1.78). Self-reported disability was recorded using the CAIT and Foot and Ankle Ability Measure for Activities of Daily Living and for Sports. On clinical examination, ligamentous laxity and tenderness, range of motion (ROM), and pain at end ROM were recorded. Questionnaire scores for the CAIT, Foot and Ankle Ability Measure for Activities of Daily Living and for Sports, ankle inversion and anterior drawer laxity scores, pain with palpation of the lateral ligaments, ankle ROM, and pain at end ROM. Individuals with FAI had greater self-reported disability for all measures (P < .05). On clinical examination, individuals with FAI were more likely to have greater talar tilt laxity, pain with inversion, and limited sagittal-plane ROM than copers (P < .05). Differences in both self-reported disability and clinical examination variables distinguished individuals with FAI from copers at least 1 year after injury. Whether the deficits could be detected immediately postinjury to prospectively identify potential copers is unknown.

  3. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    Science.gov (United States)

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  4. Effect of Providing Ankle-Foot Orthoses in Patients with Acute and Subacute Stroke: a Randomized Controlled Trial : A randomized controlled trial

    NARCIS (Netherlands)

    Nikamp-Simons, Corien D.M.; Buurke, Jaap H.; Van Der Palen, Job; Hermens, Hermie J.; Rietman, Johan S.; Ibánez, Jaime; Azorín, José María; Akay, Metin; Pons, José Luis

    2017-01-01

    Despite frequent application of ankle-foot orthoses (AFOs), little scientific evidence is available to guide AFO-provision early after stroke. A randomized controlled trial was conducted to study the effects of AFO-provision in (sub-) acute stroke patients. Primary aim: to study effects of the

  5. Displacement of popliteal sciatic nerve catheters after major foot and ankle surgery: a randomized controlled double-blinded magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Hauritz, R W; Pedersen, E M; Linde, F S

    2016-01-01

    Popliteal sciatic nerve catheters (PSNCs) are associated with a high frequency of displacement. We aimed to estimate the frequency of catheter displacement after 48 h with magnetic resonance imaging (MRI) in patients with PSNCs after major foot and ankle surgery randomized to catheter insertion e...

  6. Footwear interventions for foot pain, function, impairment and disability for people with foot and ankle arthritis: A literature review.

    Science.gov (United States)

    Frecklington, Mike; Dalbeth, Nicola; McNair, Peter; Gow, Peter; Williams, Anita; Carroll, Matthew; Rome, Keith

    2017-11-03

    To conduct a literature review on the effectiveness of footwear on foot pain, function, impairment and disability for people with foot and ankle arthritis. A search of the electronic databases Scopus, Medline, CINAHL, SportDiscus and the Cochrane Library was undertaken in September 2017. The key inclusion criteria were studies reporting on findings of footwear interventions for people with arthritis with foot pain, function, impairment and/or disability. The Quality Index Tool was used to assess the methodological quality of studies included in the qualitative synthesis. The methodological variation of the included studies was assessed to determine the suitability of meta-analysis and the grading of recommendations, assessment, development and evaluation (GRADE) system. Between and within group effect sizes were calculated using Cohen's d. 1440 studies were identified for screening with 11 studies included in the review. Mean (range) quality scores were 67% (39-96%). The majority of studies investigated rheumatoid arthritis (n = 7), but also included gout (n = 2), and 1st metatarsophalangeal joint osteoarthritis (n = 2). Meta-analysis and GRADE assessment were not deemed appropriated based on methodological variation. Footwear interventions included off-the-shelf footwear, therapeutic footwear and therapeutic footwear with foot orthoses. Key footwear characteristics included cushioning and a wide toe box for rheumatoid arthritis; cushioning, midsole stability and a rocker-sole for gout; and a rocker-sole for 1st metatarsophalangeal joint osteoarthritis. Between group effect sizes for outcomes ranged from 0.01 to 1.26. Footwear interventions were associated with reductions in foot pain, impairment and disability for people with rheumatoid arthritis. Between group differences were more likely to be observed in studies with shorter follow-up periods in people with rheumatoid arthritis (12 weeks). Footwear interventions improved foot pain, function and disability in

  7. Obese older adults suffer foot pain and foot-related functional limitation.

    Science.gov (United States)

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. The Comparison of Ankle Muscles Isometric Strength and Foot Eversion in Male Individuals with Patellofemoral Pain Syndrome and Healthy Peers: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    V. Mazloum

    2017-01-01

    Full Text Available Introduction: Proximal and distal factors to the knee joint can be assumed as etiology of patellofemoral pain syndrome (PFPS. Some distal factors include excessive foot pronation and medial tibia torsion. The purpose of this study was to compare ankle musculature strength and rearfoot eversion in individuals with and without PFPS. Methods: Forty males (20 healthy and 20 patients voluntarily participated in this case-control study. Isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion range of motion (ROM, and Navicular depression were respectively evaluated by handheld dynamometer, goniometry, and Navicular Drop Test by a single examiner for both groups. To analyze the measurements, Independent Samples t test for parametric data and Mann-Whitney U test for nonparametric data at P0.05. Furthermore, no significant differences were observed between patients with PFPS and healthy counterparts regarding rearfoot eversion and Navicular depression (P>0.05. Conclusion: It can be deduced that isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion ROM, and foot pronation are not difference in patients with PFPS and healthy persons. 

  10. The effectiveness of foot orthotics in improving postural control in individuals with chronic ankle instability: a critically appraised topic.

    Science.gov (United States)

    Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C

    2015-02-01

    Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.

  11. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Baumbach Sebastian Felix

    2013-01-01

    Full Text Available Abstract Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various

  12. Design and Evaluation of a New Type of Knee Orthosis to Align the Mediolateral Angle of the Knee Joint with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Amir Esrafilian

    2012-01-01

    Full Text Available Background. Osteoarthritis (OA is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05. Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.

  13. Bilateral Arthrodesis of the Ankle Joint: Self-Reported Outcomes in 35 Patients From the Swedish Ankle Registry.

    Science.gov (United States)

    Henricson, Anders; Kamrad, Ilka; Rosengren, Björn; Carlsson, Åke

    Bilateral ankle arthrodesis is seldom performed, and results concerning the outcome and satisfaction can only sparsely be found in published studies. We analyzed the data from 35 patients who had undergone bilateral ankle arthrodesis in the Swedish Ankle Registry using patient-reported generic and region-specific outcome measures. Of 36 talocrural arthrodeses and 34 tibio-talar-calcaneal arthrodeses, 6 ankles (9%) had undergone repeat arthrodesis because of nonunion. After a mean follow-up period of 47 ± 5 (range 12 to 194) months, the mean scores were as follows: self-reported foot and ankle score, 33 ± 10 (range 4 to 48); the EuroQol Group's EQ-5D ™ score, 0.67 ± 0.28 (range -0.11 to 1), the EuroQol Group's visual analog scale score, 70 ± 19 (range 20 to 95), 36-item Short Form Health Survey (SF-36) physical domain, 39 ± 11 (range 16 to 58); and SF-36 mental domain, 54 ± 14 (range 17 to 71). Patients with rheumatoid arthritis seemed to have similar self-reported foot and ankle scores but possibly lower EQ-5D ™ and SF-36 scores. Those with talocrural arthrodeses scored higher than did those with tibio-talar-calcaneal arthrodeses on the EQ5D ™ and SF-36 questionnaires (p = .03 and p = .04). In 64 of 70 ankles (91%), the patients were satisfied or very satisfied with the outcome. In conclusion, we consider bilateral ankle arthrodesis to be a reasonable treatment for symptomatic hindfoot arthritis, with high postoperative mid-term satisfaction and satisfactory scores on the patient-reported generic and region-specific outcome measures, when no other treatment option is available. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. In-vivo analysis of ankle joint movement for patient-specific kinematic characterization.

    Science.gov (United States)

    Ferraresi, Carlo; De Benedictis, Carlo; Franco, Walter; Maffiodo, Daniela; Leardini, Alberto

    2017-09-01

    In this article, a method for the experimental in-vivo characterization of the ankle kinematics is proposed. The method is meant to improve personalization of various ankle joint treatments, such as surgical decision-making or design and application of an orthosis, possibly to increase their effectiveness. This characterization in fact would make the treatments more compatible with the specific patient's joint physiological conditions. This article describes the experimental procedure and the analytical method adopted, based on the instantaneous and mean helical axis theories. The results obtained in this experimental analysis reveal that more accurate techniques are necessary for a robust in-vivo assessment of the tibio-talar axis of rotation.

  15. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.

    Science.gov (United States)

    Wezenberg, Daphne; Cutti, Andrea G; Bruno, Antonino; Houdijk, Han

    2014-01-01

    Decreased push-off power by the prosthetic foot and inadequate roll-over shape of the foot have been shown to increase the energy dissipated during the step-to-step transition in human walking. The aim of this study was to determine whether energy storage and return (ESAR) feet are able to reduce the mechanical energy dissipated during the step-to-step transition. Fifteen males with a unilateral lower-limb amputation walked with their prescribed ESAR foot (Vari-Flex, Ossur; Reykjavik, Iceland) and with a solid-ankle cushioned heel foot (SACH) (1D10, Ottobock; Duderstadt, Germany), while ground reaction forces and kinematics were recorded. The positive mechanical work on the center of mass performed by the trailing prosthetic limb was larger (33%, p = 0.01) and the negative work performed by the leading intact limb was lower (13%, p = 0.04) when walking with the ESAR foot compared with the SACH foot. The reduced step-to-step transition cost coincided with a higher mechanical push-off power generated by the ESAR foot and an extended forward progression of the center of pressure under the prosthetic ESAR foot. Results can explain the proposed improvement in walking economy with this kind of energy storing and return prosthetic foot.

  16. Leonardo da Vinci's foot: historical evidence of concept.

    Science.gov (United States)

    Jastifer, James R; Toledo-Pereyra, Luis H

    2012-10-01

    Leonardo da Vinci (1452-1519), world-renowned Italian renaissance master, is known for his contributions to, and broad interests in science and art. The objective of this work is to demonstrate the extent of his science by applying the use of his concepts to current models of foot and ankle mechanics. The art and science of Leonardo Da Vinci were extensively analyzed by reviewing his original drawings and hand written notebooks as well as their English translation. Current medical journals including the topics of foot, ankle, and biomechanics were reviewed for modern evidence and application of his concepts. The library of Michigan State University and the electronic library of the Royal Library at Windsor Castle were extensively utilized. From the depths of Santa Maria Nuova Hospital in Florence and Santo Spirito Hospital in Rome, through his commentary and anatomical drawings of around 30 cadaver dissections he performed, Leonardo da Vinci expressed his concept of foot and ankle anatomy and mechanics. He laid forth concepts, which vary little from current theories including those of proportion, statics and joint stability, sesamoid biomechanics, and structural support of the foot. Leonardo da Vinci, by combining an interest in anatomy and a gift of genius and artistic ability laid a foundation of foot and ankle anatomy and mechanics that have been applied in modern clinical sciences. Leonardo in this way made important contributions to the practice of foot and ankle orthopedics.

  17. What Causes Ankle Swelling During Pregnancy - And What Can I do About it?

    Science.gov (United States)

    ... the ankles or calves. Some research suggests that foot massage and reflexology, which involves applying pressure to certain areas of the feet, hands and ears, might help decrease foot and ankle swelling during pregnancy. Also, swelling doesn' ...

  18. Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing asymmetry and the contribution of each lower limb to balance control

    NARCIS (Netherlands)

    Nikamp-Simons, Corien Diana Maria; van Asseldonk, Edwin H.F.; van der Kooij, Herman; Geurts, Alexander C.H.; Buurke, Jaap

    2009-01-01

    Background Ankle-foot orthoses are often provided to improve walking in stroke patients, although the evidence of effects on walking and balance control is still inconsistent. This could be caused by a lack of insight into the influence of orthoses on the underlying impairments. These impairments

  19. High Variability of Observed Weight Bearing During Standing Foot and Ankle Radiographs.

    Science.gov (United States)

    Miller, Christopher P; Ghorbanhoseini, Mohammad; Ehrlichman, Lauren K; Walley, Kempland C; Ghaheri, Azadeh; Kwon, John Y

    2017-06-01

    Weight-bearing radiographs are a critical component of evaluating foot and ankle pathology. An underlying assumption is that patients are placing 50% of their body weight on the affected foot during image acquisition. The accuracy of weight bearing during radiographs is unknown and, presumably, variable, which may result in uncertain ability of the resultant radiographs to appropriately portray the pathology of interest. Fifty subjects were tested. The percentage body weight through the foot of interest was measured at the moment of radiographic image acquisition. The subject was then instructed to bear "half [their] weight" prior to the next radiograph. The percentage body weight was calculated and compared to ideal 50% weight bearing. The mean percentage body weight in trial 1 and 2 was 45.7% ± 3.2% ( P = .012 compared to the 50% mark) and 49.2% ± 2.4%, respectively ( P = .428 compared to 50%). The mean absolute difference in percentage weight bearing compared to 50% in trials 1 and 2 was 9.3% ± 2.3% and 5.8% ± 1.8%, respectively ( P = .005). For trial 1, 18/50 subjects were within the "ideal" (45%-55%) range for weight bearing compared to 32/50 on trial 2 ( P = .005). In trial 1, 24/50 subjects had "appropriate" (>45%) weight bearing compared to 39/50 on trial 2 ( P = .002). There was substantial variability in the weight applied during radiograph acquisition. This study raises questions regarding the assumptions, reliability, and interpretation when evaluating weight-bearing radiographs. Level III, comparative study.

  20. Ankle and Midfoot Power During Walking and Stair Ascent in Healthy Adults.

    Science.gov (United States)

    DiLiberto, Frank E; Nawoczenski, Deborah A; Houck, Jeff

    2018-02-27

    Ankle power dominates forward propulsion of gait, but midfoot power generation is also important for successful push off. However, it is unclear if midfoot power generation increases or stays the same in response to propulsive activities that induce larger external loads and require greater ankle power. The purpose of this study was to examine ankle and midfoot power in healthy adults during progressively more demanding functional tasks. Multi-segment foot motion (tibia, calcaneus, forefoot) and ground reaction forces were recorded as participants (N=12) walked, ascended a standard step, and ascended a high step. Ankle and midfoot positive peak power and total power, and the proportion of midfoot to ankle total power were calculated. One-way repeated measures ANOVAs were conducted to evaluate differences across tasks. Main effects were found for ankle and midfoot peak and total powers (all p power (p = .331). Ankle and midfoot power significantly increased across each task. Midfoot power increased in proportion to ankle power and in congruence to the external load of a task. Study findings may serve to inform multi-segment foot modeling applications and internal mechanistic theories of normal and pathological foot function.

  1. 99mTc-HDP SPECT-CT Aids Localization of Joint Injections in Degenerative Joint Disease of the Foot and Ankle.

    Science.gov (United States)

    Parthipun, Arum; Moser, Joanna; Mok, Wing; Paramithas, Anton; Hamilton, Paul; Sott, Andrea Helene

    2015-08-01

    Pain relating to degenerative joint disease within the foot and ankle can be difficult to localize with clinical examination alone due to the complex anatomy of the joints. The aim of this study was to determine whether single-photon emission computed tomography combined with conventional computed tomography (SPECT-CT) could be used to localize the site of degenerative joint disease for intra-articular injection and thereby improve the clinical success of the procedure. A prospective study was performed involving 203 patients who had undergone triple-phase (99m)Tc-hydroxymethylene diphosphonate bone scans with SPECT-CT of the foot and ankle for degenerative joint disease. Fifty-two patients went on to have joint injections for degenerative joint disease, with clinical follow-up. Correlation with the clinical diagnosis and the outcome of intra-articular injections with 0.5% bupivacaine and 80 mg of Depo-Medrone was performed. A successful outcome was determined by an improvement in the visual analog pain score of at least 50%. In 19 (37%) patients, the site of degenerative joint disease determined by SPECT-CT differed from the initial clinical assessment and resulted in a change in management. Overall, 46 (88%) patients showed an improvement in symptoms. The study demonstrated a high clinical success rate for SPECT-CT-guided joint injections. The technique was useful in localizing degenerative joint disease of the ankle, hindfoot, and midfoot as an adjunct to clinical examination. Level IV, case series. © The Author(s) 2015.

  2. Comparison of SPECT/CT and MRI in diagnosing symptomatic lesions in ankle and foot pain patients: diagnostic performance and relation to lesion type.

    Science.gov (United States)

    Ha, Seunggyun; Hong, Sung Hwan; Paeng, Jin Chul; Lee, Dong Yeon; Cheon, Gi Jeong; Arya, Amitabh; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    The purpose of this study was to compare the diagnostic performance of SPECT/CT and MRI in patients with ankle and foot pain, with regard to the lesion types. Fifty consecutive patients with ankle and foot pain, who underwent 99mTc-MDP SPECT/CT and MRI, were retrospectively enrolled in this study. Symptomatic lesions were determined based on clinical examination and response to treatment. On MRI and SPECT/CT, detected lesions were classified as bone, ligament/tendon, and joint lesions. Uptake on SPECT/CT was assessed using a 4-grade system. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of SPECT/CT and MRI were evaluated in all detected lesions and each lesion type. Diagnostic value of uptake grade was analyzed using receiver-operating characteristics (ROC) curve analysis, and diagnostic performance was compared using Chi-square or McNemar tests. In overall lesions, the sensitivity, PPV and NPV of SPECT/CT for symptomatic lesions were 93%, 56%, 91%, and they were 98%, 48%, 95% for MRI. There was no significant difference between SPECT/CT and MRI. However, the specificity of SPECT/CT was significantly higher than that of MRI (48% versus 24%, P = 0.016). Uptake grade on SPECT/CT was significantly higher in symptomatic lesions (P diagnostic performance for symptomatic lesions in ankle and foot pain patients. SPECT/CT and MRI exhibit different diagnostic specificity in different lesion types. SPECT/CT may be used as a complementary imaging method to MRI for enhancing diagnostic specificity.

  3. Publication rates of poster presentations at the American College of Foot and Ankle Surgeons annual scientific conference between 1999 and 2008.

    Science.gov (United States)

    Abicht, Bradley P; Donnenwerth, Michael P; Borkosky, Sara L; Plovanich, Elizabeth J; Roukis, Thomas S

    2012-01-01

    Publication is the desired end point of scientific research. Ultimately, it is desired that research presented in poster format at a scientific conference will be developed into a report and become published in a peer-reviewed scientific journal. Moreover, poster presentations of research studies are often referenced and, as a result, influence treatment care plans. No data exist for the actual publication rate of podiatric foot and ankle surgery poster presentations. Therefore, the objective of the present study was to determine the actual publication rates of poster presentations at the American College of Foot and Ankle Surgeons (ACFAS) annual scientific conference (ASC) during a 10-year period. Print or electronic media for the ACFAS ASC official program from 1999 to 2008 were obtained. Each year's official program was manually searched for any poster presentation and, when identified, the authors and title were individually searched using Internet-based search engines to determine whether a poster presentation had been followed by publication. Of the 825 posters, 198 (24%) poster presentations were ultimately published in 1 of 32 medical journals within a weighted mean of 17.6 months. Of the 32 journals, 25 (78.1%) represented peer-reviewed journals. The publication rate of poster presentations at the ACFAS ASC was less than that of oral manuscripts presented at the same meeting during the same period and was also less than the orthopedic subspecialty poster presentation publication rates. Therefore, attendees of the ACFAS ASC should be aware that only a few of the posters presented at the ACFAS ASC will be valid because they will not survive the rigors of publication 76% of the time. Additionally, more stringent selection criteria should be used so that the selected poster presentations can ultimately withstand the publication process. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Comparison of plantar pressure distribution in CAD-CAM and prefabricated foot orthoses in patients with flexible flatfeet.

    Science.gov (United States)

    Khodaei, Banafsheh; Saeedi, Hassan; Jalali, Maryam; Farzadi, Maede; Norouzi, Ehsan

    2017-12-01

    The effect of foot orthoses on plantar pressure distribution has been proven by researchers but there are some controversies about advantages of custom-made foot orthoses to less expensive prefabricated foot orthoses. Nineteen flatfeet adults between 18 and 45 participated in this study. CAD-CAM foot orthoses were made for these patients according to their foot scan. Prefabricated foot orthoses were prepared according to their foot size. Plantar pressure, force and contact area were measured using pedar ® -x in-shoe system wearing shoe alone, wearing CAD-CAM foot orthoses and wearing prefabricated foot orthoses. Repeated measures ANOVA model with post-hoc, Bonferroni comparison were used to test differences. CAD-CAM and prefabricated foot orthoses both decreased pressure and force under 2nd, 3-5 metatarsal and heel regions comparing to shoe alone condition. CAD-CAM foot orthosis increased pressure under lateral toe region in comparison to shoe alone and prefabricated foot orthosis. Both foot orthoses increased pressure and contact area in medial midfoot region comparing to shoe alone condition. Increased forces were seen at hallux and lateral toes by prefabricated foot orthoses in comparison with CAD-CAM foot orthoses and control condition, respectively. According to the results, both foot orthoses could decrease the pressure under heel and metatarsal area. It seems that the special design of CAD-CAM foot orthoses could not make great differences in plantar pressure distribution in this sample. Further research is required to determine whether these results are associated with different scan systems or design software. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Initial foot contact and related kinematics affect impact loading rate in running.

    Science.gov (United States)

    Breine, Bastiaan; Malcolm, Philippe; Van Caekenberghe, Ine; Fiers, Pieter; Frederick, Edward C; De Clercq, Dirk

    2017-08-01

    This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s -1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (-10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (-3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = -0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing "strategies" such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.

  6. The V sign in lateral talar process fractures: an experimental study using a foot and ankle model.

    Science.gov (United States)

    Jentzsch, Thorsten; Hasler, Anita; Renner, Niklas; Peterhans, Manuel; Sutter, Reto; Espinosa, Norman; Wirth, Stephan H

    2017-07-03

    Lateral talar process fractures (LTPF) are often missed on conventional radiographs. A positive V sign is an interruption of the contour of the LTP. It has been suggested, but not proven to be pathognomonic for LTPF. The objective was to study whether the V sign is pathognomonic for LTPF and if it can be properly assessed in different ankle positions and varying fracture types. An experimental study was conducted. Two investigators assessed lateral radiographs (n = 108) of a foot and ankle model. The exposure variables were different ankle positions and fracture types. The primary outcome was the correct detection of a V sign. The secondary outcomes were the detection of the V sign depending on ankle position and fracture type as well as the uncertainty. The interobserver agreement on the V sign and type of fracture were fair (κ = 0.35, 95% CI 0.18-0.53, p ankle position and fracture type showed significant better results with increasing inversion (p = 0.035 and p = 0.011) and type B fractures (p = 0.001 and p = 0.013). The V sign may not be pathognomonic and is not recommended as the only modality for the detection of LTPF. It is better visualized with inversion, but does not depend on plantar flexion or internal rotation. It is also better seen in type B fractures. It is difficult to detect and investigator-dependent. It may be helpful in a clinical setting to point into a direction, but a CT scan may be used if in doubt about a LTPF.

  7. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  8. The health economics of ankle and foot sprains and fractures: A systematic review of English-language published papers. Part 1: Overview and critical appraisal.

    Science.gov (United States)

    Bielska, Iwona A; Wang, Xiang; Lee, Raymond; Johnson, Ana P

    2017-07-01

    Ankle and foot sprains and fractures are common injuries affecting many individuals, often requiring considerable and costly medical interventions. The objectives of this systematic review are to collect, assess, and critically appraise the published literature on the health economics of ankle and foot injury (sprain and fracture) treatment. A systematic literature review of Ovid MEDLINE, EMBASE, Cochrane DSR, ACP Journal Club, AMED, Ovid Healthstar, and CINAHL was conducted for English-language studies on the costs of treating ankle and foot sprains and fractures published from January 1980 to December 2014. Two reviewers assessed the articles for study quality and abstracted data. The literature search identified 2047 studies of which 32 were analyzed. A majority of the studies were published in the last decade. A number of the studies did not report full economic information, including the sources of the direct and indirect costs, as suggested in the guidelines. The perspective used in the analysis was missing in numerous studies, as was the follow-up time period of participants. Only five of the studies undertook a sensitivity analysis which is required whenever there are uncertainties regarding cost data. This systematic review found that publications do not consistently report on the components of health economics methodology, which in turn limits the quality of information. Future studies undertaking economic evaluations should ensure that their methods are transparent and understandable so as to yield accurate interpretation for assistance in forthcoming economic evaluations and policy decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The effect of foot orthoses with forefoot cushioning or metatarsal pad on forefoot peak plantar pressure in running

    Directory of Open Access Journals (Sweden)

    Michaela Hähni

    2016-11-01

    Full Text Available Abstract Background Foot orthoses are frequently used in sports for the treatment of overuse complaints with sufficient evidence available for certain foot-related overuse pathologies like plantar fasciitis, rheumatoid arthritis and foot pain (e.g., metatarsalgia. One important aim is to reduce plantar pressure under prominent areas like metatarsal heads. For the forefoot region, mainly two common strategies exist: metatarsal pad (MP and forefoot cushioning (FC. The aim of this study was to evaluate which of these orthosis concepts is superior in reducing plantar pressure in the forefoot during running. Methods Twenty-three (13 female, 10 male asymptomatic runners participated in this cross-sectional experimental trial. Participants ran in a randomised order under the two experimental (MP, FC conditions and a control (C condition on a treadmill (2.78 ms−1 for 2 min, respectively. Plantar pressure was measured with the in-shoe plantar pressure measurement device pedar-x®-System and mean peak pressure averaged from ten steps in the forefoot (primary outcome and total foot was analysed. Insole comfort was measured with the Insole Comfort Index (ICI, sum score 0–100 after each running trial. The primary outcome was tested using the Friedman test (α = 0.05. Secondary outcomes were analysed descriptively (mean ± SD, lower & upper 95%-CI, median and interquartile-range (IQR. Results Peak pressure [kPa] in the forefoot was significantly lower wearing FC (281 ± 80, 95%-CI: 246–315 compared to both C (313 ± 69, 95%-CI: 283–343; p = .003 and MP (315 ± 80, 95%-CI: 280–350; p = .001. No significant difference was found between C and MP (p = .858. Peak pressures under the total foot were: C: 364 ± 82, 95%-CI: 328–399; MP: 357 ± 80, 95%-CI: 326–387; FC: 333 ± 81 95%-CI: 298–368. Median ICI sum scores were: C 50, MP 49, FC 64. Conclusions In contrast to the metatarsal pad orthosis, the

  10. An Overview of Internal and External Fixation Methods for the Diabetic Charcot Foot and Ankle.

    Science.gov (United States)

    Ramanujam, Crystal L; Zgonis, Thomas

    2017-01-01

    Diabetic Charcot neuroarthropathy (DCN) of the foot and ankle is a challenging disease with regard to clinical presentation, pathogenesis, and prognosis. Its surgical management is equally difficult to interpret based on the wide array of options available. In the presence of an ulceration or concomitant osteomyelitis, internal fixation by means of screws, plates, or intramedullary nailing needs to be avoided when feasible. External fixation becomes a great surgical tool when managing DCN with concomitant osteomyelitis. This article describes internal and external fixation methods along with available literature to enlighten surgeons faced with treating this complex condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Validation of the translated Oxford ankle foot questionnaire in 82 Danish children aged between five and 16 years.

    Science.gov (United States)

    Martinkevich, P; Møller-Madsen, B; Gottliebsen, M; Kjeldgaard Pedersen, L; Rahbek, O

    2015-03-01

    We present the validation of a translation into Danish of the Oxford ankle foot questionnaire (OxAFQ). We followed the Isis Pros guidelines for translation and pilot-tested the questionnaire on ten children and their parents. Following modifications we tested the validity of the final questionnaire on 82 children (36 boys and 45 girls) with a mean age of 11.7 years (5.5 to 16.0) and their parents. We tested the reliability (repeatability (test-retest), child-parent agreement, internal consistency), feasibility (response rate, time to completion, floor and ceiling effects) and construct validity. The generic child health questionnaire was used for comparison. We found good internal consistency for the physical and the school and play domains, but lower internal consistency for the emotional domain. Overall, good repeatability was found within children and parents as well as agreement between children and parents. The OxAFQ was fast and easy to complete, but we observed a tendency towards ceiling effects in the school and play and emotional domains. To our knowledge this is the first independent validation of the OxAFQ in any language. We found it valid and feasible for use in the clinic to assess the impact on children's lives of foot and/or ankle disorders. It is a valuable research tool. ©2015 The British Editorial Society of Bone & Joint Surgery.

  12. Driving a modified car: a simple but unexploited adjunct in the management of patients with chronic right sided foot and ankle pain.

    Science.gov (United States)

    Jones, Carl; Abbassian, Ali; Trompeter, Alex; Solan, Matthew

    2010-12-01

    Driving is important in maintaining independence. Limb pain can significantly limit this ability. Automatic vehicles can restore independence to people with left lower or upper limb disability but those with right-sided pathology are disadvantaged in this respect. This is despite the fact that numerous centers across the UK specialize in modifying automatic cars such that they can be driven solely with the use of the left foot. The knowledge of this amongst patients and health professionals is lacking. In this study we aim to confirm this fact and discuss the legal and practical aspects of driving a modified car. We used patients who had undergone right-sided ankle and hind foot fusions or ankle replacements, as we believed they would have had a long period of right-sided leg pain that may have affected their driving ability. A consecutive series was identified from operative records over a 2 year period and patients contacted by telephone. We identified 33 patients, of these 22 were available for telephonic interview. The average duration of right leg disability was 7.5 years. All responders had seen at least two healthcare professionals but car modification had never been discussed at any stage. Only 3 were aware of such modifications and of these all had been informed by sources outside the health service. The availability of right to left modification of automatic cars is not widely known by patients and healthcare professionals alike with potential benefits of this simple adjunct not being exploited. More needs to be done to generate awareness of its existence as it may have a significant impact on patient independence. Copyright © 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  13. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    OpenAIRE

    Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2015-01-01

    Background Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from pus...

  14. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients.

    Science.gov (United States)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans

    2007-10-01

    To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.

  15. Diagnostic accuracy of clinical decision rules to exclude fractures in acute ankle injuries : systematic review and meta-analysis

    NARCIS (Netherlands)

    Barelds, Ingrid; Krijnen, Wim P; van de Leur, Johannes P; van der Schans, Cees P; Goddard, Robert J

    BACKGROUND: Ankle decision rules are developed to expedite patient care and reduce the number of radiographs of the ankle and foot. Currently, only three systematic reviews have been conducted on the accuracy of the Ottawa Ankle and Foot Rules (OAFR) in adults and children. However, no systematic

  16. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  17. Spontaneous resolution of posterior ankle joint loose bodies after total ankle replacement: A case report.

    Science.gov (United States)

    Lee, Raymond P; Cheng, Sally H S

    2017-06-01

    Late stage ankle osteoarthritis often presents with debilitating pain. It is common to find osteophytes and loose body formation around the joint. Total ankle arthroplasty can preserve joint mobility and pain relieve for such patient. However, when trying to remove the osteophytes and loose bodies at the posterior ankle joint, there is risk of damaging posterior structures such as the neurovascular bundle during the procedure. We are presenting a case where the posterior loose bodies remained untouched during the operation, and patient showed spontaneous resolution of the lesions with time. Patient enjoyed good function outcome after the surgery. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  18. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    Science.gov (United States)

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ankle Fractures: The Operative Outcome

    Directory of Open Access Journals (Sweden)

    Ahmad Hafiz Z

    2011-03-01

    Full Text Available Ankle fractures are commonly seen in orthopaedic practice. This retrospective study of patients with ankle fractures who underwent surgical treatment in our institution from January 2000 to December 2003 was undertaken to analyze the common causes and patterns of ankle fractures; and the functional outcome of operative treatment for these fractures. Eighty patients were identified and reviewed. There were 65 male (81.3% and 15 female patients (18.7% with age ranging from 13 to 71 years old (mean, 32.3y. Common causes of ankle fractures were trauma (especially motor vehicle accidents, sports injuries and the osteoporotic bones in the elderly. Weber C (64.0% was the most common pattern of fracture at presentation. The most common operative treatment for ankle fractures was open reduction and internal fixation (73 patients, 91.2%. Excellent and good outcomes were achieved in 93.8% of cases when measured using the Olerud and Molander scoring system for foot and ankle. In conclusion, operative treatment for ankle fractures restores sufficient stability and allowed mobility of the ankle joint.

  20. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    Science.gov (United States)

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and

  1. Balance and walking involvement in facioscapulohumeral dystrophy: a pilot study on the effects of custom lower limb orthoses.

    Science.gov (United States)

    Aprile, I; Bordieri, C; Gilardi, A; Lainieri Milazzo, M; Russo, G; De Santis, F; Frusciante, R; Iannaccone, E; Erra, C; Ricci, E; Padua, L

    2013-04-01

    Autosomal dominant facioscapulohumeral dystrophy (FSHD), the third most common muscular dystrophy, is characterised by asymmetric and highly variable muscle weakness. In FSHD patients, the coupling of the ankle muscles impairment with the knee, hip and abdominal muscles impairment, causes complex alterations of balance and walking with deterioration of quality of life (QoL). The aim of this pilot study is to evaluate the effects of custom orthoses (foot orthosis-FO and ankle foot orthosis-AFO) on balance, walking and QoL of FSHD patients through a multidimensional approach. Pilot study. Outpatient Rehabilitation Department of Don Gnocchi Foundation. Fifteen patients with facioscapulohumeral muscular dystrophy were studied. On 15 FSHD patients clinical evaluation (Manual Muscle Test-MMT, Clinical Severity Score), performance tests (10 meter Walking test-10mWT and 2 minute Walking Test-2minWT), instrumental assessment (stabilometric evaluation), disability (Rivermead Mobility Index- RMI, Berg Balance Scale-BBS) and patient-oriented (Medical Outcome Study 36-item Short Form-SF-36, North American Spine Society-NASS and Visual Analogue Scale-VAS) measures were performed. Patients were evaluated first, wearing their shoes and then wearing their shoes plus orthoses. This evaluation was performed 1 month after wearing the orthoses. The shoes plus orthoses evaluation, performed after one month in which the patients daily wore the custom lower limb orthoses, showed a significant improvement of walking performance (10-mWT pstudy shows that in FSHD patients' custom lower limb orthoses (foot-orthoses and ankle-foot-orthoses); evaluated by using a multidimensional approach, improve walking, balance and QoL. These preliminary results suggest that custom lower limb orthoses could reduce the risk of falling with a positive effect on our patients' safety. Our results should encourage the scientific community to do efficacy study on this hot topic.

  2. Cosmetic Foot Surgery: Fashion's Pandora's Box

    Science.gov (United States)

    ... Fashion’s Pandora’s Box? A A A | Print | Share Cosmetic Foot Surgery: Fashion’s Pandora’s Box? Foot and ankle ... extreme and imprudent as it may sound, the cosmetic surgery craze is not just for faces anymore— ...

  3. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  4. Assessment and management of patients with ankle injuries.

    Science.gov (United States)

    Walker, Jennie

    2014-08-19

    Foot and ankle injuries are common and can have a significant effect on an individual's daily activities. Nurses have an important role in the assessment, management, ongoing care and support of patients with ankle injuries. An understanding of the anatomy and physiology of the ankle enables nurses to identify significant injuries, which may result in serious complications, and communicate effectively with the multidisciplinary team to improve patient care and outcomes.

  5. Ball-and-socket ankle joint

    International Nuclear Information System (INIS)

    Pistoia, F.; Ozonoff, M.B.; Wintz, P.; Hartford Hospital, CT

    1987-01-01

    The ball-and-socket ankle joint is a malformation of the ankle in which the articular surface of the talus is hemispherical in both the anteroposterior and lateral projections and has a congruent, concave tibial articular surface. Fourteen patients with this condition were identified retrospectively. Thirteen patients were thought to have the congenital type of ball-and-socket ankle joint which in many was associated with tarsal coalition, short limb, and ray fusion and deletion anomalies. One case of the acquired type, demonstrating less geometric rounding of the talar margins, was seen in a patient with myelomeningocele, probably resulting from sensory and motor deficits. Although the exact etiology of the congenital type is unknown, its association with other malformations suggests that the ball-and-socket ankle joint results from an overall maldevelopment of the ankle and foot. (orig.)

  6. Single-blind trial addressing the differential effects of two reflexology techniques versus rest, on ankle and foot oedema in late pregnancy.

    Science.gov (United States)

    Mollart, L

    2003-11-01

    This single-blind randomised controlled trial explored the differential effects of two different foot reflexology techniques with a period of rest on oedema-relieving effects and symptom relief in healthy pregnant women with foot oedema. Fifty-five women in the third trimester were randomly assigned to one of the three groups: a period of rest, 'relaxing' reflexology techniques or a specific 'lymphatic' reflexology technique for 15 min with pre- and post-therapy ankle and foot circumference measurements and participant questionnaire. There was no statistically significant difference in the circumference measurements between the three groups; however, the lymphatic technique reflexology group mean circumference measurements were all decreased. A significant reduction in the women's symptom mean measurements in all groups (preflexology techniques, relaxing reflexology techniques and a period of rest had a non-significant oedema-relieving effect. From the women's viewpoint, lymphatic reflexology was the preferred therapy with significant increase in symptom relief.

  7. Evidence of validity for the Japanese version of the foot and ankle ability measure.

    Science.gov (United States)

    Uematsu, Daisuke; Suzuki, Hidetomo; Sasaki, Shogo; Nagano, Yasuharu; Shinozuka, Nobuyuki; Sunagawa, Norihiko; Fukubayashi, Toru

    2015-01-01

    The Foot and Ankle Ability Measure (FAAM) is a valid, reliable, and self-reported outcome instrument for the foot and ankle region. To provide evidence for translation, cross-cultural adaptation, validity, and reliability of the Japanese version of the FAAM (FAAM-J). Cross-sectional study. Collegiate athletic training/sports medicine clinical setting. Eighty-three collegiate athletes. All participants completed the Activities of Daily Living and Sports subscales of the FAAM-J and the Physical Functioning and Mental Health subscales of the Japanese version of the Short Form-36v2 (SF-36). Also, 19 participants (23%) whose conditions were expected to be stable completed another FAAM-J 2 to 6 days later for test-retest reliability. We analyzed the scores of those subscales for convergent and divergent validity, internal consistency, and test-retest reliability. The Activities of Daily Living and Sports subscales of the FAAM-J had correlation coefficients of 0.86 and 0.75, respectively, with the Physical Functioning section of the SF-36 for convergent validity. For divergent validity, the correlation coefficients with Mental Health of the SF-36 were 0.29 and 0.27 for each subscale, respectively. Cronbach α for internal consistency was 0.99 for the Activities of Daily Living and 0.98 for the Sports subscale. A 95% confidence interval with a single measure was ±8.1 and ±14.0 points for each subscale. The test-retest reliability measures revealed intraclass correlation coefficient values of 0.87 for the Activities of Daily Living and 0.91 for the Sports subscales with minimal detectable changes of ±6.8 and ±13.7 for the respective subscales. The FAAM was successfully translated for a Japanese version, and the FAAM-J was adapted cross-culturally. Thus, the FAAM-J can be used as a self-reported outcome measure for Japanese-speaking individuals; however, the scores must be interpreted with caution, especially when applied to different populations and other types of

  8. Comparison of Suture-Based Anchors and Traditional Bioabsorbable Anchors in Foot and Ankle Surgery.

    Science.gov (United States)

    Hembree, W Chad; Tsai, Michael A; Parks, Brent G; Miller, Stuart D

    We compared the pullout strength of a suture-based anchor versus a bioabsorbable anchor in the distal fibula and calcaneus and evaluated the relationship between bone mineral density and peak load to failure. Eight paired cadaveric specimens underwent a modified Broström procedure and Achilles tendon reattachment. The fibula and calcaneus in the paired specimens received either a suture-based anchor or a bioabsorbable suture anchor. The fibular and calcaneal specimens were loaded to failure, defined as a substantial decrease in the applied load or pullout from the bone. In the fibula, the peak load to failure was significantly greater with the suture-based versus the bioabsorbable anchors (133.3 ± 41.8 N versus 76.8 ± 35.3 N; p = .002). No significant difference in load with 5 mm of displacement was found between the 2 groups. In the calcaneus, no difference in the peak load to failure was found between the 2 groups, and the peak load to failure with 5 mm of displacement was significantly lower with the suture-based than with the bioabsorbable anchors (52.2 ± 9.8 N versus 75.9 ± 12.4 N; p = .003). Bone mineral density and peak load to failure were significantly correlated in the fibula with the suture-based anchor. An innovative suture-based anchor had a greater peak load to failure compared with a bioabsorbable anchor in the fibula. In the calcaneus, the load at 5 mm of displacement was significantly lower in the suture-based than in the bioabsorbable group. The correlation findings might indicate the need for a cortical bone shelf with the suture-based anchor. Suture-based anchors could be a viable alternative to bioabsorbable anchors for certain foot and ankle procedures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury.

    Science.gov (United States)

    Maleki, Maryam; Badri, Samaneh; Shayestehepour, Hamed; Arazpour, Mokhtar; Farahmand, Farzam; Mousavi, Mohamad Ebrahim; Abdolahi, Ehsan; Farkhondeh, Hasan; Head, John S; Golchin, Navid; Mardani, Mohammad Ali

    2018-03-12

    The aim of this study was to assess the performance of an original powered foot clearance creator (PFCC) mechanism worn in conjunction with an isocentric reciprocal gait orthosis (IRGO) and evaluate its effect on trunk compensatory movements and spatiotemporal parameters in nine healthy subjects. A PFCC motorized mechanism was designed that incorporated twin sole plates, the movements of which enabled increased toe to floor clearance during swing phase. A prototype was constructed in combination with an IRGO, and hence was re-named as an IRGO-PFCC orthosis. The effects of IRGO-PFCC usage on the spatiotemporal parameters and trunk compensatory movements during walking were then analyzed under two conditions, firstly with the PFCC 'active' i.e., with the motorized device functioning, and secondly inactive, where floor clearance was standard. Ambulating with IRGO-PFCC orthosis resulted in reduction in the spatiotemporal parameters of gait (speed of walking, cadence and stride length) in nine healthy subjects. Walking with IRGO-PFCC orthosis led to significant differences in lateral (p = .007) and vertical (p = .008) trunk compensatory movements. In other words, through using IRGO-PFCC orthosis, the lateral and vertical trunk compensatory movements decreased by 51.32% and 42.7%, respectively. An adapted PFCC mechanism, with a relatively small motor and power supply could effectively increase toe to floor clearance during swing phase and thereby decrease trunk compensatory motions and potentially improve energy consumption. Implications for rehabilitations •The High rejection rates of reciprocal gait orthoses are related to the increasing in energy expenditure and burden loads on the upper limb joints during walking following trunk compensatory movements.•An original powered foot clearance creator mechanism was designed and constructed to assisting floor clearance capability and reduce trunk compensatory movements in subjects with spinal cord injury during

  10. [Therapeutic uses of ortho-podiatry in the diabetic foot].

    Science.gov (United States)

    López Herranz, Marta; Bas Caro, Pedro; Carabantes Alarcón, David; Padín Galea, José Manuel

    2011-10-01

    The neuropathic diabetic foot ulcers are a major public health problem given by different situations: the chronic nature of the injury, a low response to treatment, relapse rates, etc. Therefore pose a serious personal, family health and social, with a significant expenditure of human and material resources. Treatment requires a multidisciplinary team which integrates a podiatrist as part of it. He will address especially the pre-ulcers, and have a singular care in diabetic foot by treatment with orthosis. Since your question can be seen changes in the feet of diabetic patients could be treated on an outpatient basis.

  11. 脑性瘫痪患儿踝足矫形器配戴前后对运动功能的量化评价%Quantitative assessment of motor function on children with cerebral palsy before and after wearing ankle foot orthopedic instruments

    Institute of Scientific and Technical Information of China (English)

    李润洁

    2002-01-01

    Objective To assess motor function quantitatively on children with cerebral palsy before and after wearing ankle foot orthopedic instruments.Method Ankle foot orthopedic instruments were made by Dalian Prosthesis Factory.Children' motor function was assessed with self made quantitative assessment scale according to the forth,fifth function area of motor assessment scale of children with cerebral palsy after one week of wearing orthopedic instruments. Result In all 23 patients, orthopedic instruments proved effective in controlling leg muscular tension,correcting equines,genu recurvatum,talips valgus and talipes varus,keeping erect posture and modifying gait.Motor function assessed show significant difference before and one week after wearing orthopedic instruments (P< 0.001).Conclusion Ankle foot orthopedic instruments play a positive role in improving motor function of lower extremity in cerebral palsy patients.

  12. Operative Fixation Options for Elective and Diabetic Ankle Arthrodesis.

    Science.gov (United States)

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2017-07-01

    Ankle arthrodesis remains one of the most definitive treatment options for end-stage arthritis, paralysis, posttraumatic and postinfectious conditions, failed total ankle arthroplasty, and severe deformities. The general aims of ankle arthrodesis are to decrease pain and instability, correct the accompanying deformity, and create a stable plantigrade foot. Several surgical approaches have been reported for ankle arthrodesis with internal fixation options. External fixation has also evolved for ankle arthrodesis in certain clinical scenarios. This article provides a comprehensive analysis of midterm to long-term outcomes for ankle arthrodesis using internal and/or external fixation each for elective and diabetic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optimising Ankle Foot Orthoses for children with Cerebral Palsy walking with excessive knee flexion to improve their mobility and participation; protocol of the AFO-CP study

    NARCIS (Netherlands)

    Kerkum, Y.L.; Harlaar, J.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Brehm, M.A.

    2013-01-01

    Background: Ankle-Foot-Orthoses with a ventral shell, also known as Floor Reaction Orthoses (FROs), are often used to reduce gait-related problems in children with spastic cerebral palsy (SCP), walking with excessive knee flexion. However, current evidence for the effectiveness (e.g. in terms of

  14. Optimising Ankle Foot Orthoses for children with cerebral palsy walking with excessive knee flexion to improve their mobility and participation; protocol of the AFO-CP study

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Harlaar, Jaap; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Brehm, Merel-Anne

    2013-01-01

    Ankle-Foot-Orthoses with a ventral shell, also known as Floor Reaction Orthoses (FROs), are often used to reduce gait-related problems in children with spastic cerebral palsy (SCP), walking with excessive knee flexion. However, current evidence for the effectiveness (e.g. in terms of walking energy

  15. Relevance of adjacent joint imaging in the evaluation of ankle fractures.

    Science.gov (United States)

    Antoci, Valentin; Patel, Shaun P; Weaver, Michael J; Kwon, John Y

    2016-10-01

    Routinely obtaining adjacent joint radiographs when evaluating patients with ankle fractures may be of limited clinical utility and an unnecessary burden, particularly in the absence of clinical suspicion for concomitant injuries. One thousand, three hundred and seventy patients who sustained ankle fractures over a 5-year period presenting to two level 1 trauma centers were identified. Medical records were retrospectively reviewed for demographics, physical examination findings, and radiographic information. Analyses included descriptive statistics along with sensitivity and predictive value calculations for the presence of adjacent joint fracture. Adjacent joint imaging (n=1045 radiographs) of either the knee or foot was obtained in 873 patients (63.7%). Of those, 75/761 patients (9.9%) demonstrated additional fractures proximal to the ankle joint, most commonly of the proximal fibula. Twenty-two of 284 (7.7%) demonstrated additional fractures distal to the ankle joint, most commonly of the metatarsals. Tenderness to palpation demonstrated sensitivities of 0.92 and 0.77 and positive predictive values of 0.94 and 0.89 for the presence of proximal and distal fractures, respectively. Additionally, 19/22 (86.4%) of patients sustaining foot fractures had their injury detectable on initial ankle X-rays. Overall, only 5.5% (75/1370) of patients sustained fractures proximal to the ankle and only 0.2% (3/1370) of patients had additional foot fractures not evident on initial ankle X-rays. The addition of adjacent joint imaging for the evaluation of patients sustaining ankle fractures is low yield. As such, patient history, physical examination, and clinical suspicion should direct the need for additional X-rays. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Normal foot and ankle

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The foot may be thought of as a bag of bones tied tightly together and functioning as a unit. The bones re expected to maintain their alignment without causing symptomatology to the patient. The author discusses a normal radiograph. The bones must have normal shape and normal alignment. The density of the soft tissues should be normal and there should be no fractures, tumors, or foreign bodies

  17. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    Science.gov (United States)

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  18. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  19. Gastrocnemius Recession Leads to Increased Ankle Motion and Improved Patient Satisfaction After 2 Years of Follow-Up

    DEFF Research Database (Denmark)

    Holtmann, Julia Alessandra; Südkamp, Norbert P; Schmal, Hagen

    2017-01-01

    The isolated gastrocnemius contracture present in neurologic healthy patients results in a significant limitation of ankle dorsiflexion causing pathologic gait patterns and a greater risk of further foot disorders. Gastrocnemius recession is an established procedure to increase ankle dorsiflexion....... However, little evidence is available of the use of gastrocnemius recession in these patients. Complication rates, recurrence of gastrocnemius contracture, and the prevalence of additional foot disorders needs further evaluation. A study group of 64 operated limbs undergoing gastrocnemius recession...... was evaluated to determine the prevalence of foot disorders, pre- and postoperative ankle dorsiflexion, and incidence of complications. A subgroup of 15 (23.4%) patients without additional operative procedures was examined regarding ankle dorsiflexion, strength (Janda method), sensitivity in the operated limb...

  20. Regulation of the hunting season as a tool for adaptive harvest management — first results for pink-footed geese Anser brachyrhynchus

    DEFF Research Database (Denmark)

    Madsen, Jesper; Clausen, Kevin; Christensen, Thomas Kjær

    2016-01-01

    Adjustment of hunting season length is often used to regulate harvest of waterbirds but the effects are disputed. We describe the first results of season length extension on the harvest of the pink-footed goose, which has been selected as the first test case of adaptive harvest management...... of waterbirds in Europe. In Denmark, the season (previously 1 September to 31 December) was extended to include January in 2014–2015 with the aim to increase the harvest and, in the longer term, reduce the population size. The total harvest in Denmark increased by 52% compared to previous years, and almost 50...

  1. A real-time computational model for estimating kinematics of ankle ligaments.

    Science.gov (United States)

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  2. Roentgenofunctional investigation of the ankle joint in a long-term period after crural bone fracture

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.T.; Novikov, V.P.

    1989-01-01

    On the basis of the results of clinicoroentgenological and tensographic investigations of 119 patients after traumas of the crural bones and ankle joint (2-36 yrs. ago) the authors showed the importance of roentgenofunctional investigation of the ankle joint. A specially designed footing was proposed. Of 77 patients after intra-articular fractures of the ankle bones various disorders in articular proportions, undetectable on routine roengenography, were diagnosed in 29 by functional roentgenography. Articular changes on roentgenofunctional investigation were revealed in one patient only out of 42 patients with extra-articular fractures of the crural bones. Tensography showed disorders of foot biomechanics in all patients with subluxations in the ankle

  3. Modulations of Foot and Ankle Frontal Kinematics for Breaking and Propulsive Movement Characteristics during Side-Step Cutting with Varying Midsole Thicknesses

    Directory of Open Access Journals (Sweden)

    Yi-Jia Lin

    2018-01-01

    Full Text Available This study is aimed at determining the effects of midsole thickness on movement characteristic during side cutting movement. Fifteen athletes performed side-step cutting while wearing shoes with varying midsole thicknesses. Temporal-spatial and ground reaction force variables as well as foot and ankle frontal kinematics were used to describe breaking and propulsive movement characteristics and modulation strategies. Regardless of midsole thickness, temporal-spatial variables and breaking and propulsive force during side cutting were statistically unchanged. Significantly greater peaks of ankle inversion and plantarflexion with a thicker sole and greater midtarsal pronation with a thinner sole were observed. Current results demonstrated that hypotheses formed solely based on material testing were insufficient to understand the adaptations in human movement because of the redundancy of the neuromusculoskeletal system. Participants were able to maintain temporal-spatial performance during side cutting while wearing shoes with midsoles of varying thicknesses. Increased pronation for a thinner sole might help reduce the force of impact but might be associated with an increased risk of excessive stress on soft tissue. Increased peak of ankle inversion and plantarflexion for a thicker sole may be unfavorable for the stability of ankle joint. Information provided in human movement testing is crucial for understanding factors associated with movement characteristics and injury and should be considered in the future development of shoe design.

  4. Modulations of Foot and Ankle Frontal Kinematics for Breaking and Propulsive Movement Characteristics during Side-Step Cutting with Varying Midsole Thicknesses

    Science.gov (United States)

    Lin, Yi-Jia; Lee, Shih-Chi; Chang, Chao-Chin; Liu, Tsung-Han

    2018-01-01

    This study is aimed at determining the effects of midsole thickness on movement characteristic during side cutting movement. Fifteen athletes performed side-step cutting while wearing shoes with varying midsole thicknesses. Temporal-spatial and ground reaction force variables as well as foot and ankle frontal kinematics were used to describe breaking and propulsive movement characteristics and modulation strategies. Regardless of midsole thickness, temporal-spatial variables and breaking and propulsive force during side cutting were statistically unchanged. Significantly greater peaks of ankle inversion and plantarflexion with a thicker sole and greater midtarsal pronation with a thinner sole were observed. Current results demonstrated that hypotheses formed solely based on material testing were insufficient to understand the adaptations in human movement because of the redundancy of the neuromusculoskeletal system. Participants were able to maintain temporal-spatial performance during side cutting while wearing shoes with midsoles of varying thicknesses. Increased pronation for a thinner sole might help reduce the force of impact but might be associated with an increased risk of excessive stress on soft tissue. Increased peak of ankle inversion and plantarflexion for a thicker sole may be unfavorable for the stability of ankle joint. Information provided in human movement testing is crucial for understanding factors associated with movement characteristics and injury and should be considered in the future development of shoe design. PMID:29854000

  5. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  6. Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Directory of Open Access Journals (Sweden)

    Denti Paolo

    2009-10-01

    Full Text Available Abstract Background The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot. Methods A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data. Results Joint rotation normative bands (mean plus/minus one standard deviation were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion. Conclusion Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate

  7. MRI of injuries of the lateral ankle ligaments

    International Nuclear Information System (INIS)

    Breitenseher, Martin

    2011-01-01

    The most frequent sport injury of the ankle is located in the lateral ankle ligaments. The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination, and stress radiography, allowing a fair diagnosis for the daily routine. For the direct visualization and precise diagnosis of the lateral ankle ligaments MRI provides the best answer. MRI is used with controlled positioning of the foot, correct angulation of sequenzes, and distinct analysis of MR findings. Sinus tarsi ligaments and ligaments of the distal syndesmosis should be included to the report. In selected patients MRI allows the best evaluation of the extent of the lateral ankle ligaments. MRI is the method of choice for combined osteochondral injuries and soft tissue lesions too. (orig.)

  8. Parents: Avoid Kids Foot Problems with the Right Shoes

    Science.gov (United States)

    ... Print | Share Avoid Kids Foot Problems with the Right Shoes Before you head to the store to ... College of Foot and Ankle Surgeons (ACFAS), All Rights Reserved. Privacy Statement | Disclaimer | Terms and Conditions | Site ...

  9. Finite element modeling of a 3D coupled foot-boot model.

    Science.gov (United States)

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Protocol for the Foot in Juvenile Idiopathic Arthritis trial (FiJIA: a randomised controlled trial of an integrated foot care programme for foot problems in JIA

    Directory of Open Access Journals (Sweden)

    Hendry Gordon J

    2009-06-01

    Full Text Available Abstract Background Foot and ankle problems are a common but relatively neglected manifestation of juvenile idiopathic arthritis. Studies of medical and non-medical interventions have shown that clinical outcome measures can be improved. However existing data has been drawn from small non-randomised clinical studies of single interventions that appear to under-represent the adult population suffering from juvenile idiopathic arthritis. To date, no evidence of combined therapies or integrated care for juvenile idiopathic arthritis patients with foot and ankle problems exists. Methods/design An exploratory phase II non-pharmacological randomised controlled trial where patients including young children, adolescents and adults with juvenile idiopathic arthritis and associated foot/ankle problems will be randomised to receive integrated podiatric care via a new foot care programme, or to receive standard podiatry care. Sixty patients (30 in each arm including children, adolescents and adults diagnosed with juvenile idiopathic arthritis who satisfy the inclusion and exclusion criteria will be recruited from 2 outpatient centres of paediatric and adult rheumatology respectively. Participants will be randomised by process of minimisation using the Minim software package. The primary outcome measure is the foot related impairment measured by the Juvenile Arthritis Disability Index questionnaire's impairment domain at 6 and 12 months, with secondary outcomes including disease activity score, foot deformity score, active/limited foot joint counts, spatio-temporal and plantar-pressure gait parameters, health related quality of life and semi-quantitative ultrasonography score for inflammatory foot lesions. The new foot care programme will comprise rapid assessment and investigation, targeted treatment, with detailed outcome assessment and follow-up at minimum intervals of 3 months. Data will be collected at baseline, 6 months and 12 months from baseline

  11. Transfibular ankle arthrodesis: A novel method for ankle fusion - A short term retrospective study

    Directory of Open Access Journals (Sweden)

    S Muthukumar Balaji

    2017-01-01

    Full Text Available Background: Ankle arthrodesis has long been the traditional operative treatment for posttraumatic arthritis, rheumatoid arthritis, infection, neuromuscular conditions, and salvage of failed ankle arthroplasty. It remains the treatment of choice for patients in whom heavy and prolonged activity is anticipated. We present our short term followup study of functional outcome of patients who underwent transfibular ankle arthrodesis for arthritis of ankle due to various indications. Materials and Methods: 29 transfibular ankle arthrodesis in 29 patients performed between April 2009 and April 2014 were included in this study. The mean age was 50 years (range 22-75 years. The outcome analysis with a minimum of 1-year postoperative followup were included. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS Hindfoot scale. Results: All cases of ankle fusions (100% progressed to solid union in a mean postoperative duration of 3.8 months (range 3-6 months. All patients had sound arthrodesis. The mean followup period was 32.52 months (standard deviation ± 10.34. The mean AOFAS score was 74 (pain score = 32, functional score = 42. We found that twenty patients (68.96% out of 29, had excellent results, 7 (24.13% had good, and 2 (6.89% showed fair results. Conclusion: Transfibular ankle arthrodesis is a simple and effective procedure for ankle arthritis. It achieves a high rate of union and good functional outcome on midterm followup.

  12. Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.

    Science.gov (United States)

    Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul

    2017-12-01

    Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.

  13. Diabetic Foot Complications Despite Successful Pancreas Transplantation.

    Science.gov (United States)

    Seo, Dong-Kyo; Lee, Ho Seong; Park, Jungu; Ryu, Chang Hyun; Han, Duck Jong; Seo, Sang Gyo

    2017-06-01

    It is known that successful pancreas transplantation enables patients with diabetes to maintain a normal glucose level without insulin and reduces diabetes-related complications. However, we have little information about the foot-specific morbidity in patients who have undergone successful pancreas transplantation. The purpose of this study was to investigate the prevalence and predisposing factors for foot complications after successful pancreas transplantation. This retrospective study included 218 patients (91 males, 127 females) who had undergone pancreas transplantation for diabetes. The mean age was 40.7 (range, 15-76) years. Diabetes type, transplantation type, body mass index, and diabetes duration before transplantation were confirmed. After pancreas transplantation, the occurrence and duration of foot and ankle complications were assessed. Twenty-two patients (10.1%) had diabetic foot complications. Fifteen patients (6.9%) had diabetic foot ulcer and 7 patients (3.2%) had Charcot arthropathy. Three patients had both diabetic foot ulcer and Charcot arthropathy. Three insufficiency fractures (1.4%) were included. Mean time of complications after transplantation was 18.5 (range, 2-77) months. Creatinine level 1 year after surgery was higher in the complication group rather than the noncomplication group ( P = .02). Complications of the foot and ankle still occurred following pancreas transplantation in patients with diabetes. Level III, comparative study.

  14. Effect of arch support insole on plantar pressure distribution in females with mild and moderate hallux valgus

    Directory of Open Access Journals (Sweden)

    Maedeh Farzadi

    2013-10-01

    Full Text Available Objective: Hallux Valgus is one of the most foot deformities which increase plantar pressure beneath big toe and first metatarsal. The aim of this study was to assess the effect of foot orthosis on plantar pressure distribution in subjects with mild and moderate Hallux Valgus. Materials & Methods: in this quasi-experimental study, females 16 with Hallux Valgus were recruited. Plantar pressure in 8 area of foot was measured by Pedar-X insole when wearing standard shoe only shoe with foot orthosis and shoe with foot orthosis after a month of using orthosis. Data were analyzed by repeated measure analysis of variance test. Results: using foot orthosis for a month leaded to decrease pressure in the big toe (P<0/019 first metatarsal and 3-5 metatarsals (P<0.001 and also increased pressure in medial mid foot (P<0.001. Conclusion: Foot orthosis decreased peak pressure in fore foot and increased it in medial mid foot. Therefore redistribute plantar pressure to the more normal pattern in Hallux Valgus subjects. So it could be one of the effective methods to prevent the progression of this deformity in its initial steps of formation.

  15. Incidence and MR imaging features of fractures of the anterior process of calcaneus in a consecutive patient population with ankle and foot symptoms

    International Nuclear Information System (INIS)

    Ouellette, H.; Salamipour, H.; Thomas, B.J.; Kassarjian, A.; Torriani, M.

    2006-01-01

    To determine the incidence, appearances and associated injuries of fractures affecting the anterior process of calcaneus from a general population with foot and ankle symptoms. A retrospective review of foot and ankle MR imaging procedures was performed for detection of cases with a fracture affecting the anterior process of calcaneus over a four year period. Radiographs, MR imaging studies, radiology reports, medical records, and operative notes were reviewed. Imaging analysis included fracture pattern, displacement, associated fractures, and presence of tendon and ligamentous injuries. The incidence of anterior process of calcaneus fracture on MR imaging was 0.5% (14/2577). Fractures were more common in female subjects (71%, 10/14). Fracture orientation was predominantly vertical (93%, 13/14). No comminuted fractures were seen and only three fractures were displaced. Three of the eight MR imaging evident fractures of anterior process of calcaneus were seen on radiographs. Associated fractures of the talus (n=5), navicular bone (n=3), cuboid (n=2), and calcaneal body (n=1) were noted. Associated injuries to the anterior talofibular ligament (n=3) and tears of the peroneus brevis (n=3) and peroneus longus (n=1) tendons were present. All fractures were treated non-operatively. Two patients had subtalar joint steroid injection for symptomatic relief

  16. Incidence and MR imaging features of fractures of the anterior process of calcaneus in a consecutive patient population with ankle and foot symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, H.; Salamipour, H.; Thomas, B.J.; Kassarjian, A.; Torriani, M. [Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2006-11-15

    To determine the incidence, appearances and associated injuries of fractures affecting the anterior process of calcaneus from a general population with foot and ankle symptoms. A retrospective review of foot and ankle MR imaging procedures was performed for detection of cases with a fracture affecting the anterior process of calcaneus over a four year period. Radiographs, MR imaging studies, radiology reports, medical records, and operative notes were reviewed. Imaging analysis included fracture pattern, displacement, associated fractures, and presence of tendon and ligamentous injuries. The incidence of anterior process of calcaneus fracture on MR imaging was 0.5% (14/2577). Fractures were more common in female subjects (71%, 10/14). Fracture orientation was predominantly vertical (93%, 13/14). No comminuted fractures were seen and only three fractures were displaced. Three of the eight MR imaging evident fractures of anterior process of calcaneus were seen on radiographs. Associated fractures of the talus (n=5), navicular bone (n=3), cuboid (n=2), and calcaneal body (n=1) were noted. Associated injuries to the anterior talofibular ligament (n=3) and tears of the peroneus brevis (n=3) and peroneus longus (n=1) tendons were present. All fractures were treated non-operatively. Two patients had subtalar joint steroid injection for symptomatic relief.

  17. The effects of a new designed forearm orthosis in treatment of lateral epicondylitis.

    Science.gov (United States)

    Forogh, Bijan; Khalighi, Mohsen; Javanshir, Mohammad Ali; Ghoseiri, Kamiar; Kamali, Mohammad; Raissi, Gholamreza

    2012-07-01

    This paper reports on the design and testing of a new designed forearm orthosis and explores its efficacious in comparison to the standard counterforce orthosis in patients with lateral epicondylitis. Twenty-four patients were enrolled in this assessor-blinded clinical trial and randomly assigned to two parallel treatment groups. The measures of pain and function, the pain threshold and grip strength were compared using patient rated tennis elbow evaluation (PRTEE) form, algometer and dynamometer respectively at baseline and 4 weeks after treatment. Paired and independent t-test statistical methods recruited for within and between groups comparisons respectively. The both orthoses, counterforce and new-designed, significantly relieved pain, and improved function, pain threshold and grip strength of all patients after 4 weeks application. The new-designed orthosis seemed to be more effective than the counterforce orthosis in pain relief, but there was not any significant difference in efficacious of two types of orthoses regarding function. The new-designed orthosis can significantly relieve pain, improve function, increase pain threshold and grip strength after application. This orthosis seemed to be more effective than counterforce orthosis in relieving pain and increasing the pain threshold probably due to the limitation of forearm supination.

  18. Results of treatment of clubfoot by Ponseti′s technique in 40 cases : Pitfalls and problems in the Indian scenario

    Directory of Open Access Journals (Sweden)

    Bhaskar Atul

    2006-01-01

    Full Text Available Background : Though described long back, there has been a renewed interest towards Ponseti method of conservative treatment of clubfoot recently. Methods : Forty children with idiopathic clubfeet were treated by Ponseti technique. The median age at presentation was 9 days. Twenty-six children with bilateral and 12 children with unilateral clubfeet were graded by the Pirani method at the commencement of treatment and then at the final follow-up. Feet were graded as excellent if the Pirani score was zero, fair, if the sum of mid-foot and hind-foot score was one or less and poor, if the score was more than one. Thirty four children need a heel cord tenotomy and all children received conventional ankle-foot orthosis (AFO and foot-abduction orthosis (FAO to maintain correction. Results : Twenty-eight children had excellent correction, four had a fair outcome and eight cases had relapse in their deformity. Poor splint compliance and fitting along with incomplete correction of the deformity were identified as the chief causes leading to a poor result. Conclusion : A strict protocol and parent education can improve the outcome for all cases with the Ponseti technique. Key-words: Clubfoot; Congenital talipes equinovarus; Ponseti technique.

  19. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  20. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  1. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system

    Science.gov (United States)

    Kashapova, R. M.; Kashapov, R. N.; Kashapova, R. S.

    2017-09-01

    The possibility of using the built-in ultrasound physiotherapy system of the hand orthosis is explored in the work. The individual mesh orthosis from nylon 12 was manufactured by the 3D prototyping method on the installation of selective laser sintering SLS SPro 60HD. The applied technology of three-dimensional scanning made it possible to obtain a model of the patient’s hand and on the basis of it to build a virtual model of the mesh frame. In the course of the research, the developed system of ultrasound exposure was installed on the orthosis and its tests were carried out. As a result, the acceleration of the healing process and the reduction in the time of wearing orthosis were found.

  2. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    Science.gov (United States)

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  3. [Z-osteotomy of distal fibula to correct widened ankle mortice after fracture].

    Science.gov (United States)

    Tao, Xu; Tang, Kanglai; Zhou, Jianbo

    2012-07-01

    To analyse the clinical outcomes of the Z-osteotomy of the distal fibula to correct widened mortice of the ankle after fracture. Between September 2009 and February 2011, 5 patients (5 feet) with widened ankle mortice after fracture underwent Z-osteotomy. There were 4 males and 1 female, aged from 23 to 58 years (mean, 38 years). At 3 months after operation of internal fixation when function exercises were done, patients got pains. The interval between trauma and operation ranged from 5 to 36 months (mean, 13.2 months). Lateral pressure test showed positive in 2 cases and negative in 3 cases. American Orthopedic Foot and Ankle Society (AOFAS) ankle-hindfoot score was 50.2 +/- 17.3. Primary healing of incision was achieved in all cases. Five patients were followed up 9 to 24 months (mean, 15.6 months). Mild to moderate swelling of the affected limb and anterolateral skin numbness of the ipsilateral dorsal foot occurred, and gradually improved. The clinical exam and radiology showed bone union at 12-15 weeks (mean, 13.5 weeks). Postoperative range of motion of ankle had no significant improvement. AOFAS ankle-hindfoot scores were 76.8 +/- 11.2 at 6 months after operation, and 85.4 +/- 3.2 at last follow-up, showing significant differences when compared with preoperative score (P ankle mortice after fracture; Z-osteotomy can effectively reduce the width of the ankle mortice, increase the stability of ankle joint, and decrease the complication rate.

  4. Imaging diagnostics of the foot; Bildgebende Diagnostik des Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Szeimies, Ulrike; Staebler, Axel [Radiologie in Muenchen-Harlaching, Muenchen (Germany); Walther, Markus (eds.) [Schoen-Klinik Muenchen-Harlaching, Muenchen (Germany). Zentrum fuer Fuss- und Sprunggelenkchirurgie

    2012-11-01

    The book on imaging diagnostics of the foot contains the following chapters: (1) Imaging techniques. (2) Clinical diagnostics. (3) Ankle joint and hind foot. (4) Metatarsus. (5) Forefoot. (6) Pathology of plantar soft tissue. (7) Nervous system diseases. (8) Diseases without specific anatomic localization. (9) System diseases including the foot. (10) Tumor like lesions. (11) Normative variants.

  5. Design, modelling and simulation aspects of an ankle rehabilitation device

    Science.gov (United States)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  6. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    static ankle dorsiflexion. A significant correlation with age was also found in the 15-25 Hz frequency band (beta) during static foot dorsiflexion. Chi2 analysis of differences of coherence between different age groups of children (4-6, 7-9, 10-12, and 13-15 yrs of age) revealed a significant lower...... to precisely control the ankle joint position with age, which may be contingent on maturation of corticospinal control of the foot dorsiflexor muscles....

  7. Foot problems in a group of patients with rheumatoid arthritis: an unmet need for foot care.

    Science.gov (United States)

    Borman, Pinar; Ayhan, Figen; Tuncay, Figen; Sahin, Mehtap

    2012-01-01

    The aim of this study was to evaluate the foot involvement in a group of RA patients in regard to symptoms, type and frequency of deformities, location, radiological changes, and foot care. A randomized selected 100 rheumatoid arthritis (RA) patients were recruited to the study. Data about foot symptoms, duration and location of foot pain, pain intensity, access to services related to foot, treatment, orthoses and assistive devices, and usefulness of therapies were determined by the questionnaire. Radiological changes were assessed according to modified Larsen scoring system. The scores of disease activity scale of 28 joints and Health Assessment Questionnaire indicating the functional status of RA patients were collected from patient files. A total of 100 RA patients (90 female, 10 male) with a mean age of 52.5 ±10.9 years were enrolled to the study. Eighty-nine of the 100 patients had experienced foot complaints/symptoms in the past or currently. Foot pain and foot symptoms were reported as the first site of involvement in 14 patients. Thirty-six patients had ankle pain and the most common sites of the foot symptoms were ankle (36%) and forefoot (30%) followed by hindfoot (17%) and midfoot (7%) currently. Forty-nine of the patients described that they had difficulty in performing their foot care. Insoles and orthopedic shoes were prescribed in 39 patients, but only 14 of them continued to use them. The main reasons for not wearing them were; 17 not helpful (43%), 5 made foot pain worse (12.8%), and 3 did not fit (7.6%). Foot symptoms were reported to be decreased in 24 % of the subjects after the medical treatment and 6 patients indicated that they had underwent foot surgery. Current foot pain was significantly associated with higher body mass index and longer disease duration, and duration of morning stiffness. The radiological scores did not correlate with duration of foot symptoms and current foot pain (p>0.05) but the total number of foot deformities was

  8. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    Science.gov (United States)

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  9. Early Ankle Mobilization Promotes Healing in a Rabbit Model of Achilles Tendon Rupture.

    Science.gov (United States)

    Jielile, Jiasharete; Asilehan, Batiza; Wupuer, Aikeremu; Qianman, Bayixiati; Jialihasi, Ayidaer; Tangkejie, Wulanbai; Maimaitiaili, Abudouheilil; Shawutali, Nuerai; Badelhan, Aynaz; Niyazebieke, Hadelebieke; Aizezi, Adili; Aisaiding, Amuding; Bakyt, Yerzat; Aibek, Rakimbaiev; Wuerliebieke, Jianati

    2016-01-01

    The use of early mobilization of the ankle joint without orthosis in the treatment of Achilles tendon rupture has been advocated as the optimal management. The goal of this study was to compare outcomes in a postoperative rabbit model of Achilles tendon rupture between early mobilization and immobilized animals using a differential proteomics approach. In total, 135 rabbits were randomized into the control group (n=15), the postoperative cast immobilization (PCI) group (n=60), and the early mobilization (EM) group (n=60). A rupture of the Achilles tendon was created in each animal model and repaired microsurgically, and tendon samples were removed at 3, 7, 14, and 21 days postoperatively. Proteins were separated using 2-dimensional polyacrylamide gel electrophoresis and identified using peptide mass fingerprinting, tandem mass spectrometry, NCBI database searches, and bioinformatics analyses. A series of differentially expressed proteins were identified between groups, some of which may play an important role in Achilles tendon healing. Notable candidate proteins that were upregulated in the EM group were identified, such as CRMP-2, galactokinase 1, tropomyosin-4, and transthyretin. The healing of ruptured Achilles tendons appears to be affected at the level of protein expression with the use of early mobilization. The classic postoperative treatment of Achilles tendon rupture with an orthosis ignored the self-protecting instinct of humans. With a novel operative technique, the repaired tendon can persist the load that comes from traction in knee and ankle joint functional movement. In addition, kinesitherapy provided an excellent experimental outcome via a mechanobiological mechanism. Copyright 2016, SLACK Incorporated.

  10. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    Science.gov (United States)

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (pcontact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Orthosis-Shaped Sandals Are as Efficacious as In-Shoe Orthoses and Better than Flat Sandals for Plantar Heel Pain: A Randomized Control Trial.

    Directory of Open Access Journals (Sweden)

    Bill Vicenzino

    Full Text Available To investigate efficacy of a contoured sandal being marketed for plantar heel pain with comparison to a flat flip-flop and contoured in-shoe insert/orthosis.150 volunteers aged 50 (SD: 12 years with plantar heel pain (>4 weeks were enrolled after responding to advertisements and eligibility determined by telephone and at first visit. Participants were randomly allocated to receive commercially available contoured sandals (n = 49, flat flip-flops (n = 50 or over the counter, pre-fabricated full-length foot orthotics (n = 51. Primary outcomes were a 15-point Global Rating of Change scale (GROC: 1 = a very great deal worse, 15 = a very great deal better, 13 to 15 representing an improvement and the 20-item Lower Extremity Function Scale (LEFS on which participants rate 20 common weight bearing activities and activities of daily living on a 5-point scale (0 = extreme difficulty, 4 = no difficulty. Secondary outcomes were worst level of heel pain in the preceding week, and the foot and ankle ability measure. Outcomes were collected blind to allocation. Analyses were done on an intention to treat basis with 12 weeks being the primary outcome time of interest.The contoured sandal was 68% more likely to report improvement in terms of GROC compared to flat flip-flop. On the LEFS the contoured sandal was 61% more likely than flat flip-flop to report improvement. The secondary outcomes in the main reflected the primary outcomes, and there were no differences between contoured sandal and shoe insert.Physicians can have confidence in supporting a patient's decision to wear contoured sandals or in-shoe orthoses as one of the first and simple strategies to manage their heel pain.The Australian New Zealand Clinical Trials Registry ACTRN12612000463875.

  12. Glossary of Foot and Ankle Terms

    Science.gov (United States)

    ... long bones of the fingers or toes. Plantar fascia - Plantar fascia is a thin layer of tough tissue supporting ... the foot. Plantar fasciitis - An inflammation of the plantar fascia. Symptoms are usually pain at the bottom of ...

  13. Acute injury of the ankle joint

    International Nuclear Information System (INIS)

    Breitenseher, M.J.

    1999-01-01

    The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination, and clinical stress tests. If the clinical stress test is positive, stress radiography could be performed. There is no consensus about the usefulness of stress radiography in acute ankle sprain, particularly about the cut-off talar tilt angle beyond which a two-ligament rupture would be certain, ranging from 5 to 30 . Today MRI is not used for this indication, although it allows, with controlled positioning of the foot and with defined sections, visualization of injured lateral collateral ankle ligaments. In ankle injuries, plain radiographs form the established basis of diagnostic imaging and can provide definitive answers in most cases. CT is used in complex fractures for complete visualization. MRI is the method of choice for several diagnostic problem cases, including occult fractures and post-traumatic avascular necrosis. In tendon injuries, MRI is important if ultrasound is not diagnostic. Generally, for the evaluation of acute ankle injuries, MRI is the most important second-step procedure when radiographs are nondiagnostic. (orig.) [de

  14. Simulations and experimental evaluation of an active orthosis for interaction in virtual environments

    Directory of Open Access Journals (Sweden)

    Tsveov Mihail

    2018-01-01

    Full Text Available In this work, the development of a human arm active orthosis is presented. The orthosis is designed primarily for training and rehabilitation in virtual environments.The orthosis system is intended for embodiment in virtual reality where it is allowing human to perceive forces at different body parts or the weight of lifted objects. In the paper the choice of a mechanical structure is shown equivalent to the structure of the human arm. A mechanical model of the orthosis arm as haptic device is built, where kinematic and dynamic parameters are evaluated. Impedance control scheme is selected as the most suitable for force refection at the hand or arm. An open-loop impedance controller is presented in the paper. Computer experiments are carried out using the dimensions of a real arm orthosis. Computer experiments have been carried out to provide force reflection by VR, according to virtual scenario. The conducted simulations show the range of the forces on the operator hand, orthosis can provide. The results of additional measurements and experimental evaluations of physical quantities in the interaction in a virtual environment are revealed in the paper.

  15. Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus.

    Science.gov (United States)

    Krause, Fabian G; Klammer, Georg; Benneker, Lorin M; Werlen, Stefan; Mamisch, Tallal C; Weber, Martin

    2010-12-01

    Pes cavovarus affects the ankle biomechanics and may lead to ankle arthrosis. Quantitative T2 STAR (T2*) magnetic resonance (MR) mapping allows high resolution of thin cartilage layers and quantitative grading of cartilage degeneration. Detection of ankle arthrosis using T2* mapping in cavovarus feet was evaluated. Eleven cavovarus patients with symptomatic ankle arthrosis (13 feet, mean age 55.6 years, group 1), 10 cavovarus patients with no or asymptomatic, mild ankle arthrosis (12 feet, mean age 41.8 years, group 2), and 11 controls without foot deformity (18 feet, mean age 29.8 years, group 3) had quantitative T2* MR mapping. Additional assessment included plain radiographs and the American Orthopaedic Foot and Ankle Society (AOFAS) score (groups 1 and 2 only). Mean global T2* relaxation time was significantly different between groups 1 and 2 (p = 0.001) and groups 1 and 3 (p = 0.017), but there was no significance for decreased global T2* values in group 2 compared to group 3 (p = 0.345). Compared to the medial compartment T2* values of the lateral compartment were significantly (p = 0.025) higher within group 1. T2* values in the medial ankle joint compartment of group 2 were significantly lower than those of group 1 (p = 0.019). Ankle arthrosis on plain radiographs and the AOFAS score correlated significantly with T2* values in the medial compartment of group 1 (p = 0.04 and 0.039, respectively). Biochemical, quantitative T2* MR mapping is likely effective to evaluate ankle arthrosis in cavovarus feet but further studies are required. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  17. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  18. Acceptability and Potential Effectiveness of a Foot Drop Stimulator in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    Prosser, Laura A.; Curatalo, Lindsey A.; Alter, Katharine E.; Damiano, Diane L.

    2012-01-01

    Aim: Ankle-foot orthoses are the standard of care for foot drop in cerebral palsy (CP), but may overly constrain ankle movement and limit function in those with mild CP. Functional electrical stimulation (FES) may be a less restrictive and more effective alternative, but has rarely been used in CP. The primary objective of this study was to…

  19. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2015-01-01

    Full Text Available Background: Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. Materials and Methods: A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. Results: The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. Discussion: It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  20. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling.

    Science.gov (United States)

    Karimi, Mohammad; Kavyani, Mahsa

    2015-01-01

    Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  1. Osteochondral injuries of the foot and ankle.

    Science.gov (United States)

    Frost, Andrew; Roach, Richard

    2009-06-01

    Osteochondral injuries commonly affect the ankle joint and involve the dome of the talus. This article describes the etiology and pathogenesis of these injuries. Their clinical presentation is described and advice is given on how to diagnose and investigate suspected osteochondral injuries. The various treatment options currently available are briefly reviewed. There is some attempt made to give consensus on optimal treatment of this condition at the present time.

  2. Internal Models Support Specific Gaits in Orthotic Devices

    DEFF Research Database (Denmark)

    Matthias Braun, Jan; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Patients use orthoses and prosthesis for the lower limbs to support and enable movements, they can not or only with difficulties perform themselves. Because traditional devices support only a limited set of movements, patients are restricted in their mobility. A possible approach to overcome such...... the system's accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing behaviour changes depending on the patient's current walking situation. We conclude that the here presented model-based support of different gaits has the power to enhance the patient's mobility....

  3. [Outcome of operative treatment for supination-external rotation Lauge-Hansen stage IV ankle fractures].

    Science.gov (United States)

    Kołodziej, Łukasz; Boczar, Tomasz; Bohatyrewicz, Andrzej; Zietek, Paweł

    2010-01-01

    Ankle fractures are among the most common musculoskeletal injures. These fractures occur with an overall age- and sex-adjusted incidence rate around 180 per 100 000 person-years. The most frequent mechanism is considered to be supination-external rotation (60 to 80% of all ankle fractures) consisting of pathologic external rotation of the foot initially placed in some degree of supination. According to Lauge-Hansen classification, ankle joint structures are damaged in a sequence where the final, stage IV injuries, represents transverse fracture of the medial malleolus or its equivalent-rupture of the deltoid ligament. The aim of this study is to compare the results of two subtypes of supination-external rotation stage IV fractures. 43 patients treated surgically in 2006 to 2007 at Authors institution because of stage IV supination-external rotation ankle fracture were submitted to retrospective analysis. There were 25 patients with bimalleolar fracture (type 1) and in 18 patients with lateral malleolar fracture with accompanying rupture of the deltoid ligament (type 2). The mean age was 46 years (from 20 to 82 years). Average follow up period was 37 months (from 24 to 46 months). For the evaluation of treatment AOFAS hind-foot score (American Orthopedic Foot and Ankle Society) was used. The mean AOFAS score scale for Type 1 fractures was 85 points and for type 2 was significantly higher and amounted to 91 points (p ankle fractures with medial malleolar fracture, requires the implementation of additional diagnostic and therapeutic strategies and procedures in order to improve the outcome of results.

  4. Negative Pressure Wound Therapy Followed by Basic Fibroblast Growth Factor Spray as a Recovery Technique in Partial Necrosis of Distally Based Sural Flap for Calcaneal Osteomyelitis: A Case Report.

    Science.gov (United States)

    Mikami, Taro; Kaida, Eriko; Yabuki, Yuichiro; Kitamura, Sho; Kokubo, Ken'ichi; Maegawa, Jiro

    2018-03-28

    The distally based sural flap is regarded as the first choice for reconstruction in the distal part of the lower leg because the flap is easy to raise, reliable in its blood supply, and prone to only a few complications. Limited data have investigated the details of treatment in cases of failure of distally based sural flaps. We report a case of calcaneal osteomyelitis in which a successful outcome was finally obtained with a partially necrosed, distally based sural flap using negative pressure wound therapy with basic fibroblast growth factor spray. The 2-year follow-up examination was uneventful. Moreover, the patient was able to walk freely with an ankle-foot orthosis in her house. This technique can be considered as a useful and effective option to recover unfavorable results of distally based sural flaps. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial

    Science.gov (United States)

    2014-01-01

    Background Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. AIM: To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. Methods A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure–time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Results Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, pforefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Conclusions Intervention discreetly changed foot rollover towards a

  6. Prospective Computed Tomographic Analysis of Osteochondral Lesions of the Ankle Joint Associated With Ankle Fractures.

    Science.gov (United States)

    Nosewicz, Tomasz L; Beerekamp, M Suzan H; De Muinck Keizer, Robert-Jan O; Schepers, Tim; Maas, Mario; Niek van Dijk, C; Goslings, J Carel

    2016-08-01

    Osteochondral lesions (OCLs) associated with ankle fracture correlate with unfavorable outcome. The goals of this study were to detect OCLs following ankle fracture, to associate fracture type to OCLs and to investigate whether OCLs affect clinical outcome. 100 ankle fractures requiring operative treatment were prospectively included (46 men, 54 women; mean age 44 ± 14 years, range 20-77). All ankle fractures (conventional radiography; 71 Weber B, 22 Weber C, 1 Weber A, 4 isolated medial malleolus and 2 isolated posterior malleolus fractures) were treated by open reduction and internal fixation. Multidetector computed tomography (CT) was performed postoperatively. For each OCL, the location, size, and Loomer OCL classification (CT modified Berndt and Harty classification) were determined. The subjective Foot and Ankle Outcome Scoring (FAOS) was used for clinical outcome at 1 year. OCLs were found in 10/100 ankle fractures (10.0%). All OCLs were solitary talar lesions. Four OCLs were located posteromedial, 4 posterolateral, 1 anterolateral, and 1 anteromedial. There were 2 type I OCLs (subchondral compression), 6 type II OCLs (partial, nondisplaced fracture) and 2 type IV OCLs (displaced fracture). Mean OCL size (largest diameter) was 4.4 ± 1.7 mm (range, 1.7 mm to 6.2 mm). Chi-square analysis showed no significant association between ankle fracture type and occurrence of OCLs. OCLs did occur only in Lauge-Hansen stage III/IV ankle fractures. There were no significant differences in FAOS outcome between patients with or without OCLs. Ten percent of investigated ankle fractures had associated OCLs on CT. Although no significant association between fracture type and OCL was found, OCLs only occurred in Lauge-Hansen stage III/IV ankle fractures. With the numbers available, OCLs did not significantly affect clinical outcome at 1 year according to FAOS. Level IV, observational study. © The Author(s) 2016.

  7. New arthroscopic assisted technique for ankle instability

    International Nuclear Information System (INIS)

    Gerstner Garces, Juan Ricardo

    2004-01-01

    An assisted arthroscopic technique for chronic ankle instability is presented by the author, together with his results for 27 patients treated between January 2000 and February 2004, with a minimum follow-up of six months. Indications for his technique, according to the rehabilitation protocol of the Medical Centre, included patients with chronic subjective and objective ankle instability, anteroposterior instability, associated anteromedical impingement syndromes, non competitive athletes, patients not displaying defects in the alignment of the axis of foot and ankle, or systemic disorders such as diabetes mellitus, collagenisis or hyperelasticity. Patients were evaluated according to the AOFAS scale for the outcome of ankle procedures, and followed up for a minimum period of six months. Positive results confirm an efficient and effective technique, simple and easy to reproduce, that does not hinder future open anatomical or non-anatomical reconstruction, and in which complications are minimal

  8. Design a New Orthosis and Assessment of Its Effects on Knee Joint Kinetics and Kinematics During Gait

    Directory of Open Access Journals (Sweden)

    Mostafa Kamali

    2015-12-01

    Methods: Ten subjects without any neuromuscular disease participated in this study. New orhosis with the same structure of Scottish rite orthosis was designed. Qualysis system analyses with seven cameras as well as a Kistler force plate were used to measure the kinematics and kinetics variables during the gait with and without orthosis. For statistical analysis independent student-t test was used. The significance level was set at p0.05. There was significant difference between peak medio-lateral forces applied on knee during walking with and without orthosis (p<0.05. Conclusion: The new orthosis decreases the adductor moment on knee joint therefore, it can decrease the forces applied on medial compartment of the knee joint. This orthosis improves walking because it does not let inferior transition. This orthosis can improve femur alignment. It is recommended that physiotherapist prescribe this orthosis in order to decrease pain in patients with OA.

  9. Arthroscopic ankle arthrodesis with intra-articular distraction.

    Science.gov (United States)

    Kim, Hyong Nyun; Jeon, June Young; Noh, Kyu Cheol; Kim, Hong Kyun; Dong, Quanyu; Park, Yong Wook

    2014-01-01

    Arthroscopic ankle arthrodesis has shown high rates of union comparable to those with open arthrodesis but with substantially less postoperative morbidity, shorter operative times, less blood loss, and shorter hospital stays. To easily perform arthroscopic resection of the articular cartilage, sufficient distraction of the joint is necessary to insert the arthroscope and instruments. However, sometimes, standard noninvasive ankle distraction will not be sufficient in post-traumatic ankle arthritis, with the development of arthrofibrosis and joint contracture after severe ankle trauma. In the present report, we describe a technique to distract the ankle joint by inserting a 4.6-mm stainless steel cannula with a blunt trocar inside the joint. The cannula allowed sufficient intra-articular distraction, and, at the same time, a 4.0-mm arthroscope can be inserted through the cannula to view the joint. Screws can be inserted to fix the joint under fluoroscopic guidance without changing the patient's position or removing the noninvasive distraction device and leg holder, which are often necessary during standard arthroscopic arthrodesis with noninvasive distraction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Realignment Surgery for Malunited Ankle Fracture.

    Science.gov (United States)

    Guo, Chang-Jun; Li, Xing-Cheng; Hu, Mu; Xu, Yang; Xu, Xiang-Yang

    2017-02-01

    To investigate the characteristics and the results of realignment surgery for the treatment of malunited ankle fracture. Thirty-three patients with malunited fractures of the ankle who underwent reconstructive surgery at our hospital from January 2010 to January 2014 were reviewed. The tibial anterior surface angle (TAS), the tibiotalar tilt angle (TTA), the malleolar angle (MA), and the tibial lateral surface angle (TLS) were measured. Clinical assessment was performed with use of the American Orthopaedic Foot and Ankle Society (AOFAS) scale and visual analogue scale (VAS) scores, and the osteoarthritis stage was determined radiographically with the modified Takakura classification system. The Wilcoxon matched-pairs test was used to analyze the difference between the preoperative and the postoperative data. The mean follow-up was 36 months (range, 20-60 months). The mean age at the time of realignment surgery was 37.1 years (range, 18-62 years). Compared with preoperation, the TAS at the last follow-up showed a significant increase (88.50° ± 4.47° vs. 90.80° ± 3.49°, P = 0.0035); similar results were observed in TTA (1.62° ± 1.66° vs. 0.83° ± 0.90°, P ankle osteoarthritis, and was treated by ankle joint distraction. Realignment surgery for a malunited ankle fracture can reduce pain, improve function, and delay ankle arthrodesis or total ankle replacement. Postoperative large talar tilt and advanced stages of ankle arthritis are the risk factors for the surgery. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  11. Translation and cultural adaptation of the Manchester-Oxford Foot Questionnaire (MOXFQ) into Persian language.

    Science.gov (United States)

    Mousavian, Alireza; Ebrahimzadeh, Mohammad H; Birjandinejad, Ali; Omidi-Kashani, Farzad; Kachooei, Amir Reza

    2015-12-01

    In this study, we aimed to translate and test the validity and reliablity of the Persian version of the Manchester-Oxford Foot Questionnaire in foot and ankle patients. We translated the Manchester-Oxford Foot Questionnaire to Persian language according to the accepted guidelines, then assessed the psychometric properties including the validity and reliability on 308 patients with long-standing foot and ankle problems. To test the reliability, we calculated the intra-class correlation coefficient (ICC) for test-retest reliability and measured Cronbach's alpha to test the internal consistency. To test the construct validity of the Manchester-Oxford Foot Questionnaire we also administered the Short-Form 36 to patients. Construct validity was supported by significant correlation with SF36 subscales except for pain subscale of the persian MOXFQ with mental health of the SF36 (r=0.207). Intraclass correlation coefficient was 0.79 for the total MOXFQ and ranged from 0.83 to 0.89 for the three subscales. Cronbach's alpha for pain, walking/standing, and social interaction was 0.86, 0.88, and 0.89, respectively, and was 0.79 for the total MOXFQ showing good internal consistency in each domain. The Persian Manchester-Oxford Foot Questionnaire health scoring system is a valid and reliable patient-reported instrument for foot and ankle problems. Copyright © 2015. Published by Elsevier Ltd.

  12. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  13. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  14. The clinical assessment study of the foot (CASF: study protocol for a prospective observational study of foot pain and foot osteoarthritis in the general population

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2011-09-01

    Full Text Available Abstract Background Symptomatic osteoarthritis (OA affects approximately 10% of adults aged over 60 years. The foot joint complex is commonly affected by OA, yet there is relatively little research into OA of the foot, compared with other frequently affected sites such as the knee and hand. Existing epidemiological studies of foot OA have focussed predominantly on the first metatarsophalangeal joint at the expense of other joints. This three-year prospective population-based observational cohort study will describe the prevalence of symptomatic radiographic foot OA, relate its occurrence to symptoms, examination findings and life-style-factors, describe the natural history of foot OA, and examine how it presents to, and is diagnosed and managed in primary care. Methods All adults aged 50 years and over registered with four general practices in North Staffordshire, UK, will be invited to participate in a postal Health Survey questionnaire. Respondents to the questionnaire who indicate that they have experienced foot pain in the preceding twelve months will be invited to attend a research clinic for a detailed clinical assessment. This assessment will consist of: clinical interview; physical examination; digital photography of both feet and ankles; plain x-rays of both feet, ankles and hands; ultrasound examination of the plantar fascia; anthropometric measurement; and a further self-complete questionnaire. Follow-up will be undertaken in consenting participants by postal questionnaire at 18 months (clinic attenders only and three years (clinic attenders and survey participants, and also by review of medical records. Discussion This three-year prospective epidemiological study will combine survey data, comprehensive clinical, x-ray and ultrasound assessment, and review of primary care records to identify radiographic phenotypes of foot OA in a population of community-dwelling older adults, and describe their impact on symptoms, function and

  15. [Effect of abducens orthosis combined with walker on developmental dysplasia of the hip].

    Science.gov (United States)

    Hu, Zhiyong; Xu, Yongqiang; Liang, Jieyu; Li, Kanghua; Liao, Qiande

    2009-07-01

    To evaluate the effect of abducens orthosis combined with walker on developmental dysplasia of the hip (DDH). A total of 126 patients (224 hips) with DDH aged 6-36 months in Xiangya Hospital was randomly divided into 2 groups: an orthosis combined with walker group and an improved hip frog cast fixation group. Seventy patients (130 hips) were treated by the orthosis combined with walker and 56 patients (94 hips) were treated by the improved hip frog cast fixation. We compared the effect and complications of the 2 groups. The fineness rates of the orthosis combined with walker group and the improved hip frog cast fixation group were 89.2% and 90.4%, respectively, with no significant difference (P>0.05). The rate of femoral head osteonecrosis in the orthosis combined with walker group was significantly lower than that in the improved hip frog cast fixation group (1.5% vs. 5.3%,Pwalker has a lower proportion of femoral head osteonecrosis, but a higher proportion of re-dislocation.

  16. Distraction arthroplasty with arthroscopic microfracture in a patient with rheumatoid arthritis of the ankle joint.

    Science.gov (United States)

    Nakasa, Tomoyuki; Adachi, Nobuo; Kato, Tomohiro; Ochi, Mitsuo

    2015-01-01

    We treated a 39-year-old female who had experienced destruction of her ankle joint owing to rheumatoid arthritis. This relatively young patient wished to avoid ankle fusion and joint replacement. Therefore, distraction arthroplasty with arthroscopic microfracture was performed to improve her symptoms and preserve motion. A microfracture procedure specifically for cartilage defects of the tibial plafond and talar dome was performed with the arthroscope, after which a hinged external fixator was applied to distract the ankle joint. The ankle joint space was enlarged by the external device and joint movement allowed. After 3 months, removal of the external device and repeat arthroscopy revealed newly formed fibrocartilage on the surfaces of both the tibia and the talus. At 2 years after the surgery, a radiograph showed that the joint space enlargement of the ankle had been maintained. The American Orthopaedic Foot and Ankle Society score improved from 37 points preoperatively to 82 points at 2 years postoperatively. Our findings suggest that good clinical results can be achieved with distraction arthroplasty and arthroscopic microfracture in a relatively young patient with rheumatoid arthritis. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human-like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human-like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  18. Outcome of ankle arthrodesis in posttraumatic arthritis

    Directory of Open Access Journals (Sweden)

    B S Narayana Gowda

    2012-01-01

    Full Text Available Background: Ankle arthrodesis is still a gold standard salvage procedure for the management of ankle arthritis. There are several functional and mechanical benefits of ankle arthrodesis, which make it a viable surgical procedure in the management of ankle arthritis. The functional outcomes following ankle arthrodesis are not very well known. The purpose of this study was to perform a clinical and radiographic evaluation of ankle arthrodesis in posttraumatic arthritis performed using Charnley′s compression device. Materials and Methods: Between January 2006 and December 2009 a functional assessment of 15 patients (10 males and 5 females who had undergone ankle arthrodesis for posttraumatic arthritis and/or avascular necrosis (AVN talus (n=6, malunited bimalleolar fracture (n=4, distal tibial plafond fractures (n=3, medial malleoli nonunion (n=2. All the patients were assessed clinically and radiologically after an average followup of 2 years 8 months (range 1-5.7 years. Results: All patients had sound ankylosis and no complications related to the surgery. Scoring the patients with the American Orthopaedic Foot and Ankle Society (AOFAS Ankle-Hindfoot scale, we found that 11 of the 15 had excellent results, two had good, and two showed fair results. They were all returned to their preinjury activities. Conclusion: We conclude that, the ankle arthrodesis can still be considered as a standard procedure in ankle arthritis. On the basis of these results, patients should be counseled that an ankle fusion will help to relieve pain and to improve overall function. Still, one should keep in mind that it is a salvage procedure that will cause persistent alterations in gait with a potential for deterioration due to the development of subtalar arthritis.

  19. Effect of New Kypho-Remainder Orthosis on Curve Intensity in Adults With Postural Hyper Kyphosis

    Directory of Open Access Journals (Sweden)

    Omid Torkaman

    2017-10-01

    Conclusion Considering the importance of maintaining a proper posture to optimize the muscles activity in preventing deformity and orthosis with a bio-feedback mechanism may be the solution. The long-term effect of using a bio-feedback orthosis indicated that kypho-remainder orthosis can significantly improve the kyphosis curve in individuals with postural hyper-kyphosis. 

  20. Injury of the ankle joint ligaments

    International Nuclear Information System (INIS)

    Breitenseher, M.J.

    2007-01-01

    The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination and clinical stress tests. If the clinical stress test is positive, stress radiography can be performed. There is, however, no consensus about the usefulness of stress radiography in acute ankle sprain, and in particular about the cut-off talar tilt angle beyond which a two-ligament rupture would be certain, ranging from 5 to 30 . Today, magnetic resonance imaging (MRI) is not used in this area, although it does allow controlled positioning of the foot and defined section visualization of injured lateral collateral ankle ligaments. In acute and chronic sinus tarsi injuries, MRI forms the established basis for diagnostic imaging, and can provide a definitive answer in most cases. MRI is also the method of choice for chronic posttraumatic pain with anterolateral impingement after rupture of the anterior talofibular ligament. Generally, for the evaluation of acute ankle injuries, MRI has developed to be the most important second-step procedure when projection radiology is non-diagnostic. (orig.) [de

  1. Functional outcomes following surgical-site infections after operative fixation of closed ankle fractures.

    Science.gov (United States)

    Naumann, Markus G; Sigurdsen, Ulf; Utvåg, Stein Erik; Stavem, Knut

    2017-12-01

    To compare the functional outcomes between patients with and without postoperative surgical-site infection (SSI) after surgical treatment in closed ankle fractures. Retrospective cohort study with prospective follow-up. Of 1011 treated patients, 959 were eligible for inclusion in a postal survey. Functional outcomes were assessed using three self-reported questionnaires. In total 567 patients responded a median of 4.3 years (range 3.1-6.2 years) after surgery. In total 29/567 had an SSI. The mean Olerud and Molander Ankle Score was 19.8 points lower for patients with a deep SSI (p=0.02), the Lower Extremity Functional Scale score was 10.2 points lower (p<0.01) and the Self-Reported Foot & Ankle Questionnaire score was 5.0 points higher (p=0.10) than for those without an SSI, after adjusting for age, sex, smoking status, diabetes, physical status, fracture classification and duration of surgery. Patients with a deep SSI had worse long-term functional outcomes than those without an SSI. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  2. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Design and Evaluation of the AIRGAIT Exoskeleton: Leg Orthosis Control for Assistive Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2013-01-01

    Full Text Available This paper introduces the body weight support gait training system known as the AIRGAIT exoskeleton and delves into the design and evaluation of its leg orthosis control algorithm. The implementation of the mono- and biarticular pneumatic muscle actuators (PMAs as the actuation system was initiated to generate more power and precisely control the leg orthosis. This research proposes a simple paradigm for controlling the mono- and bi-articular actuator movements cocontractively by introducing a cocontraction model. Three tests were performed. The first test involved control of the orthosis with monoarticular actuators alone without a subject (WO/S; the second involved control of the orthosis with mono- and bi-articular actuators tested WO/S; and the third test involved control of the orthosis with mono- and bi-articular actuators tested with a subject (W/S. Full body weight support (BWS was implemented in this study during the test W/S as the load supported by the orthosis was at its maximum capacity. This assessment will optimize the control system strategy so that the system operates to its full capacity. The results revealed that the proposed control strategy was able to co-contractively actuate the mono- and bi-articular actuators simultaneously and increase stiffness at both hip and knee joints.

  4. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  5. Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    Directory of Open Access Journals (Sweden)

    Guldemond Nick A

    2005-12-01

    Full Text Available Abstract Background There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. Methods Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. Results Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p Conclusion The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups.

  6. Acral lentiginous melanoma of the foot and ankle: A case series and review of the literature

    Directory of Open Access Journals (Sweden)

    Acland Katharine

    2008-09-01

    Full Text Available Abstract Background Acral lentiginous melanoma (ALM is an uncommon, cutaneous malignant tumour which may arise on the foot. Its relative rarity, atypical appearance and late presentation frequently serve as poor prognostic indicators. Methods At a tertiary skin tumour centre, a retrospective review was undertaken of all patients diagnosed with the tumour at the level of ankle or below. Results Over a six year period, 27 cases (20 female, 7 male were identified with positive histology confirming the disease. The age ranged from 35–96 years of age (mean 62.7 years. The majority of the cohort were white (59% with plantar lesions (62%. 33% of patients were initially were diagnosed incorrectly. The average time taken from the point of recognition, by the patient, to the lesion being correctly diagnosed was around 13.5 months. Conclusion Earlier diagnosis of ALM requires education at both a patient and practitioner level.

  7. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    Science.gov (United States)

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  8. Osteoarthritis of the ankle and foot complex in former Greek soccer players.

    Science.gov (United States)

    Armenis, Elias; Pefanis, Nikolaos; Tsiganos, Georgios; Karagounis, Panagiotis; Baltopoulos, Panagiotis

    2011-12-01

    Sports activities cause increased loads in elite athletes' joints. Current scientific knowledge highlights the importance of applied mechanical loads on the physiology and pathophysiology of the articular cartilage. Thus, it is possible that sporting activity has a role in the development of osteoarthritis (OA), a painful and damaging joint disease. The aim of the present study was to investigate and record osteoarthritic alterations in the ankle and foot complex in former Greek soccer players and also compare them with those in the general population. The study sample consisted of 170 male, former elite soccer players, aged between 42 and 55 years (mean = 49.8 years, standard deviation [SD] = 7.4). A control group of 132 men, aged between 42 and 55 years (mean, 50.7 years, SD = 9.9), with no regular athletic activity were examined. The development of osteoarthritic alterations was recorded through a questionnaire and clinical and radiological examination. Radiographic analysis of the images in former athletes group showed not only more signs of cartilage degeneration in comparison with the control group (P .05). Osteophyte formation is a frequent disease among former soccer players--with variations on radiographic images--but it does not appear in their clinical picture. However, it is likely that both spurs and subchondral sclerosis (main findings) are preclinical manifestations of OA. Prognostic, Level II.

  9. A Biomechanical Comparison of 3 Different Arthroscopic Lateral Ankle Stabilization Techniques in 36 Cadaveric Ankles.

    Science.gov (United States)

    Cottom, James M; Baker, Joseph S; Richardson, Phillip E; Maker, Jared M

    Arthroscopic lateral ankle stabilization has become an increasingly popular option among foot and ankle surgeons to address lateral ankle instability, because it combines a modified Broström-Gould procedure with the ability to address any intra-articular pathologic findings at the same session. The present study evaluated 3 different constructs in a cadaveric model. Thirty-six fresh frozen cadaver limbs were used, and the anterior talofibular ligament was identified and sectioned. The specimens were then placed into 1 of 3 groups. Group 1 received a repair with a single-row, 2-suture anchor construct; group 2 received repair with a novel, double-row, 4-anchor knotless construct; and group 3 received repair with a double-row, 3-anchor construct. Specimens were then tested for stiffness and load to ultimate failure using a customized jig. Stiffness was measured in each of the groups and was 12.10 ± 5.43 (range 5.50 to 22.24) N/mm for group 1, 13.40 ± 7.98 (range 6.71 to 36.28) N/mm for group 2, and 12.55 ± 4.00 (range 6.48 to 22.14) N/mm for group 3. No significant differences were found among the 3 groups in terms of stiffness (p = .939, 1-way analysis of variance, ɑ = 0.05). The groups were tested to failure, with observed force measurements of 156.43 ± 30.39 (range 83.69 to 192.00) N for group 1, 206.62 ± 55.62 (range 141.37 to 300.29) N for group 2, and 246.82 ± 82.37 (range 164.26 to 384.93) N for group 3. Statistically significant differences were noted between groups 1 and 3 (p = .006, 1-way analysis of variance, ɑ = 0.05). The results of the present study have shown that a previously reported arthroscopic lateral ankle stabilization procedure, when modified with an additional proximal suture anchor into the fibula, results in a statistically significant increase in strength in terms of the maximum load to failure. Additionally, we have described a previously unreported, knotless technique for arthroscopic lateral ankle

  10. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions.

    Science.gov (United States)

    Fong, Daniel Tik-Pui; Ha, Sophia Chui-Wai; Mok, Kam-Ming; Chan, Christie Wing-Long; Chan, Kai-Ming

    2012-11-01

    Ankle ligamentous sprain is common in sports. The most direct way to study the mechanism quantitatively is to study real injury cases; however, it is unethical and impractical to produce an injury in the laboratory. A recently developed, model-based image-matching motion analysis technique allows quantitative analysis of real injury incidents captured in televised events and gives important knowledge for the development of injury prevention protocols and equipment. To date, there have been only 4 reported cases, and there is a need to conduct more studies for a better understanding of the mechanism of ankle ligamentous sprain injury. This study presents 5 cases in tennis and a comparison with 4 previous cases for a better understanding of the mechanism of ankle ligamentous sprain injury. Case series; level of evidence, 4. Five sets of videos showing ankle sprain injuries in televised tennis competition with 2 camera views were collected. The videos were transformed, synchronized, and rendered to a 3-dimensional animation software. The dimensions of the tennis court in each case were obtained to build a virtual environment, and a skeleton model scaled to the injured athlete's height was used for the skeleton matching. Foot strike was determined visually, and the profiles of the ankle joint kinematics were individually presented. There was a pattern of sudden inversion and internal rotation at the ankle joint, with the peak values ranging from 48°-126° and 35°-99°, respectively. In the sagittal plane, the ankle joint fluctuated between plantar flexion and dorsiflexion within the first 0.50 seconds after foot strike. The peak inversion velocity ranged from 509 to 1488 deg/sec. Internal rotation at the ankle joint could be one of the causes of ankle inversion sprain injury, with a slightly inverted ankle joint orientation at landing as the inciting event. To prevent the foot from rolling over the edge to cause a sprain injury, tennis players who do lots of sideward

  11. Clinical evaluation of a new noninvasive ankle arthrometer.

    Science.gov (United States)

    Nauck, Tanja; Lohrer, Heinz; Gollhofer, Albert

    2010-06-01

    A nonradiographic arthrometer was developed to objectively quantify anterior talar drawer instability in stable and unstable ankles. Diagnostic validity of this device was previously demonstrated in a cadaver study. The aim of the present study was to validate the ankle arthrometer in an in vivo setting. Twenty-three subjects participated in the study. An orthopedic surgeon first performed a manual anterior talar drawer test to classify the subjects' ankles as stable or unstable. The subjects were then evaluated using the ankle arthrometer, and filled out a validated self-reported questionnaire (German version of the Foot and Ankle Ability Measure [FAAM-G]). Ankle stiffness was calculated from the low linear region (40-60 N) of the load deformation curves obtained from the ankle arthrometer. Reliability testing of these stiffness values was done based on load deformation curves, with 150 and 200 N maximum anterior drawer loads applied in the ankle arthrometer. Using the manual anterior drawer test, 16 ankles were classified as stable and 7 were classified as unstable. Arthrometer stiffness analysis differentiated stable from unstable ankles (P = 0.00 and P = 0.01, respectively). Test-retest demonstrated an accurate reliability (intraclass correlation coefficient = 0.80). A significant correlation was found between both FAAM-G subscales and the arthrometer stiffness values (r = 0.43 and 0.54; P = 0.04 and 0.01). Discussion Subjects with and without mechanical ankle instability could be differentiated by ankle arthrometer stiffness analysis and the FAAM-G questionnaire results. This nonradiographic device may be relevant for screening athletes at risk for ankle injuries, for clinical follow-up studies, and implementing preventive strategies. Validity and reliability of the new ankle arthrometer is demonstrated in a small cohort in an in vivo setting.

  12. Anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in residual poliomyelitis.

    Science.gov (United States)

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Park, Moon Seok

    2013-09-01

    This study was performed to investigate anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in patients with residual poliomyelitis and to investigate whether the severity of preoperative equinus deformity affected the occurrence of symptomatic anterior impingement. Twenty-seven consecutive patients (mean age, 43.8 ± 9.4 years) with residual poliomyelitis who underwent tendo-Achilles lengthening for equinus foot deformity were included. On lateral foot-ankle weight-bearing radiographs, the tibiocalcaneal angle, plantigrade angle, and McDermott grade were measured and the presence of anterior blocking spur was evaluated. Eleven patients (40.7%) had anterior ankle impingement on radiographic findings preoperatively and 24 patients (88.9%) at latest follow-up. There was a significant difference in McDermott grade between preoperative and latest follow-up (P poliomyelitis had anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity, and the presence of symptomatic anterior ankle impingement was significantly associated with the severity of the equinus deformity. Therefore, for residual poliomyelitis patients with severe long-standing equinus deformity, surgeons should consider the possibility of a subsequent anterior procedure for anterior impingement after tendo-Achilles lengthening. Level IV, retrospective case series.

  13. Increased central common drive to ankle plantar flexor and dorsiflexor muscles during visually guided gait

    DEFF Research Database (Denmark)

    Jensen, Peter; Jensen, Nicole Jacqueline; Terkildsen, Cecilie Ulbæk

    2018-01-01

    When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years participa......When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years...

  14. Surgical treatment for diffused-type giant cell tumor (pigmented villonodular synovitis) about the ankle joint.

    Science.gov (United States)

    Li, Xingchen; Xu, Yang; Zhu, Yuan; Xu, Xiangyang

    2017-11-14

    Diffused-type giant cell tumor(Dt-GCT) is a rare, aggressive disorder of the joint synovium, bursa and tendon sheaths. Osseous erosions and subchondral cysts may develop as the result of synovium infiltration in Dt-GCT. We present a retrospective study of a series of patients who are diagnosed with Dt-GCT about the ankle joint, there clinical outcome is evaluated in this study. Fifteen patients with radiologically and histologically confirmed Dt-GCT about the ankle joint were identified in our foot and ankle department. Patients were managed with open synovectomy for the tumor tissue and bone grafting for bony erosions. X-rays and MRI scans were used for evaluation of the tumor and bony erosions pre- and post-operatively. Pre- and post-operative ankle function was assessed using the American Orthopedic Foot and Ankle Society -Ankle and Hindfoot (AOFAS-AH) score and the Muscularskeletal Tumor Society (MSTS) score. The mean follow-up duration was 37.4 months (range 25 to 50 months). There were 6 males and 9 females, with a mean age of 35 years old (range 18 to 65 years). All patients had talar erosion with the average size of 10.1*9.1*8.2 mm, distal tibia was affected in 5 patients with the average size of 6.2*5.6*5.8 mm. 7 patients had tendon involvement, 2 patients had recurrence and progression of ankle osteoarthritis. Both of them underwent ankle fusion. At the time of last follow-up, the mean AOFAS-AH score increased from 49 to 80 points (p ankle joint. Fusion is recommended for failed and severe cartilage destruction of the ankle joint.

  15. An unusual cause of pain post ankle arthrodesis in patients with rheumatoid arthritis.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2012-02-01

    Rheumatoid arthritis is an autoimmune disease which frequently affects the ankle and foot. End stage ankle arthritis from rheumatic disease is commonly managed by the established practice of ankle arthrodesis. Among the adverse sequelae causing pain following this surgery is infection, pseudo-arthrosis and non-union. Stress fracture of the distal third is a recognised but unusual cause of pain of tibia following ankle arthrodesis. The authors\\' present three patients with rheumatoid arthritis who sustained a stress fracture of the distal tibia following arthrodesis, and discuss the contributing factors and highlight the need for orthopaedic surgeons to be suspicious of this complication post surgery.

  16. Protocol for evaluating the effects of a therapeutic foot exercise program on injury incidence, foot functionality and biomechanics in long-distance runners: a randomized controlled trial.

    Science.gov (United States)

    Matias, Alessandra B; Taddei, Ulisses T; Duarte, Marcos; Sacco, Isabel C N

    2016-04-14

    Overall performance, particularly in a very popular sports activity such as running, is typically influenced by the status of the musculoskeletal system and the level of training and conditioning of the biological structures. Any change in the musculoskeletal system's biomechanics, especially in the feet and ankles, will strongly influence the biomechanics of runners, possibly predisposing them to injuries. A thorough understanding of the effects of a therapeutic approach focused on feet biomechanics, on strength and functionality of lower limb muscles will contribute to the adoption of more effective therapeutic and preventive strategies for runners. A randomized, prospective controlled and parallel trial with blind assessment is designed to study the effects of a "ground-up" therapeutic approach focused on the foot-ankle complex as it relates to the incidence of running-related injuries in the lower limbs. One hundred and eleven (111) healthy long-distance runners will be randomly assigned to either a control (CG) or intervention (IG) group. IG runners will participate in a therapeutic exercise protocol for the foot-ankle for 8 weeks, with 1 directly supervised session and 3 remotely supervised sessions per week. After the 8-week period, IG runners will keep exercising for the remaining 10 months of the study, supervised only by web-enabled software three times a week. At baseline, 2 months, 4 months and 12 months, all runners will be assessed for running-related injuries (primary outcome), time for the occurrence of the first injury, foot health and functionality, muscle trophism, intrinsic foot muscle strength, dynamic foot arch strain and lower-limb biomechanics during walking and running (secondary outcomes). This is the first randomized clinical trial protocol to assess the effect of an exercise protocol that was designed specifically for the foot-and-ankle complex on running-related injuries to the lower limbs of long-distance runners. We intend to show

  17. Effects of a flat prosthetic foot rocker section on balance and mobility.

    Science.gov (United States)

    Hansen, Andrew; Nickel, Eric; Medvec, Joseph; Brielmaier, Steven; Pike, Alvin; Weber, Marilyn

    2014-01-01

    Previous studies have shown that the effective rocker shape of the physiologic ankle-foot system during standing and fore-aft swaying is much flatter than that used during walking, which indicates a more stable base of support for the standing/swaying activity. Previous work suggests that flat regions within the effective rocker shapes of prosthetic ankle-foot systems could provide enhanced stability for standing balance tasks. An experimental prosthetic foot was altered to provide three different flat region lengths within its effective rocker shape. It was hypothesized that longer flat regions of the effective rocker shape would lead to improved standing balance outcomes and reduced walking performance for unilateral transtibial prosthesis users. However, no significant changes were seen in the balance and mobility outcomes of 12 unilateral transtibial prosthesis users when using the three prosthetic foot conditions. Subjects in the study significantly preferred prosthetic feet with relatively low to moderate flat regions over those with long flat regions. All the subjects without loss of light touch or vibratory sensation selected the prosthetic foot with the shortest flat region. More work is needed to investigate the effects of prosthetic foot properties on balance and mobility of prosthesis users.

  18. Counterforce Orthosis In The Management Of Lateral Epicondylitis.

    Science.gov (United States)

    Vellilappilly, Daison Varghese; Rai, Heroor Ravindranath; Varghese, Jaison; Renjith, Vishnu

    2017-01-01

    Lateral Epicondylitis (LE), is a condition characterized by the pain and tenderness over the lateral epicondyle of the humerus. LE is commonly seen among people who are involved in sports such as tennis and golf. Any activity that repeatedly overstrains the extensor carpi radialis brevis tendon can lead to LE. The management of lateral epicondylitis generally involves the use of counterforce orthosis. The aim of this review is to summarize the evidence regarding the effectiveness of counterforce orthoses on the clinical outcomes of patients with lateral epicondylitis. The PubMed, Ovid, and ProQuest databases were searched for potential studies which explored the use of counterforce orthosis in the management of lateral epicondylitis. To have a better understanding of the effectiveness of various types of orthoses, the review is organized into four sections. The first section explores the use of a single orthotic device, the second section focuses on the combined use of orthotic devices, the third section explore studies that compared the effect of local steroid injection along with orthosis and the last section narrate the studies that compared various types of orthotic devices. The studies support the use of orthotic devices as a treatment modality for lateral epicondylitis. There is rising evidence which supports the use of a comprehensive approach, (by combining routine physiotherapy with orthotic devices) in the management of LE. Orthosis alone or in combination with routine physical therapy can be considered as an evidence-based treatment strategy for patients with lateral epicondylitis. However, on the basis of the literature review conducted, the authors recommend that further high-quality clinical trials regarding the management of lateral epicondylitis are necessary to strengthen the evidence-based physiotherapy practice.

  19. A Motor Learning Oriented, Compliant and Mobile Gait Orthosis

    Directory of Open Access Journals (Sweden)

    A. Calanca

    2012-01-01

    Full Text Available People affected by Cerebral Palsy suffer from physical disabilities due to irreversible neural impairment since the very beginning of their life. Difficulties in motor control and coordination often relegate these patients to the use of a wheelchair and to the unavoidable upcoming of disuse syndromes. As pointed out in recent literature Damiano [7] physical exercise, especially in young ages, can have a deep impact on the patient health and quality of life. For training purposes is very important to keep an upright position, although in some severe cases this is not trivial. Many commercial mobile orthoses are designed to facilitate the standing, but not all the patients are able to deploy them. ARGO, the Active Reciprocated Gait Orthosis we developed, is a device that overcomes some of the limitations of these devices. It is an active device that is realized starting from a commercial reciprocated Gait Orthosis applying sensors and actuators to it. With ARGO we aim to develop a device for helping limbs in a non-coercive way accordingly to user’s intention. In this way patients can drive the orthosis by themselves, deploying augmented biofeedback over movements. In fact Cerebral Palsy patients usually have weak biofeedback mechanisms and consequently are hardly inclined to learn movements. To achieve this behavior ARGO deploys a torque planning algorithm and a force control system. Data collected from a single case of study shows benefits of the orthosis. We will show that our test patient reaches complete autonomous walking after few hour of training with prototype.

  20. Validity of the lower extremity functional movement screen in patients with chronic ankle instability

    OpenAIRE

    Choi, Ho-Suk; Shin, Won-Seob

    2015-01-01

    [Purpose] The purpose of this study was to provide evidence of construct validity for the lower extremity functional movement screen (LE-FMS) based on hypothesis testing in patients with chronic ankle instability (CAI). [Subjects] The subjects were 20 healthy subjects and 20 patients with CAI who had a history of ankle sprain with pain for more than 1 day. [Methods] All participants were measured using the Foot and Ankle Disability Index (FADI) and evaluated with the LE-FMS. The screen includ...

  1. Day vs. day-night use of ankle-foot orthoses in young children with spastic diplegia: a randomized controlled study.

    Science.gov (United States)

    Zhao, Xiaoke; Xiao, Nong; Li, Hongying; Du, Senjie

    2013-10-01

    The aim of this study was to compare the effectiveness of treatment with hinged ankle-foot orthoses (AFOs) during the day vs. during both the day and the night in young ambulant children with spastic diplegia. In this prospective randomized controlled trial, 112 ambulatory children (70 boys and 42 girls; mean age, 2 yrs 6.93 mos; range, 1 yr 1 mo to 4 yrs 0 mo) with spastic diplegia participated. Forty-eight were classified at level I of the Gross Motor Function Classification System; the remaining 64 were at level II. Using stratified randomization, all children were assigned to either the day AFO-wearing group (n = 56, wearing AFOs all day) or the day-night AFO-wearing group (n = 56, wearing AFOs all day and all night). The two groups underwent conventional rehabilitative treatments five times a week for 8 wks. The primary outcomes measured were passive ankle dorsiflexion angle and sections D and E of the 66-item Gross Motor Function Measure; the root mean square of surface electromyography in the ventral and dorsal lower limb muscles was compared in a subgroup (ten from each group). Seven children did not complete the full intervention: three in the day AFO-wearing group and four in the day-night AFO-wearing group. Significant baseline-postintervention improvements were found for passive ankle dorsiflexion angle and the 66-item Gross Motor Function Measure in both groups (P day AFO-wearing group (P day AFO-wearing group, whereas the muscles affected in the day-night AFO-wearing group were the gastrocnemius (P day-night use. In addition, the prolonged wearing of AFOs may influence muscle activity, which should be monitored in the clinic.

  2. Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture.

    Science.gov (United States)

    Beaman, Douglas N; Gellman, Richard

    2014-12-01

    Posttraumatic arthritis and prolonged recovery are typical after a severely comminuted tibial pilon fracture, and ankle arthrodesis is a common salvage procedure. However, few reports discuss the option of immediate arthrodesis, which may be a potentially viable approach to accelerate overall recovery in patients with severe fracture patterns. (1) How long does it take the fracture to heal and the arthrodesis to fuse when primary ankle arthrodesis is a component of initial fracture management? (2) How do these patients fare clinically in terms of modified American Orthopaedic Foot and Ankle Society (AOFAS) scores and activity levels after this treatment? (3) Does primary ankle arthrodesis heal in an acceptable position when anterior ankle arthrodesis plates are used? During a 2-year period, we performed open fracture reduction and internal fixation in 63 patients. Eleven patients (12 ankles) with severely comminuted high-energy tibial pilon fractures were retrospectively reviewed after surgical treatment with primary ankle arthrodesis and fracture reduction. Average patient age was 58 years, and minimum followup was 6 months (average, 14 months; range, 6-22 months). Anatomically designed anterior ankle arthrodesis plates were used in 10 ankles. Ring external fixation was used in nine ankles with concomitant tibia fracture or in instances requiring additional fixation. Clinical evaluation included chart review, interview, the AOFAS ankle-hindfoot score, and radiographic evaluation. All of the ankle arthrodeses healed at an average of 4.4 months (range, 3-5 months). One patient had a nonunion at the metaphyseal fracture, which healed with revision surgery. The average AOFAS ankle-hindfoot score was 83 with 88% having an excellent or good result. Radiographic and clinical analysis confirmed a plantigrade foot without malalignment. No patients required revision surgery for malunion. Primary ankle arthrodesis combined with fracture reduction for the severely comminuted

  3. Movement coordination patterns between the foot joints during walking

    Directory of Open Access Journals (Sweden)

    John B. Arnold

    2017-10-01

    Full Text Available Abstract Background In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Methods Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction, anti-phase (opposite directions, proximal or distal joint dominant. Results In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. Conclusions This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint

  4. Analysis of risk factors for neuropathic foot ulceration in diabetes mellitus.

    Science.gov (United States)

    Bennett, P J; Stocks, A E; Whittam, D J

    1996-03-01

    Diabetes mellitus affects about one in 25 Australians. Neuropathic foot ulceration is a frequent complication in persons with diabetes. This study evaluates the importance of different risk factors for the development of this condition. The role of nonenzymatic glycosylation and pressure beneath the sole of the foot in the pathogenesis of neuropathic foot ulcers was investigated. Twenty-seven subjects with diabetes with a recent history of neuropathic foot ulceration were matched by age and sex with a group of 50 control subjects without neuropathy or history of foot ulceration. The degree of nonenzymatic glycosylation was assessed by analyzing the average level of glycosylated hemoglobin in the 3 years prior to the development of the foot ulcer and a goniometer assessment of peripheral joint (hand and ankle) flexibility. Dynamic pressure of the plantar aspect of the foot was recorded using a Musgrave Footprint System pedobarograph during a normal gait cycle. There was no significant difference in age, sex, body mass index, and duration or type of diabetes between the ulcer and control groups. The pressure of the plantar aspect of the foot was significantly elevated (p < 0.01). Ankle joint flexibility was reduced (p < 0.01) in cases with neuropathic foot ulceration compared with the control group. There was a trend toward elevation of glycosylated hemoglobin (HbA1c fraction) or HbA1c in the ulcer group (p = 0.06). The results suggested that nonenzymatic glycosylation occurs at a more significant level in patients with diabetes with a history of neuropathic foot ulceration.

  5. [Arthroscopic therapy of ankle joint impingement syndrome after operation of ankle joint fracture dislocation].

    Science.gov (United States)

    Feng, Zhibin; Mi, Kun; Wei, Renzhi; Liu, Wu; Wang, Bin

    2011-07-01

    To study the operative procedure and the effectiveness of arthroscopic therapy for ankle joint impingement syndrome after operation of ankle joint fracture dislocation. Between March 2008 and April 2010, 38 patients with ankle joint impingement syndrome after operation of ankle joint fracture dislocation were treated. Among them, there were 28 males and 10 females with an average age of 28 years (range, 18 to 42 years). The time from internal fixation to admission was 12-16 months (mean, 13.8 months). There were pressing pain in anterolateral and anterior ankle. The dorsal extension ranged from -20 to -5 degrees (mean, -10.6 degrees), and the palmar flexion was 30-40 degrees (mean, 35.5 degrees). The total score was 48.32 +/- 9.24 and the pain score was 7.26 +/- 1.22 before operation according to American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. The X-ray films showed osteophyte formation in anterior tibia and talus; MRI showed cartilage injury in 22 cases. Arthroscopic intervention included removing osteophytes, debriding fabric scars and synovial membrane tissues, and removing osteochondral fragments. Arthroscopic microfracture technique was used in 22 patients with cartilage injury. All incisions healed primarily. Thirty-eight cases were followed up 10-26 months (mean, 16 months). At last follow-up, 26 patients had normal range of motion (ROM); the dorsal extension was 15-25 degrees (mean, 19.6 degrees) and the palmar flexion was 35-45 degrees (mean, 40.7 degrees). Eight patients had mild limited ROM; the dorsal extension was 5-15 degrees (mean, 7.2 degrees) and the palmar flexion was 35-45 degrees (mean, 39.5 degrees). Four patients had mild limited ROM and pain in posterior portion of the ankle after a long walking (3-4 hours); the dorsal extension was 0-5 degrees (mean, 2.6 degrees) and the palmar flexion was 35-40 degrees (mean, 37.5 degrees). The total score was 89.45 +/- 9.55 and the pain score was 1.42 +/- 1.26 after

  6. Adaptive sports ankle prosthetics. Interview by Sarah A. Curran.

    Science.gov (United States)

    Lyle, David K

    2012-09-01

    Participating in sport at all levels is gaining a dedicated following and this is also apparent in individuals with an amputation. Currently, there is a wide variety of ankle prostheses available which attempt to provide function, control, and comfort, as well as good aesthetic appeal. Participation in sport, however, increases the demands placed upon ankle prostheses. This can compromise function and performance, and constrain the opportunities of participation in various outdoor and water sports. In acknowledging this limitation and the need to develop more versatile ankle prostheses, this article introduces the evolution of a prototype ankle prosthesis referred to as "Adaptive Sports Ankle." The ankle prosthesis, which is compatible with any foot pyramid adapter, offers the same range of motion as the normal human ankle joint and is made up of components that are chemical and corrosion resistant. These design features that are specifically created to accommodate below-the-knee amputees provide an ideal prosthesis for those wishing to lead an active lifestyle and participate in aquatic (i.e. swimming, surfing, and scuba diving), snowboarding, and equestrian activities. Although it is acknowledged that there is a need to establish research on the Adaptive Sports Ankle, its introduction to the market will enhance and expand opportunities of those individuals with a lower limb amputation to lead an active and healthy lifestyle.

  7. Recycling energy to restore impaired ankle function during human walking.

    Directory of Open Access Journals (Sweden)

    Steven H Collins

    Full Text Available BACKGROUND: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is necessary for steady gait, in which mechanical energy is constant on average, external dissipation is negligible, and no net work is performed over a stride. However, dissipation and replacement by muscles might not be necessary if energy were instead captured and reused by an assistive device. METHODOLOGY/PRINCIPAL FINDINGS: We developed a microprocessor-controlled artificial foot that captures some of the energy that is normally dissipated by the leg and "recycles" it as positive ankle work. In tests on subjects walking with an artificially-impaired ankle, a conventional prosthesis reduced ankle push-off work and increased net metabolic energy expenditure by 23% compared to normal walking. Energy recycling restored ankle push-off to normal and reduced the net metabolic energy penalty to 14%. CONCLUSIONS/SIGNIFICANCE: These results suggest that reduced ankle push-off contributes to the increased metabolic energy expenditure accompanying ankle impairments, and demonstrate that energy recycling can be used to reduce such cost.

  8. Predicting Manual Therapy Treatment Success in Patients With Chronic Ankle Instability: Improving Self-Reported Function.

    Science.gov (United States)

    Wikstrom, Erik A; McKeon, Patrick O

    2017-04-01

      Therapeutic modalities that stimulate sensory receptors around the foot-ankle complex improve chronic ankle instability (CAI)-associated impairments. However, not all patients have equal responses to these modalities. Identifying predictors of treatment success could improve clinician efficiency when treating patients with CAI.   To conduct a response analysis on existing data to identify predictors of improved self-reported function in patients with CAI.   Secondary analysis of a randomized controlled clinical trial.   Sports medicine research laboratories.   Fifty-nine patients with CAI, which was defined in accordance with the International Ankle Consortium recommendations.   Participants were randomized into 3 treatment groups (plantar massage [PM], ankle-joint mobilization [AJM], or calf stretching [CS]) that received six 5-minute treatments over 2 weeks.   Treatment success, defined as a patient exceeding the minimally clinically important difference of the Foot and Ankle Ability Measure-Sport (FAAM-S).   Patients with ≤5 recurrent sprains and ≤82.73% on the Foot and Ankle Ability Measure had a 98% probability of having a meaningful FAAM-S improvement after AJM. As well, ≥5 balance errors demonstrated 98% probability of meaningful FAAM-S improvements from AJM. Patients <22 years old and with ≤9.9 cm of dorsiflexion had a 99% probability of a meaningful FAAM-S improvement after PM. Also, those who made ≥2 single-limb-stance errors had a 98% probability of a meaningful FAAM-S improvement from PM. Patients with ≤53.1% on the FAAM-S had an 83% probability of a meaningful FAAM-S improvement after CS.   Each sensory-targeted ankle-rehabilitation strategy resulted in a unique combination of predictors of success for patients with CAI. Specific indicators of success with AJM were deficits in self-reported function, single-limb balance, and <5 previous sprains. Age, weight-bearing-dorsiflexion restrictions, and single-limb balance

  9. Magnitude and Spatial Distribution of Impact Intensity Under the Foot Relates to Initial Foot Contact Pattern.

    Science.gov (United States)

    Breine, Bastiaan; Malcolm, Philippe; Segers, Veerle; Gerlo, Joeri; Derie, Rud; Pataky, Todd; Frederick, Edward C; De Clercq, Dirk

    2017-12-01

    In running, foot contact patterns (rear-, mid-, or forefoot contact) influence impact intensity and initial ankle and foot kinematics. The aim of the study was to compare impact intensity and its spatial distribution under the foot between different foot contact patterns. Forty-nine subjects ran at 3.2 m·s -1 over a level runway while ground reaction forces (GRF) and shoe-surface pressures were recorded and foot contact pattern was determined. A 4-zone footmask (forefoot, midfoot, medial and lateral rearfoot) assessed the spatial distribution of the vertical GRF under the foot. We calculated peak vertical instantaneous loading rate of the GRF (VILR) per foot zone as the impact intensity measure. Midfoot contact patterns were shown to have the lowest, and atypical rearfoot contact patterns the highest impact intensities, respectively. The greatest local impact intensity was mainly situated under the rear- and midfoot for the typical rearfoot contact patterns, under the midfoot for the atypical rearfoot contact patterns, and under the mid- and forefoot for the midfoot contact patterns. These findings indicate that different foot contact patterns could benefit from cushioning in different shoe zones.

  10. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  11. Repair of acute injuries of the lateral ligament complex of the ankle by suture anchors

    OpenAIRE

    Liu, Xiang-Fei; Fang, Yang; Cao, Zhong-Hua; Li, Guang-Feng; Yang, Guo-Qing

    2015-01-01

    Objective: The objective of this study was to investigate the clinical curative effect of stage I repair of acute injuries of the lateral ligament complex of the ankle by the application of suture anchors. Methods: We retrospectively analyzed 18 cases of III degree acute injuries of the lateral ligament complex of the ankle. Results: There were statistically significant differences in preoperative and last follow-up VAS pain scores and AOFAS ankle hind-foot function scores. The X-ray talus di...

  12. Post-Traumatic Periprosthetic Tibial and Fibular Fracture After Total Ankle Arthroplasty: A Case Report.

    Science.gov (United States)

    Brock, Amanda K; Tan, Eric W; Shafiq, Babar

    Periprosthetic fractures after total ankle arthroplasty are uncommon, with most cases occurring intraoperatively. We describe a post-traumatic periprosthetic fracture of the distal tibia and fibula after total ankle arthroplasty that was treated with minimally invasive plate osteosynthesis. It is important for orthopedic surgeons not only to recognize the risk factors for postoperative periprosthetic total ankle arthroplasty fractures, but also to be familiar with the treatment options available to maximize function and minimize complications. The design of the tibial prosthesis and surgical techniques required to prepare the ankle joint for implantation are important areas of future research to limit the risk of periprosthetic fractures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Analysis of foot structural damage in rheumatoid arthritis: clinical evaluation by validated measures and serological correlations

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objective: To examine foot involvement in rheumatoid arthritis (RA and to characterize structural alterations in patients with anti-cyclic citrullinated peptide (CCP antibody-positive and -negative disease. Methods: Seventy-eight patients with RA with foot pain were consecutively enrolled. The Manchester Hallux Valgus (MHV rating scale was used to evaluate the hallux valgus deformity degree. The Foot Posture Index (FPI6, a novel, foot-specific outcome measure, was adopted in order to quantify variation in the position of the foot. The findings were correlated with disease duration and presence or absence of anti-CCP antibodies. Results: About 84.6% patients had different degrees of hallux valgus and 65.4% subjects had a pronated foot. These two foot alterations were prevalently found in patients with long-standing disease and circulating anti-CCP antibodies. On the contrary, RA patients without anti-CCP and early disease essentially displayed a supinated foot without relevant hallux valgus deformity. Conclusion: Our findings allowed to identify different anatomic foot alterations in RA patients according to disease duration and negative prognostic factors such as anti-CCP antibodies. Our findings support the role of an accurate analysis of foot structural damage and may suggest the usefulness of a correct plantar orthosis prescription also in early phases of the disease.

  14. Integrated effect of treadmill training combined with dynamic ankle ...

    African Journals Online (AJOL)

    Abd El Aziz Ali Sherief

    2015-01-13

    Jan 13, 2015 ... of this study was to determine the combined effects of treadmill and dynamic ankle foot ... electrical stimulation, constrained induced therapy and ortho- ... restricted plantar flexion. .... older). (2) The child performs the item according to the criteria ... applied and intended to control position and motion of the.

  15. Short-term effect of ultrasound-guided low-molecular-weight hyaluronic acid injection on clinical outcomes and imaging changes in patients with rheumatoid arthritis of the ankle and foot joints. A randomized controlled pilot trial.

    Science.gov (United States)

    Wang, Chien-Chih; Lee, Si-Huei; Lin, Hsiao-Yi; Liu, Fu-Wei; Chiou, Hong-Jen; Chan, Rai-Chi; Chou, Chen-Liang

    2017-11-01

    To determine whether hyaluronic acid (HA) injection into rheumatoid arthritis ankles and feet can achieve improvement in foot function and reduce synovial hyper-vascularization. Forty-four patients with RA having unilateral or bilateral painful ankle and foot involvement (N = 75) were studied. All the patients were randomized to receive HA (N = 40) or lidocaine (LI) (N = 35) injection at 2-week intervals; Clinical assessments were performed using a visual analog scale (VAS) and foot function index (FFI total ) including subscales of pain (FFI pain) before injection at baseline, 4 weeks (first evaluation) and 12 weeks (secondary evaluation). Imaging evaluation based on color Doppler ultrasound (CDUS) and synovitis scores was performed simultaneously. HA injection improved the VAS score (p = .009), FFI pain (p = .041), and FFI total (p = .032) considerably more than LI injections did at the first evaluation. The CDUS values at first evaluation (p = .005) and secondary evaluation (p injections reduced the CDUS values of more than half of the joints (54%, p = .042) while the control group exhibited no change (20%, p = .56). However, HA injection did not reduce the CDUS values more than LI injection did. Regarding the evaluation of synovial hypertrophy, no significant difference was observed between or within the groups in the synovitis scores. HA injection improved short-term foot function and pain reduction. HA injection may have a modest effect in reducing synovial hyper-vascularization. Further large-scale study is warranted to confirm this result.

  16. The role of series ankle elasticity in bipedal walking.

    Science.gov (United States)

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Poor compliance with ankle-foot-orthoses in Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Vinci, P; Gargiulo, P

    2008-03-01

    The aim of this study is to evaluate the compliance with ankle-foot orthoses (AFOs) in patients previously prescribed and affected with Charcot-Marie-Tooth disease (CMT). Twenty-five Italian patients (8 males 17 females; mean age: 41.6 years, range 16-54) with severe bilateral footdrop (leg-sole angle alpha >105 degrees ) alone or associated with other problems (rotation, plantarflexor failure, knee flexor failure) were examined by a physiatrist (with measurement of the leg-sole angle alpha' with their footwear) and interviewed by a psychologist. Only 5 patients (20%) used AFOs (3 prefabricated polypropylene AFOs, 2 custom-made short AFOs incorporated in high-top boots) with satisfactory functional results (alpha' <=94 degrees ; reported increased mobility and no more falls). The interview revealed that all patients had a bad relationship with their own body. The 3 subjects using prefabricated AFOs said that they hated them and one of them complained of pain. Patients not using AFOs justified their decision with statements such as: ''I am not yet ready to accept them'' (n=3) or ''I can still manage without them for a while'' (n=2) or both (n=15). Four patients had experienced pain during the trial, 2 had not found proper shoes to accommodate them and 12 were absolutely not interested in AFOs and, therefore, had not gone to an orthotist. Compliance with AFOs is poor. Patients with CMT discard AFOs because they highlight their disability, are not essential for their limited daily walking and are uncomfortable. We suggest that prescription of AFOs be accompanied with psychological support and that research of more comfortable and cosmetically acceptable solutions for the problem of footdrop be stimulated.

  18. Do Balance Board Training Programs Reduce the Risk of Ankle Sprains in Athletes?

    Institute of Scientific and Technical Information of China (English)

    Timothy A.McGuine

    2008-01-01

    @@ Introduction Ankle sprains are the most common musculoskeletal injury that occurs in athletes,particularly in sports that require jumping and landing on one foot such as soccer,and basketball(1-4).

  19. Mid-term results of ankle fractures with and without syndesmotic rupture.

    Science.gov (United States)

    Veen, Egbert J D; Zuurmond, Rutger G

    2015-03-01

    This study investigated the effect of short term removal of syndesmotic screws on the ankle function after 6 years, as there still exists controversy on the duration of screw stabilization. Patients with an ankle fracture who received surgery between 1998 and 2004 were reviewed. One group was composed of patients with an ankle fracture needing a syndesmotic repair with screws. The second was composed of operated patients that did not need syndesmotic repair. The primary scoring used was the Olerud-Molander Ankle Score (OMAS). A total of 59 patients were studied with comparable characteristics, with no significant difference on the OMAS after 6 years between the repair group (81.9) and the non-repair group (90.4). On additional clinical scoring groups remained the same. Joint degeneration was seen in both groups (86.7% vs. 55.5%). Patients with ankle fractures using syndesmotic repair and screw removal after 8 weeks and operated patients without syndesmotic injury have comparable results after 6 years. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  20. Incidence and Cost of Ankle Sprains in United States Emergency Departments

    Science.gov (United States)

    Shah, Shweta; Thomas, Abbey C.; Noone, Joshua M.; Blanchette, Christopher M.; Wikstrom, Erik A.

    2016-01-01

    Background: Ankle sprains represent a common injury in emergency departments, but little is known about common complications, procedures, and charges associated with ankle sprains in emergency departments. Hypothesis: There will be a higher incidence of ankle sprains among younger populations (≤25 years old) and in female patients. Complications and procedures will differ between ankle sprain types. Lateral ankle sprains will have lower health care charges relative to medial and high ankle sprains. Study Design: Descriptive epidemiological study. Level of Evidence: Level 3. Methods: A cross-sectional study of the 2010 Nationwide Emergency Department Sample was conducted. Outcomes such as charges, complications, and procedures were compared using propensity score matching between lateral and medial as well as lateral and high ankle sprains. Results: The sample contained 225,114 ankle sprains. Female patients sustained more lateral ankle sprains (57%). After propensity score adjustment, lateral sprains incurred greater charges than medial ankle sprains (median [interquartile range], $1008 [$702-$1408] vs $914 [$741-$1108]; P sprain of the foot (2.96% vs 0.70%, P ankle sprain events. Among procedures, medial ankle sprains were more likely to include diagnostic radiology (97.91% vs 83.62%, P ankle sprains (0.87% vs 2.79%, P ankle sprains than lateral ankle sprains (24 [6.06%] vs 1 [0.25%], P Ankle sprain emergency department visits account for significant health care charges in the United States. Age- and sex-related differences persist among the types of ankle sprains. Clinical Relevance: The health care charges associated with ankle sprains indicate the need for additional preventive measures. There are age- and sex-related differences in the prevalence of ankle sprains that suggest these demographics may be risk factors for ankle sprains. PMID:27474161

  1. Differences in lateral ankle laxity measured via stress ultrasonography in individuals with chronic ankle instability, ankle sprain copers, and healthy individuals.

    Science.gov (United States)

    Croy, Theodore; Saliba, Susan A; Saliba, Ethan; Anderson, Mark W; Hertel, Jay

    2012-07-01

    Cross-sectional. To use stress ultrasonography to measure the change in anterior talofibular ligament length during the simulated anterior drawer and ankle inversion stress tests. In approximately 30% of individuals, ankle sprains may eventually develop into chronic ankle instability (CAI) with recurrent symptoms. Individuals with CAI and those who have a history of ankle sprain (greater than 1 year prior) without chronic instability (copers) may or may not have mechanical laxity. Sixty subjects (n=60 ankles) were divided into 3 groups: 1) Control subjects without ankle injury history (n=20; mean ± SD age; 24.8 ± 4.8 years; height, 173.7 ± 9.4 cm; weight, 77.2 ± 19.5 kg), ankle sprain copers (n=20; 22.3 ± 2.9 years; 172.8 ± 11.3 cm; 72.4 ± 14.3 kg), and subjects with CAI (n=20; 23.5 ± 4.2 years; 174.6 ± 9.6 cm; 74.8 ± 17.3 kg). Ligament length change with the anterior drawer and end range ankle inversion was calculated from ultrasound images. The Foot and Ankle Ability Measure (FAAM) was used to quantify self-reported function on activities-of-daily living (ADL) and sports. The anterior drawer test resulted in length changes that were greater (F₂,₅₇=6.2, P=.004) in the CAI (mean ± SD length change, 15.6 ± 15.1%, P=.006) and the coper groups (14.0 ± 15.9%, P=.016) compared to the control group (1.3 ± 10.7%); however the length change for the CAI and coper groups were not different (P=.93). Ankle inversion similarly resulted in greater ligament length change (F₂,₅₇=6.5, P=.003) in the CAI (25.3 ± 15.5%, P=.003) and coper groups (20.2 ± 19.6%, P=.039) compared to the control group (7.4 ± 12.9%); with no difference in length change between the copers and CAI groups (P=.59). The CAI group had a lower score on the FAAM-ADL (87.4 ± 13.4%) and FAAM-Sports (74.2 ± 17.8%) when compared to the control (98.8 ± 2.9% and 98.9 ± 3.1%, P<.0001) and coper groups (99.4 ± 1.8% and 94.6 ± 8.8%, P<.0001). Stress ultrasonography identified greater

  2. Excessively anterior placement of the fibular interfragmentary screw can result in a malreduced ankle syndesmosis – a technical report

    Directory of Open Access Journals (Sweden)

    S Mukhoapadhyay

    2009-12-01

    Full Text Available S Mukhoapadhyay1, A R Guha1, R Thomas1, A M Perera1, P Mullaney21Orthopaedic Foot and Ankle Unit, 2Department of Radiology, University Hospital of Wales, Cardiff, UKAbstract: The detection of often missed, syndesmotic injury in ankle fractures is important to reduce unacceptable clinical outcomes including possible future ankle arthritis. A case is presented in which the malpositioning of an interfragmentary screw has caused malreduction of syndesmosis.Keywords: syndesmotic injury, ankle fracture, arthritis

  3. REVISION ANKLE SYNDESMOSIS FIXATION - FUNCTIONAL OUTCOME AFTER TIGHTROPE ® FIXATION

    Directory of Open Access Journals (Sweden)

    Sendhilvelan Rajagopalan

    2016-07-01

    Full Text Available BACKGROUND Syndesmotic disruptions are often seen in ankle fractures. Malreduction of these fractures can result in arthritis and instability. A proportion of these patients with malreduction require revision fixation. This study presents the results of revision fixation in such patients, using the Ankle TightRope ® (Arthrex system. METHODS Between January 2000 to December 2009, 124 patients who underwent ankle fracture fixations with syndesmotic stabilisation were analysed. Out of 124 patients, 8 patients were diagnosed with failure of primary stabilisation (based on radiological and clinical criteria and subjected to revision fixation using the Ankle TightRope ® (Arthrex system. Followup was done at periodic time intervals of 3, 6 and 12 months. Both clinical and radiological assessment was performed. Complications and duration of hospital stay was recorded. Functional evaluation was performed using the American Orthopaedic Foot and Ankle Society (AOFAS scoring system. RESULTS Five patients had good results, one satisfactory and two had poor outcomes. CONCLUSIONS Ankle TightRope ® fixation is an alternative method of stabilisation in patients who require revision syndesmosis fixation. Further studies are required to evaluate this method of revision stabilisation as compared to screws.

  4. A review on the mechanical design elements of ankle rehabilitation robot.

    Science.gov (United States)

    Khalid, Yusuf M; Gouwanda, Darwin; Parasuraman, Subramanian

    2015-06-01

    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings. © IMechE 2015.

  5. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes.

    Science.gov (United States)

    Fuller, Joel T; Buckley, Jonathan D; Tsiros, Margarita D; Brown, Nicholas A T; Thewlis, Dominic

    2016-10-01

    Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Crossover study. Research laboratory. Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18-40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. We observed no difference in foot-strike classification between shoes (χ 2 1 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t 25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t 25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t 24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t 24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t 24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t 24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist

  6. Ankle sprains: combination of manual therapy and supervised exercise leads to better recovery.

    Science.gov (United States)

    2013-01-01

    Ankle sprains often occur when running, walking on uneven ground, or jumping. Usually, people are told to rest, elevate the foot, apply ice, and use an elastic wrap to reduce swelling. This treatment is typically followed by exercises that can be performed at home. Although the pain and swelling usually improve quickly, more than 70% of people who sprain their ankles continue to have problems with them and up to 80% will sprain their ankles again. This suggests that it is important to better care for ankle sprains. One option is manual therapy, where the therapist moves the ankle and surrounding joints to help restore normal joint movement. A research report published in the July 2013 issue of JOSPT examines and compares the outcomes of a home exercise program with a more involved treatment program that includes manual therapy and supervised exercises.

  7. Knee joint kinetics in response to multiple three-dimensional printed, customised foot orthoses for the treatment of medial compartment knee osteoarthritis.

    Science.gov (United States)

    Allan, Richard; Woodburn, James; Telfer, Scott; Abbott, Mandy; Steultjens, Martijn Pm

    2017-06-01

    The knee adduction moment is consistently used as a surrogate measure of medial compartment loading. Foot orthoses are designed to reduce knee adduction moment via lateral wedging. The 'dose' of wedging required to optimally unload the affected compartment is unknown and variable between individuals. This study explores a personalised approach via three-dimensional printed foot orthotics to assess the biomechanical response when two design variables are altered: orthotic length and lateral wedging. Foot orthoses were created for 10 individuals with symptomatic medial knee osteoarthritis and 10 controls. Computer-aided design software was used to design four full and four three-quarter-length foot orthoses per participant each with lateral posting of 0° 'neutral', 5° rearfoot, 10° rearfoot and 5° forefoot/10° rearfoot. Three-dimensional printers were used to manufacture all foot orthoses. Three-dimensional gait analyses were performed and selected knee kinetics were analysed: first peak knee adduction moment, second peak knee adduction moment, first knee flexion moment and knee adduction moment impulse. Full-length foot orthoses provided greater reductions in first peak knee adduction moment (p = 0.038), second peak knee adduction moment (p = 0.018) and knee adduction moment impulse (p = 0.022) compared to three-quarter-length foot orthoses. Dose effect of lateral wedging was found for first peak knee adduction moment (p knee adduction moment (p knee adduction moment impulse (p knee adduction moment (p = 0.028) and knee adduction moment impulse (p = 0.036). Significant interaction effects were found between orthotic length and wedging condition for second peak knee adduction moment (p = 0.002). No significant changes in first knee flexion moment were found. Individual heterogeneous responses to foot orthosis conditions were observed for first peak knee adduction moment, second peak knee adduction moment and knee adduction moment impulse. Biomechanical response

  8. Distally based sural neuro-fasciocutaneous perforator flap for foot and ankle reconstruction: Surgical modifications for flap pedicle and donor site closure without skin graft.

    Science.gov (United States)

    Chi, Zhenglin; Chen, Yiheng; Chu, Tinggang; Gao, Weiyang; Li, Zhijie; Yan, Hede; Song, Yonghuan

    2018-02-01

    The conventional procedure of the sural neuro-fasciocutaneous flap enables the supply of blood and venous drainage by increasing the width of the adipofascial tissue and preserving tiny venous return routes. Moreover, skin graft is a common method for donor site closure, which may lead to some complications and influence the aesthetic appearance. We report modifications for a distally based sural neuro-fasciocutaneous perforator flap and a relaying flap for donor site closure without skin graft. Twelve patients undergoing the modified flap for foot and ankle reconstruction were included in this study between 2014 and 2016. A peroneal-based perforator, a superficial vein, and the vascular axis of the sural nerve were included in the pedicle. A Z-shape skin incision was performed to explore the perforator vessels and a relaying island perforator flap was used to close the donor site. All flaps survived completely without necrosis. The area of the flaps ranged from 16 × 8 cm to 30 × 15 cm. The diameter width of the pedicle ranged from 1.0 to 2.0 cm. A relaying perforator island flap was used in 10 cases for donor site closure and no skin graft was performed. There were no serious donor site complications. All patients were satisfied with the aesthetic outcome postoperatively at the final follow-up. The distally based sural neuro-fasciocutaneous perforator flap is considered a reliable method for foot and ankle reconstruction. The modification for flap pedicle and donor site closure method without skin graft should be recommended. Copyright © 2017. Published by Elsevier Ltd.

  9. Reliability of the Phi angle to assess rotational alignment of the talar component in total ankle replacement.

    Science.gov (United States)

    Manzi, Luigi; Villafañe, Jorge Hugo; Indino, Cristian; Tamini, Jacopo; Berjano, Pedro; Usuelli, Federico Giuseppe

    2017-11-08

    The purpose of this study was to investigate the test-retest reliability of the Phi angle in patients undergoing total ankle replacement (TAR) for end stage ankle osteoarthritis (OA) to assess the rotational alignment of the talar component. Retrospective observational cross-sectional study of prospectively collected data. Post-operative anteroposterior radiographs of the foot of 170 patients who underwent TAR for the ankle OA were evaluated. Three physicians measured Phi on the 170 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), inter and intra-observer agreement were evaluated. Test-retest reliability of Phi angle measurement was excellent for patients with Hintegra TAR (ICC=0.995; pPhi angle measurement between patients with Hintegra vs. Zimmer implants (p>0.05). Measurement of Phi angle on weight-bearing dorsoplantar radiograph showed an excellent reliability among orthopaedic surgeons in determining the position of the talar component in the axial plane. Level II, cross sectional study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  10. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

    Science.gov (United States)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.

  11. Case Study: A Bio-Inspired Control Algorithm for a Robotic Foot-Ankle Prosthesis Provides Adaptive Control of Level Walking and Stair Ascent

    Directory of Open Access Journals (Sweden)

    Uzma Tahir

    2018-04-01

    Full Text Available Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a “winding filament” hypothesis (WFH for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4–5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = −8 to −19° and ankle moments (range = 1 to 1.5 Nm/kg similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range −15 to −19° that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at

  12. Development and evaluation of interdisciplinary preoperative patient education in foot and ankle surgery: immediate effects on knowledge, satisfaction and anxiety / Entwicklung und erste Evaluation eines präoperativen interdisziplinären Schulungskonzeptes für Patienten/-innen der Fußchirurgie: unmittelbare Effekte auf Wissenszuwachs, Zufriedenheit und Angst

    Directory of Open Access Journals (Sweden)

    Schäfer Axel

    2017-06-01

    Full Text Available Foot and ankle surgery is increasing due to demographic and lifestyle changes. Most often, patients are required to unload their foot postoperatively, resulting in signifcant impairment of activities of daily living without adequate preparation for this situation. The aim of the study was the development and evaluation of a preoperative patient education intervention.

  13. Injured lateral ankle ligaments: technique and assessment of MRI

    International Nuclear Information System (INIS)

    Breitenseher, M.J.; Trattnig, S.; Kukla, C.; Gaebler, C.; Kaider, A.; Haller, J.; Heinz-Peer, G.; Imhof, H.

    1996-01-01

    56 patients with the clinical diagnosis of sprained ankles were investigated. Evaluation of the anterior (AFTL) and posterior fibulotalar ligament (PFTL) was performed with the foot in dorsiflexion (20 ) and of the fibulo calcanear ligament (FCL) in plantarflexion (45 ). Axial T 1 w-SE and T 2 w-TSE images were obtained. Full-length visualisation of ligmaments in one slice and the extent of injury were evaluated. 12 ankle injuries were confirmed by operation. With MRI full-length visualisation of lateral ankle ligaments was possible in 86%. A partial/complete rupture of the AFTL was noticed in 33/64% and of the FCI in 29/39%, and of the PFTL in 27/5%. Sensitivity/specificity of MRI when compared to surgery was 100/100% for injuries of the AFTL, 64/100% for the FCL, and 33/78% for the PFTL. (orig./MG) [de

  14. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    Science.gov (United States)

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  15. Use of a Hybrid Operating Room to Improve Reduction of Syndesmotic Injuries in Ankle Fractures: A Case Report.

    Science.gov (United States)

    Cancienne, Jourdan M; Crosen, Matelin P; Yarboro, Seth R

    2016-01-01

    Ankle fractures are one of the most common orthopedic injuries requiring operative treatment, and approximately 1 in 4 ankle fractures will have an associated distal tibiofibular syndesmosis disruption. Syndesmotic reduction is crucial to restoring ankle function and preventing the development of arthritis. The hybrid operating room provides 3-dimensional intraoperative imaging capabilities that can enable the surgeon to ensure the syndesmosis is appropriately reduced, particularly by comparing it with the contralateral ankle. By confirming the syndesmosis reduction intraoperatively, the risk of a return to the operating room for revision surgery is decreased. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Improving the readability of online foot and ankle patient education materials.

    Science.gov (United States)

    Sheppard, Evan D; Hyde, Zane; Florence, Mason N; McGwin, Gerald; Kirchner, John S; Ponce, Brent A

    2014-12-01

    Previous studies have shown the need for improving the readability of many patient education materials to increase patient comprehension. This study's purpose was to determine the readability of foot and ankle patient education materials and to determine the extent readability can be improved. We hypothesized that the reading levels would be above the recommended guidelines and that decreasing the sentence length would also decrease the reading level of these patient educational materials. Patient education materials from online public sources were collected. The readability of these articles was assessed by a readability software program. The detailed instructions provided by the National Institutes of Health (NIH) were then used as a guideline for performing edits to help improve the readability of selected articles. The most quantitative guideline, lowering all sentences to less than 15 words, was chosen to show the effect of following the NIH recommendations. The reading levels of the sampled articles were above the sixth to seventh grade recommendations of the NIH. The MedlinePlus website, which is a part of the NIH website, had the lowest reading level (8.1). The articles edited had an average reduction of 1.41 grade levels, with the lowest reduction in the Medline articles of 0.65. Providing detailed instructions to the authors writing these patient education articles and implementing editing techniques based on previous recommendations could lead to an improvement in the readability of patient education materials. This study provides authors of patient education materials with simple editing techniques that will allow for the improvement in the readability of online patient educational materials. The improvement in readability will provide patients with more comprehendible education materials that can strengthen patient awareness of medical problems and treatments. © The Author(s) 2014.

  17. The Oxford Ankle Foot Questionnaire for children: responsiveness and longitudinal validity.

    Science.gov (United States)

    Morris, Christopher; Doll, Helen; Davies, Neville; Wainwright, Andrew; Theologis, Tim; Willett, Keith; Fitzpatrick, Ray

    2009-12-01

    To evaluate how scores from the Oxford Ankle Foot Questionnaire change over time and with treatment using both distribution-based and anchor-based approaches. Eighty children aged 5-16 and their parent or career completed questionnaires at orthopaedic or trauma outpatient clinics. They were asked to complete and return a second set of questionnaires again within 2 weeks (retest), and then mailed a third set of questionnaires to complete again after 2 months (follow-up). The follow-up questionnaires included a global rating of change 'transition' item. Child- and parent-reported mean domain scores (Physical, School & Play, and Emotional) were all stable at retest, whereas positive mean changes were observed at follow-up. As we hypothesised, trauma patients had poorer scores than elective patients at baseline, and showed greater improvement at follow-up. For trauma patients, mean changes in per cent scores were large (scores improved between 40 and 56 for the Physical and School & Play domains, and 17 and 21 for Emotional); all effect sizes (ES) were large (>0.8). For elective patients, the mean improvement in per cent scores were more moderate (Physical: child 10, ES = 0.4, parent 11, ES = 0.5; School & Play child 0, ES = 0, parent 9 ES = 0.4; Emotional: child 6, ES = 0.2; parents 8, ES > 0.3). Minimal detectable change (MDC(90)), an indication of measurement error, ranged from 6 to 8. Half the standard deviation of baseline scores ranged from 11 to 18. Minimal important difference could only be calculated for elective patients (9 child and 13 parent ratings), these ranged from 7 to 17. The findings support the responsiveness and longitudinal validity of the scales. Changes in domain scores of, or exceeding, the MDC(90) (6-8) are likely to be beyond measurement error; further work is required to refine the estimate of change that can be considered important.

  18. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    Directory of Open Access Journals (Sweden)

    W. X. Niu

    2013-01-01

    Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

  19. Simulation of an ankle rehabilitation system based on scotch- yoke mechanism

    Science.gov (United States)

    Racu (Cazacu, C. M.; Doroftei, I.; Plesu, Ghe; Doroftei, I. A.

    2016-08-01

    Due to injuries that occur on the ankle joint, everyday all around the world, more and more rehabilitation devices have been developed in recent years. The prices for ankle rehabilitation systems are still high, thus we developed a new device that we indented to be low cost and easy to manufacture. A model of an ankle rehabilitation device is presented in this paper. The device has two degrees of freedom, for flexion-extension and inversion-eversion move, and will ensure functionality with minimum dimensions. For the 3D model that we design, the dimensions are taken so that the proposed system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg.

  20. The benefit of pharmacological venous thromboprophylaxis in foot ...

    African Journals Online (AJOL)

    The risks and benefits of pharmacological thromboprophylaxis are well documented in respect of total joint arthroplasty and hip fractures, but little is understood about the incidence of venous thromboembolism (VTE) or the potential risks and benefits of chemoprophylaxis in foot and ankle surgery. Objective. To determine ...

  1. iGrab: hand orthosis powered by twisted and coiled polymer muscles

    Science.gov (United States)

    Saharan, Lokesh; de Andrade, Monica Jung; Saleem, Wahaj; Baughman, Ray H.; Tadesse, Yonas

    2017-10-01

    Several works have been reported in powered hand orthosis in the last ten years for assistive or rehabilitative purposes. However, most of these approaches uses conventional actuators such as servo motors to power orthosis. In this work, we demonstrate the recently reported twisted and coiled polymeric (TCP) muscles to drive a compact, light, inexpensive and wearable upper extremity device, iGrab. A 3D printed orthotic hand module was designed, developed and tested for the performance. The device has six 2-ply muscles of diameter 1.35 mm with a length of 380 mm. We used a single 2-ply muscle for each finger and two 2-ply muscles for the thumb. Pulsed actuation of the muscles at 1.8 A current for 25 s with 7% duty cycle under natural cooling showed full flexion of the fingers within 2 s. Modeling and simulation were performed on the device using standard Euler-Lagrangian equations. Our artificial muscles powered hand orthosis demonstrated the capability of pinching and picking objects of different shapes, weights, and sizes.

  2. Studies examining the efficacy of ankle foot orthoses should report activity level and mechanical evidence.

    Science.gov (United States)

    Harlaar, Jaap; Brehm, Merel; Becher, Jules G; Bregman, Daan J J; Buurke, Jaap; Holtkamp, Fred; De Groot, Vincent; Nollet, Frans

    2010-09-01

    Ankle Foot Orthoses (AFOs) to promote walking ability are a common treatment in patients with neurological or muscular diseases. However, guidelines on the prescription of AFOs are currently based on a low level of evidence regarding their efficacy. Recent studies aiming to demonstrate the efficacy of wearing an AFO in respect to walking ability are not always conclusive. In this paper it is argued to recognize two levels of evidence related to the ICF levels. Activity level evidence expresses the gain in walking ability for the patient, while mechanical evidence expresses the correct functioning of the AFO. Used in combination for the purpose of evaluating the efficacy of orthotic treatment, a conjunct improvement at both levels reinforces the treatment algorithm that is used. Conversely, conflicting outcomes will challenge current treatment algorithms and the supposed working mechanism of the AFO. A treatment algorithm must use relevant information as an input, derived from measurements with a high precision. Its result will be a specific AFO that matches the patient's needs, specified by the mechanical characterization of the AFO footwear combination. It is concluded that research on the efficacy of AFOs should use parameters from two levels of evidence, to prove the efficacy of a treatment algorithm, i.e., how to prescribe a well-matched AFO.

  3. MORPHOMETRIC STUDY OF MEDIAL COLLATERAL LIGAMENTS OF ANKLE

    Directory of Open Access Journals (Sweden)

    Neelu Prasad

    2016-06-01

    Full Text Available BACKGROUND The ankle joint is one of the most frequently injured joint. A sprained ankle results due to tear of anterior talofibular and calcaneofibular ligaments when the foot is twisted in lateral direction. In forcible eversion of the foot, the deltoid ligament may be torn. At times, the deltoid ligament pulls the medial malleolus thereby causing avulsion fracture of the malleolus. The strong eversion pull on the deltoid ligament causes transverse fracture of medial malleolus. If the tibia is carried anteriorly, the posterior margin of the distal end of the tibia is also broken by the talus producing a trimalleolar fracture. The talocrural joint is a major weight bearing joint of the body. The weight of the body is transmitted from the tibia and fibula to the talus which distributes the weight anteriorly and posteriorly within the foot. One sixth of the static load of the leg is carried by the fibula at the tibiofibular joint. These require a high degree of stability which is determined by the passive and dynamic factors. A sprained ankle results due to tear of anterior talofibular and calcaneofibular ligaments when the foot is twisted in lateral direction. In forcible eversion of the foot, the deltoid ligament may be torn. At times, the deltoid ligament pulls the medial malleolus thereby causing avulsion fracture of the malleolus. The strong eversion pull on the deltoid ligament causes transverse fracture of medial malleolus. If the tibia is carried anteriorly, the posterior margin of the distal end of the tibia is also broken by the talus producing a trimalleolar fracture. Conventionally, X-ray techniques have been used to diagnose ligament injuries. Magnetic resonance (MR imaging has opened new horizons in the diagnosis and treatment of many musculoskeletal diseases of the ankle and foot. It demonstrates abnormalities in the bones and soft tissues before they become evident at other imaging modalities. The anatomy of the deltoid ligament

  4. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.

    Science.gov (United States)

    Scarton, Alessandra; Guiotto, Annamaria; Malaquias, Tiago; Spolaor, Fabiola; Sinigaglia, Giacomo; Cobelli, Claudio; Jonkers, Ilse; Sawacha, Zimi

    2018-02-01

    Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments. PMID:29551959

  6. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Directory of Open Access Journals (Sweden)

    Philippe Malcolm

    2018-03-01

    Full Text Available The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  7. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton.

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition . Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions . Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  8. Single DoF Hand Orthosis for Rehabilitation of Stroke and SCI Patients

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Apuroop, K. G. S.; Boddupalli, Sricharan

    2017-08-01

    Many stroke and spinal cord injury patients suffer from paralysis which range from severe to nominal. Some of them, after therapy, could regain most of the motor control, particularly in hands if the severity level is not so high. In this paper we propose a hand orthosis for such patients whose stroke and spinal cord injury severity is nominal and the motor control in hands can be regained by therapy as part of their rehabilitation process. The patients can wear this orthosis and the therapy can be done with simple Human Computer Interface. The physicians, the physiotherapists and the patients themselves can carry out the therapy with the help of this device. The tests conducted in the lab and the results obtained are very promising that this can be an effective mechanism for stroke and spinal cord injury patients in their rehabilitation process. The hand orthosis is designed and fabricated locally so that it can be made available to such patients at an affordable cost.

  9. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.

    Science.gov (United States)

    Button, Keith D; Wei, Feng; Haut, Roger C

    2015-10-15

    Eversion prior to excessive external foot rotation has been shown to predispose the anterior tibiofibular ligament (ATiFL) to failure, yet protect the anterior deltoid ligament (ADL) from failure despite high levels of foot rotation. The purpose of the current study was to measure the rotations of both the subtalar and talocrural joints during foot external rotation at sub-failure levels in either a neutral or a pre-everted position as a first step towards understanding the mechanisms of injury in previous studies. Fourteen (seven pairs) cadaver lower extremities were externally rotated 20° in either a pre-everted or neutral configuration, without producing injury. Motion capture was performed to track the tibia, talus, and calcaneus motions, and a joint coordinate system was used to analyze motions of the two joints. While talocrural joint rotation was greater in the neutral ankle (13.3±2.0° versus 10.5±2.7°, p=0.006), subtalar joint rotation was greater in the pre-everted ankle (2.4±1.9° versus 1.1±1.0°, p=0.014). Overall, the talocrural joint rotated more than the subtalar joint (11.9±2.8° versus 1.8±1.6°, p<0.001). It was proposed that the calcaneus and talus 'lock' in a neutral position, but 'unlock' when the ankle is everted prior to rotation. This locking/unlocking mechanism could be responsible for an increased subtalar rotation, but decreased talocrural rotation when the ankle is pre-everted, protecting the ADL from failure. This study may provide information valuable to the study of external rotation kinematics and injury risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ankle torque steadiness is related to muscle activation variability and co-activation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin; Sløk, Rikke

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...... contractions in those children. Fourteen children with CP who walked with equinus foot deformity and 14 healthy (control) children performed maximal and steady submaximal ankle dorsi- and plantarflexions. Dorsiflexion torque steadiness was related to agonist and antagonist muscle activation variability as well...

  11. Assessment of female ballet dancers' ankles in the en pointe position using high field strength magnetic resonance imaging.

    Science.gov (United States)

    Russell, Jeffrey A; Yoshioka, Hiroshi

    2016-08-01

    The en pointe position of the ankle in ballet is extreme. Previously, magnetic resonance imaging (MRI) of ballet dancers' ankles en pointe was confined to a low field, open MR device. To develop a reproducible ankle MRI protocol for ballet dancers en pointe and to assess the positions of the key structures in the dancers ankles. Six female ballet dancers participated; each was randomly assigned to stand en pointe while one of her feet and ankles was splinted with wooden rods affixed with straps or to begin with the ankle in neutral position. She lay in an MR scanner with the ankle inside a knee coil for en pointe imaging and inside an ankle/foot coil for neutral position imaging. Proton density weighted images with and without fat suppression and 3D water excitation gradient recalled echo images were obtained en pointe and in neutral position in sagittal, axial, and coronal planes. We compared the bones, cartilage, and soft tissues within and between positions. No difficulties using the protocol were encountered. En pointe the posterior articular surface of the tibial plafond was incongruent with the talar dome and rested on the posterior talus. The posterior edge of the plafond impinged Kager's fat pad. All participants exhibited one or more small ganglion cysts about the ankle and proximal foot, as well as fluid accumulation in the flexor and fibularis tendon sheaths. Our MRI protocol allows assessment of female ballet dancers' ankles in the extreme plantar flexion position in which the dancers perform. We consistently noted incongruence of the talocrural joint and convergence of the tibia, talus, and calcaneus posteriorly. This protocol may be useful for clinicians who evaluate dancers. © The Foundation Acta Radiologica 2015.

  12. Shoe adaptation after amputation of the II - V phalangeal bones of the foot.

    Science.gov (United States)

    Rommers, G M; Diepstraten, H J M; Bakker, E; Lindeman, E

    2006-12-01

    In The Netherlands, about 50% of all amputations of the lower limb are toes and forefoot amputations. Traumata of toes and mid-foot are rare. Preservation of the foot is the primary goal for treatment. Crush injuries of the foot may be associated with prolonged morbidity. This case study presents an insole solution for the solitary first phalangeal bone after amputation of the phalangeal bones II - V. The normal adaptation for forefoot amputations is stiffening of the sole of the shoe and a rocker bar to improve the toe off phase with load reduction of the forefoot. Because the patient had to do excessive stair climbing during work another solution was chosen. As a foot orthosis, a metal soleplate was made in order to have free movement during loading and toe-off during walking. The soleplate gives safety and provides self-adjusting properties after toe off. This enables the shoe technician to make a shoe without a rocker bar or an extra stiff insole. The 0.5 mm custom-made spring-steel plate is also used as a protective in industrial safety shoes. To improve shoe adaptation more research and case reports have to be published in order to inform doctors and shoe technicians about everyday solutions to partial foot amputations.

  13. 快速诊断规则用于鉴别足踝扭伤有无骨折的临床分析%Accuracy of ottawa ankle rules to exclude fractures of the ankle and mid-foot

    Institute of Scientific and Technical Information of China (English)

    孟世平; 庞显伦

    2012-01-01

    Objective To identify the reasons of missed diagnosis with ankle sprains by analyzing OAR in order to guide the rational use of OAR.Methods Outpatient with sprained ankles were recruited from the surgical clinic in Sichuan Luzhou Medical College from Mar.2005 to Mar.2010.OAR was used for clinical diagnosis of ankle sprains.The accuracy of OAR diagnosis was examined within 24 h and at 15 d by X-ray.Results In the 105 cases of ankle sprain,16 cases was diagnosed of fractures by OAR.X-ray results showed I case of missed diagnosis,with the rate of missed diagnosis of 6.2%.While both OAR and X-ray diagnosed 21 cases in 50 patients with sprained foot fractures,with a rate of missed diagnosis of 0.Conclusion OAR diagnosis for ankle sprains and fractures has high success rate although with the possibility of missed diagnosis which needs attention clinically.%目的 探讨应用快速诊断规则(OAR)鉴别足踝扭伤伴骨折的漏诊原因,指导OAR的合理应用.方法 选择2005年3月至2010年3月在泸州医学院外科门诊就诊的足踝扭伤患者,应用OAR进行临床检查并做出有无骨折的判断,于受伤后24 h内和第15天进行足踝X线摄片,验证OAR诊断结果的准确性.结果 根据OAR原则,踝关节扭伤105例中初步诊断16例合并骨折,经X线检查合并骨折17例,漏诊1例(6.2%);足扭伤50例患者中21例合并骨折,OAR原则与X线摄片诊断结果一致.结论 OAR对足踝扭伤并骨折的判断准确率高,但也有漏诊的可能,临床要警惕.

  14. Safety and Efficacy of Intra-articular Injection of Platelet-Rich Plasma in Patients With Ankle Osteoarthritis.

    Science.gov (United States)

    Fukawa, Taisuke; Yamaguchi, Satoshi; Akatsu, Yorikazu; Yamamoto, Yohei; Akagi, Ryuichiro; Sasho, Takahisa

    2017-06-01

    An intra-articular injection of platelet-rich plasma (PRP) may be an effective treatment for osteoarthritis (OA). However, its efficacy in ankle OA has not been investigated yet. The purpose of this study was to assess the safety and efficacy of an intra-articular injection of PRP in patients with ankle OA during a 24-week period. Twenty ankles of 20 patients with varus-type ankle OA who received intra-articular injections of PRP were evaluated. PRP was extracted from whole blood by using the double-spin technique. Three injections of 2-mL PRP were administered to the ankle at an interval of 2 weeks under ultrasonographic guidance. Adverse events and efficacy were assessed at 4, 12, and 24 weeks after the last injection. Clinical outcomes were assessed by using the visual analog scale (VAS) for pain, the Japanese Society for Surgery of the Foot (JSSF) ankle/hindfoot scale, and the Self-Administered Foot Evaluation Questionnaire (SAFE-Q). No serious adverse effects were observed during the follow-up period. The VAS and JSSF scale scores significantly decreased from baseline to 4, 12, and 24 weeks after treatment ( P SAFE-Q significantly improved from baseline to 12 weeks after treatment ( P = .04). Overall, the amount of pain reduction was maximal at 12 weeks after the last injection, and the effect was reduced at 24 weeks. The patients with late-stage OA had worse scores in all outcomes than those with early-stage OA. Intra-articular injections of PRP resulted in no serious adverse effects and significantly reduced pain in the patients with ankle OA. PRP treatment can be safe and effective and may be an option in the treatment of ankle OA. Level IV, case series.

  15. Minimal clinically important difference and the effect of clinical variables on the ankle osteoarthritis scale in surgically treated end-stage ankle arthritis.

    Science.gov (United States)

    Coe, Marcus P; Sutherland, Jason M; Penner, Murray J; Younger, Alastair; Wing, Kevin J

    2015-05-20

    There is much debate regarding the best outcome tool for use in foot and ankle surgery, specifically in patients with ankle arthritis. The Ankle Osteoarthritis Scale (AOS) is a validated, disease-specific score. The goals of this study were to investigate the clinical performance of the AOS and to determine a minimal clinically important difference (MCID) for it, using a large cohort of 238 patients undergoing surgery for end-stage ankle arthritis. Patients treated with total ankle arthroplasty or ankle arthrodesis were prospectively followed for a minimum of two years at a single site. Data on demographics, comorbidities, AOS score, Short Form-36 results, and the relationship between expectations and satisfaction were collected at baseline (preoperatively), at six and twelve months, and then yearly thereafter. A linear regression analysis examined the variables affecting the change in AOS scores between baseline and the two-year follow-up. An MCID in the AOS change score was then determined by employing an anchor question, which asked patients to rate their relief from symptoms after surgery. Surgical treatment of end-stage ankle arthritis resulted in a mean improvement (and standard deviation) of 31.2 ± 22.7 points in the AOS score two years after surgery. The MCID of the AOS change score was a mean of 28.0 ± 17.9 points. The change in AOS score was significantly affected by the preoperative AOS score, smoking, back pain, and age. Patients undergoing arthroplasty or arthrodesis for end-stage ankle arthritis experienced a mean improvement in AOS score that was greater than the estimated MCID (31.2 versus 28.0 points). Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  16. MR Imaging of the Diabetic Foot.

    Science.gov (United States)

    McCarthy, Eoghan; Morrison, William B; Zoga, Adam C

    2017-02-01

    Abnormalities of the peripheral nervous, vascular, and immune systems contribute to the development of numerous foot and ankle pathologies in the diabetic population. Although radiographs remain the most practical first-line imaging tool, magnetic resonance (MR) is the tertiary imaging modality of choice, allowing for optimal assessment of bone and soft tissue abnormalities. MR allows for the accurate distinction between osteomyelitis/septic arthritis and neuropathic osteoarthropathy. Furthermore, it provides an excellent presurgical anatomic road map of involved tissues and devitalized skin to ensure successful limited amputations when required. Signal abnormality in the postoperative foot aids in the diagnosis of recurrent infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?

    Directory of Open Access Journals (Sweden)

    Nester Christopher J

    2009-05-01

    Full Text Available Abstract Background This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers. Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate Methods Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i static and dynamic cadaver models, and (ii invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population. Results Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions. Conclusion Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation

  18. Magnetic resonance imaging of ankle ligaments and tendon injuries

    International Nuclear Information System (INIS)

    Breitenseher, M.; Trattnig, S.; Kukla, C.; Daebler, C.; Helbich, T.; Haller, J.; Imhof, H.

    1995-01-01

    Today MRI allows evaluation of the integrity of injured ankle ligaments. The major difficulty in MRI is inconsistency in visualization by inadequate appreciation of the three-dimensional orientation of each ankle ligament. Using this technique, 52 patients with sprained ankles underwent MRI. The integrity of rupture of the collateral lateral ligaments was obtained in all 52 ankles. Full-lenght visualization is essential for evaluation of the ankle ligaments with MRI. In these 52 patients the angle of tilt on the stress X-ray was compared with the rate of MRI findings showing an injury affecting two ligaments. We found that none of the patients in whom the angle of lateral tilt was less than 5 had rupture of two laterial ligaments, while 32% of patients with angles of tilt of 6-14 and 42% of those with angles of tilt over 15 on stress X-ray had two ruptured lateral ligaments. The advantages of MRI are that it offers the best visualization of the extent of the tendon lesion. MRI, however, seems to be superior to US in detecting and quantifying lesions of the Achilles tendon. Therefore, MRI may be indicated in particularly difficult cases of tendons injuries in the foot. (orig.) [de

  19. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-01-01

    Background Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. Objectives To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Materials and Methods Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Results Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). Conclusions The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one). PMID:28180116

  20. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis.

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-07-01

    Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one).