Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians
Energy Technology Data Exchange (ETDEWEB)
LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)
2006-10-15
Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)
Semiclassical approximation to time-dependent Hartree--Fock theory
International Nuclear Information System (INIS)
Dworzecka, M.; Poggioli, R.
1976-01-01
Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form
Theories of the nuclear ground state beyond Hartree-Fock
International Nuclear Information System (INIS)
Gogny, D.
1979-01-01
Intensive efforts have been invested toward defining a microscopic approach, simple enough to render feasible systematic calculations of nuclear structure and of the some time sufficiently rich in information as to serve for updating traditional microscopic approaches to the collective excitations. Our starting point is the mean field approximation with density dependent effective forces. To describe the collective excitations we use the two well known extensions based on the H.F. theory namely the random phase approximation and the adiabatic approximation to the time dependent Hartree-Fock theory. The purpose of this paper is to show what sort of calculations can be effectively carried out in the frame of such fully self consistent approaches. (KBE) 891 KBE/KBE 892 ARA
Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems
International Nuclear Information System (INIS)
Tommasini, Paolo; Passos, E J V de; Pires, M O C; Piza, A F R de Toledo
2005-01-01
An extension of the Hartree-Fock-Bogoliubov (HFB) theory of degenerate Bose systems in which the coupling between one and two quasi-particles is taken into account is developed. The excitation operators are written as linear combinations of one and two HFB quasi-particles. Excitation energies and quasi-particle amplitudes are given by generalized Bogoliubov equations. The excitation spectrum has two branches. The first one is a discrete branch which is gapless and has a phonon character at large wavelength and, contrarily to HFB, is always stable. This branch is detached from a second, continuum branch whose threshold, at fixed total momentum, coincides with the two quasi-particle threshold of the HFB theory. The gap between the two branches at P = 0 is twice the HFB gap, which thus provides for the relevant energy scale. Numerical results for a specific case are given
Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory
International Nuclear Information System (INIS)
Gamboa, J.
1989-08-01
Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt
Time-dependent--S-matrix Hartree-Fock theory of complex reactions
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1980-01-01
Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations
Energy Technology Data Exchange (ETDEWEB)
Ripka, G [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires
1968-09-01
Most of the content of this thesis is published in english in Advances In Nuclear Physics, Vol. 1 (Editors: Baranger and Vogt - Plenum Press). The Hartree- Fock equations are derived. The expansions of the orbits and the possible symmetries of the Hartree-Fock field are discussed. Wavefunctions of even-even N = Z nuclei are given for 12 {<=} A {<=} 40. The role of the monopole, quadrupole and exchange components of the force are discussed. The multiplicity of the solutions and the effect of the spin-orbit interaction are discussed. Exact angular momentum projection is used to generate rotational bands. The validity of the adiabatic rotational model in light nuclei is discussed. Hartree-Fock calculations are extended to include major-shell mixing in order to obtain quadrupole deformations without the use of effective charge. The incompressibility, of nuclei is discussed and the compatibility between the Hartree-Fock solutions, the Mottelson model of quadrupole deformations and the SU3 states of J.P. Elliott and M. Moshinsky is established. (author) [French] La theorie de Hartree-Fock est appliquee au calcul des fonctions d'onde des noyaux legers deformes. Les equations de Hartree-Fock, les symetries permises et le choix du developpement des orbites sont discutes. Les fonctions d'onde des noyaux pair-pairs N = Z (12 {<=} A {<=} 40) sont tabulees. Les contributions des composantes monopolaires et quadrupolaires ainsi que des termes d'echange de la force nucleon-nucleon sont discutees. La methode de projection de moment cinetique est utilisee pour engendrer les bandes de rotation. La validite du modele rotationnel adiabatique est discutee. Les calculs de Hartree-Fock qui tiennent compte du melange de plusieurs couches majeures dans chaque orbite sont appliques au calcul des deformations quadrupolaires sans l'utilisation de charge effective. L'incompressibilite des noyaux et la compatibilite des fonctions d'onde de Hartree- Fock avec les fonctions d'onde SU3 de J
Energy Technology Data Exchange (ETDEWEB)
Ripka, G. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires
1968-09-01
Most of the content of this thesis is published in english in Advances In Nuclear Physics, Vol. 1 (Editors: Baranger and Vogt - Plenum Press). The Hartree- Fock equations are derived. The expansions of the orbits and the possible symmetries of the Hartree-Fock field are discussed. Wavefunctions of even-even N = Z nuclei are given for 12 {<=} A {<=} 40. The role of the monopole, quadrupole and exchange components of the force are discussed. The multiplicity of the solutions and the effect of the spin-orbit interaction are discussed. Exact angular momentum projection is used to generate rotational bands. The validity of the adiabatic rotational model in light nuclei is discussed. Hartree-Fock calculations are extended to include major-shell mixing in order to obtain quadrupole deformations without the use of effective charge. The incompressibility, of nuclei is discussed and the compatibility between the Hartree-Fock solutions, the Mottelson model of quadrupole deformations and the SU3 states of J.P. Elliott and M. Moshinsky is established. (author) [French] La theorie de Hartree-Fock est appliquee au calcul des fonctions d'onde des noyaux legers deformes. Les equations de Hartree-Fock, les symetries permises et le choix du developpement des orbites sont discutes. Les fonctions d'onde des noyaux pair-pairs N = Z (12 {<=} A {<=} 40) sont tabulees. Les contributions des composantes monopolaires et quadrupolaires ainsi que des termes d'echange de la force nucleon-nucleon sont discutees. La methode de projection de moment cinetique est utilisee pour engendrer les bandes de rotation. La validite du modele rotationnel adiabatique est discutee. Les calculs de Hartree-Fock qui tiennent compte du melange de plusieurs couches majeures dans chaque orbite sont appliques au calcul des deformations quadrupolaires sans l'utilisation de charge effective. L'incompressibilite des noyaux et la compatibilite des fonctions d'onde de Hartree- Fock avec les
Semiclassical expansions of the nuclear relativistic Hartree-Fock theory
International Nuclear Information System (INIS)
Weigel, M.K.; Haddad, S.
1991-01-01
Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)
Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory
DEFF Research Database (Denmark)
Dall'Acqua, Anna; Solovej, Jan Philip
2010-01-01
We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....
Application of the gradient method to Hartree-Fock-Bogoliubov theory
International Nuclear Information System (INIS)
Robledo, L. M.; Bertsch, G. F.
2011-01-01
A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.
Damping of monopole vibrations in time dependent Hartree-Fock theory
International Nuclear Information System (INIS)
Vautherin, D.; Stringari, S.
1979-01-01
Monopole vibrations in oxygen-16 and calcium-40 have been investigated in time-dependent Hartree-Fock theory. The characteristic damping time obtained is tau approximately 1.5x10 -22 sec. This value is in good agreement with the width of the monopole mode calculated in the random phase approximation
Extension of Hartree-Fock theory including tensor correlation in nuclear matter
Hu, Jinniu; Toki, Hiroshi; Ogawa, Yoko
2013-10-01
We study the properties of nuclear matter in the extension of Hartree-Fock theory including tensor correlation using a realistic nucleon-nucleon (NN) interaction. The nuclear wave function consists of the Hartree-Fock and two-particle-two-hole (2p-2h) states, following the concept of the tensor-optimized shell model (TOSM) for light nuclei. The short range repulsion and strong tensor force of realistic NN interaction provide high momentum components, which are taken into account in a many-body framework by introducing 2p-2h states. Single particle states are determined by the variational principle of the total energy with respect to 2p-2h amplitudes and Hartree-Fock (HF) single-particle states. The resulting differential equation is almost identical with that of Brueckner-Hartree-Fock (BHF) theory by taking two-body scattering terms only. We calculate the equation of state (EOS) of nuclear matter in this framework with the Bonn potential as a realistic NN interaction. We found similar results to BHF theory with slightly repulsive effects in the total energy. The relativistic effect is discussed for the EOSs of nuclear matter in both non-relativistic and relativistic frameworks. The momentum distribution has large components at high momenta due to 2p-2h excitations. We also obtain the EOSs of pure neutron matter, where the tensor effect is small in the iso-vector channel.
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
International Nuclear Information System (INIS)
Baranger, M.; Veneroni, M.
1977-11-01
It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin
Microscopic optical model potential based on Brueckner-Hartree-Fock theory
International Nuclear Information System (INIS)
Li Lulu; Zhao Enguang; Zhou Shangui; Li Zenghua; Zuo Wei; Bonaccorso, Angela; Lonbardo, Umberto
2010-01-01
The optical model is one of the most important models in the study of nuclear reactions. In the optical model, the elastic channel is considered to be dominant and the contributions of all other absorption channels are described by introducing an imaginary potential, Koning and Delaroche obtained empirically the so-called KDR optical potentials based on a best-fitting of massive experimental data on nucleon-nucleus scattering reactions. The volume part is found to be dominant in the real component of the OMP at low energies. Using the Bruckner-Hartree-Fock theory with Bonn B potential plus self consistent three body force, the nucleon-nucleus optical potential is studied in this thesis. In the Bruckner theory, the on-shell self energy, is corresponding to the depth of the volume part of the optical model potential (OMP) for nucleon-nucleus scattering. Using Bruckner-Hartree-Fock theory, the nucleon on-shell self energy is calculated based on Hughenoltz-Van Hove (HVH) theorem. The microscopic optical potentials thus obtained agree well with the volume part of the KDR potentials. Furthermore, the isospin splitting in the volume part of the OMP is also reproduced satisfactorily. The isospin effect in the volume part of the OMP is directly related to the isospin splitting of the effective mass of the nucleon. According to our results, the isospin splitting of neutron to proton effective mass is such that the neutron effective mass increases with isospin, whereas the proton effective mass decreases. The isovector potential U n (E) - U p (E) vanishes at energy E ≈ 200 MeV and then changes sign indicating a possible inversion in the effective mass isospin spitting. We also calculated from the Bruckner theory the imaginary part of the OMP, and the microscopic calculations predict that the isospin splitting exists also in the imaginary OMP whereas the empirical KDR potentials do not show this feature. The shape of the real component of the nucleon-nucleus OMP is
International Nuclear Information System (INIS)
Seddigi, Z.S.
2004-01-01
We found interesting results regarding some thermodynamical parameters (Delta H, Delta G and Delta S of the MTG Reaction and FTIR Spectra of methanol and dimethylether, using the Hartree-Fock method and Density Functional Theory (DFT) calculations at different computational levels. It is the aim of this paper to highlight these results. The GAUSSIAN 98 program was used to carry out the LCAO-MO-SCF calculations at the following levels: RHF/3-21g, RHF/6-31g and DFT/B3LYP/d95**. Calculations at the restricted Hartree-Fock levels (FHR/3-22 g and RHF/6-31g) were performed since they are expensive as other levels (DFT/B3LYP/d95**. In case of the HF method, working with larger basis set (6-31g) has improved the values slightly, which is as expected. We have noticed that performing calculations at higher levels (DFT/B3LY/D95**) than the Hartree-Fock method does not dramatically improve the situation. Indeed RHF is a reasonable approximation for many single gas phase molecular calculations. HF calculations at relatively small basis sets are adequate. The theoretical vibrational spectra of both methanol and dimethylether were compared with experimental results. (author)
Basic and heavy ion scattering in time dependent Hartree-Fock Theory
International Nuclear Information System (INIS)
Weiss, M.S.
1984-01-01
Time Dependent Hartree-Fock theory, TDHF, is the most sophisticated, microscopic approach to nuclear dynamics yet practiced. Although it is far from a description of nature it does allow us to examine multiply interactive many-body systems semi quantum mechanically and to visualize otherwise covert processes. Some of the properties of the TDHF equations are stated leaving the interested reader to one of several excellent review articles for the derivations. Some of the applications to the collision of heavy ions are briefly described
Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions
Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)
1994-01-01
Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.
The time dependent Hartree-Fock-theory for collective nuclear motions
International Nuclear Information System (INIS)
Goeke, K.
1976-11-01
The time-dependent Hartree-Fock theory (TDHF) approximately solves the Schroedinger equation by a variational method in the space of the time-dependent Slater determinants. As the TDHF wave function, similar to the exact solution has the property of being determined completely for all times by the nucleon-nucleon interaction and by assuming initial conditions. TDHF is expected to describe collective motion of nuclei with large amplitudes, too. The subject of this paper is to formulate the TDHF theory and its adiabatic limiting case (ATDHF) suited for setting up a collective Schroedinger equation, to investigate the relations with other theories, and to show the applicability for solving practical problems. (orig./WL) [de
Bučinský , Luká š; Malček, Michal; Biskupič, Stanislav; Jayatilaka, Dylan; Bü chel, Gabriel E.; Arion, Vladimir B.
2015-01-01
"Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF
Adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
International Nuclear Information System (INIS)
Baranger, M.; Veneroni, M.
1978-01-01
We show how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and we start from the time-dependent Hartree-Fock equation. To this we add the adiabatic approximation, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The crucial step is the decomposition of the single-particle density matrix p in the form exp(i/sub chi/) rho/sub omicron/exp(-i/sub chi/), where rho/sub omicron/ represents a time-even Slater determinant and plays the role of coordinate. Then chi plays the role of momentum, and the adiabatic assumption is that chi is small. The energy is expanded in powers of chi, the zeroth-order being the collective potential energy. The analogy with classical mechanics is stressed and studied. The same adiabatic equations of motion are derived in three different ways (directly, from the Lagrangian, from the Hamiltonian), thus proving the consistency of the theory. The dynamical equation is not necessary for writing the energy or for the subsequent quantization which leads to a Schroedinger equation, but it must be used to check the validity of various approximation schemes, particularly to reduce the problem to a few degrees of freedom. The role of the adiabatic hypothesis, its definition, and range of validity, are analyzed in great detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given, and the moment of inertia under rotation is that of Thouless and Valatin. For a quadrupole two-body force, the Baranger-Kumar formalism is recovered. The self-consistency brings additional terms to the Inglis cranking formula. Comparison is also made with generator coordinate methods
International Nuclear Information System (INIS)
Starodubskij, V.E.; Shaginyan, V.R.
1979-01-01
Friar-Negele method is applied to determine the static densities of neutrons and nuclear matter from the fast proton-nuclei elastic scattering data. This model-independent analysis (MIA) has been carried out for 28 Si, sup(32,34)S, sup(40,42,44,48)Ca, 48 Ti, sup(58,60)Ni, 90 Zr, 208 Pb nuclei. The binding energies, rms radii, densities and scattering cross sections of 1 GeV-proton are calculated in the framework of the Hartree-Fock theory (HF) with Skyrme's interaction. The HF and MIA densities and cross sections have been compared to draw a conclusion on the quality of the HF densities. Calculation of the cross sections has included the spin-orbit interaction with parameters taken from the polarization data
On the problem of representability and the Bogolyubov-Hartree-Fock theory
Energy Technology Data Exchange (ETDEWEB)
Knoerr, Hans Konrad
2013-11-22
The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is
On the problem of representability and the Bogolyubov-Hartree-Fock theory
International Nuclear Information System (INIS)
Knoerr, Hans Konrad
2013-01-01
The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is
Properties of nuclear and neutron matter in a relativistic Hartree-Fock theory
International Nuclear Information System (INIS)
Horowitz, C.J.; Serot, B.D.
1983-01-01
Relativistic-Hartree-Fock (HF) equations are derived for an infinite system of mesons and baryons in the framework of a renormalizable relativistic quantum field theory. The derivation is based on a diagrammatic approach and Dyson's equation for the baryon propagator. The result is a set of coupled, nonlinear integral equations for the baryon self-energy with a self-consistency condition on the single-particle spectrum. The HF equations are solved for nuclear and neutron matter in the Walecka model, which contains neutral scalar and vector mesons. After renormalizing model parameters to reproduce nuclear matter saturation properties, HF results at low to moderate densities are similar to those in the mean-field (Hartree) approximation. Self-consistent exchange corrections to the Hartree equation of state become negligible at high densities. Rho- and pi-meson exchanges are incorporated using a renormalizable gauge-theory model. A chiral transformation of the lagrangian is used to replace the pseudoscalar πN coupling with a pseudovector coupling, for which one-pion exchange is a reasonable first approximation. This transformation maintains the model's renormalizability so that corrections may be evaluated. Pion exchange has a small effect on the HF results of the Walecka model and brings HF results in closer in closer agreement with the mean-field theory. The diagrammatic techniques used here retain the mesonic degrees of freedom and are simple enough to be extended to more refined self-consistent approximations. (orig.)
Density Functional Theory versus the Hartree-Fock Method: Comparative Assessment
International Nuclear Information System (INIS)
Amusia, M.Ya.; Shaginyan, V.R.; Msezane, A.Z.
2003-01-01
We compare two different approaches to investigations of many-electron systems. The first is the Hartree-Fock (HF) method and the second is the Density Functional Theory (DFT). Overview of the main features and peculiar properties of the HF method are presented. A way to realize the HF method within the Kohn-Sham (KS) approach of the DFT is discussed. We show that this is impossible without including a specific correlation energy, which is defined by the difference between the sum of the kinetic and exchange energies of a system considered within KS and HF, respectively. It is the nonlocal exchange potential entering the HF equations that generates this correlation energy. We show that the total correlation energy of a finite electron system, which has to include this correlation energy, cannot be obtained from considerations of uniform electron systems. The single-particle excitation spectrum of many-electron systems is related to the eigenvalues of the corresponding KS equations. We demonstrate that this spectrum does not coincide in general with the eigenvalues of KS or HF equations
Density Functional Theory versus the Hartree-Fock Method: Comparative Assessment
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya.; Shaginyan, V.R. [The Hebrew University, Jerusalem (Israel); Msezane, A.Z. [Clark Atlanta Univ., Atlanta, GA (United States). Center for Theoretical Studies of Physical Systems
2003-12-01
We compare two different approaches to investigations of many-electron systems. The first is the Hartree-Fock (HF) method and the second is the Density Functional Theory (DFT). Overview of the main features and peculiar properties of the HF method are presented. A way to realize the HF method within the Kohn-Sham (KS) approach of the DFT is discussed. We show that this is impossible without including a specific correlation energy, which is defined by the difference between the sum of the kinetic and exchange energies of a system considered within KS and HF, respectively. It is the nonlocal exchange potential entering the HF equations that generates this correlation energy. We show that the total correlation energy of a finite electron system, which has to include this correlation energy, cannot be obtained from considerations of uniform electron systems. The single-particle excitation spectrum of many-electron systems is related to the eigenvalues of the corresponding KS equations. We demonstrate that this spectrum does not coincide in general with the eigenvalues of KS or HF equations.
The Hartree-Fock seniority approximation
International Nuclear Information System (INIS)
Gomez, J.M.G.; Prieto, C.
1986-01-01
A new self-consistent method is used to take into account the mean-field and the pairing correlations in nuclei at the same time. We call it the Hartree-Fock seniority approximation, because the long-range and short-range correlations are treated in the frameworks of Hartree-Fock theory and the seniority scheme. The method is developed in detail for a minimum-seniority variational wave function in the coordinate representation for an effective interaction of the Skyrme type. An advantage of the present approach over the Hartree-Fock-Bogoliubov theory is the exact conservation of angular momentum and particle number. Furthermore, the computational effort required in the Hartree-Fock seniority approximation is similar to that ofthe pure Hartree-Fock picture. Some numerical calculations for Ca isotopes are presented. (orig.)
Brandenburg, Jan Gerit; Grimme, Stefan
2014-01-01
We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.
Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case
Hajaiej, Hichem
2014-03-01
In [Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal. 198 (2010) 273-330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree-Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr. © 2014 World Scientific Publishing Company.
Multiconfiguration Hartree-Fock calculations for complex atoms
International Nuclear Information System (INIS)
Fischer, C.F.
1984-01-01
The Hartree-Fock method has become a standard in atomic structure theory. Simpler methods are often compared with it when accessing their reliability or worth and the notion of correlation, which intuitively may be thought of as the correction needed to account for the fact that electrons do not move independently in a central field, is defined with respect to the Hartree-Fock method rather than some other independent-particle model. In fact, in an earlier article in this series, Fricke (Progress in Atomic Spectroscopy, Part A, Plenum Press (1978)), states, ''The so-called HF method is the basis of all good atomic calculations.'' In some sense, the Hartree-Fock method is the best method. The author briefly reviews its properties here. 67 references, 2 figures
International Nuclear Information System (INIS)
Brut, F.
1982-01-01
The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr
Sert, Y.; Ucun, F.
2013-08-01
In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.
Energy Technology Data Exchange (ETDEWEB)
Garza, Alejandro J.; Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2014-06-28
Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.
Rayka, Milad; Goli, Mohammad; Shahbazian, Shant
2018-02-07
An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.
Variational derivation of a time-dependent Hartree-Fock Hamiltonian
International Nuclear Information System (INIS)
Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.
1979-01-01
The variational derivation of the time-dependent Hartree-Fock equation is reviewed. When norm-violating variations are included, a unique time-dependent Hartree-Fock Hamiltonian, which differs from that customarily used in time-dependent Hartree-Fock analyses, is implied. This variationally ''true'' Hartree-Fock Hamiltonian has the same expectation value as the exact Hamiltonian, equal to the average energy of the system. Since this quantity remains constant under time-dependent Hartree-Fock time evolution, we suggest the label ''constant '' for this form of time-dependent Hartree-Fock theory
Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong
2009-11-01
The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.
International Nuclear Information System (INIS)
Cinakli, S.; Sert, Y.; Boeyuekata, M.; Ucun, F.
2010-01-01
The vibrational spectra of benzaldehyde and its derivatives have been studied earlier. The substitution of a functional group changes the spectra markedly. Recent spectroscopic studies of the benzaldehyde and their derivatives have been motivated because the vibrational spectra are very useful for understanding of specific biological process and in the analysis of relatively complex systems. The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments, the total energy calculations, relative energies, the mean vibrational deviations of the two planar O-cis and O-trans roomers of 5-Hydroxy 2-nitrobenzaldehydes have been calculated using ab initio Hartree Fock (HF) and Density Functional Theory (B3LYP) with 6-311++G(d,p) basis set. All computations have been performed on personal computer using the Gaussian 03 program package. The calculations were adapted to Cs symmetries of all the molecules. The O-trans rotomers with lower energy of all the molecules have been found as preferential rotomers in the ground state.
Hartree--Fock time-dependent problem
Energy Technology Data Exchange (ETDEWEB)
Bove, A; Fano, G [Bologna Univ. (Italy). Istituto di Fisica; Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Da Prato, G [Rome Univ. (Italy). Istituto di Matematica
1976-06-01
A previous result is generalized. An existence and uniqueness theorem is proved for the Hartree--Fock time-dependent problem in the case of a finite Fermi system interacting via a two body potential which is supposed to be dominated by the kinetic energy part of the one-particle Hamiltonian.
Hartree-Fock-Bogolyubov Calculations
International Nuclear Information System (INIS)
Wolter, H.H.
1970-01-01
The author discusses in which way and to what extent pairing correlations affect the nuclear wave function. He finds that for many nuclei in the pf-shell the Hartree-Fock approximation is not valid. (author)
International Nuclear Information System (INIS)
Delta, E.; Ucun, F.; Saglam, A.
2010-01-01
The ground state hydrogen conformations of 1,2-dihydroxyanthraquinone (alizarin) molecule have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d,p) basis set. The calculations indicate that the compound in the ground state exist with the doubly bonded O atom linked intra molecularly by the two hydrogen bonds. The vibrational analyses of the ground state conformation of the compound were also made and its optimized geometry parameters were given.
International Nuclear Information System (INIS)
Ayikoglu, A.
2008-01-01
The molecular structure, vibrational frequencies and corresponding vibrational assignments of tetrafluoro isophthalonitrile (TFPN) in the ground state have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were utilized in the CS symmetry of TFPN. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that the B3LYP method is superior to the HF method for both the vibrational frequencies and geometric parameters
Energy Technology Data Exchange (ETDEWEB)
Goodman, A L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1976-07-12
The Hartree-Fock-Bogolyubov cranking equations are solved for /sup 168/ /sup 170/Yb and /sup 174/Hf. Deformation and pairing properties are both obtained with a G-matrix derived from the Reid soft-core potential. The high spin anomalies are attributed to the disappearance of the neutron pair gap in /sup 168/Yb, the realignment of an isub(13/2) neutron pair in /sup 170/Yb, and a combination of these two mechanisms in /sup 174/Hf. Two bands intersecting at high spin are found for /sup 174/Hf.
Energy Technology Data Exchange (ETDEWEB)
Small, David W.; Sundstrom, Eric J.; Head-Gordon, Martin [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-01-14
Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally unintuitive nature of complex orbitals. We also describe an efficient computer implementation of cRHF and its corresponding stability analysis. By applying cRHF to the Be + H{sub 2} insertion reaction, a Woodward-Hoffmann violating reaction, and a symmetry-driven conical intersection, we demonstrate in genuine molecular systems that cRHF is capable of removing certain potential energy surface singularities that plague real-valued RHF and related methods. This complements earlier work that showed this capability in a model system. We also describe how cRHF is the preferred RHF method for certain radicaloid systems like singlet oxygen and antiaromatic molecules. For singlet O{sub 2}, we show that standard methods fail even at the equilibrium geometry. An implication of this work is that, regardless of their individual efficacies, cRHF solutions to the HF equations are fairly commonplace.
Bučinský, Lukáš
2015-05-11
"Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF) level of theory is emphasized. The GCHF "Kramers pairs symmetry breaking" evaluation is using the square of overlaps between the set of occupied spinorbitals with the projected set of Kramers pairs. In the same fashion, overlaps between α and β orbitals are used in the evaluation of "spin contamination" at the UHF level of theory. In this manner, UHF Š2 expectation value is made formally extended to the GCHF case. The directly evaluated GCHF expectation value of the Š2 operator is considered for completeness. It is found that the 2c GCHF Kramers pairs symmetry breaking has a very similar extent in comparison to the 1c UHF spin contamination. Thus higher excited states contributions to the 1c and 2c unrestricted wave functions of open shell systems have almost the same extent and physical consequences. Moreover, it is formally shown that a single determinant wave function in the restricted open shell Kramers case has the expectation value of K2 operator equal to the negative number of open shell electrons, while the eigenvalue of K2 for the series of simple systems (H, He, He*-triplet, Li and Li*-quartet) are found to be equal to minus the square of the number of open shell electrons. The concept of unpaired electron density is extended to the GCHF regime and compared to UHF and restricted open shell Hartree-Fock spin density. The "collinear" and "noncollinear" analogs of spin density at the GCHF level of theory are considered as well. Spin contamination and/or Kramers pairs symmetry breaking, spin populations and spin densities are considered for H2O+, Cl, HCl+, phenoxyl radical (C6H5O) as well as for Cu, Cu2+, Fe and the [OsCl5(1H-pyrazole)]- anion. The 1c and 2c unpaired electron density representation is found
Vikramaditya, Talapunur; Lin, Shiang-Tai
2017-06-05
Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile
2007-06-01
The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.
Yoshida, Tatsusada; Hayashi, Takahisa; Mashima, Akira; Chuman, Hiroshi
2015-10-01
One of the most challenging problems in computer-aided drug discovery is the accurate prediction of the binding energy between a ligand and a protein. For accurate estimation of net binding energy ΔEbind in the framework of the Hartree-Fock (HF) theory, it is necessary to estimate two additional energy terms; the dispersion interaction energy (Edisp) and the basis set superposition error (BSSE). We previously reported a simple and efficient dispersion correction, Edisp, to the Hartree-Fock theory (HF-Dtq). In the present study, an approximation procedure for estimating BSSE proposed by Kruse and Grimme, a geometrical counterpoise correction (gCP), was incorporated into HF-Dtq (HF-Dtq-gCP). The relative weights of the Edisp (Dtq) and BSSE (gCP) terms were determined to reproduce ΔEbind calculated with CCSD(T)/CBS or /aug-cc-pVTZ (HF-Dtq-gCP (scaled)). The performance of HF-Dtq-gCP (scaled) was compared with that of B3LYP-D3(BJ)-bCP (dispersion corrected B3LYP with the Boys and Bernadi counterpoise correction (bCP)), by taking ΔEbind (CCSD(T)-bCP) of small non-covalent complexes as 'a golden standard'. As a critical test, HF-Dtq-gCP (scaled)/6-31G(d) and B3LYP-D3(BJ)-bCP/6-31G(d) were applied to the complex model for HIV-1 protease and its potent inhibitor, KNI-10033. The present results demonstrate that HF-Dtq-gCP (scaled) is a useful and powerful remedy for accurately and promptly predicting ΔEbind between a ligand and a protein, albeit it is a simple correction procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective
International Nuclear Information System (INIS)
Paul, S.
2012-01-01
This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
International Nuclear Information System (INIS)
Sadlej, A.J.
1980-01-01
The problem of the most efficient perturbation calculation of the correlation contributions to atomic and molecular properties is discussed. The method which is based on the coupled Hartree-Fock (CHF) perturbation theory appears to be the most promising one. The CHF-based perturbation theory of correlation effects is applied to the calculation of the second-order correlation contributions to the electric dipole polarizabilities of He, Be and Ne. The numerical approach employed in this paper consists in computing first the electric-field-dependent SCF functions. Then, the field dependent second-order correlation energy is calculated. The electric dipole polarizabilities, accurate through the second-order in correlation, are obtained via the numerical differentiation of the field-dependent energies with respect to the external electric field strength. In order to avoid the use of very large basis sets the so-called electric-field-variant (EFV) orbitals are employed in the present study. The CHF results obtained in this paper are of the same accuracy as the best literature data. In addition of the second-order correlation correction the final values of the electric dipole polarizability differ from the accurate or experimental results by less than a few per cent. (author)
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Hartree-Fock description of superdeformed states
International Nuclear Information System (INIS)
Dobaczewski, J.; Meyer, J.
1991-10-01
The discovery of superdeformation has been preceded by theoretical predictions made in Nilsson-Strutinsky calculations and a description of the phenomenon still constitutes an exciting challenge to the theory of nuclear collective motion. In particular, a determination of electromagnetic transition rates requires a knowledge of microscopic collective wave functions, which can be achieved by using the Hartree-Fock (HF) theory and the generator coordinate method (GCM). In this study we present results of our calculations concerning the properties and superdeformed states in the mercury region. Using the GCM, we diagonalize the microscopic two-body hamiltonian within the basis set of constrained HF+BCS wave functions. The GCM provides values for the energy of the ground and excited states including the shape isomer which take into account the effect of correlations in the collective degree of freedom. The GCM will also allow us to discuss the qualitative modifications of the shape isomeric stability as induced by changes in pairing correlations
Derivative discontinuity with localized Hartree-Fock potential
Energy Technology Data Exchange (ETDEWEB)
Nazarov, V. U. [Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Vignale, G. [Department of Physics, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)
2015-08-14
The localized Hartree-Fock potential has proven to be a computationally efficient alternative to the optimized effective potential, preserving the numerical accuracy of the latter and respecting the exact properties of being self-interaction free and having the correct −1/r asymptotics. In this paper we extend the localized Hartree-Fock potential to fractional particle numbers and observe that it yields derivative discontinuities in the energy as required by the exact theory. The discontinuities are numerically close to those of the computationally more demanding Hartree-Fock method. Our potential enjoys a “direct-energy” property, whereby the energy of the system is given by the sum of the single-particle eigenvalues multiplied by the corresponding occupation numbers. The discontinuities c{sub ↑} and c{sub ↓} of the spin-components of the potential at integer particle numbers N{sub ↑} and N{sub ↓} satisfy the condition c{sub ↑}N{sub ↑} + c{sub ↓}N{sub ↓} = 0. Thus, joining the family of effective potentials which support a derivative discontinuity, but being considerably easier to implement, the localized Hartree-Fock potential becomes a powerful tool in the broad area of applications in which the fundamental gap is an issue.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Rugles Cesar
2002-07-01
The present thesis is divided into two parts. The first part describes the many kind of the formalisms of the Generator Coordinate Hartree-Fock method (GCHFM) and second part describes the computational aspect applied to the GCHFM formalism in its discreet form. The major aim of this work is the development of an alternative method to non-linear parameters optimization (basis set) and later uses these optimized parameters to adjust the weight function into GCHFM method. The study of the weight function when N {yields} {infinity} (or for large N), where N represents the number of mesh, is important since the GCHFM theory in its continuous form depend on understanding of such behavior. In this thesis, a detailed study is carried out about the methodologies of the self-consistent solution of the GCHFM and some methodology aspects of non-linear parameters optimization. This work shows that the Generator Coordinate Hartree-Fock method is general and it has as particular case the Hartree-Fock Roothaan method. Some possible variations or combinations around of the characteristics of the GCHFM and a comparison with conventional SCF procedure are reported in this thesis. The piecewise weight function method developed in this work shows to be very good for collective parameter optimizations of the Generator Coordinate (GC). The GCHFM calculations are necessary restrict (GCM-RHF), especially when the calculated value energies approach of its numerical values or Hartree-Fock limit. In the optimization methods of state functions for atomic electronic systems is very common the application of the gradient method and its efficacy is not contested. However, the method describes above allow us to obtain results as good as the gradient method. The basis set generated using the piecewise weight function method for Gaussian type function were used in the Restrict Hartree-Fock (RHF) calculations to obtain the total energies for some atomic electronic systems, such as neutron atoms and
International Nuclear Information System (INIS)
Barbosa, Rugles Cesar
2002-01-01
The present thesis is divided into two parts. The first part describes the many kind of the formalisms of the Generator Coordinate Hartree-Fock method (GCHFM) and second part describes the computational aspect applied to the GCHFM formalism in its discreet form. The major aim of this work is the development of an alternative method to non-linear parameters optimization (basis set) and later uses these optimized parameters to adjust the weight function into GCHFM method. The study of the weight function when N → ∞ (or for large N), where N represents the number of mesh, is important since the GCHFM theory in its continuous form depend on understanding of such behavior. In this thesis, a detailed study is carried out about the methodologies of the self-consistent solution of the GCHFM and some methodology aspects of non-linear parameters optimization. This work shows that the Generator Coordinate Hartree-Fock method is general and it has as particular case the Hartree-Fock Roothaan method. Some possible variations or combinations around of the characteristics of the GCHFM and a comparison with conventional SCF procedure are reported in this thesis. The piecewise weight function method developed in this work shows to be very good for collective parameter optimizations of the Generator Coordinate (GC). The GCHFM calculations are necessary restrict (GCM-RHF), especially when the calculated value energies approach of its numerical values or Hartree-Fock limit. In the optimization methods of state functions for atomic electronic systems is very common the application of the gradient method and its efficacy is not contested. However, the method describes above allow us to obtain results as good as the gradient method. The basis set generated using the piecewise weight function method for Gaussian type function were used in the Restrict Hartree-Fock (RHF) calculations to obtain the total energies for some atomic electronic systems, such as neutron atoms and ions in
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.
1979-01-01
It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references
Energy Technology Data Exchange (ETDEWEB)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Bartolomei, Massimiliano [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)
2015-11-21
The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the
International Nuclear Information System (INIS)
Sert, Y.
2008-01-01
The optimised molecular structure, vibrational frequencies and corresponding vibrational assignments of 2-, 3- and 4- nitro anilines have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were adapted to the C S symmetries of all the molecules. The calculated vibrational frequencies and geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the experimental and theoretical results showed that the HF method is superior to the B3LYP method for both the vibrational frequencies and geometric parameters
Hartree--Fock density matrix equation
International Nuclear Information System (INIS)
Cohen, L.; Frishberg, C.
1976-01-01
An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does
Directory of Open Access Journals (Sweden)
Thomas Gomez
2018-04-01
Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.
Directory of Open Access Journals (Sweden)
Kedziora David J.
2011-10-01
Full Text Available Collisions of actinide nuclei form, during very short times of few zs (10−21 s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions are used to produce super-strong electric ﬁelds by the huge number of interacting protons to test spontaneous positron-electron pair emission (vacuum decay predicted by the quantum electrodynamics (QED theory. Multi-nucleon transfer in actinide collisions could also be used as an alternative way to fusion in order to produce neutron-rich heavy and superheavy elements thanks to inverse quasiﬁssion mechanisms. Actinide collisions are studied in a dynamical quantum microscopic approach. The three-dimensional time-dependent Hartree-Fock (TDHF code tdhf3d is used with a full Skyrme energy density functional to investigate the time evolution of expectation values of one-body operators, such as fragment position and particle number. This code is also used to compute the dispersion of the particle numbers (e.g., widths of fragment mass and charge distributions from TDHF transfer probabilities, on the one hand, and using the BalianVeneroni variational principle, on the other hand. A ﬁrst application to test QED is discussed. Collision times in 238U+238U are computed to determine the optimum energy for the observation of the vacuum decay. It is shown that the initial orientation strongly affects the collision times and reaction mechanism. The highest collision times predicted by TDHF in this reaction are of the order of ~ 4 zs at a center of mass energy of 1200 MeV. According to modern calculations based on the Dirac equation, the collision times at Ecm > 1 GeV are suﬃcient to allow spontaneous electron-positron pair emission from QED vacuum decay, in case of bare uranium ion collision. A second application of actinide collisions to produce neutron-rich transfermiums is discussed. A new inverse quasiﬁssion mechanism associated to a speciﬁc orientation of the nuclei is proposed to
Kruse, Holger; Grimme, Stefan
2012-04-21
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Huntington, Lee M J; Krupička, Martin; Neese, Frank; Izsák, Róbert
2017-11-07
The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.
Huntington, Lee M. J.; Krupička, Martin; Neese, Frank; Izsák, Róbert
2017-11-01
The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
International Nuclear Information System (INIS)
Dufty, James W.
2007-01-01
This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Hartree-Fock calculations of nuclear masses
International Nuclear Information System (INIS)
Quentin, P.
1976-01-01
Hartree-Fock calculations pertaining to the determination of nuclear binding energies throughout the whole chart of nuclides are reviewed. Such an approach is compared with other methods. Main techniques in use are shortly presented. Advantages and drawbacks of these calculations are also discussed with a special emphasis on the extrapolation towards nuclei far from the stability valley. Finally, a discussion of some selected results from light to superheavy nuclei, is given [fr
New algorithm for Hartree-Fock variational equation
International Nuclear Information System (INIS)
Iwasawa, K.; Sakata, F.; Hashimoto, Y.; Terasaki, J.
1994-08-01
Aiming at microscopically understanding the shape-coexistence phenomena, a new algorithm for obtaining many self-consistent Hartree-Fock states is developed. In contrast with the conventional numerical method of solving the constrained Hartree-Fock equation which gives the most energetically favorable state under a given constrained condition, it can find many high-lying Hartree-Fock states as well as many continuous constraint Hartree-Fock solutions by dictating their configurations through some reference state. Numerical calculation is performed by using the Skyrme III. (author)
Computational Nuclear Physics and Post Hartree-Fock Methods
Energy Technology Data Exchange (ETDEWEB)
Lietz, Justin [Michigan State University; Sam, Novario [Michigan State University; Hjorth-Jensen, M. [University of Oslo, Norway; Hagen, Gaute [ORNL; Jansen, Gustav R. [ORNL
2017-05-01
We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.
Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.
2017-01-01
Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In
Parallel scalability of Hartree-Fock calculations
Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.
2015-03-01
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
Rabilloud, Franck
2014-10-14
Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.
The Hartree-Fock approximation applied to nuclear structure problems
International Nuclear Information System (INIS)
Oliveira, D.R. de.
1972-01-01
The Hartree-Fock indepedent-particle state basis is firstly constructed, whose wave functions are expressed as linear combinations of states of a Known basis. The coefficients of these combinations are reals e from themselves the Hartree-Fock density matrix is defined. The symmetries which characterize the system in study are embedded in these coefficients and in the density matrix. The formalism is applied to the Ne 20 , Si 28 and Ar 36 nuclei whose lowest Hartree-Fock energies are obtained admitting that theirs wave functions having axial symmetry. Once known the Hartree-Fock wave function, states are projected from it with well-defined total angular momentum using the Peierls and Yoccoz method. From these wave functions energy levels of the ground band are calculated as well as the electric quadrupole transition probabilities among these levels. (L.C.) [pt
Stability of the Hartree-Fock model with temperature
Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu
2008-01-01
This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.
Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro
2014-12-09
We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.
An introduction to the adiabatic time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Giannoni, M.J.
1984-05-01
The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented
Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock
International Nuclear Information System (INIS)
Henderson, Thomas M.; Scuseria, Gustavo E.
2013-01-01
The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems
Plötner, Jürgen; Tozer, David J; Dreuw, Andreas
2010-08-10
Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.
SU(3) versus deformed Hartree-Fock state
International Nuclear Information System (INIS)
Johnson, Calvin W.; Stetcu, Ionel; Draayer, J.P.
2002-01-01
Deformation is fundamental to understanding nuclear structure. We compare two ways to efficiently realize deformation for many-fermion wave functions, the leading SU(3) irreducible representation and the angular-momentum-projected Hartree-Fock state. In the absence of single-particle spin-orbit splitting the two are nearly identical. With realistic forces, however, the difference between the two is nontrivial, with the angular-momentum-projected Hartree-Fock state better approximating an 'exact' wave function calculated in the fully interacting shell model. The difference is driven almost entirely by the single-particle spin-orbit splitting
International Nuclear Information System (INIS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas; Becker, Ute
2009-01-01
In this paper, the possibility is explored to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known 'density fitting' approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner's pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the 'chain-of-spheres exchange' (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3 kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20-200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2 kcal/mol (Hartree-Fock) or 0.05 kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3 pm in the bond distances and 0.5 deg. in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree-Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system
Nuclear Hartree-Fock approximation testing and other related approximations
International Nuclear Information System (INIS)
Cohenca, J.M.
1970-01-01
Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt
Koopmans' theorem in the Hartree-Fock method. General formulation
Plakhutin, Boris N.
2018-03-01
This work presents a general formulation of Koopmans' theorem (KT) in the Hartree-Fock (HF) method which is applicable to molecular and atomic systems with arbitrary orbital occupancies and total electronic spin including orbitally degenerate (OD) systems. The new formulation is based on the full set of variational conditions imposed upon the HF orbitals by the variational principle for the total energy and the conditions imposed by KT on the orbitals of an ionized electronic shell [B. N. Plakhutin and E. R. Davidson, J. Chem. Phys. 140, 014102 (2014)]. Based on these conditions, a general form of the restricted open-shell HF method is developed, whose eigenvalues (orbital energies) obey KT for the whole energy spectrum. Particular attention is paid to the treatment of OD systems, for which the new method gives a number of unexpected results. For example, the present method gives four different orbital energies for the triply degenerate atomic level 2p in the second row atoms B to F. Based on both KT conditions and a parallel treatment of atoms B to F within a limited configuration interaction approach, we prove that these four orbital energies, each of which is triply degenerate, are related via KT to the energies of different spin-dependent ionization and electron attachment processes (2p)N → (2p ) N ±1. A discussion is also presented of specific limitations of the validity of KT in the HF method which arise in OD systems. The practical applicability of the theory is verified by comparing KT estimates of the ionization potentials I2s and I2p for the second row open-shell atoms Li to F with the relevant experimental data.
Hartree-Fock states in the thermodynamic limit
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Llano, M. de; Peltier, S.; Plastino, A.
1976-01-01
Two infinite families of two-parameter generalized Overhauser orbitals are introduced and shown to explicitly satisfy, for occupied states, the self-consistent Hartree-Fock equations in the thermodynamic limit. For an attractive delta interaction, they give lower Hartree-Fock energy than the usual plane-wave solutions, even for relatively weak coupling and/or low density. The limiting members (possessing an infinite number of harmonics) of both families appear to tend to a 'classical static lattice' state. The related density profiles and energy expressions are calculated as functions of the two new parameters. A direct-variation with respect to these parameters was done numerically and results are presented graphically. (Author) [pt
How good are Hartree-Fock charge densities
International Nuclear Information System (INIS)
Campi, X.
1975-01-01
The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr
The Hartree-Fock seniority method and its foundation
International Nuclear Information System (INIS)
Gomez, J.M.G.; Prieto, C.
1987-01-01
The seniority scheme is discussed in the framewok of quasi-spin formalism. It is shown that the ground-state wave function of the seniority scheme can be determined self-consistently from a set of Hartree-Fock seniority equations derived from the variational prinicple. The method takes into account the mean-field and the pairing correlations in nuclei at the same time. Angular momentum and particle number are exactly conserved. (author)
General multi-configuration Hartree--Fock program: MCHF77
International Nuclear Information System (INIS)
Fischer, C.F.
1977-11-01
This technical report contains a listing of a general program for multi-configuration Hartree--Fock (MCHF) calculations, including its documentation. Several examples are given showing how the program may be used. Typical output for several cases is also presented. This program has been tested over an extended period of time for a large variety of cases. This program is written for the IBM 360 or 370 in double-precision arithmetic
Hartree-Fock-Bogolubov approximation in the models with general four-fermion interaction
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.; Soldatov, A.V.
1995-12-01
The foundation of this work was established by the lectures of Prof. N.N. Bogolubov (senior) written in the beginning of 1990. We should like to develop some of his ideas connected with Hartree-Fock-Bogolubov method and to show how this approximation works in connection with general equations for Green's functions with source terms for sufficiently general model Hamiltonian of four-fermion interaction type and how, for example, to get some results of superconductivity theory by means of this method. (author). 5 refs
Time-dependent Hartree-Fock studies of the dynamical fusion threshold
Directory of Open Access Journals (Sweden)
Nakatsukasa Takashi
2012-12-01
Full Text Available A microscopic description of dynamical fusion threshold in heavy ion collisions is performed in the framework of time-dependent Hartree-Fock (TDHF theory using Skyrme energy density functional (EDF. TDHF fusion threshold is in a better agreement with experimental fusion barrier. We find that the onset of extra push lies at the effective fissility 33, which is consistent with the prediction of Swiateckis macroscopic model. The extra push energy in our TDHF simulation is systematically smaller than the prediction in macroscopic model. The important dynamical effects and the way to fit the parameter might be responsible for the different results.
Constrained Hartree-Fock and beyond
International Nuclear Information System (INIS)
Berger, J.F.; Girod, M.; Gogny, D.
1989-01-01
Completely microscopic descriptions of the fission phenomenon based on the nuclear mean field theory and its extensions are reviewed. The basic ideas underlying this kind of approach and the way one can set up a consistent microscopic dynamical model of the low energy fission process are presented. The main difficulties encountered in earlier calculations when trying to reproduce experimental fission barriers and to account for scission are recalled. We describe the method by which these difficulties have been overcome and discuss recent results. They concern a proposed interpretation for the scission mechanism and 'cold fission' events. Other issues like adiabaticity in the descent from the second saddle to scission and odd-even effects in cold fission are also discussed. (orig.)
Time-dependent Hartree-Fock dynamics and phase transition in Lipkin-Meshkov-Glick model
International Nuclear Information System (INIS)
Kan, K.; Lichtner, P.C.; Dworzecka, M.; Griffin, J.J.
1980-01-01
The time-dependent Hartree-Fock solutions of the two-level Lipkin-Meshkov-Glick model are studied by transforming the time-dependent Hartree-Fock equations into Hamilton's canonical form and analyzing the qualitative structure of the Hartree-Fock energy surface in the phase space. It is shown that as the interaction strength increases these time-dependent Hartree-Fock solutions undergo a qualitative change associated with the ground state phase transition previously studied in terms of coherent states. For two-body interactions stronger than the critical value, two types of time-dependent Hartree-Fock solutions (the ''librations'' and ''rotations'' in Hamilton's mechanics) exist simultaneously, while for weaker interactions only the rotations persist. It is also shown that the coherent states with the maximum total pseudospin value are determinants, so that time-dependent Hartree-Fock analysis is equivalent to the coherent state method
Generalized Hartree-Fock method for electron-atom scattering
International Nuclear Information System (INIS)
Rosenberg, L.
1997-01-01
In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom scattering, is developed here. The method is based on a unique decomposition of the scattering wave function into open- and closed-channel components, so chosen that an approximation to the closed-channel component may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering function may be determined from the solution of an effective one-body Schroedinger equation. Alternatively, in a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial function allows for systematic improvement of that function, as well as the calculated scattering parameters, with the possibility of spurious singularities avoided. Electron-electron correlations can be important in accounting for long-range forces and resonances. These correlation effects can be included explicitly by suitable choice of one component of the closed-channel wave function; the remaining component may then be determined by the generalized Hartree-Fock procedure. As a simple test, the method is applied to s-wave scattering of positrons by hydrogen. copyright 1997 The American Physical Society
Relativity and pseudopotentials in the Hartree-Fock-Slater method
International Nuclear Information System (INIS)
Snijders, J.G.
1979-01-01
The methodological problems involved in electronic structure determinations of compounds containing heavy elements by the Hartree-Fock-Slater scheme are investigated. It is shown that the effect of the inner electrons can be simulated by a so called pseudopotential, so that only the valence electrons have to be treated explicitly which constitutes a considerable reduction of computation time. It is further shown that a pseudopotential calculation is able to achieve an accuracy that is comparable to the results of a calculation including the core. (Auth.)
Hartree-Fock-Bogoliubov approximation for finite systems
International Nuclear Information System (INIS)
Bulgac, A.
1980-08-01
The features of the spectrum of the Hartree-Fock-Bogoliubov equations are examined. Special attention is paid to the asymptotic behaviours of the single quasiparticle wave functions (s.qp.w.fs.), matter density distribution and density of the pair condensate. It is shown that, due to the coupling between hole and particle, the sufficiently deeply bound hole states acquire a width and consequently have to be treated as continuum states. The proper normalization of the s.qp.w.fs. is discussed. (author)
Exponential convergence and acceleration of Hartree-Fock calculations
International Nuclear Information System (INIS)
Bonaccorso, A.; Di Toro, M.; Lomnitz-Adler, J.
1979-01-01
It is shown that one can expect an exponential behaviour for the convergence of the Hartree-Fock solution during the HF iteration procedure. This property is used to extrapolate some collective degrees of freedom, in this case the shape, in order to speed up the self-consistent calculation. For axially deformed nuclei the method is applied to the quadrupole moment which corresponds to a simple scaling transformation on the single particle wave functions. Results are shown for the deformed nuclei 20 Ne and 28 Si with a Skyrme interaction. (Auth.)
A Hartree-Fock program for atomic structure calculations
International Nuclear Information System (INIS)
Mitroy, J.
1999-01-01
The Hartree-Fock equations for a general open shell atom are described. The matrix equations that result when the single particle orbitals are written in terms of a linear combination of analytic basis functions are derived. Attention is paid to the complexities that occur when open shells are present. The specifics of a working FORTRAN program which is available for public use are described. The program has the flexibility to handle either Slater-type orbitals or Gaussian-type orbitals. It can be obtained over the internet at http://lacebark.ntu.edu.au/j_mitroy/research/atomic.htm Copyright (1999) CSIRO Australia
Cluster modeling of solid state defects and adsorbates: Beyond the Hartree-Fock level
International Nuclear Information System (INIS)
Kunz, A.B.
1990-01-01
The use of finite clusters of atoms to represent the physically interesting portion of a condensed matter system has been an accepted technique for the past two decades. Physical systems have been studied in this way using both density functional and Hartree-Fock methodologies, as well as a variety of empirical or semiempirical techniques. In this article, the author concentrates on the Hartree-Fock based methods. The attempt here is to construct a theoretical basis for the inclusion of correlation corrections in such an approach, as well as a strategy by which the limits of a finite cluster may be transcended in such a study. The initial appeal will be to a modeling approach, but methods to convert the model to a self-contained theory will be described. It will be seen for the case of diffusion of large ions in solids that such an approach is quite useful. A further study of the case of adsorption of rare gas atoms on simple metals will demonstrate the value of inclusion of electron correlation
On the relation between the Hartree-Fock and Kohn-Sham approaches
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A.F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Shaginyan, V.R. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation)]. E-mail: vrshag@thd.pnpi.spb.ru; Sokolovski, D. [Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)
2004-09-13
We show that the Hartree-Fock (HF) results cannot be reproduced within the framework of Kohn-Sham (KS) theory because the single-particle densities of finite systems obtained within the HF calculations are not v-representable, i.e., do not correspond to any ground state of a N non-interacting electron systems in a local external potential. For this reason, the KS theory, which finds a minimum on a different subset of all densities, can overestimate the ground state energy, as compared to the HF result. The discrepancy between the two approaches provides no grounds to assume that either the KS theory or the density functional theory suffers from internal contradictions.
On the relation between the Hartree-Fock and Kohn-Sham approaches
International Nuclear Information System (INIS)
Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.; Sokolovski, D.
2004-01-01
We show that the Hartree-Fock (HF) results cannot be reproduced within the framework of Kohn-Sham (KS) theory because the single-particle densities of finite systems obtained within the HF calculations are not v-representable, i.e., do not correspond to any ground state of a N non-interacting electron systems in a local external potential. For this reason, the KS theory, which finds a minimum on a different subset of all densities, can overestimate the ground state energy, as compared to the HF result. The discrepancy between the two approaches provides no grounds to assume that either the KS theory or the density functional theory suffers from internal contradictions
The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model
Energy Technology Data Exchange (ETDEWEB)
Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)
2016-07-15
We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)
Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach
International Nuclear Information System (INIS)
Staszczak, A.; Wong, Cheuk-Yin
2009-01-01
Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum
Taşal, Erol; Kumalar, Mustafa
2012-09-01
In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.
A finite difference Hartree-Fock program for atoms and diatomic molecules
Kobus, Jacek
2013-03-01
The newest version of the two-dimensional finite difference Hartree-Fock program for atoms and diatomic molecules is presented. This is an updated and extended version of the program published in this journal in 1996. It can be used to obtain reference, Hartree-Fock limit values of total energies and multipole moments for a wide range of diatomic molecules and their ions in order to calibrate existing and develop new basis sets, calculate (hyper)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and heteronuclear diatomic molecules and their ions via the finite field method, perform DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method, perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and take account of finite nucleus models. The program is easy to install and compile (tarball+configure+make) and can be used to perform calculations within double- or quadruple-precision arithmetic. Catalogue identifier: ADEB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 171196 No. of bytes in distributed program, including test data, etc.: 9481802 Distribution format: tar.gz Programming language: Fortran 77, C. Computer: any 32- or 64-bit platform. Operating system: Unix/Linux. RAM: Case dependent, from few MB to many GB Classification: 16.1. Catalogue identifier of previous version: ADEB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 98(1996)346 Does the new version supersede the previous version?: Yes Nature of problem: The program finds virtually exact solutions of the Hartree-Fock and density functional theory type equations for atoms, diatomic molecules and their ions
International Nuclear Information System (INIS)
Thomaz, M.T.; Toledo Piza, A.F.R. de
1994-01-01
We show that the Hartree-Fock-Bogoliubov (alias Gaussian) approximation of the initial condition problem of the Fermionic Anharmonic Oscillator i equivalent to a bosonic Hamiltonian system of two classical spin. (author)
Testing the multi-configuration time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Zanghellini, Juergen; Kitzler, Markus; Brabec, Thomas; Scrinzi, Armin
2004-01-01
We test the multi-configuration time-dependent Hartree-Fock method as a new approach towards the numerical calculation of dynamical processes in multi-electron systems using the harmonic quantum dot and one-dimensional helium in strong laser pulses as models. We find rapid convergence for quantities such as ground-state population, correlation coefficient and single ionization towards the exact results. The method converges, where the time-dependent Hartree-Fock method fails qualitatively
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver
Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model
International Nuclear Information System (INIS)
Erler, Jochen
2011-01-01
Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)
Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model
Energy Technology Data Exchange (ETDEWEB)
Erler, Jochen
2011-01-31
Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)
International Nuclear Information System (INIS)
Kohno, M.
1983-01-01
We report fully consistent calculations of the longitudinal and transverse response functions of the inclusive quasi-elastic electron scattering on 12 C in the Hartree-Fock approximation. The distorted wave for the outgoing nucleon is constructed from the same non-local Hartree-Fock field as in the ground-state description. Thus the orthogonality and Pauli principle requirements are naturally satisfied. The theoretical prediction, based on the standard density-dependent effective interaction (GO force), shows a good correspondence to the experimental data. Since the calculated response functions automatically satisfy the relevant sum rule, this work illuminates the well-known puzzle concerning the longitudinal part, which remains to be solved. We study the energy-weighted sum rules and discuss effects beyond the mean-field approximation. Meson-exchange-current contributions to the transverse response function are also estimated and found to be small due to cancellations among them. (orig.)
The total Hartree-Fock energy-eigenvalue sum relationship in atoms
International Nuclear Information System (INIS)
Sen, K.D.
1979-01-01
Using the well known relationships for the isoelectronic changes in the total Hartree-Fock energy, nucleus-electron attraction energy and electron-electron repulsion energy in atoms a simple polynomial expansion in Z is obtained for the sum of the eigenvalues which can be used to calculate the total Hartree-Fock energy. Numerical results are presented for 2-10 electron series to show that the present relationship is a better approximation than the other available energy-eigenvalue relationships. (author)
Instability of the cranked Hartree-Fock-Bogoliubov field in backbending region
International Nuclear Information System (INIS)
Horibata, Takatoshi; Onishi, Naoki.
1982-01-01
The stability condition of the cranked Hartree-Fock-Bogoliubov field is examined explicitly by solving the eigenvalue equation for the second order variation of the energy, which is reduced to an algebraic equation through a coupled dispersion formula. We confirm that the Hartree-Fock-Bogoliubov field is unstable in the backbending region of an irregular rotational band, even though the frequency of the softest random phase approximation mode always has a positive value. We investigate properties of the softest mode in detail. (author)
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
Ab Initio periodic Hartree-Fock study of group IA cations in ANA-type zeolites
International Nuclear Information System (INIS)
Anchell, J.L.; White, J.C.; Thompson, M.R.; Hess, A.C.
1994-01-01
This study investigates the electronic structure of Group IA cations intercalated into zeolites with the analcime (ANA) framework using ab initio periodic Hartree-Fock theory. The purpose of the study is to gain a better understanding of the role played by electron-donating species in zeolites in general, with specific applications to materials that have been suggested as storage matrices for radioactive materials. The effect of the intercalated species (Na, K, Rb, and Cs) on the electronic structure of the zeolite is presented on the basis of an analysis of the total and projected density of states, Mulliken charges, and charge density differences. The results of those analyses indicate that, relative to a charge neutral atomic state, the Group IA species donate an electron to the zeolite lattice and interact most strongly with the s and p atomic states of oxygen as the species are moved through the lattice. In addition, estimates of the self-diffusion constants of Na, K, Rb, and Cs based upon a one-dimensional diffusion model parameterized from the ab initio total energy data will be presented. 24 refs., 8 figs., 4 tabs
Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong
2015-01-01
The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.
Energy Technology Data Exchange (ETDEWEB)
Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)
2015-01-14
The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.
Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.
2017-07-01
In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.
Energy Technology Data Exchange (ETDEWEB)
Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr [Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
International Nuclear Information System (INIS)
Redon, N.; Meyer, J.; Meyer, M.
1989-01-01
An approximate restoration of the particle number symmetry, a la Lipkin-Nogami, is numerically investigated in the context of Constrained Hartree-Fock plus BCS calculations. Its effect is assessed in a variety of physical situations like potential energy landscapes in transitional nuclei, shape isomerism at low spin and fission barriers of actinide nuclei
The spectrum of 12C in a multi-configuration Hartree-Fock Basis
International Nuclear Information System (INIS)
Amos, K.; Morrison, I.; Smith, R.; Schmid, K.W.
1981-01-01
The energy level spectrum of 12 C is calculated in a truncated but large shell model space of projected one particle-one hole Hartree Fock determinants using a realistic G-matrix. Predictions of electromagnetic decays and electron scattering form factors are compared with experimental values
Orbital and total atomic momentum expectation values with Roothaan-Hartree-Fock wave functions
International Nuclear Information System (INIS)
De La Vega, J.M.G.; Miguel, B.
1993-01-01
Orbital and total momentum expectation values are computed using the Roothaan-Hartree-Fock wave functions of Clementi and Roetti. These values are calculated analytically and may be used to study the quality of basis sets. Tabulations for ground and excited states of atoms from Z = 2 to Z = 54 are presented. 23 refs., 1 tab
The time-dependent Hartree-Fock equations with Coulomb two-body interaction
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-06-01
The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr
Method of renormalization potential for one model of Hartree-Fock-Slater type
Zasorin, Y V
2002-01-01
A new method of the potential renormalization for the quasiclassical model of the Hartree-Fock-Slater real potential is proposed. The method makes it possible to easily construct the wave functions and contrary to the majority od similar methods it does not require the knowledge of the real-type potential
Dirac-Hartree-Fock studies of X-ray transitions in meitnerium
International Nuclear Information System (INIS)
Thierfelder, C.; Schwerdtfeger, P.; Hessberger, F.P.; Hofmann, S.
2008-01-01
The K -shell and L -shell ionizations potentials for 268 109 Mt were calculated at the Dirac-Hartree-Fock level taking into account quantum electrodynamic and finite nuclear-size effects. The K α1 transition energies for different ionization states are accurately predicted and compared with recent experiments in the α -decay of 272 111 Rg. (orig.)
Symbolic computation of the Hartree-Fock energy from a chiral EFT three-nucleon interaction at N2LO
International Nuclear Information System (INIS)
Gebremariam, B.; Bogner, S.K.; Duguet, T.
2010-01-01
We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N 2 LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions. Program summary: Program title: SymbHFNNN; Catalogue identifier: AEGC v 1 0 ; Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.html; Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland; Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html; No. of lines in distributed program, including test data, etc.: 96 666; No. of bytes in distributed program, including test data, etc.: 378 083; Distribution format: tar.gz; Programming language: Mathematica 7.1; Computer: Any computer running Mathematica 6.0 and later versions; Operating system: Windows Xp, Linux/Unix; RAM: 256 Mb; Classification: 5, 17.16, 17.22; Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N 2 LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue. Solution method: The HF energy from the chiral EFT three-nucleon interaction at N 2 LO is cast into a form suitable for an automatic
International Nuclear Information System (INIS)
Almbladh, C.-O.; Ekenberg, U.; Pedroza, A.C.
1983-01-01
The authors compare the electron densities and Hartree potentials in the local density and the Hartree-Fock approximations to the corresponding quantities obtained from more accurate correlated wavefunctions. The comparison is made for a number of two-electron atoms, Li, and for Be. The Hartree-Fock approximation is more accurate than the local density approximation within the 1s shell and for the spin polarization in Li, while the local density approximation is slightly better than the Hartree-Fock approximation for charge densities in the 2s shell. The inaccuracy of the Hartree-Fock and local density approximations to the Hartree potential is substantially smaller than the inaccuracy of the local density approximation to the ground-state exchange-correlation potential. (Auth.)
Relativistic description of nuclear systems in the Hartree-Fock approximation
International Nuclear Information System (INIS)
Bouyssy, A.; Mathiot, J.F.; Nguyen Van Giai; Marcos, S.
1986-03-01
The structure of infinite nuclear matter and finite nuclei is studied in the framework of the relativistic Hartree-Fock approximation. A particular attention is paid to the contribution of isovector mesons. (π,p). A satisfactory description of binding energies and densities can be obtained for light as well as heavy nuclei. The spin-orbit splittings are well reproduced. Connections with non-relativistic formulations are also discussed
Coupled Hartree-Fock calculation of {sup 13} C shielding tensors in acetylene clusters
Energy Technology Data Exchange (ETDEWEB)
Craw, John Simon; Nascimento, Marco Antonio Chaer [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica
1992-12-31
The coupled Hartree Fock method has been used to calculate ab-initio carbon magnetic shielding tensors for small clusters of acetylene molecules. The chemical shift increases from the monomer to the dimer and trimer. This is mainly due increased diamagnetism, which is imperfectly cancelled by increased paramagnetism due to loss of axial symmetry. Anisotropic effects are shown to be small in both the dimer the and trimer. (author) 21 refs., 2 tabs.
A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method
International Nuclear Information System (INIS)
Onishi, Naoki; Horibata, Takatoshi.
1980-01-01
The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)
Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method
Kunz, A. B.; Waber, J. T.
1981-08-01
Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.
Hartree-Fock energies of the doubly excited states of the boron isoelectronic sequence
International Nuclear Information System (INIS)
El-Sherbini, T.M.; Mansour, H.M.; Farrag, A.A.; Rahman, A.A.
1985-08-01
Hartree-Fock energies of the 1s 2 2s 2p ns( 4 P), 1s 2 2s 2p np ( 4 P, 4 D) and 1s 2 2s 2p nd ( 4 P, 4 D); n=3-6 states in the boron isoelectronic sequence are reported. The results show a fairly good agreement with the experimental data of Bromander for O IV. (author)
On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method
International Nuclear Information System (INIS)
Egido, J.L.; Robledo, L.M.
1995-01-01
The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.)
Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method
International Nuclear Information System (INIS)
Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.
2010-01-01
Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes
Constant resolution of time-dependent Hartree--Fock phase ambiguity
International Nuclear Information System (INIS)
Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.
1978-01-01
The customary time-dependent Hartree--Fock problem is shown to be ambiguous up to an arbitrary function of time additive to H/sub HF/, and, consequently, up to an arbitrary time-dependent phase for the solution, PHI(t). The ''constant'' (H)'' phase is proposed as the best resolution of this ambiguity. It leads to the following attractive features: (a) the time-dependent Hartree--Fock (TDHF) Hamiltonian, H/sub HF/, becomes a quantity whose expectation value is equal to the average energy and, hence, constant in time; (b) eigenstates described exactly by determinants, have time-dependent Hartree--Fock solutions identical with the exact time-dependent solutions; (c) among all possible TDHF solutions this choice minimizes the norm of the quantity (H--i dirac constant delta/delta t) operating on the ket PHI, and guarantees optimal time evolution over an infinitesimal period; (d) this choice corresponds both to the stationary value of the absolute difference between (H) and (i dirac constant delta/delta t) and simultaneously to its absolute minimal value with respect to choice of the time-dependent phase. The source of the ambiguity is discussed. It lies in the time-dependent generalization of the freedom to transform unitarily among the single-particle states of a determinant at the (physically irrelevant for stationary states) cost of altering only a factor of unit magnitude
International Nuclear Information System (INIS)
Amusa, A.
1983-03-01
Different Hamiltonians and their corresponding rotationally degenerate intrinsic counterparts are employed in the study of 18 O nucleus under the normal Hartree-Fock, as well as under six other Hartree-Fock type variational calculation schemes. The results are compared and then assessed in the light of their closeness or otherwise to the full 1s-0d basis shell model calculations for this nucleus. The use of these schemes for other shells is also considered. (author)
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
Hartree-Fock calculation of nuclear binding energy of sodium isotopes
International Nuclear Information System (INIS)
Campi, X.; Flocard, H.
1975-01-01
Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1f(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr
Ab initio Hartree-Fock study on surface desorption process in tritium release
International Nuclear Information System (INIS)
Taniguchi, M.; Tanaka, S.
1998-01-01
Dissociative adsorption of hydrogen on Li 2 O (110) surface has been investigated with ab initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and surface potential energy for H 2 dissociative adsorption were evaluated by calculating the total energy of the system. The calculated results on adsorption heat indicated that H 2 adsorption is endothermic. However, when an oxygen vacancy exists adjacent to the adsorption site, the heat of adsorption became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (orig.)
Generalized Hartree-Fock-Bogoliubov approach in the description of many-body systems
International Nuclear Information System (INIS)
Janssen, D.
1979-01-01
The quantum mechanical equation for a group of states connected by large probabilities of transitions to each other, i.e. possessing common internal structure, is found. No phenomenological assumptions about the vibrational or rotational character of these states have been used. The equations obtained here can be understood as a direct generalization of the Hartree-Fock-Bogoliubov equation, this scheme including not only the ground state, but some excited states as well. The question of normalization of the density matrix in the generalized space has been solved and the additional solutions of the problem have been excluded. (author)
Comparison of the surface friction model with the time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Froebrich, P.
1984-01-01
A comparison is made between the classical phenomenological surface friction model and a time-dependent Hartree-Fock study by Dhar for the system 208 Pb+ 74 Ge at E/sub lab/(Pb) = 1600 MeV. The general trends for energy loss, mean values for charge and mass, interaction times and energy-angle correlations turn out to be fairly similar in both methods. However, contrary to Dhar, the events close to capture are interpreted as normal deep-inelastic, i.e., not as fast fission processes
Multiconfiguration Dirac-Hartree-Fock calculations of energy levels and radiative rates of Fe VII
Li, Yang; Xu, Xiaokai; Li, Bowen; Jönsson, Per; Chen, Ximeng
2018-06-01
Detailed calculations are performed for 134 fine-structure levels of the 3p63d2, 3p63d4s, 3p53d3 and 3p63d4p configurations in Fe VII using the multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) methods. Important electron correlation effects are systematically accounted for through active space (AS) expansions. Our results compare well with experimental measurements, emphasizing the importance of a careful treatment of electron correlation, and provide some missing data in the NIST atomic database. The data obtained are expected to be useful in astrophysical applications, particularly for the research of the solar coronal plasma.
Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P
2011-06-28
The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.
Application of the resonating Hartree-Fock random phase approximation to the Lipkin model
International Nuclear Information System (INIS)
Nishiyama, S.; Ishida, K.; Ido, M.
1996-01-01
We have applied the resonating Hartree-Fock (Res-HF) approximation to the exactly solvable Lipkin model by utilizing a newly developed orbital-optimization algorithm. The Res-HF wave function was superposed by two Slater determinants (S-dets) which give two corresponding local energy minima of monopole ''deformations''. The self-consistent Res-HF calculation gives an excellent ground-state correlation energy. There exist excitations due to small vibrational fluctuations of the orbitals and mixing coefficients around their stationary values. They are described by a new approximation called the resonating Hartree-Fock random phase approximation (Res-HF RPA). Matrices of the second-order variation of the Res-HF energy have the same structures as those of the Res-HF RPA's matrices. The quadratic steepest descent of the Res-HF energy in the orbital optimization is considered to include certainly both effects of RPA-type fluctuations up to higher orders and their mode-mode couplings. It is a very important and interesting task to apply the Res-HF RPA to the Lipkin model with the use of the stationary values and to prove the above argument. It turns out that the Res-HF RPA works far better than the usual HF RPA and the renormalized one. We also show some important features of the Res-HF RPA. (orig.)
Kobus, Jacek
2015-02-01
Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly accurate values of electric multipole moments together with polarizabilities αz z,Az ,z z , and hyperpolarizabilities βz z z, γz z z,Bz z ,z z , for the ground states of various atomic and diatomic systems. Since these results can be regarded as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list of the properties for the following atoms and diatomic molecules: H-, He, Li, Li+,Li2 +,Li-,Be2 + , Be, B+,C2 + , Ne, Mg2 +, Mg, Al+,Si2 + , Ar, K+,Ca2 +,Rb+,Sr2 +,Zr4 +,He2 , Be2,N2,F2,O2 , HeNe, LiH2 +, LiCl, LiBr, BH, CO, FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear distance is also studied for He2,LiH+,Be2 , and HeNe systems.
International Nuclear Information System (INIS)
Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.
2011-01-01
By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral 16 O + 16 O and 96 Zr + 132 Sn collisions. Although we observe strong dissipation in the time evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.
A correction for the Hartree-Fock density of states for jellium without screening
International Nuclear Information System (INIS)
Blair, Alexander I.; Kroukis, Aristeidis; Gidopoulos, Nikitas I.
2015-01-01
We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose predictions—divergent derivative of the energy dispersion relation and vanishing density of states (DOS) at the Fermi level—are in qualitative disagreement with experimental evidence for simple metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations. Employing Slater’s hyper-Hartree-Fock (HHF) equations, derived variationally, to study the ground state and the excited states of jellium, we find that the divergent derivative of the energy dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector and energy of jellium to the boundary between the set of variationally optimised and unoptimised HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily high values of wavevector and energy, well clear from the Fermi level of jellium. We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic correlation, are known in the literature
International Nuclear Information System (INIS)
Jiang Minhao; Meng Xujun
2005-01-01
The effect of the free electron background in plasmas is introduced in Hartree-Fock-Slater self-consistent field atomic model to correct the single electron energies for each electron configuration, and to provide accurate atomic data for Boltzmann-Saha equation. In the iteration process chemical potential is adjusted to change the free electron background to satisfy simultaneously the conservation of the free electrons in Saha equation as well as in Hartree-Fock-Slater self-consistent field atomic model. As examples the equations of state of the carbon and aluminum plasmas are calculated to show the applicability of this method. (authors)
Wang, Hao
2014-07-01
The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.
Amour, Laurent; Khodja, Mohamed; Nourrigat, Jean
2011-01-01
We study the Wick symbol of a solution of the time dependent Hartree Fock equation, under weaker hypotheses than those needed for the Weyl symbol in the first paper with thesame title. With similar, we prove some kind of Ehrenfest theorem for observables that are not pseudo-differential operators.
Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.
2014-02-01
In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.
Extension of the multiconfiguration Hartree-Fock program for continuum functions
International Nuclear Information System (INIS)
Fischer, C.F.; Saha, H.P.
1984-01-01
The wave function of an outer electron coupled to a core, possibly with correlation included in the core, is similar to a multiconfiguration Hartree-Fock (MCHF) wavefunction, except that the radial function of the electron is a continuum function, and different numerical procedures are required for determining it. Only a single continuum function is allowed, and the orbitals defining the wave function of the core and bound channels are assumed to be fixed. The coefficients in the expansion of the wave function of the core are also fixed and are the result of a bound state calculation for the core. Under these assumptions, the equation for the radial wave function of the electron is solved iteratively. The asymptotic phase shift is evaluated. In order to test the accuracy of the procedure, calculations were performed for the scattering of electrons by neutral hydrogen. Some results of a photo-ionization calculation are compared, and for an electron transition in nitrogen
Self-consistent Hartree-Fock RPA calculations in 208Pb
Taqi, Ali H.; Ali, Mohammed S.
2018-01-01
The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.
Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle
International Nuclear Information System (INIS)
Brink, D.M.; Giannoni, M.J.; Veneroni, M.
1975-10-01
A derivation of the adiabatic time-dependent Hartree-Fock formalism is given, which is based on a variational principle analogous to Hamilton's principle in classical mechanics. The method leads to a Hamiltonian for collective motion which separates into a potential and a kinetic energy and gives mass and potential parameters in terms of the nucleon-nucleon interaction. The adiabatic approximation assumes slow motion but not small amplitudes and can therefore describe anharmonic effects. The RPA is a limiting case where both amplitudes and velocities are small. The variational approach provides a consistent way of extracting coordinated and momenta from the density matrix and of obtaining equations of motion when particular trial forms for this density matrix are chosen. One such choice leads to Thouless-Valatin formula. An other choice leads to irrotational hydrodynamics [fr
The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model
International Nuclear Information System (INIS)
Zamick, L.
1984-01-01
The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell
International Nuclear Information System (INIS)
Brack, M.
1981-01-01
Strutinsky's shell-correction method is investigated in the framework of the microscopial Hartree-Fock-Bogoliubov method at finite temperature HFBT. Applying the Strutinsky energy averaging consistently to the normal and abnormal density matrices and to the entropy, we define a self-consistently average HFBT system as the solution of a variational problem. From the latter we derive the generalized Strutinsky energy theorem and the explicit expressions for the shell correction of a statistically excited system of BCS quasiparticles. Using numerical results of HF calculations, we demonstrate the convergence of the Strutinsky expansion and estimate the validity of the partical shell-correction approach. We also discuss the close connections of the Strutinsky energy averaging with semiclassical expansions and their usefulness for solving the average nuclear self-consistency problem. In particular we argue that the Hohenberg-Kohn theorem should hold for the averaged HFBT system and we thus provide a justification of the use of semiclassical density functionals. (orig.)
Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-05-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.
Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature
International Nuclear Information System (INIS)
Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K
2013-01-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.
Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-03-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.
Hartree-Fock+BCS approach to unstable nuclei with the Skyrme force
International Nuclear Information System (INIS)
Tajima, Naoki
2001-01-01
We reanalyze the results of our extensive Hartree-Fock+BCS calculation from new points of view paying attention to the properties of unstable nuclei. The calculation has been done with the Skyrme SIII force for the ground and shape isomeric states of 1029 even-even nuclei ranging 2≤Z≤114. We also discuss the advantages of the employed three-dimensional Cartesian-mesh representation, especially on its remarkably high precision with apparently coarse meshes when applied to atomic nuclei. In Appendices we give the coefficients of finite-point numerical differentiation and integration formulae suitable for Cartesian mesh representation and elucidate the features of each formula and the differences from a method based on the Fourier transformation. (author)
Skyrme-Hartree-Fock in the realm of nuclear mean field models
International Nuclear Information System (INIS)
Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.
2000-01-01
We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)
Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O
Energy Technology Data Exchange (ETDEWEB)
Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering
1998-03-01
Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)
Angular momentum projection on a mesh of cranked Hartree-Fock wave functions
International Nuclear Information System (INIS)
Baye, D.; Heenen, P.
1984-01-01
A method for projecting on angular momentum wave functions discretized on a three-dimensional Cartesian mesh is presented. The method is based on a matrix representation of the rotation operator. It is applied to cranked Hartree-Fock wave functions calculated for 24 Mg with a simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of the order of 0.1%. An extensive comparison of the projected and cranking energies is made. The validity of the cranking method as an approximation to a variation-after-projection calculation seems to be wider than usually expected. The study of the fission barrier of 24 Mg for the channel 4 He- 16 O- 4 He shows that the cranking predictions for these very deformed states are quite reliable
On particle emission in the time-dependent Hartree-Fock approximation
International Nuclear Information System (INIS)
Maedler, P.
1984-01-01
Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission
International Nuclear Information System (INIS)
Ferrari, R.; I.N.F.N., Trento
1994-01-01
The formalism introduced in a previous paper is used for discussing the Coulomb interaction of many electrons moving in two space-dimensions in the presence of a strong magnetic field. The matrix element of the coulomb interaction is evaluated in the new basis, whose states are invariant under discrete translations. This paper is devoted to the case of low filling factor, thus the authors limit themselves to the lowest Landau level and to spins all oriented along the magnetic field. For the case of filling factor ν f = 1/u they give an Ansatz on the state of many electrons which provides a good approximated solution of the Hartree-Fock equation. For general filling factor ν f = u'/u a trial state is given which converges very rapidly to a solution of the self-consistent equation. They generalize the Hartree-Fock equation by considering some correlation: all quantum states are allowed for the u' electrons with the same translation quantum numbers. Numerical results are given for the mean energy and the energy bands, for some values of the filling factor (ν f = 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5). The results agree numerically with the Charge Density Wave approach. The boundary conditions are shown to be very important: only large systems (degeneracy of Landau level over 200) are not affected by the boundaries. Therefore results obtained on small scale systems are somewhat unreliable. The relevance of the results for the Fractional Quantum Hall Effect is briefly discussed
Energy Technology Data Exchange (ETDEWEB)
Lötstedt, Erik, E-mail: lotstedt@chem.s.u-tokyo.ac.jp; Kato, Tsuyoshi; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-04-21
An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.
Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force
Energy Technology Data Exchange (ETDEWEB)
Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences
1997-03-01
We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)
The Hartree-Fock approximation for s-d shell even-even nuclei with N different of Z
International Nuclear Information System (INIS)
Oliveira, P.C. de.
1981-02-01
Using the Hartree-Fock approximation method for 22 Ne, 26 Mg and 30 Si nuclei with different kinds of two-body interactions, the electric quadrupole moments and projected energy levels, of angular momentum J=0,2,4,6..., are determined. The Peierls-Yoccoz projection m ethod is used to determine the wave function with well-defined angular momentum. A comparison is made, with the experimental results and the ones obtained by other authors. (Author) [pt
Time-dependent Hartree-Fock calculation of the escape width of the giant monopole resonance in 16O
International Nuclear Information System (INIS)
Pacheco, J.M.; Maglione, E.; Broglia, R.A.
1988-01-01
The damping of the giant monopole resonance in 16 O is calculated within the framework of the time-dependent Hartree-Fock approximation. The strength function contains two peaks, centered at around 25 and 33 MeV, with escape widths of ∼11 and ∼2 MeV, associated with the 1p(0p) -1 and 1s(0s) -1 configurations, respectively
Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force
International Nuclear Information System (INIS)
Oliveira, D.R. de; Mizrahi, S.S.
1976-11-01
The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified
International Nuclear Information System (INIS)
Maedler, P.
1984-01-01
The review describes the application of the time-dependent Hartree--Fock method to the description of heavy-ion interactions at energies of order 10 MeV/nucleon. The fundamentals of the method are presented and qualitative properties of its results are discussed. Realistic calculations of fusion reactions, deep inelastic collisions, and particle emission are presented and compared with the corresponding experimental data. Various approaches that generalize the method by taking into account correlations are considered
Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation
Fanto, P.
2017-11-01
The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
International Nuclear Information System (INIS)
Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1].The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter.The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature.In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter. (paper)
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.
Oscillator strength of partially ionized high-Z atom on Hartree-Fock Slater model
International Nuclear Information System (INIS)
Nakamura, S.; Nishikawa, T.; Takabe, H.; Mima, K.
1991-01-01
The Hartree-Fock Slater (HFS) model has been solved for the partially ionized gold ions generated when an intense laser light is irradiated on a gold foil target. The resultant energy levels are compared with those obtained by a simple screened hydrogenic model with l-splitting effect (SHML). It is shown that the energy levels are poorly model by SHML as the ionization level becomes higher. The resultant wave functions are used to evaluate oscillator strength of important line radiations and compared with those obtained by a simple model using hydrogenic wave functions. Its demonstrated that oscillator strength of the 4p-4d and 4d-4f lines are well modeled by the simple method, while the 4-5 transitions such as 4f-5g, 4d-5f, 4p-5d, and 4f-5p forming the so-called N-band emission are poorly modeled and HFS results less strong line emissions. (author)
Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach
Energy Technology Data Exchange (ETDEWEB)
Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)
2015-06-07
The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approach enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.
Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock.
Tamayo-Mendoza, Teresa; Kreisbeck, Christoph; Lindh, Roland; Aspuru-Guzik, Alán
2018-05-23
Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult , a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.
On minimal energy Hartree-Fock states for the 2DEG at fractional fillings
International Nuclear Information System (INIS)
Cabo Montes Oca, A. de.
1995-08-01
Approximate minimal energy solutions of the previously discussed general class of Hartree-Fock (HF) states of the 2DEG at 1/3 and 2/3 filling factors are determined. Their selfenergy spectrum is evaluated. Wannier states associated to the filled Bloch states are introduced in a lattice having three flux quanta per cell. They allow to rewrite approximately the ν = 1/3 HF Hamiltonian as sum of three independent tight-binding model Hamiltonians, one describing the dynamics in the band of occupied states and the other ones in the tow bands of excited states. The magnitude of the hopping integral indicates the enhanced role which should have the correlation energy in the present situation with respect to the case of the Yoshioka and Lee second order energy calculation for the lowest energy HF state. Finally, the discussion also suggests the Wannier function, which spreads an electron into a three quanta area, as a physical model for the composite fermion mean field one particle state. (author). 11 refs, 5 figs
Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV
Singh, Narendra; Aggarwal, Sunny
2018-03-01
We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.
Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme
International Nuclear Information System (INIS)
Theophilou, Iris; Tassi, M.; Thanos, S.
2014-01-01
Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations
Study of superdeformation at zero spin with Skyrme-Hartree-Fock method
Energy Technology Data Exchange (ETDEWEB)
Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)
1998-03-01
Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)
Physically asymptotic Hartree-Fock stationary-phase approximant to the many-body S-matrix
International Nuclear Information System (INIS)
Griffin, J.J.; Dworzecka, M.
1982-01-01
The Asymptotic Hartree-Fock Approximant replaces the physically non-asymptotic (and dynamically nontrivial) external translation of the FISP result with the asymptotic and dynamically trivial translational evolution of Dirac-TDHF by adding an explicit restriction upon the acceptable channel states. It is therefore preferable under the principle of commensurability, which judges the expected output of physical descriptions in terms of the physical assumptions they incorporate. Further insight into the relationship between the TDSHF and FISP methods will reward careful comparison of the respective expressions, in specific cases
Lee, Hyun-Jung; Kim, Ki-Seok
2018-04-01
We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states ρ (ω ) is evaluated in three dimensions. Approaching the quantum critical point of a metal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by ρ (ω ) ˜|ω| 1 /2 , which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent αq, given by the Legendre transformation of the fractal dimension τq, which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L . Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the
Energy Technology Data Exchange (ETDEWEB)
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
International Nuclear Information System (INIS)
Lindner, J.
1992-09-01
In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)
Perger, W. F.; Das, B. P.
1987-01-01
The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.
International Nuclear Information System (INIS)
Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann
2015-01-01
A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications
Energy Technology Data Exchange (ETDEWEB)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)
2015-09-14
A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
Application of the RPA method based on the cranked Hartree-Fock-Bogolyubov model in 168Er and 158Dy
International Nuclear Information System (INIS)
Kvasil, J.; Khariev, M.M.; Cwiok, S.; Mikhajlov, I.N.; Khoriev, B.
1984-01-01
The Random Phase Approximation (RPA) based on the Cranked Hartree-Fock-Bogolyubov (CHFB) model is used for the study of low-lying nuclear states near the yrast line in 158 Dy and 168 Er. The relation of the spurious unphysical states connected with the nucleus centre of mass rotational motion to the solutions of RPA equations of motion is cleared up. The calculated level energies and reduced probabilities B(E2) are compared with experimental ones. The dependence of the residual interaction strength constants and the nucleus moment of inertia on the angular momentum is discussed. The experimental characteristics of low-lying states up to approx. 2 MeV are reproduced by the CHFB+RPA model. (author)
International Nuclear Information System (INIS)
Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.
1992-11-01
The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs
International Nuclear Information System (INIS)
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus
2013-01-01
Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme
International Nuclear Information System (INIS)
Smeyers, Y.G.; Delgado-Barrio, G.
1976-01-01
The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized
Energy Technology Data Exchange (ETDEWEB)
Lata, K. Ramani [State University of New York at Albany, Department of Physics (United States); Sahoo, N. [University of Texas M.D. Anderson Cancer Center, Department of Radiation Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R.; Pink, R. H.; Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Schulte, A. F.; Saha, H. P. [University of Central Florida, Department of Physics (United States); Maharjan, N. B. [State University of New York at Albany, Department of Physics (United States); Chow, Lee [University of Central Florida, Department of Physics (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)
2008-01-15
The electronic structure of the heme unit of deoxyhemoglobin including the proximal imidazole has been studied using the first-principles Hartree-Fock procedure. Our results for the {sup 57m}Fe isomer shift and asymmetry parameter are in very good agreement with the values obtained from Moessbauer spectroscopy measurements. The {sup 57m}Fe nuclear quadrupole coupling constant is smaller than the experimental result and possible ways to improve the agreement in the future are discussed. Improved analysis of the Moessbauer data, removing some approximations made for deriving the magnetic hyperfine tensor for the {sup 57m}Fe nucleus, is suggested to allow quantitative comparison with our results in the future.
Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case
Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber
2014-01-01
to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr
Hartree-Fock and density functional theory study of alpha-cyclodextrin conformers.
Jiménez, Verónica; Alderete, Joel B
2008-01-31
Herein, we report the geometry optimization of four conformers of alpha-cyclodextrin (alpha-CD) by means of PM3, HF/STO-3G, HF/3-21G, HF/6-31G(d), B3LYP/6-31G(d), and X3LYP/6-31G(d) calculations. The analysis of several geometrical parameters indicates that all conformers possess bond lengths, angles, and dihedrals that agree fairly well with the crystalline structure of alpha-CD. However, only three of them (1-3) resemble the polar character of CDs and show intramolecular hydrogen-bonding patterns that agree with experimental NMR data. Among them, conformer 3 appears to be the most stable species both in the gas phase and in solution; therefore, it is expected to be the most suitable representative structure for alpha-CD conformation. The purpose of selecting such a species is to identify an appropriate structure to be employed as a starting point for reliable computational studies on complexation phenomena. Our results indicate that the choice of a particular alpha-CD conformer should affect the results of ab initio computational studies on the inclusion complexation with this cyclodextrin since both the direction and the magnitude of the dipole moment depend strongly on the conformation of alpha-CD.
Hermes, Matthew R; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
International Nuclear Information System (INIS)
Dagens, L.
1975-01-01
The neutral atom method is generalized in order to deal with a Hartree-Fock nonlocal ionic potential. It is used to test the following metal potential, based upon a theoretical analysis due to Hedin and Lundquist. The true HF potential is used to describe the ionic part and a simple local density scheme (the Gaspar-Kohn-Sham approximation) is used for the valence part. The method is first applied to the calculation of the rigid neutral atom valence density of a few simple metals and the corresponding form factor n(q). The choice of the ionic potential (HF or GKS) is found to have a small but significant effect as far as n(q) is concerned. A comparison with experiment is made for Al and Be, using the available X-rays structure factor measurements. Good agreement is obtained for Al with the recent results of Raccah and Heinrich. No agreement is obtained with the Be results of Brown, although the general behavior of the observed and theoretical n(g) as function of g (reciprocal vector length) are found to be quite similar. The binding energy is calculated for Li, Be, Na, Mg and Al, using the Nozieres-Pines formula for the valence-valence correlation energy. The agreement with observed values is improved considerably when the present (HF+GKS) scheme is used, instead of the HFS completely local density scheme used in a previous work. The remaining discrepancies may be ascribed to the inaccuracy of the NP formula and to the neglect of the whole valence-core correlation energy [fr
Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun
2009-04-01
N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.
Rolke, J.; Brion, C. E.
1996-06-01
The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.
International Nuclear Information System (INIS)
Sugimoto, Satoru; Ikeda, Kiyomi; Toki, Hiroshi
2004-01-01
We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework
International Nuclear Information System (INIS)
Cabo Monte Oca, A. de.
1994-07-01
Analytic expressions for order parameters are given for the previously introduced general class of Hartree Fock states at arbitrary filling factors ν=p/q for odd q values. The order parameters are expressed as sums of magnetic translations eigenvalues over the filled single electron states. Simple summation formulae for the band spectra in terms of the same eigenvalues are also presented. The energy per particle at ν=1/3 is calculated for various states differing in the way of filling of the 1/3 of the orbitals. The calculated energies are not competing with the usual CDW results. However the high degree of electron overlapping allows for the next corrections to modify this situation. The discussion suggests these Hartree-Fock Slater determinants as interesting alternatives for the Tao-Thouless parent states which may correct their anomalous symmetry and correlation functions properties. (author). 28 refs
Chong, Jacky Jia Wei
2018-04-01
We prove the global well-posedness of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equations in R^{1+1} with two-body interaction potential of the form N^{-1}v_N(x) = N^{β -1} v(N^β x) where v≥0 is a sufficiently regular radial function, i.e., v \\in L^1(R)\\cap C^∞ (R) . In particular, using methods of dispersive PDEs similar to the ones used in Grillakis and Machedon (Commun Partial Differ Equ 42:24-67, 2017), we are able to show for any scaling parameter β >0 the TDHFB equations are globally well-posed in some Strichartz-type spaces independent of N, cf. (Bach et al. in The time-dependent Hartree-Fock-Bogoliubov equations for Bosons, 2016. arXiv:1602.05171).
International Nuclear Information System (INIS)
Hu, J.; Toki, H.; Wen, W.; Shen, H.
2010-01-01
The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)
Hu, J.; Toki, H.; Wen, W.; Shen, H.
2010-03-01
The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.
Energy Technology Data Exchange (ETDEWEB)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
International Nuclear Information System (INIS)
Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon
2015-01-01
The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF − and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN + , and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects
Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu
2015-11-11
The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.
Energy Technology Data Exchange (ETDEWEB)
Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)
2015-06-07
The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF{sup −} and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN{sup +}, and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects.
International Nuclear Information System (INIS)
Swope, W.C.; Schaefer, H.F. III; Yarkony, D.R.
1980-01-01
The use of Clebsch--Gordan-type coupling coefficients for finite point groups is applied to the problem of constructing symmetrized N-electron wave functions (configurations) for use by the Hartree--Fock SCF and CI methods of determining electronic wave functions for molecular systems. The configurations are eigenfunctions of electronic spin operators, and transform according to a particular irreducible representation of the relevant group of spatial operations which leave the Born--Oppenheimer Hamiltonian invariant. The method proposed for constructing the configurations involves a genealogical coupling procedure. It is particularly useful for studies of molecules which belong to a group which has multiply degenerate irreducible representations. The advantage of the method is that it results in configurations which are real linear combinations of determinants of real symmetry orbitals. This procedure for constructing configurations also allows for the identification of configurations which have no matrix element of the Hamiltonian with a reference configuration. It is therefore possible to construct a Hartree--Fock interacting space of configurations which can speed the convergence of a CI wave function. The coupling method is applied to a study of the ground and two excited electronic states of BH 3 in its D/sub 3h/ geometry. The theoretical approach involved Hartree--Fock SCF calculations followed by single and double substitution CI calculations, both of which employed double-zeta plus polarization quality basis sets
Multiconfiguration Hartree--Fock method for atomic energy levels and transition probabilities
International Nuclear Information System (INIS)
Fischer, C.F.
1978-01-01
The effect of correlation in the motion of electrons in a many-electron system is considered in the theoretical determination of atomic properties. The correlation effects are computed using the configuration interaction. Restriction is made to the discussion of outer processes of neutral atoms or ions of low degree of ionization in which the relativistic effects are small. The first-order theory, the 3p,3d state of Al II, correlation in the 3d/sup n/ shell, and f-values in the presence of cross-overs are discussed. 29 references
Hartree Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing
International Nuclear Information System (INIS)
Dietz, K.; Hess, B.A.
1990-08-01
Relativistic mean-field equations are obtained by minimizing the effective energy obtained from the gauge-invariant energy density by eliminating electro-magnetic degrees of freedom in certain characteristic non-linear gauges. It is shown that by an appropriate choice of gauge many-body correlations, e.g. screening, three-body 'forces' etc. can be included already at the mean-field level. The many-body perturbation theory built on the latter is then expected to show improved 'convergence'. (orig.)
QCD-based relativistic Hartree-Fock calculations for identical quarks
International Nuclear Information System (INIS)
Dey, J.; Dey, M.; Le Tourneux, J.
1985-12-01
As was first pointed out by Witten, large number of colours (Nsub(c)) leads to a simplification in the theory of baryon masses in that the quarks may be assumed to move in a mean field which can be found self-consistently. The interquark potential in such a description can be borrowed from the meson sector phenomenology in the absence of an accurate evaluation of it from large Nsub(c) quantum chromodynamics (QCD). We have carried out this program with such a potential due to Richardson, used often by workers in the meson sector. This potential has the advantage of incorporating the two main features of QCD, namely confinement and asymptotic freedom. In view of the small number of parameters involved, the results agree surprisingly well with experiment for the case of three identical quarks. (author)
Symplectic manifolds, coadjoint orbits, and Mean Field Theory
International Nuclear Information System (INIS)
Rosensteel, G.
1986-01-01
Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit
International Nuclear Information System (INIS)
Cowan, R.D.; Grant, I.P.; Fawcett, B.C.; Rose, S.J.
1985-11-01
A Multi-Configuration-Dirac-Fock (MCDF) computer program is adapted to interface with the Hartree-Fock-Relativistic (HFR) program for the RAL IBM mainframe computer. The two codes are integrated into a package which includes the Zeeman Laboratory Slater parameter optimisation routines as well as new RAL routines to further process the HFR and MCDF output. A description of the adaptions to MCDF and new output extensions is included in this report, and details are given regarding HFR FORTRAN subroutines, and lists of Job Control Language (JCL) files for the complete package. (author)
International Nuclear Information System (INIS)
Dey, J.; Dey, M.; Mukhopadhyay, G.; Samanta, B.C.
1989-01-01
Mean field models of the nucleon and the delta are established with the two-quark vector Richardson potential along with various prescriptions for a running quark mass. This is taken to be a one-particle operator in the Dirac-Hartree Fock formalism. An effective density dependent one body potential U(ρ) for quarks at a given density ρ inside the nucleon is derived. It shows an interesting structure. Asymptotic freedom and confinement properties are built-in at high and low densities in U (ρ) and the model dependence is restricted to the intermediate desnsities. (author) [pt
International Nuclear Information System (INIS)
Libert, J.; Girod, M.; Delaroche, J-P.; Berger, J-F.; Romain, P.; Peru, S.
1997-01-01
The superdeformed bands of the nuclei in the region A = 190 were described by two microscopic approaches using Gogny D1 finite range interaction. The first one consists in building a Bohr Hamiltonian in the framework of Gauss overlap approximation (GOA) of the generator-coordinate method, starting from Hartree-Fock-Bogolyubov solutions under quadrupole constraints. This collective Hamiltonian microscopically determined for five quadrupolar variables is then diagonalized by a projection method on a collective based adapted to the large variety of the deformations to be considered. A special attention was given to the precise definition of the under-barrier collective wavefunctions (for which an original method of solving the collective Schroedinger equation was developed) in order to described correctly the lifetime of the shape isomeric states. The other approach, that of Routhian is based also on the Hartree-Fock-Bogolyubov approximation. The calculations are carried out with and without restoring the broken symmetry associated to the particle numbers (as given by Lipkin-Nogami). The results (excitation energies, moments of inertia, etc...) of the two calculation methods are compared with most recent experimental data. The existence of the superdeformed bands corresponding to vibrational excitations similar to those appearing in β and γ bands is proposed
Semiclassical approximations in a mean-field theory with collision terms
International Nuclear Information System (INIS)
Galetti, D.
1986-01-01
Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt
Rodríguez-Sánchez, Jose Luis; David, Jean-Christophe; Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; Leray, Sylvie
2017-11-01
The prediction of one-nucleon-removal cross sections by the Liège intranuclear-cascade model has been improved using a refined description of the matter and energy densities in the nuclear surface. Hartree-Fock-Bogoliubov calculations with the Skyrme interaction are used to obtain a more realistic description of the radial-density distributions of protons and neutrons, as well as the excitation-energy uncorrelation at the nuclear surface due to quantum effects and short-range correlations. The results are compared with experimental data covering a large range of nuclei, from carbon to uranium, and projectile kinetic energies. We find that the new approach is in good agreement with experimental data of one-nucleon-removal cross sections covering a broad range in nuclei and energies. The new ingredients also improve the description of total reaction cross sections induced by protons at low energies, the production cross sections of heaviest residues close to the projectile, and the triple-differential cross sections for one-proton removal. However, other observables such as quadruple-differential cross sections of coincident protons do not present any sizable sensitivity to the new approach. Finally, the model is also tested for light-ion-induced reactions. It is shown that the new parameters can give a reasonable description of the nucleus-nucleus total reaction cross sections at high energies.
Directory of Open Access Journals (Sweden)
H. Mariji
2016-01-01
Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.
International Nuclear Information System (INIS)
Sugimoto, Satoru; Toki, Hiroshi; Ikeda, Kiyomi
2008-01-01
We study the effect of the tensor force on nuclear structure with mean-field and beyond-mean-field methods. An important correlation induced by the tensor force is two-particle-two-hole (2p2h) correlation, which cannot be treated with a usual mean-filed method. To treat the 2p2h tensor correlation, we develop a new framework (charge- and parity-projected Hartree-Fock (CPPHF) method), which is a beyond-mean-field method. In the CPPHF method, we introduce single-particle states with parity and charge mixing. The parity and charge projections are performed on a total wave function before variation. We apply the CPPHF method to oxygen isotopes including neutron-rich ones. The potential energy from the tensor force has the same order of magnitude with that from the LS force and becomes smaller with neutron number, which indicates that excess neutrons do not contribute to the 2p2h tensor correlation significantly. We also study the effect of the tensor force on spin-orbit-splitting (ls-splitting) in a neutron-rich fluorine isotope 23 F. The tensor force reduces the ls-splitting for the proton d-orbits by about 3 MeV. This effect is important to reproduce the experimental value. We also find that the 2p2h tensor correlation does not affect the ls-splitting in 23 F
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M.; Vargas, Rubicelia; Garza, Jorge, E-mail: jgo@xanum.uam.mx [Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa C. P. 09340, México D. F., México (Mexico)
2015-07-21
In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.
Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M; Vargas, Rubicelia; Garza, Jorge
2015-07-21
In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.
Energy Technology Data Exchange (ETDEWEB)
Kilin, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Lazarev, D.V.; Lazarev, Dm.A.; Zelichenko, V.M. [Tomsk Pedagogic University, Tomsk (Russian Federation); Amusia, M. Ya. [A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Schartner, K.-H. [I Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ehresmann, A.; Schmoranzer, H. [Fachbereich Physik, Universitaet Kaiserslautern, Kaiserslautern (Germany)
2001-10-28
The approach of a parametric V{sup (N-q)} Hartree-Fock potential with fractional q is developed and applied for the first time for the calculation of the double photoionization cross sections of Ne. A minimum of the squared difference between the length-form and velocity-form cross sections is used as a criterion for calculating the values of q. It is found that the minimization procedure leads to a practically exact equality of the length-form and velocity-form cross sections for the Ne III 2s{sup 2}2p{sup 4}[{sup 3}P,{sup 1}D,{sup 1}S], 2s{sup 1}2p{sup 5}[{sup 3}P,{sup 1}P] and 2s{sup 0}2p{sup 6}[{sup 1}S] states in the exciting-photon energy region from the double-ionization threshold up to 325 eV, if q is considered as a function of the exciting-photon energy. The calculated V{sup (N-q)} cross sections are in better agreement with the experimental data than those for the V{sup (N-1)} and V{sup (N-2)} potentials. (author)
International Nuclear Information System (INIS)
Villars, F.
1975-01-01
The objective of the work is to draw attention to the essential equivalence of the two apparently quite distinct ways of describing nuclear collective dyanmics, the adiabatic time-dependent Hartree-Fock method (ADTHF) on the one hand, and the Generator Coordinate (GC) method on the other hand. To demonstrate this relation, an analysis of the simplest case, in which collective motion is described by a single collective para- meter q(t) is presented. In the ATDHF approach, two self-consistency conditions are obtained; the resultant expressions for the collective potential and kinetic energies represent a special case of the more general results of Baranger and Veneroni. In the G.C. approach to the same system (with the same collective parameter q), the narrow overlap approximation must be made, as the counterpart of the adiabatic approximation in the TDHF method. In its conventional form, the G.C. method leads to a different expression for the collective kinetic energy. It is shown however, that a simple generalization of the G.C.-wave function leads to corrections determined by a variational principle. In leading order, the corrected expression for the collective kinetic energy is identical with the TDHF result In both cases, the collective inertia is determined by a self-consistent cranking formula
López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.
2018-03-01
Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.
Open-system Kohn-Sham density functional theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-03-07
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics
International Nuclear Information System (INIS)
Hayhurst, T.L.
1980-01-01
Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multiconfiguration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radical correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the KI sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd
International Nuclear Information System (INIS)
Hayhurst, T.L.
1980-05-01
Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd
International Nuclear Information System (INIS)
Schmid, K.W.; Gruemmer, F.
1979-01-01
A variational principle is used to determine the optimal angular momentum projected one determinant approach to the N-nucleon yrast-wave function for a given total spin value. The solution is given in terms of a set of coupled nonlinear equations. Besides an orthonormality constraint for the occupied orbits and a normalization conditions for the total wave function, this set consists out of a matrix equation taking care of the fact that the spin-projected wave function does not depend on the orientation of the intrinsic determinant it is based on, and a second subset of equations, which can be considered as a Thouless theorem for the spin-projected N-nucleon state, and desribes the diagonalization of the total Hamiltonian in the subspace of linear independent N-nucleon shell model configurations contained in the test-determinant. Furthermore, a numerical method for the solution of these equations is proposed and an extension of the theory for the description of excited bands is given. Finally, the consistency of the equations is checked by solving them for a simple example analytically. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, E-28006 Madrid (Spain); Fernández-Perea, Ricardo [Instituto de Estructura de la Materia (CSIC), Serrano 123, E-28006 Madrid (Spain); Madzharova, Fani; Voloshina, Elena, E-mail: elena.voloshina@hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Chemie, Unter den Linden 6, 10099 Berlin (Germany)
2016-06-28
The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He–Mg pair potentials is also presented, as an improvement of the approximation using isolated He–Mg pairs.
International Nuclear Information System (INIS)
Becker, R.L.; Svenne, J.P.
1975-12-01
Energy levels of states connected by a symmetry of the Hamiltonian normally should be degenerate. In self-consistent field theories, when only one of a pair of single-particle levels connected by a symmetry of the full Hamiltonian is occupied, the degeneracy is split and the unoccupied level often lies below the occupied one. Inversions of neutron-proton (charge) and time-reversal doublets in odd nuclei, charge doublets in even nuclei with a neutron excess, and spin-orbit doublets in spherical configurations with spin-unsaturated shells are examined. The origin of the level inversion is investigated, and the following explanation offered. Unoccupied single-particle levels, from a calculation in an A-particle system, should be interpreted as levels of the (A + 1)-particle system. When the symmetry-related level, occupied in the A-particle system, is also calculated in the (A + 1)-particle system it is degenerate with or lies lower than the other. That is, when both levels are calculated in the (A + 1)-particle system, they are not inverted. It is demonstrated that the usual prescription to occupy the lowest-lying orbitals should be modified to refer to the single-particle energies calculated in the (A + 1)- or the (A - 1)-particle system. This observation is shown to provide a justification for avoiding an oscillation of occupancy between symmetry-related partners in successive iterations leading to a self-consistency. It is pointed out that two degenerate determinants arise from occupying one or the other partner of an initially degenerate pair of levels and then iterating to self-consistency. The existence of the degenerate determinants indicates the need for introducing correlations, either by mixing the two configurations or by allowing additional symmetry-breaking (resulting in a more highly deformed non-degenerate configuration). 2 figures, 3 tables, 43 references
Quasiparticle method in relativistic mean-field theories of nuclear structure
International Nuclear Information System (INIS)
Ai, H.
1988-01-01
In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation
International Nuclear Information System (INIS)
Schunck, Nicolas F.; McDonnell, J.; Sheikh, J.A.; Staszczak, A.; Stoitsov, Mario; Dobaczewski, J.; Toivanen, P.
2012-01-01
We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.
Microscopic theories for collective motions of large amplitude
International Nuclear Information System (INIS)
Souza Cruz, F.F. de.
1986-01-01
The many proposals of ''Collective Paths'' that have appeared in literature, were derived through a local analysis of the Time Dependent Hartree Fock dynamics. Those proposals were compared and validity conditions obtained for Semiclassical Hamiltonians which have only quadratic terms in momenta. A careful analysis of the parametrization of Slater Determinants allowed us to exploit the geometrical features of the Time Dependent Hartree Fock Theory and construct the Paths in a covariant way. The analysis was applied to a three level model (Su(3)). (author) [pt
International Nuclear Information System (INIS)
Marumori, T.; Sakata, F.; Maskawa, T.; Une, T.; Hashimoto, Y.
1983-01-01
The main purpose of this paper is to develop a full quantum theory, which is capable by itself of determining a ''maximally-decoupled'' collective motion. The paper is divided into two parts. In the first part, the motivation and basic idea of the theory are explained, and the ''maximal-decoupling condition'' on the collective motion is formulated within the framework of the time-dependent Hartree-Fock theory, in a general form called the invariance principle of the (time-dependent) Schrodinger equation. In the second part, it is shown that when the author positively utilize the invariance principle, we can construct a full quantum theory of the ''maximally-decoupled'' collective motion. This quantum theory is shown to be a generalization of the kinematical boson-mapping theories so far developed, in such a way that the dynamical ''maximal-decoupling condition'' on the collective motion is automatically satisfied
Translationally invariant self-consistent field theories
International Nuclear Information System (INIS)
Shakin, C.M.; Weiss, M.S.
1977-01-01
We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables
2nd derivatives of the electronic energy in density functional theory
Energy Technology Data Exchange (ETDEWEB)
Dam, H. van
2001-08-01
This document details the equations needed to implement the calculation of vibrational frequencies within the density functional formalism of electronic structure theory. This functionality has been incorporated into the CCP1 DFT module and the required changes to the application programmers interface are outlined. Throughout it is assumed that an implementation of Hartree-Fock vibrational frequencies is available that can be modified to incorporate the density functional formalism. Employing GAMESS-UK as an example the required changes to the Hartree-Fock code are outlined. (author)
DEFF Research Database (Denmark)
Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth
2002-01-01
A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained...
DEFF Research Database (Denmark)
Kjærgaard, Thomas; Jørgensen, Poul; Thorvaldsen, Andreas
2009-01-01
A Lagrangian approach has been used to derive gauge-origin independent expressions for two properties that rationalize magneto-optical activity, namely the Verdet constant V(ω) of the Faraday effect and the B term of magnetic circular dichroism. The approach is expressed in terms of an atomic-orb...
A microscopic theory of the nuclear collective motion
International Nuclear Information System (INIS)
Baranger, M.
1975-01-01
A microscopic theory of the nuclear collective model is reviewed, discussions being concentrated, mainly, on the shape motion. An adiabatic time dependent Hartree-Fock method is used. Kinetic energy using the cranking model is obtained. The generator coordinate method is discussed [pt
A few methods for the theory of collective motions and collisions
International Nuclear Information System (INIS)
Giraud, B.G.
1984-01-01
In this series of lectures the time-dependent Hartree-Fock theory of nuclear motions and collisions are treated for collective motion only. For the theory of collisions a representation, the boosted shell model, is proposed in which matrix elements of the T-matrix are easier to evaluate via a variational principle
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...
Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.
2017-11-01
We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton
Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.
2018-02-01
The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.
Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.
2012-01-01
We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution
International Nuclear Information System (INIS)
Younes, W; Gogny, D
2008-01-01
In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented
Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.
2013-06-01
We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions
Odd-even mass differences from self-consistent mean field theory
International Nuclear Information System (INIS)
Bertsch, G. F.; Bertulani, C. A.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.
2009-01-01
We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A α . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences
Energy Technology Data Exchange (ETDEWEB)
Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)
2016-12-01
Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).
Molecular orbital theory. Spinor representation
International Nuclear Information System (INIS)
Aono, Shigeyuki
2003-01-01
The algebra representing electron is spinor. The many electron problem is investigated with the Nambu 2x2 spinor. Operators then are expressed 2x2 matrices. The electron-electron interaction is decomposed into couplings between various electron densities by using the Pauli spin matrices. The diagonal ones of them refer to the direct and exchange interactions and the off-diagonal terms to those for superconducting. The Roothaan theory is rewritten. The approximation beyond the Hartree-Fock is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Libert, J. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Girod, M.; Delaroche, J-P.; Berger, J-F.; Romain, P.; Peru, S. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)
1997-06-01
The superdeformed bands of the nuclei in the region A = 190 were described by two microscopic approaches using Gogny D1 finite range interaction. The first one consists in building a Bohr Hamiltonian in the framework of Gauss overlap approximation (GOA) of the generator-coordinate method, starting from Hartree-Fock-Bogolyubov solutions under quadrupole constraints. This collective Hamiltonian microscopically determined for five quadrupolar variables is then diagonalized by a projection method on a collective based adapted to the large variety of the deformations to be considered. A special attention was given to the precise definition of the under-barrier collective wavefunctions (for which an original method of solving the collective Schroedinger equation was developed) in order to described correctly the lifetime of the shape isomeric states. The other approach, that of Routhian is based also on the Hartree-Fock-Bogolyubov approximation. The calculations are carried out with and without restoring the broken symmetry associated to the particle numbers (as given by Lipkin-Nogami). The results (excitation energies, moments of inertia, etc...) of the two calculation methods are compared with most recent experimental data. The existence of the superdeformed bands corresponding to vibrational excitations similar to those appearing in {beta} and {gamma} bands is proposed
Microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.
1990-10-01
A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)
Field theory of large amplitude collective motion. A schematic model
International Nuclear Information System (INIS)
Reinhardt, H.
1978-01-01
By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)
Nonlinear many-body reaction theories from nuclear mean field approximations
International Nuclear Information System (INIS)
Griffin, J.J.
1983-01-01
Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)
Dynamical description of the fission process using the TD-BCS theory
Energy Technology Data Exchange (ETDEWEB)
Scamps, Guillaume, E-mail: scamps@nucl.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Simenel, Cédric [Department of Nuclear Physics, Research School of Physics and Engineering Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Lacroix, Denis [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex (France)
2015-10-15
The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)
2015-12-07
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.
Fourth nuclear theory workshop 'clusters in nuclei'
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
This document gathers the slides of 3 lectures: 1) the R-matrix method, 2) from realistic NN-interactions to cluster structures in nuclei - in this part the unitary correlation operator method (UCOM) is applied to 3 domains: the fermionic molecular dynamics, the Hartree-Fock approximation, and the no-core shell model -, and 3) the shell model point of view on cluster states.
DEFF Research Database (Denmark)
Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru
2012-01-01
The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...... electric field. The dependence of the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation wave function for H2+, very accurate...... Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule...
Nonrelativistic theory of heavy-ion collisions
International Nuclear Information System (INIS)
Bertsch, G.
1984-01-01
A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures
Development of mean field theories in nuclear physics and in desordered media
International Nuclear Information System (INIS)
Orland, Henri.
1981-04-01
This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr
Projected coupled cluster theory.
Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E
2017-08-14
Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.
Time independent mean-field theory
International Nuclear Information System (INIS)
Negele, J.W.
1980-02-01
The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures
International Nuclear Information System (INIS)
Ehvarestov, R.A.; Panin, A.I.
2000-01-01
The problem on the possibility of partial accounting for the electron correlation effects within the frames of the Hartree-Fock unlimited method (HF). The local characteristic of the electron structure of the molecular systems for the case of the multi-determinant wave functions, configurational interaction methods and multiconfigurational self-consistent field (MCSCF) are determined. The molecular-crystalline approach is applied to studies on the electron correlation effects in the Ti 2 O 3 crystal. It is shown on the basis of the [Ti 2 O 9 ] 12- cluster electron structure calculation, that the Hartree-Fock unlimited method accounts in a number of cases for an essential part of statistical correlation effects. The energy values and local characteristics of the [Ti 2 O 9 ] 12- cluster, calculated through the HF and MCSCF methods, are presented [ru
Diatomic interaction potential theory applications
Goodisman, Jerry
2013-01-01
Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des
Microscopic theory of dynamical subspace for large amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-01-01
A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Fock exchange in meson theories of nuclei
International Nuclear Information System (INIS)
Bolsterli, M.
1986-01-01
The Fock exchange term in meson field theories of nuclear systems is shown to arise from a two-loop ground-state self-energy diagram. Evaluation of this diagram gives the relativistic or semirelativistic analog of the Fock exchange energy; it differs from the nucleon-nucleon Fock energy in including retardation effects. In finite meson-field theories of nuclear systems, the variational nature of the meson-field analog of the Hartree-Fock energy functional can be further elucidated. 4 refs
Density functional theory of nuclei
International Nuclear Information System (INIS)
Terasaki, Jun
2008-01-01
The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)
Four-body interaction energy for compressed solid krypton from quantum theory.
Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong
2012-07-28
The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.
Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus; List, Nanna Holmgaard; Ruud, Kenneth; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
2016-10-12
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.
Open-ended response theory with polarizable embedding
DEFF Research Database (Denmark)
Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus
2016-01-01
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA...
Time dependent density matrix theory and effective interaction
Energy Technology Data Exchange (ETDEWEB)
Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine
1998-07-01
A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)
Ferromagnetism in the Hubbard model: a modified perturbation theory
International Nuclear Information System (INIS)
Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.
2005-01-01
We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)
Applicability of self-consistent mean-field theory
International Nuclear Information System (INIS)
Guo Lu; Sakata, Fumihiko; Zhao Enguang
2005-01-01
Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case
Variational configuration interaction methods and comparison with perturbation theory
International Nuclear Information System (INIS)
Pople, J.A.; Seeger, R.; Krishnan, R.
1977-01-01
A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
2013-01-01
We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...
Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan Karl
2016-02-12
In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.
On the consistent solution of the gap-equation for spontaneously broken λΦ4-theory
International Nuclear Information System (INIS)
Nachbagauer, H.
1994-10-01
A self-consistent solution of the finite temperature gap-equation for λΦ 4 theory beyond the Hartree-Fock approximation is presented using a composite operator effective action. It was found that in a spontaneously broken theory not only the so-called daisy and super daisy graphs contribute to the re summed mass, but also re summed non-local diagrams are of the same order, thus altering the effective mass for small values of the latter. (author). 10 refs., 3 figs., 1 tab
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories
International Nuclear Information System (INIS)
Hergert, H.; Roth, R.
2009-01-01
We discuss the implications of using an intrinsic Hamiltonian in theories without particle-number conservation, e.g., the Hartree-Fock-Bogoliubov approximation, where the Hamiltonian's particle-number dependence leads to discrepancies if one naively replaces the particle-number operator by its expectation value. We develop a systematic expansion that fixes this problem and leads to an a posteriori justification of the widely-used one- plus two-body form of the intrinsic kinetic energy in nuclear self-consistent field methods. The expansion's convergence properties as well as its practical applications are discussed for several sample nuclei.
Hole trapping at Al impurities in silica: A challenge for density functional theories
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Stokbro, Kurt
2001-01-01
The atomic geometry and electronic structure around a neutral substitutional Al impurity in silica is investigated using either the unrestricted Hartree-Fock (UHF) approximation, or Beckes three-parameter hybrid functional (B3LYP). It is found that the B3LYP functional fails to describe...... the structural distortions around the Al impurity, while the UHF results are consistent with experimental information. We argue that the failure of the B3LYP functional is caused by the incomplete self-interaction cancellation usually present in density functional theories....
Pairing correlations. I. Description of odd nuclei in mean-field theories
International Nuclear Information System (INIS)
Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.
2002-01-01
In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported
Energy Technology Data Exchange (ETDEWEB)
Lembarki, A.
1994-12-01
In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.
DEFF Research Database (Denmark)
Verma, Ashok K.; Modak, P.; Sharma, Surinder M.
2013-01-01
First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties......-I to Am-II transition. Good agreement was found between calculated and experimental equations of states for all phases, but the first three phases need larger U (α) parameters (where α represents the fraction of Hartree-Fock exchange energy replacing the DFT exchange energy) than the fourth phase in order...
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
Lesiuk, Michał; Balawender, Robert; Zachara, Janusz
2012-01-21
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics
Theory of Kondo effect in superconductors, 2
International Nuclear Information System (INIS)
Ichinose, Shin-ichi
1977-01-01
Thermodynamic properties of superconducting alloys near the transition temperature are studied within the interpolation approximation which is constructed so as to coincide with theories in limiting cases. By the use of this approximation, the specific heat jump at the transition temperature is calculated in the case of the magnitude of the impurity spin being 1/2. The result shows a continuous change of the specific heat jump with T sub(K)/T sub(c0) from the Abrikosov-Gorkov value to essentially BCS-like behavior in contrast to the Mueller-Hartmann-Zittartz theory. One has an example of a cross over between a weak coupling situation at T sub(K)/T sub(c0) > 1. The Hartree-Fock theory is also discussed in connection with the present calculation. (auth.)
Rudberg, Elias
2012-02-01
Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals.
Z-dependent perturbation theory and its application to polyatomic molecules
International Nuclear Information System (INIS)
Galvan, D.H.
1986-01-01
Z-dependent perturbation theory is applied to study the ground states of simple diatomic and triatomic molecules in order to calculate the total third-order energies for these systems. The systems studied are H 2 + , H 2 , H 3 + , HeH +2 , HeH + , and HeH 2 +2 . The total energies are compared with exact energy values, as well as Hartree-Fock values, and the author's results are a considerable improvement over second-order energies for most internuclear distances, and consistently better than Hartree-Fock calculations for all internuclear distances. Compared with variational methods, this method is simpler and more efficient. In order to calculate total energies up to third order, the wave functions necessary will be two-center, one electron or one-center, two-electron wave functions, at most. Hence, the most complicated integrals that have to be performed are three-center, two-electron integrals, and four-center, one-electron integrals, no matter how complex the molecular system. More importantly, the results obtained for the one-electron diatomic molecular ion are directly incorporated into the calculations for polyatomic systems
International Nuclear Information System (INIS)
Rudberg, Elias
2012-01-01
Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals. (fast track communication)
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
Bennaceur, K.
1999-01-01
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
Projected quasiparticle theory for molecular electronic structure
Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.
2011-09-01
We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.
Fransson, Thomas; Burdakova, Daria; Norman, Patrick
2016-05-21
X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.
Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel
2013-10-07
The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.
International Nuclear Information System (INIS)
Loibl, Stefan; Schütz, Martin
2014-01-01
In this paper, we present theory and implementation of an efficient program for calculating magnetizabilities and rotational g tensors of closed-shell molecules at the level of local second-order Møller-Plesset perturbation theory (MP2) using London orbitals. Density fitting is employed to factorize the electron repulsion integrals with ordinary Gaussians as fitting functions. The presented program for the calculation of magnetizabilities and rotational g tensors is based on a previous implementation of NMR shielding tensors reported by S. Loibl and M. Schütz [J. Chem. Phys. 137, 084107 (2012)]. Extensive test calculations show (i) that the errors introduced by density fitting are negligible, and (ii) that the errors of the local approximation are still rather small, although larger than for nuclear magnetic resonance (NMR) shielding tensors. Electron correlation effects for magnetizabilities are tiny for most of the molecules considered here. MP2 appears to overestimate the correlation contribution of magnetizabilities such that it does not constitute an improvement over Hartree-Fock (when comparing to higher-order methods like CCSD(T)). For rotational g tensors the situation is different and MP2 provides a significant improvement in accuracy over Hartree-Fock. The computational performance of the new program was tested for two extended systems, the larger comprising about 2200 basis functions. It turns out that a magnetizability (or rotational g tensor) calculation takes about 1.5 times longer than a corresponding NMR shielding tensor calculation
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Theory of Nernst effect in layered superconductors
International Nuclear Information System (INIS)
Tinh, B D; Rosenstein, B
2009-01-01
We calculate, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise, the transverse thermoelectric conductivity α xy , describing the Nernst effect, in type-II superconductor in the vortex-liquid regime. The method is an elaboration of the Hartree-Fock. An often made in analytical calculations additional assumption that only the lowest Landau level significantly contributes to α xy in the high field limit is lifted by including all the Landau levels. The resulting values in two dimensions (2D) are significantly lower than the numerical simulation data of the same model, but are in reasonably good quantitative agreement with experimental data on La 2 SrCuO 4 above the irreversibility line (below the irreversibility line at which α xy diverges and theory should be modified by including pinning effects).
Recent development of relativistic molecular theory
International Nuclear Information System (INIS)
Takahito, Nakajima; Kimihiko, Hirao
2005-01-01
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)
Energy Technology Data Exchange (ETDEWEB)
Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)
2015-04-14
The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.
Quantum theory of dynamical collective subspace for large-amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-03-01
By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
A Theory of Intellectual Development: Part 1.
Confrey, Jere
1994-01-01
Part 1 of a three-part article analyzing radical constructivism (as one interpretation of Piaget) and the socio-cultural perspective (as one interpretation of Vygotsky), including major principles, primary contributions to mathematics education, and potential limitations. Introduces an integration of the two theories through a feminist…
Covariant density functional theory: The role of the pion
International Nuclear Information System (INIS)
Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.
2009-01-01
We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the σ meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.
Navigating the grounded theory terrain. Part 1.
Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John
2011-01-01
The decision to use grounded theory is not an easy one and this article aims to illustrate and explore the methodological complexity and decision-making process. It explores the decision making of one researcher in the first two years of a grounded theory PhD study looking at the psychosocial training needs of nurses and healthcare assistants working with people with dementia in residential care. It aims to map out three different approaches to grounded theory: classic, Straussian and constructivist. In nursing research, grounded theory is often referred to but it is not always well understood. This confusion is due in part to the history of grounded theory methodology, which is one of development and divergent approaches. Common elements across grounded theory approaches are briefly outlined, along with the key differences of the divergent approaches. Methodological literature pertaining to the three chosen grounded theory approaches is considered and presented to illustrate the options and support the choice made. The process of deciding on classical grounded theory as the version best suited to this research is presented. The methodological and personal factors that directed the decision are outlined. The relative strengths of Straussian and constructivist grounded theories are reviewed. All three grounded theory approaches considered offer the researcher a structured, rigorous methodology, but researchers need to understand their choices and make those choices based on a range of methodological and personal factors. In the second article, the final methodological decision will be outlined and its research application described.
International Nuclear Information System (INIS)
Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.
2016-01-01
Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate
Roper, Ian P E; Besley, Nicholas A
2016-03-21
The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.
Ab initio theory of magnetic interactions at surfaces
International Nuclear Information System (INIS)
Sousa, C; Graaf, C de; Lopez, N; Harrison, N M; Illas, F
2004-01-01
The low to high spin energy transition of Ni adsorbed on regular and defective sites of MgO(100) and the relative strengths of bulk and surface magnetic coupling constants of first row transition metal oxides (MnO, FeO, CoO, NiO and CuO) are taken as examples to illustrate some deficiencies of density functional theory (DFT). For these ionic systems a cluster/periodic comparison within the same computational method (either DFT or Hartree-Fock) is used to establish that embedded cluster models provide an adequate representation. The cluster model approach is then used to obtain accurate values for the magnetic properties of interest by using explicitly correlated wavefunction methods which handle the electronic open shell rigorously as spin eigenfunctions
Ab initio theory of magnetic interactions at surfaces
Energy Technology Data Exchange (ETDEWEB)
Sousa, C [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain); Graaf, C de [Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgili, P. Imperial Tarraco 1, E-43005 Tarragona (Spain); Lopez, N [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Harrison, N M [Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY (United Kingdom); Illas, F [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain)
2004-07-07
The low to high spin energy transition of Ni adsorbed on regular and defective sites of MgO(100) and the relative strengths of bulk and surface magnetic coupling constants of first row transition metal oxides (MnO, FeO, CoO, NiO and CuO) are taken as examples to illustrate some deficiencies of density functional theory (DFT). For these ionic systems a cluster/periodic comparison within the same computational method (either DFT or Hartree-Fock) is used to establish that embedded cluster models provide an adequate representation. The cluster model approach is then used to obtain accurate values for the magnetic properties of interest by using explicitly correlated wavefunction methods which handle the electronic open shell rigorously as spin eigenfunctions.
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Transition mechanism of nuclear phase
International Nuclear Information System (INIS)
Kubo, T.; Sakata, F.; Marumori, T.; Iwasawa, K.; Hashimoto, Y.
1993-01-01
A general theory capable of exploring the microscopic structure of the time-dependent Hartree-Fock (TDHF) manifold is summarized. It is discussed that each stable fixed point in the TDHF-manifold represents a dynamical stable mean-field which is not reached by means of the conventional static Hartree-Fock (HF) or constrained Hartree-Fock (CHF) theories. A feasibility of the theory is shown by applying it to a simple model Hamiltonian. (orig.)
Realistic nuclear shell theory and the doubly-magic 132Sn region
International Nuclear Information System (INIS)
Vary, J.P.
1978-01-01
After an introduction discussing the motivation and interest in results obtained with isotope separators, the fundamental problem in realistic nuclear shell theory is posed in the context of renormalization theory. Then some of the important developments that have occurred over the last fifteen years in the derivation of the effective Hamiltonian and application of realistic nuclear shell theory are briefly reviewed. Doubly magic regions of the periodic table and the unique advantages of the 132 Sn region are described. Then results are shown for the ground-state properties of 132 Sn as calculated from the density-dependent Hartree-Fock approach with the Skyrme Hamiltonian. A single theoretical Hamiltonian for all nuclei from doubly magic 132 Sn to doubly magic 208 Pb is presented; single-particle energies are graphed. Finally, predictions of shell-model level-density distributions obtained with spectral distribution methods are discussed; calculated level densities are shown for 136 Xe. 10 figures
Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms
International Nuclear Information System (INIS)
Sugahara, Y.; Toki, H.
1994-01-01
We search for a new parameter set for the description of stable as well as unstable nuclei in the wide mass range within the relativistic mean-field theory. We include a non-linear ω self-coupling term in addition to the non-linear σ self-coupling terms, the necessity of which is suggested by the relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. We find two parameter sets, one of which is for nuclei above Z=20 and the other for nuclei below that. The calculated results agree very well with the existing data for finite nuclei. The parameter set for the heavy nuclei provides the equation of state of nuclear matter similar to the one of the RBHF theory. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Extended Møller-Plesset perturbation theory for dynamical and static correlations
International Nuclear Information System (INIS)
Tsuchimochi, Takashi; Van Voorhis, Troy
2014-01-01
We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter
Self-consistent theory of finite Fermi systems and radii of nuclei
International Nuclear Information System (INIS)
Saperstein, E. E.; Tolokonnikov, S. V.
2011-01-01
Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.
One-Body Potential Theory of Molecules and Solids Modified Semiempirically for Electron Correlation
International Nuclear Information System (INIS)
March, N.H.
2010-08-01
The study of Cordero, March and Alonso (CMA) for four spherical atoms, Be,Ne,Mg and Ar, semiempirically fine-tunes the Hartree-Fock (HF) ground-state electron density by inserting the experimentally determined ionization potentials. The present Letter, first of all, relates this approach to the very recent work of Bartlett 'towards an exact correlated orbital theory for electrons'. Both methods relax the requirement of standard DFT that a one-body potential shall generate the exact ground-state density, though both work with high quality approximations. Unlike DFT, the CMA theory uses a modified HF non-local potential. It is finally stressed that this potential generates also an idempotent Dirac density matrix. The CMA approach is thereby demonstrated to relate, albeit approximately, to the DFT exchange-correlation potential. (author)
Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht
1989-11-01
The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].
Spectra theory for nuclei with closed shells (1962)
International Nuclear Information System (INIS)
Gillet, V.
1962-01-01
A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the
Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M
2016-10-11
We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.
Four lectures on fission. Fragments of a dynamic theory of collective motion in nuclei
International Nuclear Information System (INIS)
Pauli, H.C.
1975-01-01
It is dared to try an accumulative, however, not complete presentation of the phenomenological, collective model, with a special emphasis on fission. The various phenomenological approaches are discussed and some of them are presented in detail together with a comparison to experimental data. To the extent we know how to treat them, the dynamical aspects are stressed and reviewed. A natural definition of shape degrees of freedom in terms of density moments is suggested, without using them in detail. Last but not least we suggest to interpret collective variables as being ''time-like'' and not ''space-like'', as implied by the generator coordinate method, in the sense that they are not redundant coordinates, but rather clocks for the time. In the framework of time-dependent Hartree-Fock theory, we are able to define unambiguously a collective and a potential energy. The formalism is preliminary and unmatured, but links to classical principles do not seem unlikely. (author)
Equations-of-motion approach to a quantum theory of large-amplitude collective motion
International Nuclear Information System (INIS)
Klein, A.
1984-01-01
The equations-of-motion approach to large-amplitude collective motion is implemented both for systems of coupled bosons, also studied in a previous paper, and for systems of coupled fermions. For the fermion case, the underlying formulation is that provided by the generalized Hartree-Fock approximation (or generalized density matrix method). To obtain results valid in the semi-classical limit, as in most previous work, we compute the Wigner transform of quantum matrices in the representation in which collective coordinates are diagonal and keep only the leading contributions. Higher-order contributions can be retained, however, and, in any case, there is no ambiguity of requantization. The semi-classical limit is seen to comprise the dynamics of time-dependent Hartree-Fock theory (TDHF) and a classical canonicity condition. By utilizing a well-known parametrization of the manifold of Slater determinants in terms of classical canonical variables, we are able to derive and understand the equations of the adiabatic limit in full parallelism with the boson case. As in the previous paper, we can thus show: (i) to zero and first order in the adiabatic limit the physics is contained in Villar's equations; (ii) to second order there is consistency and no new conditions. The structure of the solution space (discussed thoroughly in the previous paper) is summarized. A discussion of associated variational principles is given. A form of the theory equivalent to self-consistent cranking is described. A method of solution is illustrated by working out several elementary examples. The relationship to previsous work, especially that of Zelevinsky and Marumori and coworkers is discussed briefly. Three appendices deal respectively with the equations-of-motion method, with useful properties of Slater determinants, and with some technical details associated with the fermion equations of motion. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2001-07-01
In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)
Sears, John S.; Koerzdoerfer, Thomas; Zhang, Cai-Rong; Brédas, Jean-Luc
2011-10-01
Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory (DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.
Quantum electrodynamics and the relativistic theory of many-electron atoms
International Nuclear Information System (INIS)
Sucher, J.
1981-01-01
The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations
International Nuclear Information System (INIS)
Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.
1992-01-01
Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VIII. Role of Coulomb exchange
International Nuclear Information System (INIS)
Goriely, S.; Pearson, J. M.
2008-01-01
Following suggestions that the energy associated with Coulomb correlations and a possible charge-symmetry breaking of nuclear forces might largely cancel the Coulomb-exchange term, we refit the HFB-14 mass model without the Coulomb-exchange term to essentially all the mass data. The resulting mass model, HFB-15, gives a better fit to the 2149 mass data, σ rms falling from 0.729 to 0.678 MeV. The improvement in the energy differences between mirror nuclei is particularly striking: the Nolen-Schiffer anomaly, which is strong for HFB-14, is essentially eliminated. As for the extrapolation to highly neutron-rich nuclei, the HFB-15 model differs significantly from HFB-14, with up to 15 MeV less binding being predicted. However, the differences in the predicted values of differential quantities such as the neutron-separation energies, β-decay energies and fission barriers are very much smaller
Instability of the cranked Hartree-Fock-Bogoliubov field in backbending region
International Nuclear Information System (INIS)
Horibata, Takatoshi; Onishi, Naoki.
1981-07-01
The stability condition of the cranked HFB field is examined explicitly by solving the eigen value equation for the second order variation of the energy, which is reduced to an algebraic equation through a coupled dispersion formula. We confirm that the HFB field is unstable in the backbending region of irregular rotational band, even though the frequency of the softest RPA mode stays in positive value. We investigate properties of the softest mode in detail. (author)
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
Sok, Jérémy
2016-02-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.
Elastic and inelastic form factors of the Ne20 in the Hartree-Fock approximation
International Nuclear Information System (INIS)
Oliveira, S.A.C. de.
1977-01-01
Properties of Ne 20 fundamental band are studied such as particle densities and elastic and inelastic form factors. A two body interaction is used and its matrix elements involve only the independent particle states of the 1s-0d shell [pt
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
DEFF Research Database (Denmark)
Sok, Jérémy Vithya
2016-01-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence...
Energy Technology Data Exchange (ETDEWEB)
Dupuis, M. (ed.)
1981-02-01
Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted. (DLC)
Exact norm-conserving stochastic time-dependent Hartree-Fock
International Nuclear Information System (INIS)
Tessieri, Luca; Wilkie, Joshua; Cetinbas, Murat
2005-01-01
We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method, we calculate the low energy spectrum of helium. An extension of the method to bosons is outlined
Etude hartree-fock de la tautomerisation du 1azirene sous pression ...
African Journals Online (AJOL)
The lazirene molecule is a heterocyclic compound containing two carbon atoms, one nitrogen atom and three hydrogen atoms which one is on the nitrogen atom. The hydrogen pressure being represented by one molecule of dihydrogen, the reaction of the dihydrogen with the azirene in the presence of the palladium ...
The calculation of collective energies from periodic time-dependent Hartree-Fock solutions
International Nuclear Information System (INIS)
Zahed, I.; Baranger, M.
1983-06-01
A periodic TDHF solution is used as the reference state for a diagrammatic expansion of the propagator. A discrete Fourier transform leads to a function of energy, whose poles are the corresponding energy levels. Limiting the expansion to first-order diagrams leads to a new derivation of the Bohr-Sommerfeld-like quantization rule for collective states
Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations
International Nuclear Information System (INIS)
Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.
1979-01-01
The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)
Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force
International Nuclear Information System (INIS)
Zint, P.G.
1975-01-01
It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de
International Nuclear Information System (INIS)
Dupuis, M.
1981-02-01
Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted
Λ hypernuclei in the Skyrme-Hartree-Fock treatment with G-matrix motivated interactions
International Nuclear Information System (INIS)
Lanskoy, D.E.; Yamamoto, Y.
1997-01-01
Skyrme-like hyperon-nucleon potentials are derived from G-matrix calculations and shown to reproduce well the Λ single-particle spectra of hypernuclei measured in BNL and KEK. Fit of the spectra can restrict p-wave ΛN interaction, radii of Λ orbits in hypernuclear ground states, Λ well depth and effective mass in nuclear matter rather tightly. Implications of ΛN spin-orbit force to the spectra are considered. (author)
Meson dynamics and the nuclear many-body problem. II. Finite density Hartree-Fock
International Nuclear Information System (INIS)
Wilets, L.; Puff, R.D.; Chiang, D.; Nutt, W.T.
1976-01-01
The field-theoretic many-nucleon problem is formulated, and an analysis which sums all ''uncrossed meson line'' diagrams is investigated in detail. The calculation of energy per nucleon, after proper identification of infinite mass renormalization terms, exhibits effects of nuclear recoil, relativistic kinematics, and retardation. Numerical results are presented for π and ω mesons, and the nucleon interaction energies obtained are compared with the traditional static limit of infinite nucleon mass
Janesko, Benjamin G.
2018-02-01
Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.
Navigating the grounded theory terrain. Part 2.
Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John
2011-01-01
In this paper, the choice of classic grounded theory will be discussed and justified in the context of the first author's PhD research. The methodological discussion takes place within the context of PhD research entitled: Development of a stakeholder-led framework for a structured education programme that will prepare nurses and healthcare assistants to deliver a psychosocial intervention for people with dementia. There is a lack of research and limited understanding of the effect of psychosocial interventions on people with dementia. The first author thought classic grounded theory a suitable research methodology to investigate as it is held to be ideal for areas of research where there is little understanding of the social processes at work. The literature relating to the practical application of classic grounded theory is illustrated using examples relating to four key grounded theory components: Theory development: using constant comparison and memoing, Methodological rigour, Emergence of a core category, Inclusion of self and engagement with participants. Following discussion of the choice and application of classic grounded theory, this paper explores the need for researchers to visit and understand the various grounded theory options. This paper argues that researchers new to grounded theory must be familiar with and understand the various options. The researchers will then be able to apply the methodologies they choose consistently and critically. Doing so will allow them to develop theory rigorously and they will ultimately be able to better defend their final methodological destinations.
Mechanism of equalization of proton and neutron radii and the Coulomb anomaly
International Nuclear Information System (INIS)
Caurier, E.; Poves, A.; Zuker, A.
1980-01-01
It is shown that a one parameter modification of the effective forces allows to resolve the Coulomb energy anomalies in the Ca region within the framework of Hartree Fock (HF) and isospin projected Hartree Fock (IPHF) theories. A simple microscopic mechanism of equalization of neutron and proton radii is invoked to produce results consistent with available data
Energy Technology Data Exchange (ETDEWEB)
Gillet, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1962-07-01
A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the
Complex geometry and string theory. Part 1
International Nuclear Information System (INIS)
Morozov, A.; Perelomov, A.
1989-01-01
Methods of calculation on the Reimann surfaces are given. The structure of determinant stratifications over spaces of the Riemann surface moduli is described. Obvious formulas for cross sections of the stratifications and for the Polyakov measure in the theory of closed boson strings are given
Gauge field theories. Part three. Renormalization
International Nuclear Information System (INIS)
Frampon, P.H.
1978-01-01
The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references
Nerlo-Pomorska, B; Kleban, M
2003-01-01
The modern version of the liquid-drop model (LSD) is compared with the macroscopic part of the binding energy evaluated within the Hartree-Fock- Bogoliubov procedure with the Gogny force and the relativistic mean field theory. The parameters of a liquid-drop like mass formula which approximate on the average the self-consistent results are compared with other models. The limits of nuclear stability predicted by these models are discussed.
Gaussian-3 theory using scaled energies
International Nuclear Information System (INIS)
Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.
2000-01-01
A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics
Quantum theory of the solid state part B
Callaway, Joseph
1974-01-01
Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed
Fundamental U-Theory of Time. Part 1
Directory of Open Access Journals (Sweden)
Yuvraj J. Gopaul
2016-02-01
Full Text Available The Fundamental U-Theory of Time (Part 1 is an original theory that aims to unravel the mystery of what exactly is ‘time’. To date very few explanations, from the branches of physics or cosmology, have succeeded to provide an accurate and comprehensive depiction of time. Most explanations have only managed to provide partial understanding or at best, glimpses of its true nature. The U-Theory uses ‘Thought Experiments’ to uncover the determining characteristics of time. In part 1 of this theory, the focus is not on the mathematics as it is on the accuracy of the depiction of time. Moreover, it challenges current views on theoretical physics, particularly on the idea of ‘time travel’. Notably, it is a theory seeking to present a fresh approach for reviewing Einstein’s Theory of Relativity, while unlocking new pathways for upcoming research in the field of physics and cosmology.
Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-01-01
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement with measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem
Seniority zero pair coupled cluster doubles theory
International Nuclear Information System (INIS)
Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-01-01
Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems
Mean field theory of nuclei and shell model. Present status and future outlook
International Nuclear Information System (INIS)
Nakada, Hitoshi
2003-01-01
Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave
Managing the professional nurse. Part I. The organizational theories.
McClure, M L
1984-02-01
How do employment organizations outside the hospital field deal with issues such as staff productivity, motivation, burnout, and high turnover? In Part I of this two-part article, the author presents an overview of modern management theory and practice, drawn from the literature on organizational behavior. She shows how nursing administrators can use this scholarly foundation to better understand the organizing principles and problems of their departments. In Part II (to be published in March 1984), the author applies these classic and relevant theories to the specific challenges that face the manager of professional nurses.
Test of atomic theory by photoelectron spectrometry with synchrotron radiation
International Nuclear Information System (INIS)
Krause, M.O.
1984-01-01
The successful combination of synchrotron radiation with electron spectrometry, accomplished at Daresbury, England and Orsay, France, made it possible to investigate sigma/sub x/ and β/sub x/ continuously over the very soft x-ray or the uv range of photon energies. The detailed and highly differentiated data resulting from this advanced experimentation put theory to a stringent test. In the interplay between theory and experiment, sophisticated Hartree Fock (HF) based models were developed which included both relativistic and many-electron effects. These theoretical models have provided us with a better insight than previously possible into the physics of the photon-atom interaction and the electronic structure and dynamics of atoms. However, critical experiments continue to be important for further improvements of theory. A number of such experiments are discussed in this presentation. The dynamic properties determined in these studies include in addition to sigma/sub x/ and β/sub x/ the spin polarization parameters. As a result the comparison between theory and experiment becomes rigorous, detailed and comprehensive. 46 references, 6 figures
Mean-field theory of nuclear structure and dynamics
International Nuclear Information System (INIS)
Negele, J.W.
1982-01-01
The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission
Singlet-paired coupled cluster theory for open shells
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Dimensional perturbation theory for the two-electron atom
International Nuclear Information System (INIS)
Goodson, D.Z.
1987-01-01
Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed
Singlet-paired coupled cluster theory for open shells
International Nuclear Information System (INIS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-01-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Operator theory a comprehensive course in analysis, part 4
Simon, Barry
2015-01-01
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of
Orthogonal polynomials on the unit circle part 2 spectral theory
Simon, Barry
2013-01-01
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po
Orthogonal polynomials on the unit circle part 1 classical theory
2009-01-01
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (SzegÅ‘'s theorems), limit theorems for the density of the zeros of orthogonal po
Cold rolling precision forming of shaft parts theory and technologies
Song, Jianli; Li, Yongtang
2017-01-01
This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on cold rolling precision forming technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used in cold rolling forming. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes – all key points that are included in this book and ill...
Energy Technology Data Exchange (ETDEWEB)
Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.
Roothaan approach in the thermodynamic limit
Gutierrez, G.; Plastino, A.
1982-02-01
A systematic method for the solution of the Hartree-Fock equations in the thermodynamic limit is presented. The approach is seen to be a natural extension of the one usually employed in the finite-fermion case, i.e., that developed by Roothaan. The new techniques developed here are applied, as an example, to neutron matter, employing the so-called V1 Bethe "homework" potential. The results obtained are, by far, superior to those that the ordinary plane-wave Hartree-Fock theory yields. NUCLEAR STRUCTURE Hartree-Fock approach; nuclear and neutron matter.
Internal conversion theory of gamma radiation in unfilled atomic shells
International Nuclear Information System (INIS)
Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.
1980-01-01
The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells
Molecular cluster theory of chemical bonding in actinide oxide
International Nuclear Information System (INIS)
Ellis, D.E.; Gubanov, V.A.; Rosen, A.
1978-01-01
The electronic structure of actinide monoxides AcO and dioxides AcO 2 , where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO 10- 6 and AcO 12- 8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO 6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides
Theory of Magnetic Properties of Heavy Rare Earth Metals:
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Danielsen, O.
1975-01-01
results are given for the magnetization agreeing with experiment for Gd, Tb, and Dy. For Tb and Dy the zero-point deviations were found to be 0.05μB and 0.08μB, respectively, and the ratio [b(T)-b(0)]/[ΔM(T)-ΔM(0)] is approximately 1/3 for all temperatures below 100 K. This gives rise to large corrections......The contributions to the macroscopic-anisotropy constants and resonance energy from crystal-field anisotropy, magnetoelastic effects in the frozen and flexible lattice model, and two-ion interactions have been found for all terms allowed in a crystal of hexagonal symmetry. The temperature...... dependence is expressed as expansions of thermal averages of the Stevens operators 〈Olm〉. A systematic spin-wave theory, renormalized in the Hartree-Fock approximation, is developed and used to find the temperature dependence of the Stevens operators and the resonance energy in terms of the magnetization...
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Ground-state properties of exotic nuclei near Z=40 in the relativistic mean-field theory
International Nuclear Information System (INIS)
Lalazissis, G.A.
1995-01-01
Study of the ground-state properties of Kr, Sr and Zr isotopes has been performed in the framework of the relativistic mean-field (RMF) theory using the recently proposed relativistic parameter set NL-SH. It is shown that the RMF theory provides an unified and excellent description of the binding energies, isotope shifts and deformation properties of nuclei over a large range of isospin in the Z=40 region. It is observed that the RMF theory with the force NL-SH is able to describe the anomalous kinks in isotope shifts in Kr and Sr nuclei, the problem which has hitherto remained unresolved. This is in contrast with the density-dependent Skyrme-Hartree-Fock approach which does not reproduce the behaviour of the isotope shifts about shell closure. On the Zr chain we predict that the isotope shifts exhibit a trend similar to that of the Kr and Sr nuclei. The RMF theory also predicts shape coexistence in heavy Sr isotopes. Several dramatic shape transitions in the isotopic chains are shown to be a general feature of nuclei in this region. A comparison of the properties with the available mass models shows that the results of the RMF theory are generally in accord with the predictions of the finite-range droplet model. ((orig.))
Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
International Nuclear Information System (INIS)
Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz
2005-01-01
Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP
Constraints on effective interactions imposed by antisymmetry and charge independence
Energy Technology Data Exchange (ETDEWEB)
Stringari, S [Trento Univ. (Italy). Dipartimento di Matematica e Fisica; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics
1978-07-24
Restrictions on the form of the energy functional following antisymmetry and charge independence have been investigated for a Hartree-Fock theory based on effective interactions. These restrictions impose severe constraints on density dependent effective interactions.
Pilar, Frank L
2003-01-01
Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.
Activities of the theoretical nuclear physics group of the Atomic Energy National Commission
International Nuclear Information System (INIS)
Reich, S.L.
1982-01-01
The theoretical studies that have been made in the Atomic Energy National Commission of Argentina about nuclear reactions, nuclear field theories, boson techniques and Hartree-Fock approximation, etc., are reported. (L.C.) [pt
Effect of side chain length on the stability and structural properties of 3
African Journals Online (AJOL)
thiophene (DOOPT) and their dimers studied by Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The DFT calculations suggest that dimers of the dialkoxyphenylthiophenes with longer side chains are thermodynamically more ...
Phillips, Jordan J; Peralta, Juan E
2013-05-07
We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.
Adachi, H; Kawai, J
2006-01-01
Molecular-orbital calculations for materials design such as alloys, ceramics, and coordination compounds are now possible for experimentalists. Molecuar-orbital calculations for the interpretation of chemical effect of spectra are also possible for experimentalists. The most suitable molecular-orbital calculation method for these purpose is the DV-Xa method, which is robust in such a way that the calculation converges to a result even if the structure of the molecule or solid is impossible in the pressure and temperature ranges on earth. This book specially addresses the methods to design novel materials and to predict the spectralline shape of unknown materials using the DV-Xa molecular-orbital method, but is also useful for those who want to calculate electronic structures of materials using any kind of method.
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel
2012-01-01
Roč. 33, č. 6 (2012), s. 691-694 ISSN 0192-8651 R&D Projects: GA MŠk LC512 Grant - others:European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : post-HF methods * molecular geometry * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.835, year: 2012
International Nuclear Information System (INIS)
Schmidt, M.W.; Ruedenberg, K.
1979-01-01
Optimal starting points for expanding molecular orbitals in terms of atomic orbitals are the self-consistent-field orbitals of the free atoms and accurate information about the latter is essential for the construction of effective AO bases for molecular calculations. For expansions of atomic SCF orbitals in terms of Gaussian primitives, which are of particular interest for applications in polyatomic quantum chemistry, previous information has been limited in accuracy. In the present investigation a simple procedure is given for finding expansions of atomic self-consistent-field orbitals in terms of Gaussian primitives to arbitrarily high accuracy. The method furthermore opens the first avenue so far for approaching complete basis sets through systematic sequences of atomic orbitals
Algebraic methods for a direct calculus of observables in the theory of nuclear band structure
International Nuclear Information System (INIS)
Klein, A.
1983-01-01
The basis for much of the present understanding of nuclear structure derives from the study of mean field approximations (such as Hartree-Fock or Bardeen-Cooper-Schrieffer) and of small deviations from the mean field (random phase approximation and the cranking model). This review is devoted to the study of a theoretical framework for these and other approximations. The approach is the application of Heisenberg matrix mechanics to the nuclear many-body problem. It utilizes a calculus for matrix elements of suitably chosen simple operators between exact eigenstates of the Hamiltonian. In the first class of investigations, in which single fermion operators were chosen, one ends with a theory providing a justification for and generalization of various core-particle coupling models and a basis for nuclear field theory. In a further group of studies of matrix elements of multipole and/or pair operators, the collective behavior of even nuclei can be examined, divorced from their coupling to neighboring odd nuclei. Various investigations carried out over two decades are described. A common theoretical thread is that the calculations are done uniformly in fermion shell model space in a representation in which the Hamiltonian is diagonal. New developments which may alter these considerations profoundly by enlarging the framework in which they may be carried out are envisaged. (author)
Derivation of binding energies on the basis of fundamental nuclear theory
International Nuclear Information System (INIS)
Kouki, Tuomo.
1975-10-01
An attempt to assess the degree of consistency between the underlying ideas of two different approaches to nuclear energy relations is described. The fundamental approach in the form of density dependent Hartree-Fock theory, as well as the method of renormalizing shell model energies have both met with fair success. Whereas the former method is based on nuclear matter theory, the latter's central idea is to combine shell structure with an average liquid drop behaviour. The shell smoothing procedure employed there has been subject to intense theoretical study. Only little attention has been paid to the liquid drop aspect of the method. It is purposed to derive the liquid drop mass formula by means of a model force fitted to results of some nuclear matter calculations. Moreover, the force is tested by applying it to finite nuclei. Because of this, the present work could also be regarded as an attempt to find a very direct way of relating nuclear matter properties to those of finite nuclei. As the results in this respect are worse than expected, we conclude with a discussion of possible directions of improvement. (author)
A simplified density matrix minimization for linear scaling self-consistent field theory
International Nuclear Information System (INIS)
Challacombe, M.
1999-01-01
A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics
Differentiability in density-functional theory: Further study of the locality theorem
International Nuclear Information System (INIS)
Lindgren, Ingvar; Salomonson, Sten
2004-01-01
The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the arguments [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s 3 S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem
Nuclear physics brought about by the π-mesons studied from field theory and experiments
International Nuclear Information System (INIS)
Toki, Hiroshi
2012-01-01
In nuclei π-mesons are playing key role. At first the important interactions of π-mesons in light nuclei is explained mentioning that the π-meson exchange force is tensor force. It is pointed out that the importance of π-meson is observed even in the deuterons. By the progress of computations it is possible at present to calculate nuclei up to the mass number of twelve. It is explained then how to handle the π-mesons in heavy nuclei referring to the discovery of the halo of 11 Li and its analysis. Due to the pseudo scalar properties of the π-mesons, tensor force is the strong nucleon-nucleon interaction. It has been necessary to go through numbers of trials and errors to arrive at the discovery of the proper tensor force analysis. It is shown to be possible to handle them in the Tensor-Optimized Shell Model (TOSM) based on the variation method. The explanation of the Extended Brueckner Hartree-Fock (EBHF) method obtained by combining the TOSM with the mean field theory used in the heavy nuclei is given. EBHF theory has the structure including high momentum components in the 2p2h wave functions. Calculated equation of state of symmetric nuclear matter is shown as a function of density in which important contribution of the tensor force is observed. Properties of nuclear matter are discussed. (S. Funahashi)
The problem of the universal density functional and the density matrix functional theory
International Nuclear Information System (INIS)
Bobrov, V. B.; Trigger, S. A.
2013-01-01
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
The environmental Kuznets curve (EKC) theory. Part B: Critical issues
International Nuclear Information System (INIS)
Kaika, Dimitra; Zervas, Efthimios
2013-01-01
According to the environmental Kuznets curve (EKC) theory, the process of economic growth is expected to limit the environmental degradation created in the early stages of development. The first article of this study reviews the empirical studies examining various factors, other than income, that may lead to an EKC-pattern. The current article reviews in the first part the major critiques on the EKC-speculation which relate to the following issues: the normal distribution of world income, the feedback from environmental degradation to economic growth, the characteristics of the pollutant in question, various econometric issues, the evolution of consumption when income rises and the assumption about a common developmental pattern in all countries. The second part discusses additional matters reported indirectly in the literature and/or must be further examined. There are doubts whether the GDP-series captures the transition of production to the three productive sectors in empirical estimations and whether services are less polluting compared to industry activities. Finally, the original Kuznets-theory, which laid the groundwork for the EKC-concept, does not seem to solve income inequality problems. - Highlights: • The basic critiques on the EKC-concept are presented. • Some additional issues, not explicitly presented in the literature, must be further examined. • The examination of such critiques is essential to define the validity-bounds of the EKC-concept. • The construction of structural models comes up to be more urgent than ever
Integrative mental health care: from theory to practice, part 1.
Lake, James
2007-01-01
Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examines the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discusses implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understandings of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.
Integrative mental health care: from theory to practice, Part 2.
Lake, James
2008-01-01
Integrative approaches will lead to more accurate and different understandings of mental illness. Beneficial responses to complementary and alternative therapies provide important clues about the phenomenal nature of the human body in space-time and disparate biological, informational, and energetic factors associated with normal and abnormal psychological functioning. The conceptual framework of contemporary Western psychiatry includes multiple theoretical viewpoints, and there is no single best explanatory model of mental illness. Future theories of mental illness causation will not depend exclusively on empirical verification of strictly biological processes but will take into account both classically described biological processes and non-classical models, including complexity theory, resulting in more complete explanations of the characteristics and causes of symptoms and mechanisms of action that result in beneficial responses to treatments. Part 1 of this article examined the limitations of the theory and contemporary clinical methods employed in Western psychiatry and discussed implications of emerging paradigms in physics and the biological sciences for the future of psychiatry. In part 2, a practical methodology, for planning integrative assessment and treatment strategies in mental health care is proposed. Using this methodology the integrative management of moderate and severe psychiatric symptoms is reviewed in detail. As the conceptual framework of Western medicine evolves toward an increasingly integrative perspective, novel understanding of complex relationships between biological, informational, and energetic processes associated with normal psychological functioning and mental illness will lead to more effective integrative assessment and treatment strategies addressing the causes or meanings of symptoms at multiple hierarchic levels of body-brain-mind.
Quantities Ts[n] and Tc[n] in density-functional theory
International Nuclear Information System (INIS)
Zhao, Q.; Parr, R.G.
1992-01-01
Levy's constrained-search procedure [Proc. Natl. Acad. Sci. U.S, North 76, 6062 (1979)] is employed to show how to determine Kohn-Sham and Hartree-Fock-Kohn-Sham orbitals and kinetic energies T s and T c , for the two-electron, four-electron, and the general case starting from the electron density. Numerical results are presented for the species H - through F 7+ and the atom Be. The Pauli potential is also determined for Be. The small differences among Kohn-Sham, Hartree-Fock, and Hartree-Fock-Kohn-Sham orbitals suggest that determination of Kohn-Sham orbitals from the density in this way is an attractive procedure for getting an orbital description from an electron density
The foundation of quantum theory and noncommutative spectral theory: Part 2
International Nuclear Information System (INIS)
Kummer, H.
1991-01-01
The present paper comprises Sects. 5-8 of a work which proposes an axiomatic approach to quantum mechanics in which the concept of a filter is the central primitive concept. Having laid down the foundations in the first part of this work, the author arrived at a dual pair left-angle Y,M right-angle consisting of a base norm space Y and an order unit space M, being in order and norm duality with respect to each other. This is precisely the setting of noncommutative spectral theory, a theory which has been developed during the late nineteen seventies by Alfsen and Shultz. In this part he added to the four axioms (Axioms S, DP, R, SP) of Sect. 3 three further axioms (Axioms E, O, L). These axioms are suggested by the work of Alfsen and Shultz and and enable him to derive the JB-algebra structure of quantum mechanics (cf. Theorem 8.9)
Amin, Elizabeth A; Truhlar, Donald G
2008-01-01
We present nonrelativistic and relativistic benchmark databases (obtained by coupled cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively. The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments, and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007 Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments. The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and 2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster calculations and a relativistic effective core potential, resulting in M05-2X (BMUE = 0.895), PW6B95 (BMUE = 0.90), and B97-2 (BMUE = 0.93) as the top three functionals. We find significant relativistic effects (∼0.01 Å in bond lengths, ∼0
Review of the theory of infinite nuclear matter
International Nuclear Information System (INIS)
Llano, M. de; Tolmachev, V.V.
1975-01-01
Given a two-body force, there seems to be two distinct starting points in the many-body perturbation-theoretic problem of computing the energy per nucleon of infinite (as well as finite) nuclear matter: ordinary Hartree-Fock theory and the Brueckner theory. The former theory, treated almost exclusively with plane-wave solutions, has long-ago fallen into disuse, to yield to the latter, apparently more sophisticated, theory. After a brief outline of many-fermion diagramatic techniques, the Brueckner-Bethe-Goldstone series expansion in terms of the density is discussed as a low density, non-ideal Fermi gas theory, whose convergence is analyzed. A calculation based on particle-hole Green's function techniques shows that a nucleon gas condenses to the liquid phase at about 3% of the empirical nuclear matter saturation density. The analogy between the BBG expansion and the virial expansion for a classical or quantum gas is studied with special emphasis on the apparent impossibility of analytical-continuing the latter gas theory to densities in the liquid regime, as first elucidated by Lee and Yang. It is finally argued that ordinary HF theory may provide a good starting point for the eventual understanding of nuclear matter as it gives (in the finite nuclear problem, at any rate) not only the basic liquid properties of a definite density and a surface but also provides independent-particle aspects, avoiding at the same time the idea of n-body clusters appropriate only for dilute gases. This program has to date not been carried out for infinite nuclear matter, mainly because of insufficient knowledge regarding low-energy, non-plane-wave solutions of the HF equations, in the thermodynamic limit [pt
Signal classification using global dynamical models, Part I: Theory
International Nuclear Information System (INIS)
Kadtke, J.; Kremliovsky, M.
1996-01-01
Detection and classification of signals is one of the principal areas of signal processing, and the utilization of nonlinear information has long been considered as a way of improving performance beyond standard linear (e.g. spectral) techniques. Here, we develop a method for using global models of chaotic dynamical systems theory to define a signal classification processing chain, which is sensitive to nonlinear correlations in the data. We use it to demonstrate classification in high noise regimes (negative SNR), and argue that classification probabilities can be directly computed from ensemble statistics in the model coefficient space. We also develop a modification for non-stationary signals (i.e. transients) using non-autonomous ODEs. In Part II of this paper, we demonstrate the analysis on actual open ocean acoustic data from marine biologics. copyright 1996 American Institute of Physics
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Conformal field theory and 2D critical phenomena. Part 1
International Nuclear Information System (INIS)
Zamolodchikov, A.B.; Zamolodchikov, Al.B.
1989-01-01
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Stochastic TDHF and the Boltzman-Langevin equation
International Nuclear Information System (INIS)
Suraud, E.; Reinhard, P.G.
1991-01-01
Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
Theory of even-parity states and two-photon spectra of conjugated polymers
McWilliams, P. C. M.; Hayden, G. W.; Soos, Z. G.
1991-04-01
The two-photon absorption (TPA) spectrum of interacting π electrons in conjugated polymers is shown to be qualitatively different from any single-particle description, including the Hartree-Fock limit. Alternating transfer integrals t(1+/-δ) along the backbone lead to a weak TPA below the one-photon gap Eg for arbitrarily weak correlations at δ=0, for intermediate correlations at δ=0.07 in polyenes, and for strong correlations at any δtheory to Eg in the limit of strong correlations in Hubbard models and is around 1.5Eg for Pariser-Parr-Pople (PPP) parameters. The PPP model, which accounts for one- and two-photon excitations of finite polyenes, is extended to even-parity states in polydiacetylenes (PDA's), polyacetylene (PA), and polysilanes (PS's). Previous experimental data for PDA and PS support both the strong TPA above Eg and weak TPA slightly below Eg for δ=0.15 in PDA and above Eg for δ~0.3 in PS. The strong TPA expected around 1.5Eg in isolated PA strands shifts to ~Eg due to interchain π-electron dispersion forces. TPA intensities in correlated states are shown to reflect both ionicity and mean-square charge separation. The even-parity states of conjugated polymers, like those of polyenes, show qualitatively different features associated with electron-electron correlations.
Energy Technology Data Exchange (ETDEWEB)
Meena, B.S. [Department of Physics, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Heda, N.L. [Department of Pure and Applied Physics, University of Kota, Kota 324010, Rajasthan (India); Kumar, Kishor; Bhatt, Samir; Mund, H.S. [Department of Physics, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)
2016-03-01
We present the first ever studies on Compton profiles of AWO{sub 4} (A=Co, Ni and Cu) using 661.65 keV γ-rays emitted by {sup 137}Cs source. The experimental momentum densities have been employed to validate exchange and correlation potentials within linear combination of atomic orbitals (LCAO) method. Density functional theory (DFT) with local density approximation and generalized gradient approximation and also the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under LCAO scheme. The LCAO-B3LYP scheme is found to be in better agreement with the experimental data than other approximations considered in this work, suggesting applicability of B3LYP approach in predicting the electronic properties of these tungstates. The Mulliken’s population (MP) data show charge transfer from Co/Ni/Cu and W to O atoms. The experimental profiles when normalized to same area show almost similar localization of 3d electrons (in real space) of Ni and Cu which is lower than that of Co in their AWO{sub 4} environment.
Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory
Energy Technology Data Exchange (ETDEWEB)
Hassaneen, Khaled S.A. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt); Taif University, Physics Department, Faculty of Science, Taif (Saudi Arabia)
2017-01-15
Microscopically, the equation of state (EOS) and other properties of asymmetric nuclear matter at zero temperature have been investigated extensively by adopting the non-relativistic Brueckner-Hartree-Fock (BHF) and the extended BHF approaches by using the self-consistent Green's function approach or by including a phenomenological three-body force. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. We can calculate the total mass and radius for neutron stars using various equations of state at high densities in β-equilibrium without hyperons. A comparison with other microscopic predictions based on non-relativistic and density-dependent relativistic mean-field calculations has been done. It is found that relativistic EOS yields however larger mass and radius for neutron star than predictions based on non-relativistic approaches. Also the three-body force plays a crucial role to deduce the theoretical value of the maximum mass of neutron stars in agreement with recent measurements of the neutron star mass. (orig.)
Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.
Lao, Ka Un; Herbert, John M
2012-03-22
We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society
A general range-separated double-hybrid density-functional theory.
Kalai, Cairedine; Toulouse, Julien
2018-04-28
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
CPA theory of the magnetization in rare earth transition metal alloys
International Nuclear Information System (INIS)
Szpunar, B.; Lindgaard, P.A.
1976-11-01
Calculations were made of the magnetic moment per atom of the transition metal and the rare earth metal in the intermetallic compounds, Gdsub(1-x)Nisub(x), Gdsub(1-x)Fesub(x), Gdsub(1-x)Cosub(x), and Ysub(1-x)Cosub(x). A simple model of the disordered alloy consisting of spins localized on the rare earth atoms and interacting with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline and amorphous intermetallic compounds. It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition metal pseudo spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. (Auth.)
Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.
Derricotte, Wallace D; Evangelista, Francesco A
2015-06-14
Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
Density functional theory study of vibrational spectra, and ...
Indian Academy of Sciences (India)
The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational ...
APPLYING THE THEORY OF CONSTRAINTS TO INCREASE ECONOMIC VALUE ADDED: PART 1—THEORY
Directory of Open Access Journals (Sweden)
Malan Smith
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This article, presented in two parts, explains how to apply the Theory of Constraints (TOC in a business to increase Economic Value Added (EVA. The first part deals with the theory, while the second part deals with the implementation. The goal of a business, the measurements of the goal and the priority of the measurements are discussed. The future reality of a company which implements TOC principles is shown through cause and effect to lead to an increase in EVA. The increase in EVA is caused by an increase in return on investment and a reduction in the cost of capital. The actions the company must take to increase EVA is presented.
AFRIKAANSE OPSOMMING: Hierdie artikel, aangebied in twee dele, verduidelik hoe om die Teorie van Beperkinge (TVB in a besigheid toe te pas om Ekonomiese Toegevoegde Waarde (ETW te vermeerder. Die eerste gedeelte verduidelik die teorie, terwyl die tweede gedeelte die toepassing hanteer. Die doel van ’n besigheid, die maatstawwe van die doel en die prioriteit van die maatstawwe word bespreek. Deur middel van oorsaak en effek word gewys dat die toekomstige werklikheid van ’n besigheid wat TVB beginsels toepas lei tot ’n toename in ETW. Die toename in ETW word veroorsaak deur ’n toename in opbrengs op belegging en ’n afname in die koste van kapitaal. Die aksies wat ’n besigheid moet neem om ETW te vermeerder, word genoem.
International Nuclear Information System (INIS)
Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao
2007-01-01
To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space
International Nuclear Information System (INIS)
Curtiss, L.A.; Raghavachari, K.; Pople, J.A.
1995-01-01
The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems
Lagrangian intersection Floer theory anomaly and obstruction, part II
Fukaya, Kenji; Ohta, Hiroshi; Ono, Kaoru
2009-01-01
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered A_\\infty-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered A_\\infty algebras and A_\\infty bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-co...
Lagrangian intersection Floer theory anomaly and obstruction, part I
Fukaya, Kenji; Ohta, Hiroshi; Ono, Kaoru
2009-01-01
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered A_\\infty-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered A_\\infty algebras and A_\\infty bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-co...
Recent advances in density functional methods, pt. 1-2
Chong, Delano P
1995-01-01
Of all the different areas in computational chemistry, density functional theory (DFT) enjoys the most rapid development. Even at the level of the local density approximation (LDA), which is computationally less demanding, DFT can usually provide better answers than Hartree-Fock formalism for large systems such as clusters and solids. For atoms and molecules, the results from DFT often rival those obtained by ab initio quantum chemistry, partly because larger basis sets can be used. Such encouraging results have in turn stimulated workers to further investigate the formal theory as well as the
Gaussian-3 theory using density functional geometries and zero-point energies
International Nuclear Information System (INIS)
Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.
1999-01-01
A variation of Gaussian-3 (G3) theory is presented in which the geometries and zero-point energies are obtained from B3LYP density functional theory [B3LYP/6-31G(d)] instead of geometries from second-order perturbation theory [MP2(FU)/6-31G(d)] and zero-point energies from Hartree - Fock theory [HF/6-31G(d)]. This variation, referred to as G3//B3LYP, is assessed on 299 energies (enthalpies of formation, ionization potentials, electron affinities, proton affinities) from the G2/97 test set [J. Chem. Phys. 109, 42 (1998)]. The G3//B3LYP average absolute deviation from experiment for the 299 energies is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. Generally, the results from the two methods are similar, with some exceptions. G3//B3LYP theory gives significantly improved results for several cases for which MP2 theory is deficient for optimized geometries, such as CN and O 2 + . However, G3//B3LYP does poorly for ionization potentials that involve a Jahn - Teller distortion in the cation (CH 4 + , BF 3 + , BCl 3 + ) because of the B3LYP/6-31G(d) geometries. The G3(MP2) method is also modified to use B3LYP/6-31G(d) geometries and zero-point energies. This variation, referred to as G3(MP2)//B3LYP, has an average absolute deviation of 1.25 kcal/mol compared to 1.30 kcal/mol for G3(MP2) theory. Thus, use of density functional geometries and zero-point energies in G3 and G3(MP2) theories is a useful alternative to MP2 geometries and HF zero-point energies. copyright 1999 American Institute of Physics
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin
2013-02-28
The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.
School Leaders and Transformational Leadership Theory: Time to Part Ways?
Berkovich, Izhak
2016-01-01
Purpose: After decades in which transformational leadership theory has prevailed as the dominant paradigm in leadership scholarship, critical voices have started raising serious concerns about its falsifiability, suggesting that transformational leadership theory should be abandoned. Although transformational leadership is a key to conceptualizing…
Transition matrices and orbitals from reduced density matrix theory
Energy Technology Data Exchange (ETDEWEB)
Etienne, Thibaud [Université de Lorraine – Nancy, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); CNRS, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); Unité de Chimie Physique Théorique et Structurale, Université de Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)
2015-06-28
In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.
Cosmological singularities and bounce in Cartan-Einstein theory
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Cosmological singularities and bounce in Cartan-Einstein theory
Energy Technology Data Exchange (ETDEWEB)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl [Institute for Theoretical Physics, Spinoza Institute and EMME$\\Phi$, Utrecht University, Postbus 80.195, 3508 TD Utrecht (Netherlands)
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
The Systemic Theory of Living Systems and Relevance to CAM: the Theory (Part III
Directory of Open Access Journals (Sweden)
José A. Olalde Rangel
2005-01-01
Full Text Available Western medical science lacks a solid philosophical and theoretical approach to disease cognition and therapeutics. My first two articles provided a framework for a humane medicine based on Modern Biophysics. Its precepts encompass modern therapeutics and CAM. Modern Biophysics and its concepts are presently missing in medicine, whether orthodox or CAM, albeit they probably provide the long sought explanation that bridges the abyss between East and West. Key points that differentiate Systemic from other systems' approaches are ‘Intelligence’, ‘Energy’ and the objective ‘to survive’. The General System Theory (GST took a forward step by proposing a departure from the mechanistic biological concept—of analyzing parts and processes in isolation—and brought us towards an organismic model. GST examines the system's components and results of their interaction. However, GST still does not go far enough. GST assumes ‘Self-Organization’ as a spontaneous phenomenon, ignoring a causative entity or central controller to all systems: Intelligence. It also neglects ‘Survive’ as the directional motivation common to any living system, and scarcely assigns ‘Energy’ its true inherent value. These three parameters, Intelligence, Energy and Survive, are vital variables to be considered, in our human quest, if we are to achieve a unified theory of life.
Tran, Van Tan; Nguyen, Minh Thao; Tran, Quoc Tri
2017-10-12
Density functional theory and the multiconfigurational CASSCF/CASPT2 method have been employed to study the low-lying states of VGe n -/0 (n = 1-4) clusters. For VGe -/0 and VGe 2 -/0 clusters, the relative energies and geometrical structures of the low-lying states are reported at the CASSCF/CASPT2 level. For the VGe 3 -/0 and VGe 4 -/0 clusters, the computational results show that due to the large contribution of the Hartree-Fock exact exchange, the hybrid B3LYP, B3PW91, and PBE0 functionals overestimate the energies of the high-spin states as compared to the pure GGA BP86 and PBE functionals and the CASPT2 method. On the basis of the pure GGA BP86 and PBE functionals and the CASSCF/CASPT2 results, the ground states of anionic and neutral clusters are defined, the relative energies of the excited states are computed, and the electron detachment energies of the anionic clusters are evaluated. The computational results are employed to give new assignments for all features in the photoelectron spectra of VGe 3 - and VGe 4 - clusters.
International Nuclear Information System (INIS)
Hermanns, S; Bonitz, M; Balzer, K
2013-01-01
The nonequilibrium description of quantum systems requires, for more than two or three particles, the use of a reduced description to be numerically tractable. Two possible approaches are based on either reduced density matrices or nonequilibrium Green functions (NEGF). Both concepts are formulated in terms of hierarchies of coupled equations—the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced density operators and the Martin-Schwinger-hierarchy (MS) for the Green functions, respectively. In both cases, similar approximations are introduced to decouple the hierarchy, yet still many questions regarding the correspondence of both approaches remain open. Here we analyze this correspondence by studying the generalized Kadanoff–Baym ansatz (GKBA) that reduces the NEGF to a single-time theory. Starting from the BBGKY-hierarchy we present the approximations that are necessary to recover the GKBA result both, with Hartree-Fock propagators (HF-GKBA) and propagators in second Born approximation. To test the quality of the HF-GKBA, we study the dynamics of a 4-electron Hubbard nanocluster starting from a strong nonequilibrium initial state and compare to exact results and the Wang-Cassing approximation to the BBGKY hierarchy presented recently by Akbari et al. [1].
Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo
2014-09-09
We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.
Many-electron theory of x-ray photoelectron spectra: N-shell linewidths in the 46Pd to 92U range
International Nuclear Information System (INIS)
Ohno, M.; Wendin, G.
1985-01-01
The linewidths and energies of 4d holes (main lines in x-ray photoelectron spectra) are calculated for a number of elements in the range 70 Yb to 92 U, with use of nonrelativistic atomic many-body theory. The nonrelativistic Hartree-Fock frozen-core approximation for one-electron wave functions and Auger energies gives very good agreement with experiment. In the case of 4s and 4p holes, the Auger (in particular, super-Coster-Kronig) energies have to be calculated with inclusion of relaxation and relativistic effects. Combined with frozen-core, nonrelativistic one-electron wave functions, this gives good agreement with experimental energies and widths for 4s and 4p holes in 80 Hg. In conclusion, it is very important to include the effects of two final-state holes on the Auger electron, as well as the polarization response which screens the Auger emission matrix element. This latter effect is largely equivalent to the so-called exchange interaction between the Auger electron and the final-state holes
Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.
2017-12-01
Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.
Energy Technology Data Exchange (ETDEWEB)
Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)
2014-09-14
An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.
Meng, Andrew C; Cheng, Jun; Sprik, Michiel
2016-03-03
Conduction band edge (CBE) and valence band edge (VBE) positions of InxGa1-xN photoelectrodes were computed using density functional theory methods. The band edges of fully solvated GaN and InN model systems were aligned with respect to the standard hydrogen electrode using a molecular dynamics hydrogen electrode scheme applied earlier to TiO2/water interfaces. Similar to the findings for TiO2, we found that the Purdew-Burke-Ernzerhof (PBE) functional gives a VBE potential which is too negative by 1 V. This cathodic bias is largely corrected by application of the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional containing a fraction of Hartree-Fock exchange. The effect of a change of composition was investigated using simplified model systems consisting of vacuum slabs covered on both sides by one monolayer of H2O. The CBE was found to vary linearly with In content. The VBE, in comparison, is much less sensitive to composition. The data show that the band edges straddle the hydrogen and oxygen evolution potentials for In fractions less than 47%. The band gap was found to exceed 2 eV for an In fraction less than 54%.
Quantal theory of heavy ion scattering in a three-dimensional TDHF model
International Nuclear Information System (INIS)
Cusson, R.Y.
1977-01-01
The fast Fourier transform and the predictor corrector method are used to solve the time-dependent Hartree-Fock equations. The equations are then used to calculate the electric scattering of heavy ions, concentrating on 16 O + 16 O and 14 N + 12 C
Effective interaction for relativistic mean-field theories of nuclear structure
International Nuclear Information System (INIS)
Ai, H.B.; Celenza, L.S.; Harindranath, A.; Shakin, C.M.
1987-01-01
We construct an effective interaction, which when treated in a relativistic Hartree-Fock approximation, reproduces rather accurately the nucleon self-energy in nuclear matter and the Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations. This effective interaction is constructed by adding Born terms, describing the exchange of pseudoparticles, to the Born terms of the Dirac-Hartree-Fock analysis. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation
Comment on "Density functional theory is straying from the path toward the exact functional"
DEFF Research Database (Denmark)
Kepp, Kasper Planeta
2017-01-01
Medvedev et al (Reports, 6 January 2017, p. 49) argue that recent density functionals stray from the path toward exactness. This conclusion rests on very compact 1s2 and 1s22s2 systems favored by the Hartree-Fock picture. Comparison to actual energies for the same systems indicates that the "stra...
DEFF Research Database (Denmark)
Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.
2013-01-01
of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...
The 'realities' of part-time nursing: a grounded theory study.
Jamieson, Lynn N; Williams, Leonie Mosel; Lauder, William; Dwyer, Trudy
2008-10-01
To develop a theory that explains the 'realities' of part-time nursing. While little is known about the phenomenon of part-time nursing, increasing numbers of nurses work in part-time employment. Grounded theory. The problem that part-time nurses shared was an inability to achieve their personal optimal nursing potential. Motivators to work part-time, employment hours, specialty, individual and organizational factors formed contextual conditions that led to this problem. Part-time nurses responded to the challenges through a process of adaptation and adjustment. Harnessing the full productive potential of part-time nurses requires support to limit the difficulties that they encounter. The developed theory provides a valuable guide to managerial action. Nurse Managers need to consider the developed substantive theory when planning and managing nursing workforces.
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Management (Theory) When We Are Only Partly in Control
DEFF Research Database (Denmark)
Niaz, Nausheen; Foss, Nicolai; Ramsøy, Thomas Zöega
2013-01-01
Conventionally practical aspects of work motivation alongside management theory have long focused on the conscious elements pertaining decision-making. We show that decision neuroscience introduces new mediator and moderator variables that influence the decision-making process that arises during...
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Some aspects of precise laser machining - Part 1: Theory
Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr
2018-05-01
The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Theoretical calculations of electron-impact and radiative processes in atoms
International Nuclear Information System (INIS)
Pindzola, M.S.
1975-01-01
Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated
Velocity space ring-plasma instability, magnetized, Part I: Theory
International Nuclear Information System (INIS)
Lee, J.K.; Birdsall, C.K.
1979-01-01
The interaction of magnetized monoenergetic ions (a ring in velocity space) with a homogeneous Maxwellian target plasma is studied numerically using linear Vlasov theory. The ring may be produced when an energetic beam is injected perpendicular to a uniform magnetic field. In addition to yielding the previously known results, the present study classifies this flute-like instability into three distinct regimes based on the beam density relative to the plasma density, where many features such as physical mechanisms, dispersion diagrams, and maximum growth rates are quite different. The effects of electron dynamics, plasma or ring thermal spread, the ratio of ω/sub p//ω/sub c/ for plasma ions, and electromagnetic modifications are also considered
Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K
2015-02-05
The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Russo, T.V.; Martin, R.L.; Jeffrey Hay, P.
1995-01-01
Density functional theory (DFT) and Hartree--Fock (HF) calculations are reported for the family of transition metal fluorides ScF 3 , TiF 4 , VF 5 , and CrF 6 . Both HF and the local-density approximation (LDA) yield excellent agreement with experimental bond lengths, while the B-LYP gradient-corrected density functional gives bond lengths 0.04-0.05 A too long. An investigation of various combinations of exchange and correlation functionals shows that, for this series, the origin of this behavior lies in the Becke exchange functional. Much improved bond distances are found using the hybrid HF/DFT functional advocated by Becke. This approximation also leads to much improved thermochemistries. The LDA overestimates average bond energies in this series by 30-40 kcal/mol, whereas the B-LYP functional overbinds by only ∼8-12 kcal/mol, and the hybrid HF/DFT method overbinds by only ∼2 kcal/mol. The hybrid method predicts the octahedral isomer of CrF 6 to be more stable than the trigonal prismatic form by 14 kcal/mol. Comparison of theoretical vibrational frequencies with experiment supports the assignment of an octahedral geometry
Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B P
2011-12-15
(+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ΔE, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline. Copyright © 2011 Elsevier B.V. All rights reserved.
Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc
2015-06-07
A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.
Biomimetic model systems of rigid hair beds: Part I - Theory
Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.
Ensemble Bayesian forecasting system Part I: Theory and algorithms
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of
Design of analog networks in the control theory formulation. Part 2: Numerical results
Zemliak, A. M.
2005-01-01
The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.
Introduction to Stopping Time in Stochastic Finance Theory. Part II
Directory of Open Access Journals (Sweden)
Jaeger Peter
2017-12-01
Full Text Available We start proceeding with the stopping time theory in discrete time with the help of the Mizar system [1], [4]. We prove, that the expression for two stopping times k1 and k2 not always implies a stopping time (k1 + k2 (see Theorem 6 in this paper. If you want to get a stopping time, you have to cut the function e.g. (k1 + k2 ⋂ T (see [2, p. 283 Remark 6.14]. Next we introduce the stopping time in continuous time. We are focused on the intervals [0, r] where r ∈ ℝ. We prove, that for I = [0, r] or I = [0,+∞[ the set {A ⋂ I : A ∈ Borel-Sets} is a σ-algebra of I (see Definition 6 in this paper, and more general given in [3, p.12 1.8e]. The interval I can be considered as a timeline from now to some point in the future. This set is necessary to define our next lemma. We prove the existence of the σ-algebra of the τ -past, where τ is a stopping time (see Definition 11 in this paper and [6, p.187, Definition 9.19]. If τ1 and τ2 are stopping times with τ1 is smaller or equal than τ2 we can prove, that the σ-algebra of the τ1-past is a subset of the σ-algebra of the τ2-past (see Theorem 9 in this paper and [6, p.187 Lemma 9.21]. Suppose, that you want to use Lemma 9.21 with some events, that never occur, see as a comparison the paper [5] and the example for ST(1={+∞} in the Summary. We don’t have the element +1 in our above-mentioned time intervals [0, r[ and [0,+1[. This is only possible if we construct a new σ-algebra on ℝ {−∞,+∞}. This construction is similar to the Borel-Sets and we call this σ-algebra extended Borel sets (see Definition 13 in this paper and [3, p. 21]. It can be proved, that {+∞} is an Element of extended Borel sets (see Theorem 21 in this paper. Now we use the interval [0,+∞] as a basis. We construct a σ-algebra on [0,+∞] similar to the book ([3, p. 12 18e], see Definition 18 in this paper, and call it extended Borel subsets. We prove for stopping times with this given σ-algebra, that
Energy Technology Data Exchange (ETDEWEB)
Lewin, M.
2009-06-15
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
Large quantum systems: a mathematical and numerical perspective
International Nuclear Information System (INIS)
Lewin, M.
2009-06-01
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
The insufficient part of abiogenesis theory - natural selection
Ploompuu, Tõnu
2016-04-01
Abiogenesis has already been studied for a whole century. There have been studies on the synthesis of precursors of biopolymers, concentration processes and polymerization pathways, sites of initiation of life. Autoreplication has been explained. Protocells have been constructed from abiogenic membranes. But one essential aspect for life - the natural selection - has been marginalized in these investigations. Despite the convincing use of natural selection in biology for one and half century, it has not been used sufficiently in the models of the beginning of life. Pictorially - Darwin's pond model is used without darwinism. This generates an unnecessary interruption on the path for understanding the process. Natural selection is essential in abiogenesis, in the genesis of biological information system. A selection of more collaborative autoreplicate biopolymers and the depolymerisation of others was required. Only natural selection was able to combine biopolymer molecules for life. The primary natural selection can operate only in an environment with variable physical and chemical conditions. The selective agent must constantly fluctuate during a long time span and a large area. Formation of the simplest complex of life needs homeostasis. The best sites for constant fluctuations are littoral areas of oceans. Two very constant fluctuations - waves and tides - occur there. The best conditions for the origin of life were exactly in the end of the Late Heavy Bombardment at temperature nealy 100° C. Earth's surface was then protected against the UV destruction by a thick cloud cover. High evaporation at the hotter parts of shore rocks increased the concentration of the primordial soup and there was excellent selective power by routine water level fluctuations. Because of the water level fluctuations salty ocean water and fresh water from continuous downpours alternated at the littoral zones. In low temperatures the formation of life would be hindered by UV
Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S
2003-12-01
As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Energy Technology Data Exchange (ETDEWEB)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
International Nuclear Information System (INIS)
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-01-01
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
A General Framework for Portfolio Theory. Part I: theory and various models
Maier-Paape, Stanislaus; Zhu, Qiji Jim
2017-01-01
Utility and risk are two often competing measurements on the investment success. We show that efficient trade-off between these two measurements for investment portfolios happens, in general, on a convex curve in the two dimensional space of utility and risk. This is a rather general pattern. The modern portfolio theory of Markowitz [H. Markowitz, Portfolio Selection, 1959] and its natural generalization, the capital market pricing model, [W. F. Sharpe, Mutual fund performance , 1966] are spe...
Atomic effects of beta decay in astrophysics and in elementary particle physics
International Nuclear Information System (INIS)
Zonghua, Chen.
1988-01-01
The thesis consists mainly of two parts. The first part is a study of the bound-state β decay of 187 Re and its application in Astrophysics. There existed an uncertainty in the ratio ρ b of bound-state to continuum β decay of 187 Re in both theory and experiment. A more definite theoretical result of ρ b ∼ 1% is obtained by using single-configuration and multi-configuration Hartree-Fock-Dirac approximations. The results obtained are close to those obtained by Williams, Fowler, and Koonin by a modified Thomas-Fermi model. The bound-state β decay of 187 Re at high temperatures is also studied. The second part of the thesis is a generalization of the Thomas-Fermi results of various energy contribution to the ground-state energy of a neutral atom. An analytical expression for the ratio of the electron-electron to electron-nuclear interaction is obtained by the corrected Thomas-Fermi result, the ratio obtained gives a better agreement with the Hartree-Fock numerical results
International Nuclear Information System (INIS)
Stefanovic, D.
1975-09-01
The research work of this contract was oriented towards the study of different methods in neutron transport theory. Authors studied analytical solution of the neutron slowing down transport equation and extension of this solution to include the energy dependence of the anisotropy of neutron scattering. Numerical solution of the fast and resonance transport equation for the case of mixture of scatterers including inelastic effects were also reviewed. They improved the existing formalism for treating the scattering of neutrons on water molecules; Identifying modal analysis as the Galerkin method, general conditions for modal technique applications have been investigated. Inverse problems in transport theory were considered. They obtained the evaluation of an advanced level distribution function, made improvement of the standard formalism for treating the inelastic scattering and development of a cluster nuclear model for this evaluation. Authors studied the neutron transport treatment in space energy groups for criticality calculation of a reactor core, and development of the Monte Carlo sampling scheme from the neutron transport equation
Thouless-Valatin rotational moment of inertia from linear response theory
Petrík, Kristian; Kortelainen, Markus
2018-03-01
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
Energy Technology Data Exchange (ETDEWEB)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.
1996-10-01
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of
Mas, Francisco G Soto; Plass, Jan; Kane, William M; Papenfuss, Richard L
2003-07-01
When health education researchers began to investigate how individuals make decisions related to health and the factors that influence health behaviors, they referred to frameworks shared by educational and learning research. Health education adopted the basic principles of the cognitive revolution, which were instrumental in advancing the field. There is currently a new challenge to confront: the widespread use of new technologies for health education. To better overcome this challenge, educational psychology and instructional technology theory should be considered. Unfortunately, the passion to incorporate new technologies too often overshadows how people learn or, in particular, how people learn through computer technologies. This two-part article explains how educational theory contributed to the early development of health behavior theory, describes the most relevant multimedia learning theories and constructs, and provides recommendations for developing multimedia health education programs and connecting theory and practice.
Theory of the Whole and the Part – Ontological Perspective (E. Husserl, R. Ingarden
Directory of Open Access Journals (Sweden)
Barska Katarzyna
2015-02-01
Full Text Available The purpose of the paper is demonstrate the thesis that Ingarden's ontological system allows a better understanding of the “part-whole” problem then previous theories. Especially, if we take into account the existential ontology of Ingarden, which refers to Husserl “part-whole” theory, we can see that development of terms made by Ingarden sheds new light on old problems. In this context, particularly important is to distinguish between two existential moments: contingancy/inseparatness, because thanks to them we can talk about many different types of relationships and hence many types of objects.
Hundred years of the Einstein theory of photoeffect
International Nuclear Information System (INIS)
Amusia, M.Ya
2005-01-01
Full Text:Although H. Hertz discovered the photo-effect experimentally in 1887, the attempts to describe the results obtained in the frame of pre-Einstein theories failed. After publication of Einstein's paper in 1905 the laws of photo-effect became clear, opening new directions in research. The theory of photo-effect has been developed since at first by inclusion of new processes, such as Compton effect, photo-pair production and so on, in which conservation of both energy and momentum plays an equally important role. For many years the atomic photoionization theory was bound to one-electron model, starting with very simple potentials. But even the most sophisticated ones, such as Hartree - Fock approach, failed to describe the experimental findings at the middle of the 60th of the 20th century. It opened the door to the many - electron effects in photoionization. It appeared that along with modification of one-electron picture collective effects are decisively important. The discovery of atomic Giant resonances in photo-effect was a remarkable milestone in atomic photo-effects history. With prediction and observation of other resonances, such as auto-ionization, interference, intra-doublet and phase, the theory included interesting additional physics of electron correlations. Some of these resonances are very well seen in the partial cross-sections, the others require investigation of the dipole and non-dipole angular distribution and photoelectrons spin polarization. A separate domain became the photoionization of two or even three electrons by a single photon, which is until now not completely understood theoretically both in near threshold and in the high photon energy region, where its contribution is much less than that of Compton ionization. The theory of atomic photo-effect is not limited to atoms and ions, both positive and negative. As targets, it considers now multi-atomic formations, such as molecules, fullerenes, and metallic clusters, for all of
International Nuclear Information System (INIS)
Amaral, N.C.; Maffeo, B.; Guenzburger, D.J.R.
1982-01-01
Molecular orbitals calculations were performed for clusters representing the CaF 2 , SrF 2 and BaF 2 ionic crystals. The discrete variational method was employed, with the Xα approximation for the exchange interaction; a detailed investigation of different models for embedding the clusters in the solids led to a realistic description of the effect of neighbour ions in the infinite crystal. The results obtained were used to interpret optical and photoelectron data reported in the literature. In the case of CaF 2 , comparisons were made with existing band structure calculations. (Author) [pt
Hapka, Michał; Żuchowski, Piotr S; Szczęśniak, Małgorzata M; Chałasiński, Grzegorz
2012-10-28
Two open-shell formulations of the symmetry-adapted perturbation theory are presented. They are based on the spin-unrestricted Kohn-Sham (SAPT(UKS)) and unrestricted Hartree-Fock (SAPT(UHF)) descriptions of the monomers, respectively. The key reason behind development of SAPT(UKS) is that it is more compatible with density functional theory (DFT) compared to the previous formulation of open-shell SAPT based on spin-restricted Kohn-Sham method of Żuchowski et al. [J. Chem. Phys. 129, 084101 (2008)]. The performance of SAPT(UKS) and SAPT(UHF) is tested for the following open-shell van der Waals complexes: He···NH, H(2)O···HO(2), He···OH, Ar···OH, Ar···NO. The results show an excellent agreement between SAPT(UKS) and SAPT(ROKS). Furthermore, for the first time SAPT based on DFT is shown to be suitable for the treatment of interactions involving Π-state radicals (He···OH, Ar···OH, Ar···NO). In the interactions of transition metal dimers ((3)Σ(u)(+))Au(2) and ((13)Σ(g)(+))Cr(2) we show that SAPT is incompatible with the use of effective core potentials. The interaction energies of both systems expressed instead as supermolecular UHF interaction plus dispersion from SAPT(UKS) result in reasonably accurate potential curves.
High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I
Energy Technology Data Exchange (ETDEWEB)
Caryotakis, G.
2004-12-15
This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.
Stochastic theory of nonequilibrium steady states and its applications. Part I
International Nuclear Information System (INIS)
Zhang Xuejuan; Qian Hong; Qian Min
2012-01-01
The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker–Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
Reduced density matrix functional theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Baldsiefen, Tim
2012-10-15
iteratively construct approximate functionals for FT-RDMFT. The minimization of the corresponding first-order functional is shown to be equivalent to a solution of the finite-temperature Hartree-Fock (FT-HF) equations. We then present a self-consistent minimization scheme, much like the Kohn-Sham minimization scheme in DFT, and show that it can also be employed to effectively and efficiently minimize functionals from RDMFT. Finally, we investigate the temperature-dependent homogeneous electron gas (HEG), employing various techniques which include finite-temperature many-body perturbation theory (FT-MBPT) and FT-RDMFT. We focus on the description of the magnetic phase diagram and the temperaturedependent quasi-particle spectrum for collinear as well as chiral spin configurations.
Reduced density matrix functional theory at finite temperature
International Nuclear Information System (INIS)
Baldsiefen, Tim
2012-10-01
approximate functionals for FT-RDMFT. The minimization of the corresponding first-order functional is shown to be equivalent to a solution of the finite-temperature Hartree-Fock (FT-HF) equations. We then present a self-consistent minimization scheme, much like the Kohn-Sham minimization scheme in DFT, and show that it can also be employed to effectively and efficiently minimize functionals from RDMFT. Finally, we investigate the temperature-dependent homogeneous electron gas (HEG), employing various techniques which include finite-temperature many-body perturbation theory (FT-MBPT) and FT-RDMFT. We focus on the description of the magnetic phase diagram and the temperaturedependent quasi-particle spectrum for collinear as well as chiral spin configurations.
McClelland, J. A. G.
1982-01-01
In part 1 (SE 532 193) an outline of Ausubel's learning theory was given. The application of the theory to elementary school science is addressed in this part, clarifying what elementary science means and indicating how it relates to what may be expected to be already known by elementary school children. (Author/JN)
Microscopic optical potential for 208Pb in the nuclear structure approach
International Nuclear Information System (INIS)
Bernard, V.; Nguyen Van Gai.
1979-04-01
The optical potential for nucleon- 208 Pb scattering below 30 MeV is calculated microscopically as the sum of a real Hartree-Fock term and a complex correction term arising from the coupling to excited states of the target. The Skyrme effective interaction is used to generate the Hartree-Fock field, the RPA excited states and the coupling. A complex local equivalent potential is defined and used to calculate scattering and absorption cross-sections. The real part of the optical potential is reasonably well described in this approach while the imaginary part is too weak. Inclusion of rearrangement processes could improve the agreement with experiment
Microscopic description of low-energy nuclear collisions: review and perspective
International Nuclear Information System (INIS)
Bonche, Paul
2000-01-01
The primary goal of this lecture is a review of the microscopic approaches to nuclear reactions. Semi-phenomenological theories will not be discussed. First the Time-Dependent Hartree-Fock formalism is recalled. The effective nucleon-nucleon interactions used in TDHF calculations are discussed. Applications to collisions are presented in different approximation scheme, one-dimensional dynamics, approximate three-dimensional ones.... Finally two microscopic extensions beyond mean-field are reviewed: the variational principal of Balian and Veneroni and the implementation of residual two-body interactions in the Time-Dependent Density Matrix (TDDM) and the Extended Time-Dependent Hartree-Fock schemes (ET-DHF). (author)
Roothaan approach in the thermodynamic limit
International Nuclear Information System (INIS)
Gutierrez, G.; Plastino, A.
1982-01-01
A systematic method for the solution of the Hartree-Fock equations in the thermodynamic limit is presented. The approach is seen to be a natural extension of the one usually employed in the finite-fermion case, i.e., that developed by Roothaan. The new techniques developed here are applied, as an example, to neutron matter, employing the so-called V 1 Bethe homework potential. The results obtained are, by far, superior to those that the ordinary plane-wave Hartree-Fock theory yields
Consistent microscopic theory of collective motion in the framework of an ATDHF approach
International Nuclear Information System (INIS)
Goeke, K.; Reinhard, P.
1978-01-01
Based on merely two assumptions, namely the existence of a collective Hamiltonian and that the collective motion evolves along Slater determinants, we first derive a set of adiabatic time-dependent Hartree-Fock equations (ATDHF) which determine the collective path, the mass and the potential, second give a unique procedure for quantizing the resulting classical collective Hamiltonian, and third explain how to use the collective wavefunctions, which are eigenstates of the quantized Hamiltonian
Magnetic moments in present relativistic nuclear theories: a mean-field problem
International Nuclear Information System (INIS)
Desplanques, B.
1986-07-01
We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs
Covariant density functional theory: predictive power and first attempts of a microscopic derivation
Ring, Peter
2018-05-01
We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
Functional approach to a time-dependent self-consistent field theory
International Nuclear Information System (INIS)
Reinhardt, H.
1979-01-01
The time-dependent Hartree-Fock approximation is formulated within the path integral approach. It is shown that by a suitable choice of the collective field the classical equation of motion of the collective field coincides with the time-dependent Hartree (TDH) equation. The consideration is restricted to the TDH equation, since the exchange terms do not appear in the functional approach on the same footing as the direct terms
Covariant density functional theory: predictive power and first attempts of a microscopic derivation
Directory of Open Access Journals (Sweden)
Ring Peter
2018-01-01
Full Text Available We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
International Nuclear Information System (INIS)
Ayala, Orlando; Rosa, Bogdan; Wang Lianping
2008-01-01
The effect of air turbulence on the geometric collision kernel of cloud droplets can be predicted if the effects of air turbulence on two kinematic pair statistics can be modeled. The first is the average radial relative velocity and the second is the radial distribution function (RDF). A survey of the literature shows that no theory is available for predicting the radial relative velocity of finite-inertia sedimenting droplets in a turbulent flow. In this paper, a theory for the radial relative velocity is developed, using a statistical approach assuming that gravitational sedimentation dominates the relative motion of droplets before collision. In the weak-inertia limit, the theory reveals a new term making a positive contribution to the radial relative velocity resulting from a coupling between sedimentation and air turbulence on the motion of finite-inertia droplets. The theory is compared to the direct numerical simulations (DNS) results in part 1, showing a reasonable agreement with the DNS data for bidisperse cloud droplets. For droplets larger than 30 μm in radius, a nonlinear drag (NLD) can also be included in the theory in terms of an effective inertial response time and an effective terminal velocity. In addition, an empirical model is developed to quantify the RDF. This, together with the theory for radial relative velocity, provides a parameterization for the turbulent geometric collision kernel. Using this integrated model, we find that turbulence could triple the geometric collision kernel, relative to the stagnant air case, for a droplet pair of 10 and 20 μm sedimenting through a cumulus cloud at R λ =2x10 4 and ε=600 cm 2 s -3 . For the self-collisions of 20 μm droplets, the collision kernel depends sensitively on the flow dissipation rate
Many-body perturbation theory for ab initio nuclear structure
International Nuclear Information System (INIS)
Tichai, Alexander
2017-01-01
The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation
Stiffness-constant variation in nickel-based alloys: Experiment and theory
International Nuclear Information System (INIS)
Hennion, M.; Hennion, B.
1979-01-01
Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond to previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors
Tie-Up Cycles in Long-Term Mating. Part I: Theory
Directory of Open Access Journals (Sweden)
Lorenza Lucchi Basili
2016-05-01
Full Text Available In this paper, we propose a new approach to couple formation and dynamics that abridges findings from sexual strategies theory and attachment theory to develop a framework where the sexual and emotional aspects of mating are considered in their strategic interaction. Our approach presents several testable implications, some of which find interesting correspondences in the existing literature. Our main result is that, according to our approach, there are six typical dynamic interaction patterns that are more or less conducive to the formation of a stable couple, and that set out an interesting typology for the analysis of real (as well as fictional, as we will see in the second part of the paper mating behaviors and dynamics.
Quantum Chemistry of Solids LCAO Treatment of Crystals and Nanostructures
Evarestov, Robert A
2012-01-01
Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of Hartree-Fock(HF), Density Function theory(DFT) and hybrid Hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid –state physics and real-space quantum chemistry. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. In the second edition two new chapters are added in the application part II of t...
Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2008-01-01
the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I....... The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible...
Journal of Chemical Sciences | Indian Academy of Sciences
Indian Academy of Sciences (India)
Abstract. The structure and coordination chemistry of boron porphyrin complexes B2OX2 (TYPP) (X = OH, F; Y = Cl, CH3) in connection with its chemical reactivity are analyzed at ab initio density functional theory B3LYP/6-31G∗ and restricted Hartree-Fock RHF/6-31G∗ levels of theory. Global reactivity and local selectivity ...
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
RHF and DFT study of the optimized molecular structure and atomic ...
African Journals Online (AJOL)
Restricted HartreeFock (RHF) and Density Functional Theory (DFT) studies were carried out on the organic semi conductor material Pentacene. 6-31G and 6-31G* basis sets were used to optimize the molecule and compute the charge distribution at both levels of theory. The results show that the Carbon-Hydrogen bonds in ...
Relativistic Hartree-Bogoliubov description of thorium and uranium isotopes
International Nuclear Information System (INIS)
Naz, Tabassum; Ahmad, Shakeb
2016-01-01
The relativistic Hartree-Bogoliubov (RHB) theory is a relativistic extension of the Hartree-Fock- Bogoliubov theory. It is a unified description of mean-field and pairing correlations and successfully describe the various phenomenon of nuclear structure. In the present work, RHB is applied to study the thorium and uranium isotopes
Molecular dynamics of a proguanil derivative | Muhammad | Bayero ...
African Journals Online (AJOL)
... ab-initio Quantum chemical calculations at the Restricted Hatree-Fock (RHF) ... and 6-31++G basis sets were carried out for inclusion of electron correlation. ... The dipole moment of the Proguanil's derivative at both levels of theory is ... Keywords: Proguanil, Density Functional Theory, Restricted Hartree Fock, Gaussian ...
Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics
International Nuclear Information System (INIS)
Ge Hao; Qian Min; Qian Hong
2012-01-01
The mathematical theory of nonequilibrium steady state (NESS) has a natural application in open biochemical systems which have sustained source(s) and sink(s) in terms of a difference in their chemical potentials. After a brief introduction in Section , in Part II of this review, we present the widely studied biochemical enzyme kinetics, the workhorse of biochemical dynamic modeling, in terms of the theory of NESS (Section ). We then show that several phenomena in enzyme kinetics, including a newly discovered activation–inhibition switching (Section ) and the well-known non-Michaelis–Menten-cooperativity (Section ) and kinetic proofreading (Section ), are all consequences of the NESS of driven biochemical systems with associated cycle fluxes. Section is focused on nonlinear and nonequilibrium systems of biochemical reactions. We use the phosphorylation–dephosphorylation cycle (PdPC), one of the most important biochemical signaling networks, as an example (Section ). It starts with a brief introduction of the Delbrück–Gillespie process approach to mesoscopic biochemical kinetics (Sections ). We shall discuss the zeroth-order ultrasensitivity of PdPC in terms of a new concept — the temporal cooperativity (Sections ), as well as PdPC with feedback which leads to biochemical nonlinear bistability (Section ). Also, both are nonequilibrium phenomena. PdPC with a nonlinear feedback is kinetically isomorphic to a self-regulating gene expression network, hence the theory of NESS discussed here could have wide applications to many other biochemical systems.
Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory
International Nuclear Information System (INIS)
Sauve, R.G.; Morandin, G.D.; Nadeau, E.
1993-01-01
In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained
Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-01-01
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intent is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application
International Nuclear Information System (INIS)
Koehler, H.S.
1983-01-01
The Time-Dependent Hartree-Fock theory provides a microscopic approach to the scattering of heavy ions. Fundamental in this theory is a mean-(one-body) field. The calculation of this field from a two-body effective interaction makes the theory microscopic. Many-body effects are included by the Brueckner definition of this interaction; the reaction-matrix. In excited media it is in general complex allowing for decays. The imaginary part relates directly to the collision-term in a transport equation. We treat this term by the time-relaxation-method. This implies an extension of the TDHF-equation to include two-body collisions. Hydrodynamic equations are derived from this new equation. The solution of the two equations agree quantitatively for short-relaxation-times. Relaxation-times are calculated as a function of temperature. (orig.)
Theory of mind deficits partly mediate impaired social decision-making in schizophrenia.
Yang, Liuqing; Li, Peifu; Mao, Haiying; Wang, Huiling; Shu, Chang; Bliksted, Vibeke; Zhou, Yuan
2017-05-05
Using paradigms from game theory, researchers have reported abnormal decision-making in social context in patients with schizophrenia. However, less is known about the underpinnings of the impairment. This study aimed to test whether theory of mind (ToM) deficits and/or neurocognitive dysfunctions mediate impaired social decision-making in patients with schizophrenia. We compared thirty-five patients with schizophrenia to thirty-eight matched healthy controls with regard to social decision-making using the mini Ultimatum Game (mini UG), a paradigm from game theory. Additionally, we assessed ToM using the Theory of Mind Picture Stories Task, a mental state attribution task, and assessed neurocognition using the Brief Assessment of Cognition in Schizophrenia. Mediation analyses were performed on the data. In contrast to the behavioral pattern of healthy controls in the mini UG, the patients with schizophrenia significantly accepted more disadvantageous offers and rejected more advantageous offers, and showed reduced sensitivity to the fairness-related context changes in the mini UG. Impaired ToM and neurocognition were also found in the patients. Mediation analyses indicated that ToM but not neurocognition partially mediated the group differences on the disadvantageous and advantageous offers in the mini UG. Patients with schizophrenia exhibited impaired social decision-making. This impairment can be partly explained by their ToM deficits rather than neurocognitive deficits. However, the exact nature of the ToM deficits that mediate impaired social decision-making needs to be identified in future.
International Nuclear Information System (INIS)
Arbuzov, B.A.; D'yakonov, V.Yu.; Rochev, V.E.
1975-01-01
Solution of equations for imaginary part of forward scattering amplitude in ladder approximation for theories with lambdaphisup(n),n(>=)4 interaction have been obtained. Two types of diagrams have been considered for lambdaphisup(n) renormalizable theory. It is shown, that the leading singularity is the branch point, which gives the power asymptotics with accuracy up to logarithms. The unrenormalizable theory with n(>=)5 lead to exponentially rising asymptotics
Supernovae theory: study of electro-weak processes during gravitational collapse of massive stars
International Nuclear Information System (INIS)
Fantina, A.F.
2010-01-01
The physics of supernova requires the understanding of both the complex hydrodynamical phenomena (such as transfer of energy, neutrino transport, shock) as well as the microphysics related to the dense and hot matter. In the framework of type II Supernovae theory, currently most of numerical simulations that simulate the supernova core collapse up to the formation and propagation of the shock wave fail to reproduce the observed explosion of the outer layers of massive stars. The reason for that could be due both to hydrodynamical phenomena such as rotation, convection, and general relativity, and to some micro-physical processes involved in the picture and not yet completely understood. The aim of this work is to investigate some of these micro-physical inputs, namely the electro-weak processes, that play a crucial role during the gravitational collapse and to analyse their effects by means of hydrodynamical simulations. Among nuclear processes which occur in core-collapse supernova, the most important electro-weak process taking place during the collapse is the electron capture; it occurs both on free protons and on protons bound in nuclei. This capture is essential to determine the evolution of the lepton fraction of the core during the neutronization phase. It affects the efficiency of the bounce and, as a consequence, the strength of the shock wave. Moreover, both the equation of state of supernova matter and electron capture rates in nuclei are modified by the effective mass of nucleons in nuclei, induced by many-body correlations in the dense medium, and its temperature dependence. In the first part of the thesis, a nuclear model aimed at studying the nuclear effective mass is presented. We show how we have included in a energy density functional (EDF) approach a surface-peaked nucleon effective mass to mimic some effects beyond Hartree-Fock. We have added a term to the Skyrme functional, in order to reproduce the enhancement of the effective mass at the
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract