WorldWideScience

Sample records for harmonic solid one-component

  1. Brillouin-zone integration schemes: an efficiency study for the phonon frequency moments of the harmonic, solid, one-component plasma

    International Nuclear Information System (INIS)

    Albers, R.C.; Gubernatis, J.E.

    1981-01-01

    The efficiency of four different Brillouin-zone integration schemes including the uniform mesh, special point method, special directions method, and Holas method are compared for calculating moments of the harmonic phonon frequencies of the solid one-component plasma. Very accurate values for the moments are also presented. The Holas method for which weights and integration points can easily be generated has roughly the same efficiency as the special directions method, which is much superior to the uniform mesh and special point methods for this problem

  2. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  3. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  4. Droplet motion in one-component fluids on solid substrates with wettability gradients

    KAUST Repository

    Xu, Xinpeng

    2012-05-11

    Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the

  5. Droplet motion in one-component fluids on solid substrates with wettability gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the

  6. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  7. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  8. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  9. Linking high harmonics from gases and solids.

    Science.gov (United States)

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  10. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng; Liu, Chun; Qian, Tiezheng

    2012-01-01

    profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve

  11. Theoretical description of high-order harmonic generation in solids

    International Nuclear Information System (INIS)

    Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K

    2013-01-01

    We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)

  12. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  13. Laser waveform control of extreme ultraviolet high harmonics from solids.

    Science.gov (United States)

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  14. Two- and four-point Kapitza resistance between harmonic solids

    NARCIS (Netherlands)

    Maassen van den Brink, A.; Dekker, H.

    1996-01-01

    The calculation of the Kapitza boundary resistance between dissimilar harmonic solids has since long (Little [Can. J. Phys. 37 (1959) 334]) suffered from a paradox: this resistance erroneously tends to a finite value in the limit of identical solids. We resolve this paradox by calculating

  15. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  16. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    Science.gov (United States)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  17. Solid neutron matter the energy density in the relativistic harmonic approximation

    International Nuclear Information System (INIS)

    Cattani, M.; Fernandes, N.C.

    A relativistic expression for the energy density as a function of particle density for solid neutron matter is obtained using Dirac's equation with a truncated harmonic potential. Ultrabaric and superluminous effects are not found in our approach [pt

  18. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  19. Predicting phase equilibria in one-component systems

    Science.gov (United States)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  20. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  1. The theory of neutron scattering from mixed harmonic solids

    International Nuclear Information System (INIS)

    Warner, M.; Lovesey, S.W.; Smith, J.

    1982-12-01

    The dynamic structure factor for incoherent neutron scattering from light mass particles substituted in a solid is calculated for two model systems. One model is appropriate for a dilute concentration of light particles in a matrix, and the second is a binary system with various masses and force constants. The exact calculations are used to assess the value of approximation schemes for the dynamic structure factor which exploit the separation of time scales in the motions of the light and the heavier lattice particles. (author)

  2. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  3. Orientation dependence of temporal and spectral properties of high-order harmonics in solids

    Science.gov (United States)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; Reis, David A.; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.

    2017-12-01

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems this gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. We address recent experimental results in MgO [Y. S. You et al., Nat. Phys. 13, 345 (2017)., 10.1038/nphys3955] and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.

  4. Characterization of benign and malignant solid breast masses in harmonic 3D power Doppler imaging

    International Nuclear Information System (INIS)

    Hsiao, Y.-H.; Huang, Y.-L.; Kuo, S.-J.; Liang, W.-M.; Chen, S.-T.; Chen, D.-R.

    2009-01-01

    Purpose: The authors assessed the characteristics of benign and malignant solid breast tumors in harmonic three-dimensional (3D) power Doppler imaging and proposed decision models to classify benign and malignant breast tumors. Materials and methods: A total of 86 malignant and 97 benign harmonic 3D power Doppler US images were analyzed. All the harmonic 3D power Doppler images were obtained using a Voluson730 US system (GE, Zipf, Austria) equipped with a RSP 6-12 transducer and tissue harmonic imaging modalities. Imaging analysis was performed using the Virtual Organ Computer-aided Analysis (VOCAL)-imaging program. Histogram indices, the vascularization index (VI), flow index (FI) and vascularization-flow index (VFI), were calculated for the intra-tumor and for shells with an outside thickness of 3 mm surrounding the breast tumors. The receiver operating characteristic (ROC) curves were calculated to estimate the diagnostic performances. Results: The results revealed that the choice of decision model comprised the parameters of patient age, intra-tumor VI, and tumor volume to classify benign and malignant breast tumors. The area under the ROC curve (Az) was 0.910, accuracy was 81.4%, and sensitivity and specificity were 81.4% and 81.4%, respectively. The parameter intra-tumor VI was the choice for all of the histogram indices in differentiating between malignant and benign lesions. Conclusion: The decision model, which was composed of patient age, tumor volume and intra-tumor VI, and a cut-off value for intra-tumor VI at the upper end of patient age and tumor volume, was recommended in clinical application.

  5. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers

    International Nuclear Information System (INIS)

    Liu Rong; Ma Xinpeng; Zhao Fengli; Wang Xiangjian; Wang Guangwei; Huang Yongqing; Zhang Donghui

    2009-01-01

    To study the phase characteristics of solid-state amplifiers(20 kW/142.8 MHz,10 kW/571.2 MHz) in sub-harmonic bunchers(SHBs) of the BEPC II linear accelerator, phase shift in pulse and phase stability are measured using a digital measurement method based on field programmable gate array(FPGA). The hardware of the measurement system includes the frequency synthesizer, digital signal processing board(FPGA) and PC, and the software includes an internal algorithm on FPGA, communication procedures and PC client interface procedures. The measurement results of phase characteristics are consistent with the actual situation, which is the basis for the further implement of phase compensation in SHBs. (authors)

  6. High-Harmonic Generation in Solids with and without Topological Edge States

    DEFF Research Database (Denmark)

    Bauer, Dieter; Hansen, Kenneth Christian Klochmann

    2018-01-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...

  7. Second-harmonic generation of Lamb modes in a solid layer supported by a semi-infinite substrate

    International Nuclear Information System (INIS)

    Deng Mingxi

    2004-01-01

    Using a second-order perturbation approximation and a modal expansion analysis approach, this study develops an effective technique for studying the generation of second harmonics of Lamb modes propagating in the composite structure consisting of a solid layer supported by a semi-infinite substrate. The nonlinearity in the elastic wave motion process can result in the generation of second harmonics of primary Lamb mode propagation in the composite structure, and this nonlinearity may be treated as a second-order perturbation of the elastic response of the primary waves. There are second-order bulk and surface/interface driving sources in the composite structure wherever the primary Lamb modes propagate. These driving sources can be thought of as the forcing functions of a finite series of double-frequency Lamb modes (DFLMs) in terms of the approach of modal expansion analysis for waveguide excitation. The fields of the second harmonics of the primary Lamb modes can be regarded as superpositions of the fields of a finite series of DFLMs. Although Lamb modes are dispersive, the field of one DFLM component can have a cumulative growth effect when its phase velocity exactly or approximately equals that of a primary Lamb mode. The formal solutions for the second harmonics of Lamb modes have been obtained. The numerical simulations clearly show the physical process of the generation of second harmonics of Lamb modes in the composite structure. The complicated problems of second-harmonic generation of Lamb modes have been exactly determined within the second-order perturbation approximation

  8. High-Harmonic Generation in Solids with and without Topological Edge States

    Science.gov (United States)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  9. Molecular dynamics studies of crystalline nucleation in one-component Yukawa plasmas

    International Nuclear Information System (INIS)

    Ravelo, R.; Hammerberg, J.E.; Holian, B.L.

    1992-01-01

    We report on molecular dynamics studies of one-component Yukawa plasmas undergoing rapid quenches from a fluid state with a Coulomb parameter Γ = 40 to solid states in the range 350 < Γ < 800. The detailed dynamical structure of ordering appears more complicated than results from classical theories of nucleation, with planar formation being observed before fully 3-dimensional ordering appears

  10. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  11. Solid-liquid transition in Nb powder determined by third harmonic susceptibility

    International Nuclear Information System (INIS)

    Oliveira, A.A.M.; Lisboa-Filho, P.N.; Ortiz, W.A.

    2008-01-01

    Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model

  12. Solid-liquid transition in Nb powder determined by third harmonic susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: ana@df.ufscar.br; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model.

  13. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    Science.gov (United States)

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  14. Two-Dimensional One-Component Plasma on Flamm's Paraboloid

    Science.gov (United States)

    Fantoni, Riccardo; Téllez, Gabriel

    2008-11-01

    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.

  15. Contrast-enhanced harmonic endoscopic ultrasound in solid lesions of the pancreas: results of a pilot study.

    Science.gov (United States)

    Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T

    2010-07-01

    Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.

  16. Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.

    Science.gov (United States)

    Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K

    2013-04-26

    Coherent x-ray beams with a subfemtosecond (scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21)  W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

  17. On the kinetic theory of the one-component plasma

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1984-01-01

    In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)

  18. High-order-harmonic generation from solids: The contributions of the Bloch wave packets moving at the group and phase velocities

    Science.gov (United States)

    Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.

  19. Asymptotic form of the classical one-component plasma fluid equation of state

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1976-01-01

    The Monte Carlo data of Hansen for the internal energy of the classical one-component plasma in the fluid state is found to satisfy accurately a simple functional form, U/NkT = aGAMMA + bGAMMA/sup 1;4/ + c, for GAMMA > 1. The fluid static energy is very close to the bcc lattice energy of the solid, and the fluid thermal energy varies as T/sup 3;4/. Simple and accurate expressions for other thermodynamic functions for the plasma fluid are given

  20. Kinetics of a new phase formation in supersaturated solid solutions. 1. Dilute one-component systems

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1991-07-01

    A complete set of kinetic equations describing the diffusion decay of supersaturated solutions, as well as the formation of new-phase fluctuations in equilibrium systems, is derived. A novel method of determining forward and backward reaction rates entering the master equation is proposed which does not require the use of any reference cluster size distribution, either the constrained or the true equilibrium one, employed in all modifications of the classical nucleation theory. Instead, this reference distribution can be obtained as an equilibrium solution of the present master equation. The main advantage of this method is the possibility to take into account various factors affecting the diffusion decay, such as the reaction kinetics at the precipitate surfaces and the diffusion kinetics in the mother phase with account of elastic interaction between nucleating species and their clusters. The latter is of a key importance in the irradiation environment considered in the forthcoming second part of the article. (author). 3 refs

  1. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  2. Harmonic Contrast-Enhanced Endoscopic Ultrasonography for the Guidance of Fine-Needle Aspiration in Solid Pancreatic Masses

    DEFF Research Database (Denmark)

    Seicean, A; Badea, R; Moldovan-Pop, A

    2015-01-01

    Purpose: The global accuracy of fine-needle aspiration guided by endoscopic ultrasound (EUS-FNA) for pancreatic adenocarcinoma is about 85 %. The use of contrast agents during EUS to highlight vessels and the necrotic parts of pancreatic masses may improve biopsy guidance. Our aim was to assess...... whether the guidance of FNA by harmonic contrast-enhanced endoscopic ultrasound (CH-EUS) would increase diagnostic accuracy relative to conventional EUS-FNA in the same pancreatic masses. Patients and Methods: In a prospective study, EUS-FNA was performed in patients with pancreatic masses on CT scan......, followed by harmonic CH-EUS using SonoVue. A second cluster of CH-EUS-FNA was performed on contrast-enhanced images. The final diagnosis was based on the results of EUS-FNA and surgery, or the findings after 12 months' follow-up. Results: The final diagnosis was adenocarcinoma (n = 35), chronic...

  3. Three-particle correlation functions of quasi-two-dimensional one-component and binary colloid suspensions.

    Science.gov (United States)

    Ho, Hau My; Lin, Binhua; Rice, Stuart A

    2006-11-14

    We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.

  4. A study of water hammer phenomena in a one-component two-phase bubbly flow

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji

    2000-01-01

    Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)

  5. Statistical mechanics of a one-component fluid of charged hard rods in 1D

    International Nuclear Information System (INIS)

    Vericat, F.; Blum, L.

    1986-09-01

    The statistical mechanics of a classical one component system of charged hard rods in a neutralizing background is investigated in 1D stressing on the effects of the hard core interactions over the thermodynamic and the structure of the system. The crystalline status of the system at all temperatures and densities and the absence of phase transitions is shown by extending previous results of Baxter and Kunz on the one-component plasma of point particles. Explicit expressions for the thermodynamic functions and the one-particle correlation function are given in the limits of small and strong couplings. (author)

  6. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    Science.gov (United States)

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-01

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  7. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2017-05-15

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  8. Harmonic statistics

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  9. Collective modes of the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive the collective modes of a quantum one-component plasma in a magnetic field by using a projection operator technique. With the help of these modes the long-time behaviour of the time correlation functions for the charge density, the current density and the energy density is

  10. Derivation of the one component plasma fluid equation of state in strong coupling

    International Nuclear Information System (INIS)

    DeWitt, H.E.; Rosenfeld, Y.

    1979-01-01

    A variational calculation of the one component plasma energy using the hard sphere Percus-Yevick g(r) and the virial entropy gives U/NkT = a GAMMA + b GAMMAsup(1/4) + c + d/ GAMMAsup(1/4) + ... in agreement with the empirical fit to Monte Carlo data. (orig.)

  11. One-component plasma dynamical structure factor and the plasma dispersion: Method of moments

    International Nuclear Information System (INIS)

    Adamjan, S.V.; Tkachenko, I.M.; Meyer, T.

    1989-01-01

    The molecular dynamics data of Hansen, McDonald and Pollock on the dynamical properties of the classical one-component plasma (OCP) are compared with the results based on an approximation formula for the dielectric function satisfying all known sum rules and exact relations using HNC plasma static properties. (author)

  12. The definition of the pressure of the classical one-component plasma

    International Nuclear Information System (INIS)

    Navet, Marcel; Jamin, Eric; Feix, M.R.

    1980-01-01

    A numerical simulation illustrates the 'virial' kinetic definition of the pressure of the classical one-component plasma introduced in a recent note. In spherical geometry it is found that this pressure, divided by kT, is equal to the density of particles on the wall, and a complete explanation of the discrepancy with the generally accepted thermodynamical definition is given [fr

  13. Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.

  14. Implications of the effective one-component analysis of pair correlations in colloidal fluids with polydispersity

    Science.gov (United States)

    Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.

    2011-09-01

    Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.

  15. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Science.gov (United States)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  16. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    Science.gov (United States)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  17. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  18. On the glass transition of the one-component metallic melts

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.

    2017-01-01

    Roč. 475, October (2017), s. 362-367 ISSN 0022-0248 Institutional support: RVO:61388998 Keywords : equilibrium and non-equilibrium solidification * criterion of the phase transition scenario * one-component metal melts Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.751, year: 2016 http://ac.els-cdn.com/S0022024817304281/1-s2.0-S0022024817304281-main.pdf?_tid=a12ba97e-873b-11e7-b6be-00000aacb35e&acdnat=1503407763_5cdbcdb15d504baf5f8dfb94886b3100

  19. Harmonic supergraphs

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    This paper completes a descrption of the quantization procedure in the harmonic superspace approach. The Feynman rules for N=2 matter and Yang-Mills theories are derived and the various examples of harmonic supergraph calculations are given. Calculations appear to be not more difficult than those in the N=1 case. The integration over harmonic variables does not lead to any troubles, a non-locality in these disappears on-shell. The important property is that the quantum corrections are always writen as integrals over the full harmonic superspace even though the initial action is an integral over the analytic subspace. As a by-product our results imply a very simple proof of finiteness of a wide class of the N=4, d=2 non-linear Σ-models. The most general self-couplings of hypermultiplets including those with broken SU(2) are considered.The duality relations among the N=2 linear multiplet and both kinds of hypermultiplet are established

  20. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  1. Analogies between random matrix ensembles and the one-component plasma in two-dimensions

    Directory of Open Access Journals (Sweden)

    Peter J. Forrester

    2016-03-01

    Full Text Available The eigenvalue PDF for some well known classes of non-Hermitian random matrices — the complex Ginibre ensemble for example — can be interpreted as the Boltzmann factor for one-component plasma systems in two-dimensional domains. We address this theme in a systematic fashion, identifying the plasma system for the Ginibre ensemble of non-Hermitian Gaussian random matrices G, the spherical ensemble of the product of an inverse Ginibre matrix and a Ginibre matrix G1−1G2, and the ensemble formed by truncating unitary matrices, as well as for products of such matrices. We do this when each has either real, complex or real quaternion elements. One consequence of this analogy is that the leading form of the eigenvalue density follows as a corollary. Another is that the eigenvalue correlations must obey sum rules known to characterise the plasma system, and this leads us to an exhibit of an integral identity satisfied by the two-particle correlation for real quaternion matrices in the neighbourhood of the real axis. Further random matrix ensembles investigated from this viewpoint are self dual non-Hermitian matrices, in which a previous study has related to the one-component plasma system in a disk at inverse temperature β=4, and the ensemble formed by the single row and column of quaternion elements from a member of the circular symplectic ensemble.

  2. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  3. Statistics of structural holes in the one-component classical plasma near freezing

    International Nuclear Information System (INIS)

    Cardenas, M.; Tosi, M.P.

    1998-03-01

    The correlations between structural holes in the fluid phase of the one-component classical plasma near its freezing point at coupling strength Γ=179 are studied by a statistical method using the Ornstein-Zernike relations for a partly quenched disordered system in combination with the hypernetted chain closure. The method involves inserting in the quenched structure of the plasma variable numbers of point-like charged particles, which on reaching equilibrium probe the holes in the matrix. When the probes carry the same charge as the plasma particles, the results may also be interpreted as describing the evolution of the correlations between annealed particles in a partly quenched disordered plasma upon varying the fraction of quenched particles at constant total density. Doubling the charge carried by the probes sharpens their correlations and improves the resolution that can be obtained in this method of structural analysis. (author)

  4. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.

    2013-03-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  5. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.; Koerner, Hilmar; Giannelis, Emmanuel P.; Vaia, Richard A.

    2013-01-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  6. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  7. Lectures on harmonic analysis

    CERN Document Server

    Wolff, Thomas H; Shubin, Carol

    2003-01-01

    This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for fu...

  8. Introduction to statistical field theory: from a toy model to a one-component plasma

    International Nuclear Information System (INIS)

    Frydel, Derek

    2015-01-01

    Working with a toy model whose partition function consists of a discrete summation, we introduce the statistical field theory methodology by transforming a partition function via a formal Gaussian integral relation (the Hubbard–Stratonovich transformation). We then consider Gaussian-type approximations, wherein correlational contributions enter as harmonic fluctuations around the saddle-point solution. This work focuses on how to arrive at a self-consistent, non-perturbative approximation without recourse to a standard variational construction based on the Gibbs–Bogolyubov–Feynman inequality that is inapplicable to a complex action. To address this problem, we propose a construction based on selective satisfaction of a set of exact relations generated by considering a dual representation of a partition function, in its original and transformed form. (paper)

  9. Mechanistic studies of thioxanthone–carbazole as a one-component type II photoinitiator

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Nurcan; Karaca Balta, Demet; Ocal, Nuket; Arsu, Nergis, E-mail: nergisarsu@gmail.com

    2014-02-15

    A mechanistic study concerning photoinitiated free radical polymerization using Thioxanthone–Carbazole (TX–Cz) as a one-component Type II photoinitiator was performed. TX–Cz presented visible initiator characteristics with absorptions at 434 and 414 nm where the molar absorption coefficients were 2014 and 1754 L mol{sup −1} cm{sup −1}, respectively. Fluorescence and phosphorescence spectroscopy, as well as laser flash photolysis was employed to study the photophysical properties of TX–Cz. In addition, photopolymerization of methyl methacrylate (MMA) showed that TX–Cz is efficient photoinitiator. To explain the initiation mechanism of TX–Cz, fluorescence and phosphorescence emission spectra of poly (methyl methacrylate) (PMMA) were also taken to see whether the initiator covalently bonded to the polymer. The postulated mechanism is based on inter- molecular reaction of the triplet, {sup 3}(TX–Cz){sup ⁎} with the carbazole moiety at ground state, TX–Cz. The photoinitiation efficiency of TX–Cz during gelation of multifunctional acrylates was also investigated by Photo-Differential Scanning Calorimetry (Photo-DSC) technique and high polymerization rates were obtained. -- Highlights: • Thioxanthone–Carbazole was used as visible light photoinitiator for radical polymerization of meth(acrylates). • The detailed photophysical properties of TX–Cz was reported. • Fluorescence quantum yield, phosphorescence lifetime , triplet energy and triplet lifetime were determined. • Photo-DSC was used to follow photopolymerizatin kinetics of acrylates.

  10. Evidence from paranoid schizophrenia for more than one component of theory of mind

    Science.gov (United States)

    Scherzer, Peter; Achim, André; Léveillé, Edith; Boisseau, Emilie; Stip, Emmanuel

    2015-01-01

    We previously reported finding that performance was impaired on four out of five theory of mind (ToM) tests in a group of 21 individuals diagnosed with paranoid schizophrenia (pScz), relative to a non-clinical group of 29 individuals (Scherzer et al., 2012). Only the Reading the Mind in the Eyes Test did not distinguish between groups. A principal components analysis revealed that the results on the ToM battery could be explained by one general ToM factor with the possibility of a latent second factor. As well, the tests were not equally sensitive to the pathology. There was also overmentalization in some ToM tests and under-mentalisation in others. These results led us to postulate that there is more than one component to ToM. We hypothesized that correlations between the different EF measures and ToM tests would differ sufficiently within and between groups to support this hypothesis. We considered the relationship between the performance on eight EF tests and five ToM tests in the same diagnosed and non-clinical individuals as in the first study. The ToM tests shared few EF correlates and each had its own best EF predictor. These findings support the hypothesis of multiple ToM components. PMID:26579026

  11. Novel one-component polymeric benzophenone photoinitiator containing poly (ethylene glycol) as hydrogen donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kemin, E-mail: wangkm61@gmail.com; Lu, Yuhui; Chen, Penghui; Shi, Jingsong; Wang, Hongning; Yu, Qiang, E-mail: yuqiang@cczu.edu.cn

    2014-02-14

    Benzophenone (BP) is a common initiator which is often used in the UV-curing production and related fields. However, the shortcomings such as toxicity, odor, and migration always limit the development of the traditional BP photoinitiator. Polymeric benzophenone photoinitiator (PEG-BP) was synthesized basing on polyethylene glycol (PEG), succinic anhydride, 4-hydroxybenzophenone and epichlorohydrin. The structure of PEG-BP was characterized by IR and {sup 1}H NMR. The radiation absorption of PEG-BP was detected by UV spectrophotometer with the maximum absorption wavelength at 283 nm in acetonitrile solvent, undergone significant redshift corresponding to small molecule photoinitiator BP, thus enhanced the photosensitive efficiency of UV-curing system in the long wavelength region. Besides, PEG-BP has better water solubility than BP, thus could be used in both oil and aqueous solution. The obvious advantage of this initiator was the elimination of amine based hydrogen donors and to provide alternative hydrogen donors with easily availability and non-toxicity. The effects of molecular weights of PEG-BP, photoinitiator concentration, UV-radiation intensity and different monomers on photopolymerization kinetics were investigated in detail. The synthesized polymeric photoinitiators are attractive to be used as type II photoinitiators. - Highlights: • Novel one-component polymeric benzophenone photoinitiator was synthesized. • This photoinitiator contained poly (ethylene glycol) as hydrogen donor. • This photoinitiator was the elimination of amine based hydrogen donors.

  12. Evidence from paranoid schizophrania for more than one component of theory of mind

    Directory of Open Access Journals (Sweden)

    Peter eScherzer

    2015-10-01

    Full Text Available We previously reported finding that performance was impaired on four out of five theory of mind (ToM tests in a group of 21 individuals diagnosed with paranoid schizophrenia (pScz, relative to a non-clinical group of 29 individuals (Scherzer, Léveillé, Achim, Scherzer, Boisseau, & Stip, 2012. Only the Reading the Mind in the Eyes Test (RMET did not distinguish between groups. A principal components analysis revealed that the results on the ToM battery could be explained by one general ToM factor with the possibility of a latent second factor. As well, the tests were not equally sensitive to the pathology. There was also overmentalization in some ToM tests and under-mentalisation in others. These results led us to postulate that there is more than one component to ToM. We hypothesized that correlations between the different EF measures and ToM tests would differ sufficiently within and between groups to support this hypothesis. We considered the relationship between the performance on eight EF tests and five ToM tests in the same diagnosed and non-clinical individuals as in the first study. The ToM test shared few EF correlates and each had its own best EF predictor.. These findings support the hypothesis of multiple ToM components

  13. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  14. Harmonic analysis

    CERN Document Server

    Helson, Henry

    2010-01-01

    This second edition has been enlarged and considerably rewritten. Among the new topics are infinite product spaces with applications to probability, disintegration of measures on product spaces, positive definite functions on the line, and additional information about Weyl's theorems on equidistribution. Topics that have continued from the first edition include Minkowski's theorem, measures with bounded powers, idempotent measures, spectral sets of bounded functions and a theorem of Szego, and the Wiener Tauberian theorem. Readers of the book should have studied the Lebesgue integral, the elementary theory of analytic and harmonic functions, and the basic theory of Banach spaces. The treatment is classical and as simple as possible. This is an instructional book, not a treatise. Mathematics students interested in analysis will find here what they need to know about Fourier analysis. Physicists and others can use the book as a reference for more advanced topics.

  15. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  16. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    Science.gov (United States)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  17. Asymptotic behavior of correlation functions for electric potential and field fluctuations in a classical one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1992-01-01

    The correlations of the electric potential fluctuations in a classical one-component plasma are studied for large distances between the observation points. The two-point correlation function for these fluctuations is known to decay slowly for large distances, even if exponential clustering holds for

  18. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  19. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field

    International Nuclear Information System (INIS)

    Qin, Hong; Davidson, Ronald C.

    2011-01-01

    In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.

  20. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    Directory of Open Access Journals (Sweden)

    Yiru Wang

    2018-04-01

    Full Text Available Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl-2-ethyl-4-methylimidazol(EP-1C2E4MIM system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  1. Ordered one-component plasmas: Phase transitions, normal modes, large systems, and experiments in a storage ring

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1994-01-01

    The property of cold one-component plasmas, confined by external forces, to form an ordered array has been known for some time both from simulations and from experiment. The purpose of this talk is to summarize some recent work on simulations and some new experimental results. The author discusses some experimental work on real storage rings, magnetic storage devices in which partials circulate with large kinetic energies and for which laser cooling is used on partially ionized ions to attain temperatures ten or more orders of magnitude lower than their kinetic energies

  2. Harmonics and energy management

    International Nuclear Information System (INIS)

    Andresen, M.

    1993-01-01

    To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs

  3. Human toxicology of chemical mixtures toxic consequences beyond the impact of one-component product and environmental exposures

    CERN Document Server

    Zeliger, Harold I

    2011-01-01

    In this important reference work, Zeliger catalogs the known effects of chemical mixtures on the human body and also proposes a framework for understanding and predicting their actions in terms of lipophile (fat soluble)/hydrophile (water soluble) interactions. The author's focus is on illnesses that ensue following exposures to mixtures of chemicals that cannot be attributed to any one component of the mixture. In the first part the mechanisms of chemical absorption at a molecular and macromolecular level are explained, as well as the body's methods of defending itself against xenobiotic intrusion. Part II examines the sources of the chemicals discussed, looking at air and water pollution, food additives, pharmaceuticals, etc. Part III, which includes numerous case studies, examines specific effects of particular mixtures on particular body systems and organs and presents a theoretical framework for predicting what the effects of uncharacterized mixtures might be. Part IV covers regulatory requirements and t...

  4. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  5. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles

    International Nuclear Information System (INIS)

    Elouga Bom, L. B.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T.; Ganeev, R. A.

    2009-01-01

    We studied high-order harmonic generation from plasma that contains an abundance of indium oxide nanoparticles. We found that harmonics from nanoparticle-containing plasma are considerably more intense than from plasma produced on the In 2 O 3 bulk target, with high-order harmonic energy ranging from 6 μJ (for the ninth harmonic) to 1 μJ (for the 17th harmonic) in the former case. The harmonic cutoff from nanoparticles was at the 21st order, which is lower than that observed using indium oxide solid target. By comparing the harmonic spectra obtained from solid and nanoparticle indium oxide targets, we concluded that intense harmonics in the latter case are dominantly generated from neutral atoms of the In 2 O 3 nanoparticles

  6. A pretandem harmonic buncher

    International Nuclear Information System (INIS)

    Lin, Qui-xun; Van Wechel, T.D.

    1987-01-01

    A single gap harmonic buncher has been constructed as a pretandem buncher. Over 85% of a proton dc beam has been bunched into pulses. The width (fwhm) of the pulses is 0.7 ns. The buncher is based on that built at Argonne. Changes were made to the buncher's configuration so that the buncher could be tuned to the desired four harmonic frequencies. A method of calibrating and setting the relative phases and amplitudes of the four harmonic frequencies has been used to obtain an optimum sawtooth-like bunching waveform

  7. Harmonic supergraphs. Green functions

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Gievetsky, V.; Sokatchev, E.

    1985-01-01

    The quantization procedure in the harmonic superspace approach is worked out. Harmonic distributions are introduced and are used to construct the analytic superspace delta-functions and the Green functions for the hypermultiplet and the N=2 Yang-Mills superfields. The gauge fixing is described and the relevant Faddeev-Popov ghosts are defined. The corresponding BRST transformations are found. The harmonic superspace quantization of the N=2 gauge theory turns out to be rather simple and has many parallels with that for the standard (N=0) Yang-Mills theory. In particular, no ghosts-forghosts are needed

  8. Superstrings and harmonic superspace

    International Nuclear Information System (INIS)

    Kallosh, R.E.; AN SSSR, Moscow. Fizicheskij Inst.)

    1987-01-01

    The paper on superstrings and harmonic superspace is a contribution to the book dedicated to E.S. Fradkin on his sixtieth birthday. The purpose of the paper is to propose a description of N = 2,3 superspace which could be used for the investigation of the effective d = 10 harmonic superspace corresponding to the heterotic superstring. A description is given of the structure of semi-simple Lie algebras in the Cartan-Weyl basis, as well as the general properties of the even, compact part of harmonic superspace. The main properties of the four-dimensional N = 2 SYM theory are discussed, along with the N = 3, d = 4 super Yang-Mills theory. Finally the relation between the harmonic superspace and the heterotic E 8 x E 8 superstring is examined. (U.K.)

  9. Harmonic excitations in quasicrystals

    International Nuclear Information System (INIS)

    Luck, J.M.

    1986-03-01

    The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized

  10. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  11. Harmonic d-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)

    2016-07-01

    Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.

  12. Harmonization versus Mutual Recognition

    DEFF Research Database (Denmark)

    Jørgensen, Jan Guldager; Schröder, Philipp

    The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired with the oppor......The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired...... countries and three firms, where firms first lobby for the policy coordination regime (harmonization versus mutual recognition), and subsequently, in case of harmonization, the global standard is auctioned among the firms. We discuss welfare effects and conclude with policy implications. In particular......, harmonized standards may fail to harvest the full pro-competitive effects from trade liberalization compared to mutual recognition; moreover, the issue is most pronounced in markets featuring price competition....

  13. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  14. Harmonic uniflow engine

    Science.gov (United States)

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  15. Fast harmonic field mapper

    International Nuclear Information System (INIS)

    Au, R.; Fowler, M.; Hanawa, H.; Riedel, J.; Qua, Z.G.

    1984-01-01

    In early 1983 it was decided to mount coils on arms separated by 120 degrees and buck them out so that the third harmonic dphi/dt component would be cancelled and thus the first and second field harmonics could be very accurately measured. The original intention was to do as others had done, namely, use fast ADC's to read the voltages, and computer process the result to get the Fourier components. However, because of the 100 to 1 dynamic range of the fast ADC's and the likelihood that noise would be a problem, the authors decided to do things differently. Using a fast Fourier transform analyzer was considered, but this instrument is very expensive, so they decided to use a completely electronic analog approach: The authors decided to use active bandpass filters to render the harmonic components

  16. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  17. General Criterion for Harmonicity

    Science.gov (United States)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  18. Comparing Harmonic Similarity Measures

    NARCIS (Netherlands)

    de Haas, W.B.; Robine, M.; Hanna, P.; Veltkamp, R.C.; Wiering, F.

    2010-01-01

    We present an overview of the most recent developments in polyphonic music retrieval and an experiment in which we compare two harmonic similarity measures. In contrast to earlier work, in this paper we specifically focus on the symbolic chord description as the primary musical representation and

  19. Fast Harmonic Chirp Summation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    -robust to noise, or very computationally inten- sive. In this paper, we propose a fast algorithm for the harmonic chirp summation method which has been demonstrated in the liter- ature to be accurate and robust to noise. The proposed algorithm is orders of magnitudes faster than previous algorithms which is also...

  20. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  1. Stress in Harmonic Serialism

    Science.gov (United States)

    Pruitt, Kathryn Ringler

    2012-01-01

    This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…

  2. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  3. Young children's harmonic perception.

    Science.gov (United States)

    Costa-Giomi, Eugenia

    2003-11-01

    Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.

  4. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  5. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  6. Harmonic Patterns in Forex Trading

    OpenAIRE

    Nemček, Sebastian

    2013-01-01

    This diploma thesis is committed to examination of validity of Harmonic Patterns in Forex trading. Scott Carney described existing and introduced new Harmonic Patterns in 1999 in his book Harmonic Trader. These patterns use the Fibonacci principle to analyze price action and to provide both bullish and bearish trading signals. The goal of this thesis is to find out whether harmonic trading strategy on selected pairs is profitable in FX market, which patterns are the most profitable and what i...

  7. Atto second high harmonic sources

    International Nuclear Information System (INIS)

    Nam, Chang Hee

    2008-01-01

    High harmonic generation is a powerful method to produce attosecond pulses. The high harmonics, emitted from atoms driven by intense femtosecond laser pulses, can from an attosecond pulse train with equally spaced harmonic spectrum or an isolated single attosecond pulse with broad continuum spectrum. Using high power femtosecond laser technology developed at CXRC, we have investigated the spectral and temporal characteristics of high harmonics obtained from gaseous atoms. The spectral structure of harmonics could be manipulated by controlling laser chirp, and continuous tuning of harmonic wavelengths was achieved. For rigorous temporal characterization of attosecond harmonic pulses a cross correlation technique was applied to the photoionization process by harmonic and IR femtosecond pulses and achieved the complete temporal reconstruction of attosecond pulse trains, revealing the detailed temporal structure of the attosecond chirp by material dispersion. The duration of attosecond high harmonic pulses is usually much longer than that of transform limited pulses due to the inherent chirp originating from the harmonic generation process. The attosecond chirp compensation in the harmonic generation medium itself was demonstrated, thereby realizing the generation of near transform limited attosecond pulses. The interference of attosecond electron wave packets, generated from an atom by attosecond harmonic pulses, will be also presented

  8. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  9. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  10. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  11. The Harmonization of Accounting

    Directory of Open Access Journals (Sweden)

    Hajnal Noémi

    2017-11-01

    Full Text Available The development and configuration of the regulatory framework of the accounting systems in Romania and Hungary took place in different ways. Among the reasons for the diversities in these countries’ accounting systems, the following can be certainly mentioned: different purposes of taxation, legal structure, the accountancy’s connection with the corporate law and family law, diversification on corporate financing policy, and cultural heterogeneity. Both countries quickly caught up with the international accounting harmonization standards. The adaptation of the international accounting standards has many advantages and disadvantages; these have been discussed in several previous researches. This paper aims at comparing the Romanian and Hungarian states’ accounting regulations from the early 1990s, which were implemented in order to harmonize the states’ accountancy regulations with the international standards, and their impact on the economy, based on secondary analysis.

  12. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  13. [Harmonization of TSH Measurements.

    Science.gov (United States)

    Takeoka, Keiko; Hidaka, Yoh; Hishinuma, Akira; Ikeda, Katsuyoshi; Okubo, Shigeo; Tsuchiya, Tatsuyuki; Hashiguchi, Teruto; Furuta, Koh; Hotta, Taeko; Matsushita, Kazuyuki; Matsumoto, Hiroyuki; Murakami, Masami; Maekawa, Masato

    2016-05-01

    The measured concentration of thyroid stimulating hormone (TSH) differs depending on the reagents used. Harmonization of TSH is crucial because the decision limits are described in current clinical practice guide- lines as absolute values, e.g. 2.5 mIU/L in early pregnancy. In this study, we tried to harmonize the report- ed concentrations of TSH using the all-procedure trimmed mean. TSH was measured in 146 serum samples, with values ranging from 0.01 to 18.8 mIU/L, using 4 immunoassays. The concentration of TSH was highest with E test TOSOH and lowest with LUMIPULSE. The concentrations with each reagent were recalculated with the following formulas: E test TOSOH 0.855x-0.014; ECLusys 0.993x+0.079; ARCHITECT 1.041x- 0.010; and LUMIPULSE 1.096x-0.015. Recalculation eliminated the between-assay discrepancy. These formulas may be used until harmonization of TSH is achieved by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).

  14. Polarization-Resolved Study of High Harmonics from Bulk Semiconductors

    Science.gov (United States)

    Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro

    2018-06-01

    The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.

  15. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  16. Next generation data harmonization

    Science.gov (United States)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  17. Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Temkin, R.J.

    1996-01-01

    The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE 21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ∼8%. The best measured phase stability of the TE 31 amplified pulse was ±10 degree over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE 21 had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power

  18. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  19. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  20. Harmonizing power cables and power lines. Harmonisierung der Starkstromkabel und -leitungen

    Energy Technology Data Exchange (ETDEWEB)

    Heinhold, L [Siemens A.G., Erlangen (Germany, F.R.); Retzlaff, E; Warner, A [Verband Deutscher Elektrotechniker (VDE) e.V., Frankfurt am Main (Germany, F.R.)

    1976-01-01

    The article gives a summarizing view of the present level of harmonization in the field of power cables and lines. Special attention is paid to problems referring to using harmonized designs for flexible lines and using lines for solid layout with PVC and rubber insulation in the German standards DIN 57281/VDE 0281 and DIN 57282/VDE 0282 and problems of taking the types used until today out of use. A general view of the power lines fully harmonized is given and a harmonization-labelling (common labelling) for cables and lines is described.

  1. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  2. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  3. Azimuthal anisotropy: The higher harmonics

    International Nuclear Information System (INIS)

    Poskanzer, Arthur M.; STAR Collaboration

    2004-01-01

    We report the first observations of the fourth harmonic (v 4 ) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  4. Harmonic Series Meets Fibonacci Sequence

    Science.gov (United States)

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  5. Tuvan Throat Singing and Harmonics

    Science.gov (United States)

    Ruiz, Michael J.; Wilken, David

    2018-01-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the…

  6. Harmonics in transmission power systems

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz

    . The comparison shows that results obtained used both types of the cores are the same, so it is concluded that both cores can be used for harmonic measurements. Low-inductance resistors are introduced in the secondary circuits, in series with the metering and protective relaying. On those resistors, the harmonic......Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... end only so the ground is not used as a return path. A way to reduce the capacitive coupling is to provide shielding. Harmonic currents are measured using the conventional inductive voltage transformers. Both protective and metering cores were compared if they could be used for harmonic measurements...

  7. Tuvan throat singing and harmonics

    Science.gov (United States)

    Ruiz, Michael J.; Wilken, David

    2018-05-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the listener hears two pitches simultaneously. Harmonics such as H8, H9, H10, and H12 form part of a pentatonic scale and are commonly selected for melody tones by Tuvan singers. A real-time spectrogram is provided in a video (Ruiz M J 2018 Video: Tuvan Throat Singing and Harmonics http://mjtruiz.com/ped/tuva/) so that Tuvan harmonics can be visualized as they are heard.

  8. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  9. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  10. Semiclassical pair production rate for time-dependent electrical fields with more than one component: WKB-approach and world-line instantons

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Eckhard, E-mail: eckhard.strobel@irap-phd.eu [ICRANet, Piazzale della Repubblica 10, 65122 Pescara (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Université de Nice Sophia Antipolis, 28 Avenue de Valrose, 06103 Nice Cedex 2 (France); Xue, She-Sheng, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122 Pescara (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy)

    2014-09-15

    We present an analytic calculation of the semiclassical electron–positron pair creation rate by time-dependent electrical fields. We use two methods, first the imaginary time method in the WKB-approximation and second the world-line instanton approach. The analytic tools for both methods are generalized to time-dependent electric fields with more than one component. For the WKB method an expansion of the momentum spectrum of produced pairs around the canonical momentum P{sup →}=0 is presented which simplifies the computation of the pair creation rate. We argue that the world-line instanton method of [1] implicitly performs this expansion of the momentum spectrum around P{sup →}=0. Accordingly, the generalization to more than one component is shown to agree with the WKB result obtained via this expansion. However the expansion is only a good approximation for the cases where the momentum spectrum is peaked around P{sup →}=0. Thus the expanded WKB result and the world-line instanton method of [1] as well as the generalized method presented here are only applicable in these cases. We study the two-component case of a rotating electric field and find a new analytic closed form for the momentum spectrum using the generalized WKB method. The momentum spectrum for this field is not peaked around P{sup →}=0.

  11. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  12. Power quality issues current harmonics

    CERN Document Server

    Mikkili, Suresh

    2015-01-01

    Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi

  13. Classical and multilinear harmonic analysis

    CERN Document Server

    Muscalu, Camil

    2013-01-01

    This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this vo...

  14. Explaining the harmonic sequence paradox.

    Science.gov (United States)

    Schmidt, Ulrich; Zimper, Alexander

    2012-05-01

    According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced. ©2011 The British Psychological Society.

  15. Introduction to abstract harmonic analysis

    CERN Document Server

    Loomis, Lynn H

    2011-01-01

    Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.

  16. Cohabiting with the harmonic pollution

    International Nuclear Information System (INIS)

    Garcia C, Antonio A

    1999-01-01

    The Norm IEEE 519 tries of the permissible limits of harmonic distortion in the point of common joining between the energy supplier company and the industry. However fulfilling these limits of distortion doesn't guarantee that the problem for the company has finished, on the contrary will have to counteract the effects created by the harmonic distortion toward the interior of its electric system and to cohabit with this distortion

  17. Coherent harmonics generated by a super-short electron pulse

    International Nuclear Information System (INIS)

    Ding Wu

    1996-01-01

    A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics

  18. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Abstract. Lutwak introduced the harmonic Blaschke combination and the harmonic. Blaschke body of a star body. Further, Feng and Wang introduced the concept of the L p- harmonic Blaschke body of a star body. In this paper, we define the notion of general. L p-harmonic Blaschke bodies and establish some of its ...

  19. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties.

  20. Audibility of harmonics in 'periodic white noise'

    NARCIS (Netherlands)

    Duifhuis, H.; Tomesen, H.H.

    1970-01-01

    In a previous article (Duifhuis, 1970) results' concerning the audibility of harmonics in a periodic pulse have been presented. Each of the lower harmonics could be perceived separately, whereas the high harmonics were heard together as one complex signal. High harmonics, however, appeared to be

  1. Optical absorption, piezoelectric effect and second harmonic generation studies of single crystal AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Myronchuk, G.L.; Krymus, A.S.; Piasecki, M. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Lakshminarayana, G. [Universiti Putra Malaysia, Wireless and Photonic Networks Research Centre, Faculty of Engineering, Serdang, Selangor (Malaysia); Kityk, I.V. [Czestochowa University of Technology, Faculty of Electrical Engineering, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Parasyuk, O.V. [Eastern European National University, Department of Chemistry, Lutsk (Ukraine); Rudysh, M.Ya.; Shchepanskyi, P.A. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Ivan Franko National University of Lviv, Physics Department, Lviv (Ukraine)

    2017-03-15

    Spectral features of absorption were studied for novel AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid-state alloys at different temperatures. The synthesized crystals structure parameters are obtained by the X-ray Rietveld refinement method. During increasing temperature from 100 up to 300 K, the energy gap of AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} decreases linearly from 2.05 up to 1.94 eV at a rate 5.7 x 10{sup -4} eV/K. The magnitudes of piezoelectric coefficients are significantly changed and demonstrate substantial anisotropy. At room temperature, these values are equal to 5.2 pm/V (d{sub 11}), 31.5 pm/V (d{sub 22}) and 35.5 pm/V (d{sub 33}). It is crucial that with an increasing temperature the piezoelectric efficiencies are increased. We have explored temperature and laser-induced changes of piezoelectric coefficients. (orig.)

  2. Control and metrology of high harmonic generation on plasma mirrors

    International Nuclear Information System (INIS)

    Monchoce, Sylvain

    2014-01-01

    When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh

  3. HARMONIZED EUROPE OR EUROPEAN HARMONY?

    Directory of Open Access Journals (Sweden)

    Cosmin Marinescu

    2007-07-01

    Full Text Available Recent evolutions in Europe raise questions on the viability of the present economic and social model that defines the European construction project. In this paper, the author will try to explain the viability of institutional European model that sticks between free market mechanisms and protectionism. The main challenge for the EU is about the possibility to bring together the institutional convergence and the welfare for all Europeans. This is the result of the view, still dominant, of European politics elite, according to which institutional harmonization is the solution of a more dynamic and prosper Europe. But, economic realities convince us that, more and more, a harmonized, standardized Europe is not necessarily identical with a Europe of harmony and social cooperation. If „development through integration” seems to be harmonization through „institutional transplant”, how could then be the European model one sufficiently wide open to market, which creates the prosperity so long waited for by new member countries?

  4. Harmonic superspaces of extended supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.; Kalitzin, S.; Nguyen Ai Viet; Ogievetsky, V.

    1984-01-01

    The main technical apparatus of the harmonic superspace approach to extended SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY automorphism groups, is presented in detail for N=2, 3, 4. The basic harmonics for the coset manifolds G/H with G=SU(2), H=U(1); G=SU(3), H=SU(2)xU(1) and H=U(1)xU(1); G=SU(4), H=SU(3)xU(1), H=SU(2)xSU(2)xU(1), H=SU(2)xU(1)xU(1) and H=U(1)xU(1)xU(1); G=USp(2), H=SU(2)xSU(2), H=SU(2)xU(1) and H=U(1)xU(1) are tabulated a number of useful relations among them

  5. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1987-01-01

    In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)

  6. Elements of abstract harmonic analysis

    CERN Document Server

    Bachman, George

    2013-01-01

    Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give

  7. Harmonic modeling of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, J.; Sainz, L.; Corcoles, F. [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain)

    2006-07-15

    The paper proposes an induction motor model for the study of harmonic load flow in balanced and unbalanced conditions. The parameters of this model are obtained from motor manufacturer data and the positive- and negative-sequence equivalent circuits of the single- and double-cage models. An approximate harmonic model based on motor manufacturer data only is also proposed. In addition, the paper includes manufacturer data and the calculated parameters of 36 induction motors of different rated powers. This database is used to analyze the proposed models. (author)

  8. Simulation of Dynamic Behavior of the Flexible Wheel of the Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Draghiţa Ianici

    2014-06-01

    Full Text Available The paper presents the construction and functioning of a new type the harmonic gear transmission named double harmonic gear transmission, which can be used in the construction drives of industrial robots. In the second part of this paper is presented the dynamic analysis of the double harmonic gear transmission, which is based on the results of the numerical simulations of the flexible wheel in case of its deformation with a mechanical wave generator with disc cam. Investigation of dynamic behavior of the flexible toothed wheel was performed by using the finite element method in SolidWorks Simulation software.

  9. Optimal Selective Harmonic Control for Power Harmonics Mitigation

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...

  10. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...

  11. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.

    Science.gov (United States)

    Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten

    2015-07-31

    The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pHpH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  13. Harmonic structures and intrinsic torsion

    DEFF Research Database (Denmark)

    Conti, Diego; Madsen, Thomas Bruun

    We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough...

  14. Harmonic oscillator in Snyder space

    Indian Academy of Sciences (India)

    The harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. An effective cut-off to high frequencies is found. The quantum version is developed and an equivalent usual ...

  15. The relativistic harmonic oscillator reconsidered

    International Nuclear Information System (INIS)

    Hofsaess, T.

    1978-01-01

    The bound states of scalar quarks interacting through a scalar harmonic oscillator are investigated. In the presence of this interaction the dressed quark propagator differs substantially from the free one. This leads to a Bethe Salpeter equation which does not allow for any stable bound states of positive mass. (orig.) [de

  16. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  17. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Lenore White Harmon: One Woman's Career Development.

    Science.gov (United States)

    Fouad, Nadya A.

    1997-01-01

    Presents biographical information on Lenore White Harmon, noted professor, counselor, and researcher. In a question-and-answer section, Harmon describes her early career decisions, work history, research efforts, professional contributions, important influences and reflections on her career development. (KW)

  19. Tides and tidal harmonics at Umbharat, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.

    A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...

  20. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  1. Harmonic disturbance location by applying Bayesian inference

    NARCIS (Netherlands)

    Ye, G.; Xiang, Y.; Cuk, V.; Cobben, J.F.G.

    2016-01-01

    Harmonic pollution is one of the most important power quality issues in electric power systems. Correct location of the main harmonic disturbance source is a key step to solve the problem. This paper presents a method to detect the location of harmonic disturbance source in low voltage network

  2. Detection of Harmonic Occurring using Kalman Filtering

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed

    2014-01-01

    /current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...

  3. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  4. Role of tissue harmonic imaging in characterization of cystic renallesions

    International Nuclear Information System (INIS)

    Mohammed, A.; Sandhu, Manavjit S.; Lal, A.; Sodhi, Kushaljit S.; Sud, K.; Kohli, Harbir S.

    2008-01-01

    Objective was to determine the utility of tissue harmonic imaging inevaluating cystic renal lesions and to compare these findings withconventional ultrasound guidance (USG) and CT. Thirty patients, detected withcystic renal lesions on routine USG (over a period of 18 months from July2004 to December 2005) at the Postgraduate Institute of Medical Education andResearch Chandigarh, Chandigarh, India) were included in this study. Allpatients underwent a conventional gray scale ultrasound study (GSI), followedby tissue harmonic imaging (THI) sonography on the same machine (advancetechnology limited high definition imaging 5000). Computed tomography ofabdomen was carried out within one week of the ultrasound examinations. Allimages were evaluated for size, number and location of lesions. The findingsof THI sonography, conventional USG and CT of abdomen were recorded in theirrespective proformas. The images obtained by GSI, THI and contrast enhancedCT were also evaluated for image, quality, lesion conspicuity and fluid-soliddifferentiation. Tissue harmonic imaging showed better image quality in 27 of34 lesions, improvement in lesion conspicuity was found in 27 of 34 cysticlesions and an improved solid-fluid differentiation in 30 of 34 lesions whencompared to GSI. The THI provided additional information as compared to GSIin 8 patients. The grading of CT scan was significantly higher in overallimage quality (p=0.007) and lesion conspicuity (p=0.004), but wasnon-significant for fluid-solid differentiation (p=0.23). Tissue harmonicimaging provides better image quality, lesion delineation and superiorcharacterization than conventional gray scale sonography. (author)

  5. A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate

    Science.gov (United States)

    Lin, Ruixing; Xu, Lin; Zheng, Xian

    2018-03-01

    Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.

  6. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  7. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...... the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...

  8. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  9. Harmonic space and quaternionic manifolds

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievetsky, O.; Ivanov, E.

    1992-10-01

    A principle of harmonic analyticity underlying the quaternionic (quaternion-Kaehler) geometry is found, and the differential constraints which define this geometry are solved. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group rotating the complex structures. An one-to-one correspondence is established between the quaternionic spaces and off-shell N=2 supersymmetric sigma-models coupled to N=2 supergravity. Coordinates of the analytic subspace are identified with superfields describing N=2 matter hypermultiplets and a compensating hypermultiplet of N=2 supergravity. As an illustration the potentials for the symmetric quaternionic spaces are presented. (K.A.) 22 refs

  10. Data harmonization and model performance

    Science.gov (United States)

    The Joint Committee on Urban Storm Drainage of the International Association for Hydraulic Research (IAHR) and International Association on Water Pollution Research and Control (IAWPRC) was formed in 1982. The current committee members are (no more than two from a country): B. C. Yen, Chairman (USA); P. Harremoes, Vice Chairman (Denmark); R. K. Price, Secretary (UK); P. J. Colyer (UK), M. Desbordes (France), W. C. Huber (USA), K. Krauth (FRG), A. Sjoberg (Sweden), and T. Sueishi (Japan).The IAHR/IAWPRC Joint Committee is forming a Task Group on Data Harmonization and Model Performance. One objective is to promote international urban drainage data harmonization for easy data and information exchange. Another objective is to publicize available models and data internationally. Comments and suggestions concerning the formation and charge of the Task Group are welcome and should be sent to: B. C. Yen, Dept. of Civil Engineering, Univ. of Illinois, 208 N. Romine St., Urbana, IL 61801.

  11. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  12. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  13. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  14. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  15. Harmonic Lattice Dynamics of Germanium

    International Nuclear Information System (INIS)

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  16. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  17. Expansion into lattice harmonics in cubic symmetries

    Science.gov (United States)

    Kontrym-Sznajd, G.

    2018-05-01

    On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

  18. Complex harmonic modal analysis of rotor systems

    International Nuclear Information System (INIS)

    Han, Dong Ju

    2015-01-01

    Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions

  19. Second harmonic generation in a bounded magnetoplasma

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1975-01-01

    An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma

  20. Nuclear pharmacy education: international harmonization

    International Nuclear Information System (INIS)

    Shaw, S.M.; Cox, P.H.

    1998-01-01

    Education of nuclear pharmacists exists in many countries around the world. The approach and level of education varies between countries depending upon the expectations of the nuclear pharmacist, the work site and the economic environment. In Australia, training is provided through distance learning. In Europe and Canada, nuclear pharmacists and radiochemists receive postgraduate education in order to engage in the small-scale preparation and quality control of radiopharmaceuticals as well as research and development. In the U.S.A., nuclear pharmacy practitioners obtain basic knowledge primarily through undergraduate programs taken when pursuit the first professional degree in pharmacy. Licensed practitioners in pharmacy enter the practice of nuclear pharmacy through distance learning programs or short courses. While different approaches to education exist, there is a basic core of knowledge and a level of competence required of all nuclear pharmacists and radiochemists providing radiopharmaceutical products and services. It was with this realization that efforts were initiated to develop harmonization concepts and documents pertaining to education in nuclear pharmacy. The benefits of international harmonization in nuclear pharmacy education are numerous. Assurance of the availability of quality professionals to provide optimal products and care to the patient is a principle benefit. Spanning national barriers through the demonstration of self governance and unification in education will enhance the goal of increased freedom of employment between countries. Harmonization endeavors will improve existing education programs through sharing of innovative concepts and knowledge between educators. Documents generated will benefit new educational programs especially in developing nations. A committee on harmonization in nuclear pharmacy education was formed consisting of educators and practitioners from the international community. A working document on education was

  1. The Harmonics of Kansei Images

    DEFF Research Database (Denmark)

    Su, Jianning; Restrepo-Giraldo, John Dairo

    2008-01-01

    sensibility it elicits on a person (kansei), is a key factor in the design of tools to support designers in delivering the right product’s appearance. This paper presents an approach to mathematically represent a product’s kansei based on the frequency signature (harmonics) of a shape. This mathematical...... representation should allow the automatic indexing and retrieval of images from a repository of design precedents. This is done through a series of experiments aiming at determining the relation between images, kansei words and the frequency signatures of those images. Tests suggest the method is promising...... and can be used for indexing images in Content Based Image Retrieval Systems....

  2. Hermitian harmonic maps into convex balls

    International Nuclear Information System (INIS)

    Li Zhenyang; Xi Zhang

    2004-07-01

    In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian manifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian harmonic maps when the domain is compact Hermitian manifold with non-empty boundary. The case where the domain manifold is complete(noncompact) is also studied. (author)

  3. Harmonic mappings into manifolds with boundary

    International Nuclear Information System (INIS)

    Chen Yunmei; Musina, R.

    1989-08-01

    In this paper we deal with harmonic maps from a compact Riemannian manifold into a manifold with boundary. In this case, a weak harmonic map is by definition a solution to a differential inclusion. In the first part of the paper we investigate the general properties of weak harmonic maps, which can be seen as solutions to a system of elliptic differential equations. In the second part we concentrate our attention on the heat flow method for harmonic maps. The result we achieve in this context extends a result by Chen and Struwe. (author). 21 refs

  4. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  5. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  6. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  7. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  8. Hyperspherical Harmonics and Their Physical Applications

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered....... The book is accompanied by programs and exercises designed for teaching and practical use....

  9. determination of determination of total harmonic distortion

    African Journals Online (AJOL)

    eobe

    from previous studies on power flow and harmonic analyses of each time of the 33kV feeder restoration. .... (magnitude and phase) are usually compared with standards ... In USA, IEEE applies whereas in Europe, a different .... The source data were obtained from the real life ... tables 1 to 4 are extracted from the harmonic.

  10. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  11. The harmonized INFOGEST in vitro digestion method

    NARCIS (Netherlands)

    Egger, Lotti; Ménard, Olivia; Delgado-Andrade, Cristina; Alvito, Paula; Assunção, Ricardo; Balance, Simon; Barberá, Reyes; Brodkorb, Andre; Cattenoz, Thomas; Clemente, Alfonso; Comi, Irene; Dupont, Didier; Garcia-Llatas, Guadalupe; Lagarda, María Jesús; Feunteun, Le Steven; Janssen Duijghuijsen, Lonneke; Karakaya, Sibel; Lesmes, Uri; Mackie, Alan R.; Martins, Carla; Meynier, Anne; Miralles, Beatriz; Murray, B.S.; Pihlanto, Anne; Picariello, Gianluca; Santos, C.N.; Simsek, Sebnem; Recio, Isidra; Rigby, Neil; Rioux, Laurie Eve; Stoffers, Helena; Tavares, Ana; Tavares, Lucelia; Turgeon, Sylvie; Ulleberg, E.K.; Vegarud, G.E.; Vergères, Guy; Portmann, Reto

    2016-01-01

    Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary

  12. The Harmonic Series Diverges Again and Again

    Science.gov (United States)

    Kifowit, Steven J.; Stamps, Terra A.

    2006-01-01

    The harmonic series is one of the most celebrated infinite series of mathematics. A quick glance at a variety of modern calculus textbooks reveals that there are two very popular proofs of the divergence of the harmonic series. In this article, the authors survey these popular proofs along with many other proofs that are equally simple and…

  13. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  14. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  15. Variational problems with obstacles and harmonic maps

    International Nuclear Information System (INIS)

    Musina, R.

    1990-08-01

    Our first purpose is to find a generalization of the usual definition of a harmonic map between two Riemannian manifolds in order to consider less regular target spaces. Our second aim was to extend a result by Chen and Struwe about the heat flow of harmonic mappings into manifolds with boundary. 19 refs

  16. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  17. Two examples of escaping harmonic maps

    International Nuclear Information System (INIS)

    Pereira do Valle, A.; Verjovsky, A.

    1988-12-01

    This paper is part of a study on the existence of special harmonic maps on complete non-compact Riemannian manifolds. We generalize the notion of escaping geodesic and prove some results on the existence of escaping harmonic maps. 11 refs, 6 figs

  18. Understanding fifth-harmonic generation in CLBO

    Science.gov (United States)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  19. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  20. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  1. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  3. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  4. Design and Characterization of 1.8-3.2 THz Schottky-based Harmonic Mixers

    OpenAIRE

    Bulcha, BT; Hesler, JL; Drakinskiy, V; Stake, J; Valavanis, A; Dean, P; Li, LH; Barker, NS

    2016-01-01

    A room-temperature Schottky diode-based WM-86 (WR-0.34) harmonic mixer was developed to build high-resolution spectrometers, and multi-pixel receivers in the THz region for applications such as radio astronomy, plasma diagnostics, and remote sensing. The mixer consists of a quartz-based Local Oscillator (LO), Intermediate-Frequency (IF) circuits, and a GaAs-based beam-lead THz circuit with an integrated diode. Measurements of the harmonic mixer were performed using a 2 THz solid-state source ...

  5. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    Science.gov (United States)

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  6. One component, volume heated, boiling pool thermohydraulics

    International Nuclear Information System (INIS)

    Bede, M.; Perret, C.; Pretrel, H.; Seiler, J.M.

    1993-01-01

    Prior work on boiling pools provided heat exchange correlations valid for bubbly flow with laminar or turbulent boundary layers. New experiments performed with water (SEBULON) and UO 2 (SCARABEE BF2) in a churn-turbulent flow configuration show unexpected heat flux distributions for which the maximum heat flux may be situated well below the pool surface. The origin of this behaviour is attributed to condensation effects, very unstable boundary layer flow and surface oscillation. A calculation model is discussed which permits to approach the experimental heat flux distribution with reasonable accuracy. (authors). 7 figs., 2 appendix., 14 refs

  7. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  8. Evaluation of Harmonics Impact on Digital Relays

    Directory of Open Access Journals (Sweden)

    Kinan Wannous

    2018-04-01

    Full Text Available This paper presents the concept of the impact of harmonic distortion on a digital protection relay. The aim is to verify and determine the reasons of a mal-trip or failure to trip the protection relays; the suggested solution of the harmonic distortion is explained by a mathematical model in the Matlab Simulink programming environment. The digital relays have been tested under harmonic distortions in order to verify the function of the relays algorithm under abnormal conditions. The comparison between the protection relay algorithm under abnormal conditions and a mathematical model in the Matlab Simulink programming environment based on injected harmonics of high values is provided. The test is separated into different levels; the first level is based on the harmonic effect of an individual harmonic and mixed harmonics. The test includes the effect of the harmonics in the location of the fault point into distance protection zones. This paper is a new proposal in the signal processing of power quality disturbances using Matlab Simulink and the power quality impact on the measurements of the power system quantities; the test simulates the function of protection in power systems in terms of calculating the current and voltage values of short circuits and their faults. The paper includes several tests: frequency variations and decomposition of voltage waveforms with Fourier transforms (model and commercial relay, the effect of the power factor on the location of fault points, the relation between the tripping time and the total harmonic distortion (THD levels in a commercial relay, and a comparison of the THD capture between the commercial relay and the model.

  9. Double Harmonic Transmission (D.H.T.

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2006-10-01

    Full Text Available The paper presents the construction and functioning of a new type of harmonic drive named double harmonic transmission (D.H.T.. In the second part of this paper is presented the dynamic analysis of the double harmonic transmission, which is based on the results of the experimental researches on the D.H.T. This study of the stress status and the forces distribution is necessary for to determine the durability on the portant elements of the D.H.T.

  10. The Virasoro algebra from harmonic superspace

    International Nuclear Information System (INIS)

    Saidi, E.H.; Zakkari, M.

    1990-08-01

    Using harmonic superspace techniques, we construct a new field realization of the Virasoro algebra. The main conformal objects are U(1) Cartan tensors instead of the U(1) Lorentz ones. The new conformal model, which admits moreover a d=2 (4,0) global supersymmetry is constructed out of the infinitely relaxed HST and FS hypermultiplets. The conformal current T 4+ together with the harmonic superspace OPE rules are given. The Virasoro algebra and the harmonic superspace Schwarzian derivative S 4+ are also derived. (author). 14 refs

  11. Pseudo harmonic morphisms on Riemannian polyhedra

    International Nuclear Information System (INIS)

    Aprodu, M.A.; Bouziane, T.

    2004-10-01

    The aim of this paper is to extend the notion of pseudo harmonic morphism (introduced by Loubeau) to the case when the source manifold is an admissible Riemannian polyhedron. We define these maps to be harmonic in the sense of Eells-Fuglede and pseudo-horizontally weakly conformal in our sense. We characterize them by means of germs of harmonic functions on the source polyhedron, in the sense of Korevaar-Schoen, and germs of holomorphic functions on the Kaehler target manifold. (author)

  12. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  13. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  14. Challenges and Opportunities for Harmonizing Research Methodology

    DEFF Research Database (Denmark)

    van Hees, V. T.; Thaler-Kall, K.; Wolf, K. H.

    2016-01-01

    Objectives: Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how...... increased methodological harmonization may be achieved. Methods: The authors of this work convened for a two-day workshop (March 2014) themed on methodological harmonization of raw accelerometry. The discussions at the workshop were used as a basis for this review. Results: Key stakeholders were identified...... as manufacturers, method developers, method users (application), publishers, and funders. To facilitate methodological harmonization in raw accelerometry the following action points were proposed: i) Manufacturers are encouraged to provide a detailed specification of their sensors, ii) Each fundamental step...

  15. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... that could be used to quantify the internal noise and provide strong constraints for physiologically inspired models of pitch perception....

  16. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  17. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  18. Reduction of Harmonics by 18-Pulse Rectifier

    Directory of Open Access Journals (Sweden)

    Stanislav Kocman

    2008-01-01

    Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.

  19. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  20. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)

    The next is the deformation dipole model (DDM) of Karo and Hardy. [19] and rigid shell ... that the most realistic model for complete harmonic dynamical behaviour of the ..... metals, Ph.D. Thesis (Banaras Hindu University, 1971) Unpublished.

  1. Multisite EPR oximetry from multiple quadrature harmonics.

    Science.gov (United States)

    Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C

    2012-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Stable harmonic maps from complete manifolds

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1986-01-01

    By choosing distinguished cross-sections in the second variational formula for harmonic maps from manifolds with not too fast volume growth into certain submanifolds in the Euclidean space some Liouville type theorems have been proved in this article. (author)

  3. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  4. International Harmonization of Reactor Licensing Regulations

    International Nuclear Information System (INIS)

    Kuhnt, Dietmar.

    1977-01-01

    The purpose of a harmonization policy for reactor licensing regulations on the basis of already considerable experience is to attain greater rationalisation in this field, in the interest of economic policy and healthy competition, and most important, radiation protection and safety of installations. This paper considers the legal instruments for such harmonization and the conditions for their implementation, in particular within the Communities framework. (NEA) [fr

  5. Structural relations between nested harmonic sums

    International Nuclear Information System (INIS)

    Bluemlein, J.

    2008-07-01

    We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)

  6. Structural relations between nested harmonic sums

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.

    2008-07-15

    We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)

  7. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  8. Striving to further harmonization of sustainability criteria for bioenergy in Europe: Recommendations from a stakeholder questionnaire

    International Nuclear Information System (INIS)

    Dam, J. van; Junginger, M.

    2011-01-01

    This questionnaire analyzed the ongoing development of sustainability criteria for solid and liquid bioenergy in the European Union and further actions needed to come to a harmonization of certification systems, based on EU stakeholder views. The questionnaire, online from February to August 2009, received 473 responses collected from 25 EU member countries and 9 non-European countries; 285 could be used for further processing. A large majority of all stakeholders (81%) indicated that a harmonized certification system for biomass and bioenergy is needed, albeit some limitations. Amongst them, there is agreement that (i) a criterion on 'minimization of GHG emissions' should be included in a certification system for biomass and bioenergy, (ii) criteria on optimization of energy and on water conservation are considered of high relevance, (iii) the large variety of geographical areas, crops, residues, production processes and end-uses limits development towards a harmonized certification system for sustainable biomass and bioenergy in Europe, (iv) making better use of existing certification systems and standards improves further development of a harmonized European biomass and bioenergy sustainability certification system and (v) it is important to link a European certification system to international declarations and to expand such a system to other world regions. - Highlights: → The majority of stakeholders agree on the need of a certification system for biomass and bioenergy. → Limitations for harmonizing a European system include the geographical diversity, crops and processes for biomass and bioenergy. → It is important to consider the international declarations when developing a European system.

  9. High-order harmonic generation from a two-dimensional band structure

    Science.gov (United States)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  10. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  11. Harmonic response of coupled and uncoupled granular YBCO

    International Nuclear Information System (INIS)

    Torralba, Maria Veronica S; Sarmago, Roland V

    2004-01-01

    The harmonic responses of granular YBCO were obtained via mutual inductance measurements. Two samples, one with and another without intergranular coupling, were investigated in terms of the harmonic components of magnetization at various field amplitudes and frequencies. By comparing the behaviour of the features in the harmonics to that of the peaks in the fundamental response, we explicitly identified which features in the harmonics originate from intragranular harmonic generation and which arise due to a contribution of intergranular coupling. Harmonic responses were obtained despite the absence of vortices and even harmonics were detected in a purely AC magnetic field

  12. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2011-02-15

    ... CONTACT: If you have questions about this document, contact Mr. Richard Bornhorst at 202-372-1426 or [email protected] . If you have questions about viewing the docket (USCG-2009-0091), call Ms... AGENCY: Coast Guard, DHS. ACTION: Rule; information collection approval. SUMMARY: On October 19, 2010...

  13. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-10-19

    ...), U.S. Department of Transportation, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue... is categorically excluded under section 2.B.2, figure 2-1, paragraphs (34)(a) and (d) of the... followed after unloading. 148.115 Report of incidents. Subpart D--Stowage and Segregation 148.120 Stowage...

  14. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... reduced iron (DRI) as briquettes molded at a temperature of 650 [deg]C or higher that have a density of 5... temperature of 650 [deg]C or higher or had a density of 5.0 g/cm[sup3] or greater. In this proposed rule, we... bulk materials of Hazard Classes 4 through 9. c. One comment recommended that a DCM be required for...

  15. On the conformal equivalence of harmonic maps and exponentially harmonic maps

    International Nuclear Information System (INIS)

    Hong Minchun.

    1991-06-01

    Suppose that (M,g) and (N,h) are compact smooth Riemannian manifolds without boundaries. For m = dim M ≥3, and Φ: (M,g) → (N,h) is exponentially harmonic, there exists a smooth metric g-tilde conformally equivalent to g such that Φ: (M,g-tilde) → (N,h) is harmonic. (author). 7 refs

  16. Self-driven particles in linear flows and trapped in a harmonic potential

    Science.gov (United States)

    Sandoval, Mario; Hidalgo-Gonzalez, Julio C.; Jimenez-Aquino, Jose I.

    2018-03-01

    We present analytical expressions for the mean-square displacement of self-driven particles in general linear flows and trapped in a harmonic potential. The general expressions are applied to three types of linear flows, namely, shear flow, solid-body rotation flow, and extensional flow. By using Brownian dynamics simulations, the effect of trapping and external linear flows on the particles' distribution is also elucidated. These simulations also enabled us to validate our theoretical results.

  17. 78 FR 46571 - Solid Urea From the Russian Federation: Preliminary Results of Antidumping Duty Administrative...

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-821-801] Solid Urea From the Russian... (the Department) is conducting an administrative review of the antidumping duty order on solid urea... subject to the order is solid urea. The product is currently classified under the Harmonized Tariff...

  18. Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer.

    Science.gov (United States)

    Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry

    2015-11-01

    The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.

  19. Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei

    2017-01-01

    The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considerin...... results of the slim dc-link drive, loaded up to 2.0 kW, are presented to validate the theoretical analysis....... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...

  20. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  1. Regulatory harmonization of the Saskatchewan uranium mines

    International Nuclear Information System (INIS)

    Forbes, R.; Moulding, T.; Alderman, G.

    2006-01-01

    The uranium mining industry in Saskatchewan produces approximately 30% of the world's production of uranium. The industry is regulated by federal and provincial regulators. The Canadian Nuclear Safety Commission is the principal federal regulator. The principal Saskatchewan provincial regulators are Saskatchewan Environment for provincial environmental regulations and Saskatchewan Labour for occupational health and safety regulations. In the past, mine and mill operators have requested harmonization in areas such as inspections and reporting requirements from the regulators. On February 14, 2003, Saskatchewan Environment, Saskatchewan Labour and the Canadian Nuclear Safety Commission signed a historical agreement for federal/provincial co-operation called the Canadian Nuclear Safety Commission - Saskatchewan Administrative Agreement for the Regulation of Health, Safety and the Environment at Saskatchewan Uranium Mines and Mills. This initiative responds to a recommendation made by the Joint Federal-Provincial Panel on Uranium Mining Developments in Northern Saskatchewan in 1997 and lays the groundwork to co-ordinate and harmonize their respective regulatory regimes. The implementation of the Agreement has been very successful. This paper will address the content of the Agreement including the commitments, the deliverables and the expectations for a harmonized compliance program, harmonized reporting, and the review of harmonized assessment and licensing processes as well as possible referencing of Saskatchewan Environment and Saskatchewan Labour regulations in the Nuclear Safety and Control Act. The management and implementation process will also be discussed including the schedule, stakeholder communication, the results to date and the lessons learned. (author)

  2. Harmonic and complex analysis in several variables

    CERN Document Server

    Krantz, Steven G

    2017-01-01

    Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...

  3. Harmonic analysis from Fourier to wavelets

    CERN Document Server

    Pereyra, Maria Cristina

    2012-01-01

    In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...

  4. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  5. Harmonic Maass forms and mock modular forms

    CERN Document Server

    Bringmann, Kathrin; Ono, Ken

    2017-01-01

    Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10-15 years, this theory has been extended to certain non-holomorphic functions, the so-called "harmonic Maass forms". The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called "mock theta functions" which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.

  6. Faddeev wave function decomposition using bipolar harmonics

    International Nuclear Information System (INIS)

    Friar, J.L.; Tomusiak, E.L.; Gibson, B.F.; Payne, G.L.

    1981-01-01

    The standard partial wave (channel) representation for the Faddeev solution to the Schroedinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3 He Coulomb energy

  7. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  8. Laparoscopic nephrectomy using the harmonic scalpel.

    Science.gov (United States)

    Helal, M; Albertini, J; Lockhart, J; Albrink, M

    1997-08-01

    Laparoscopic nephrectomy is gaining popularity. Improved instrumentation is making surgery easier with fewer complications. Our first three laparoscopic nephrectomies using the Harmonic Scalpel were performed on two women and one man. The surgical indications were nonfunctioning kidneys (two left, one right) with hypertension in one patient and stone disease in two. The three patients had a mean age of 46.3 years. The average hospital stay was 4 days, the average operative time 3.7 hours, and the average blood loss 160 mL. No complications occurred. Patients resumed oral intake within 8 hours postoperatively. We found the Harmonic Scalpel easy and safe to use. It saved time, was cost effective, and was capable of easily controlling small-vessel bleeding. In conclusion, the Harmonic Scalpel could be used effectively for both dissection and bleeding control without suction or other instrumentation.

  9. Optical High Harmonic Generation in C60

    Science.gov (United States)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  10. Harmonics in large offshore wind farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert

    and nature of various harmonic components. A comprehensive comparison of harmonic voltages and currents based on probability distribution estimation and appropriate statistics calculation (mean, variance, probability density function, etc.) is applied. Such approach gives a better overview and comparison...... and analysis, and ϐinally ending up on modelling and models application. Different aspects of validation in time domain, frequency domain, and by application of statistical methods are mentioned in relation to respective problems. Measurements constitute a core part in industry-oriented research. Due...... that it is of great importance to know the nature of generated harmonics in large offshore wind farms in order to apply the most suitable data processing technique. Time-frequency analysis based on multiresolution wavelet transform is used in order to perform time-frequency domain analysis helpful to distinguish...

  11. Three-Phase Harmonic Analysis Method for Unbalanced Distribution Systems

    Directory of Open Access Journals (Sweden)

    Jen-Hao Teng

    2014-01-01

    Full Text Available Due to the unbalanced features of distribution systems, a three-phase harmonic analysis method is essential to accurately analyze the harmonic impact on distribution systems. Moreover, harmonic analysis is the basic tool for harmonic filter design and harmonic resonance mitigation; therefore, the computational performance should also be efficient. An accurate and efficient three-phase harmonic analysis method for unbalanced distribution systems is proposed in this paper. The variations of bus voltages, bus current injections and branch currents affected by harmonic current injections can be analyzed by two relationship matrices developed from the topological characteristics of distribution systems. Some useful formulas are then derived to solve the three-phase harmonic propagation problem. After the harmonic propagation for each harmonic order is calculated, the total harmonic distortion (THD for bus voltages can be calculated accordingly. The proposed method has better computational performance, since the time-consuming full admittance matrix inverse employed by the commonly-used harmonic analysis methods is not necessary in the solution procedure. In addition, the proposed method can provide novel viewpoints in calculating the branch currents and bus voltages under harmonic pollution which are vital for harmonic filter design. Test results demonstrate the effectiveness and efficiency of the proposed method.

  12. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  13. Interbasis expansions for isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2012-03-12

    The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.

  14. Harmonic Cavity Performance for NSLS-II

    CERN Document Server

    Blednykh, Alexei; Podobedov, Boris; Rose, James; Towne, Nathan A; Wang, Jiunn-Ming

    2005-01-01

    NSLS-II is a 3 GeV ultra-high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. Ultra-low emittance bunch combined with a short bunch length results in the Touschek lifetime of only a few hours, which strongly advocates including harmonic RF in the baseline design of NSLS-II. This paper describes the required harmonic RF parameters, trade-offs between the possible choices and the expected system performance, including the implications on lifetime and instabilities.

  15. Quantization of the damped harmonic oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Fresneda, R., E-mail: fresneda@gmail.co [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2011-04-11

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: We prove the local equivalence of two damped harmonic oscillator models. We find different high energy behaviors between the two models. Based on the local equivalence, we make a simple construction of the coherent states.

  16. Quantization of the damped harmonic oscillator revisited

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Gitman, D.M.

    2011-01-01

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: → We prove the local equivalence of two damped harmonic oscillator models. → We find different high energy behaviors between the two models. → Based on the local equivalence, we make a simple construction of the coherent states.

  17. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  18. Hyperspherical Harmonics and Their Physical Applications

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered...... by specialists, into an easily-used tool with a place in the working kit of all theoretical physicists, theoretical chemists and mathematicians. The theory presented here is accessible without the knowledge of Lie-groups and representation theory, and can be understood with an ordinary knowledge of calculus...

  19. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  20. Music of the heavens Kepler's harmonic astronomy

    CERN Document Server

    Stephenson, Bruce

    2014-01-01

    Valued today for its development of the third law of planetary motion, Harmonice mundi (1619) was intended by Kepler to expand on ancient efforts to discern a Creator's plan for the planetary system--an arrangement thought to be based on harmonic relationships. Challenging critics who characterize Kepler's theories of harmonic astronomy as ""mystical,"" Bruce Stephenson offers the first thorough technical analysis of the music the astronomer thought the heavens made, and the logic that led him to find musical patterns in his data. In so doing, Stephenson illuminates crucial aspects of Kepler'

  1. Harmonic Interaction Analysis in Grid-connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    research about the harmonic interaction. However, it is found that the Linear Time Invariant (LTI) based model analysis makes it difficult to analyze these phenomena because of the time-varying properties of the power electronic based systems. This paper investigates grid-connected converter by using......An increasing number of power electronic based Distributed Generation (DG) systems and loads generate not only characteristic harmonics but also unexpected harmonics. Several methods like impedance based analysis, which are derived from the conventional average model, are introduced to perform...

  2. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  3. Synthesis of Variable Harmonic Impedance in Inverter-Interfaced Distributed Generation Unit for Harmonic Damping Throughout a Distribution Network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop...... at the dominant harmonic frequencies. Thus, the harmonic voltage drop on the grid-side inductance and the harmonic resonances throughout a distribution feeder with multiple shunt-connected capacitors can be effectively attenuated. Simulation and laboratory test results validate the performance of the proposed...

  4. Modelling the harmonized tertiary Institutions Salary Structure ...

    African Journals Online (AJOL)

    This paper analyses the Harmonized Tertiary Institution Salary Structure (HATISS IV) used in Nigeria. The irregularities in the structure are highlighted. A model that assumes a polynomial trend for the zero step salary, and exponential trend for the incremental rates, is suggested for the regularization of the structure.

  5. Harmonic pulse testing for well performance monitoring

    NARCIS (Netherlands)

    Fokker, Peter A.; Salina Borello, Eloisa; Verga, Francesca; Viberti, Dario

    2018-01-01

    Harmonic testing was developed as a form of well testing that can be applied during ongoing production or injection operations, as a pulsed signal is superimposed on the background pressure trend. Thus no interruption of well and reservoir production is needed before and during the test. If the

  6. Harmonic-hopping in Wallacea's bats.

    Science.gov (United States)

    Kingston, Tigga; Rossiter, Stephen J

    2004-06-10

    Evolutionary divergence between species is facilitated by ecological shifts, and divergence is particularly rapid when such shifts also promote assortative mating. Horseshoe bats are a diverse Old World family (Rhinolophidae) that have undergone a rapid radiation in the past 5 million years. These insectivorous bats use a predominantly pure-tone echolocation call matched to an auditory fovea (an over-representation of the pure-tone frequency in the cochlea and inferior colliculus) to detect the minute changes in echo amplitude and frequency generated when an insect flutters its wings. The emitted signal is the accentuated second harmonic of a series in which the fundamental and remaining harmonics are filtered out. Here we show that three distinct, sympatric size morphs of the large-eared horseshoe bat (Rhinolophus philippinensis) echolocate at different harmonics of the same fundamental frequency. These morphs have undergone recent genetic divergence, and this process has occurred in parallel more than once. We suggest that switching harmonics creates a discontinuity in the bats' perception of available prey that can initiate disruptive selection. Moreover, because call frequency in horseshoe bats has a dual function in resource acquisition and communication, ecological selection on frequency might lead to assortative mating and ultimately reproductive isolation and speciation, regardless of external barriers to gene flow.

  7. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  8. 'quantumness' measures in the decohering harmonic oscillator

    Indian Academy of Sciences (India)

    We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of ...

  9. Sobolev Spaces Associated to the Harmonic Oscillator

    Indian Academy of Sciences (India)

    We define the Hermite-Sobolev spaces naturally associated to the harmonic oscillator H = − + | x | 2 . Structural properties, relations with the classical Sobolev spaces, boundedness of operators and almost everywhere convergence of solutions of the Schrödinger equation are also considered.

  10. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  11. Finite mode analysis through harmonic waveguides

    NARCIS (Netherlands)

    Alieva, T.; Wolf, K.B.

    2000-01-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part

  12. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  13. The Harmonic Oscillator–A Simplified Approach

    Directory of Open Access Journals (Sweden)

    L. R. Ganesan

    2008-01-01

    Full Text Available Among the early problems in quantum chemistry, the one dimensional harmonic oscillator problem is an important one, providing a valuable exercise in the study of quantum mechanical methods. There are several approaches to this problem, the time honoured infinite series method, the ladder operator method etc. A method which is much shorter, mathematically simpler is presented here.

  14. Laguerre polynomials by a harmonic oscillator

    Science.gov (United States)

    Baykal, Melek; Baykal, Ahmet

    2014-09-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.

  15. Laguerre polynomials by a harmonic oscillator

    International Nuclear Information System (INIS)

    Baykal, Melek; Baykal, Ahmet

    2014-01-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)

  16. achieving sustainable development through tax harmonization

    African Journals Online (AJOL)

    RAYAN_

    policies is a great challenge for governments; tax harmonization can be adopted for ... and the development trajectory of taxing state in diverse ways. For ... revenue is lost development opportunity.3 The existence of high corporate tax rate in a .... 26 This is levied pursuant to the Tertiary Education Trust Fund Tax Act 2011.

  17. Harmonicity in supermanifolds and sigma models

    International Nuclear Information System (INIS)

    Munoz-Masque, Jaime; Vallejo, Jose A.

    2009-01-01

    We show that given an odd metric G on a supermanifold (M, A) and its associated Laplacian Δ, it is possible to interpret harmonic superfunctions (i.e., those f is an element of A such that Δf = 0) as solutions to a variational problem describing a supersymmetric sigma model.

  18. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 124; Issue 1. General -Harmonic Blaschke Bodies. Yibin Feng Weidong Wang. Volume 124 Issue 1 February 2014 pp ... Author Affiliations. Yibin Feng1 Weidong Wang1. Department of Mathematics, China Three Gorges University, Yichang 443002, China ...

  19. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  20. Rotation harmonics for a numerical diatomic potential

    International Nuclear Information System (INIS)

    Kobeissi, H.; Korek, M.

    1983-01-01

    The problem of the determination of the rotation harmonics phi 1 , phi 2 , ... for the case of a numerical diatomic potential is considered. These harmonics defined in a recent work by psisub(vJ) = psisub(vO) + lambda 2 phi 2 + ... (where psisub(vJ) is the wave function of the vibration level v and the rotation level J, and lambda = J(J+1)) are studied for the case of the Dunham potential and for a numerical potential defined by the coordinates of its turning points with polynomial interpolations and extrapolations. It is proved that the analytical expressions of the harmonics phi 1 , phi 2 , ... reduce to polynomials where the coefficients are simply related to those of the potential in the case of the Dunham potential, and to the coordinates of the turning points in the case of the numerical potential. The numerical application is simple. The examples presented show that the vibration-rotation wave function psisub(vJ) calculated by using two harmonics only is ''exact'' up to eight significant figures

  1. Mapping from rectangular to harmonic representation

    International Nuclear Information System (INIS)

    Schneider, W.; Bateman, G.

    1986-08-01

    An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid

  2. ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Valentin Gabriel CRISTEA

    2017-05-01

    Full Text Available There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.

  3. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  4. Audibility of harmonics in periodic "white noise"

    NARCIS (Netherlands)

    Duifhuis, H.

    1973-01-01

    The finding that spectrally suppressed high harmonics (n>16) in a periodic pulse are perceptible has been related [H. Duifhuis, J. Acoust. Soc. Amer. 48, 888–893 (1970); 49, 1155–1163 (1971)] to the ear's limited resolving power in peripheral frequency analysis. The limited frequency resolution

  5. On computing ellipsoidal harmonics using Jekeli's renormalization

    Czech Academy of Sciences Publication Activity Database

    Sebera, Josef; Bouman, J.; Bosch, W.

    2012-01-01

    Roč. 86, č. 9 (2012), s. 713-726 ISSN 0949-7714 Institutional support: RVO:67985815 Keywords : Earth's gravitational field * spherical and ellipsoidal harmonics * hypergeometric function Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.808, year: 2012

  6. Power Divider for Waveforms Rich in Harmonics

    Science.gov (United States)

    Sims, William Herbert, III

    2005-01-01

    A method for dividing the power of an electronic signal rich in harmonics involves the use of an improved divider topology. A divider designed with this topology could be used, for example, to propagate a square-wave signal in an amplifier designed with a push-pull configuration to enable the generation of more power than could be generated in another configuration.

  7. Shedding new light on Gaussian harmonic analysis

    NARCIS (Netherlands)

    Teuwen, J.J.B.

    2016-01-01

    This dissertation consists out of two rather disjoint parts. One part concerns some results on Gaussian harmonic analysis and the other on an optimization problem in optics. In the first part we study the Ornstein–Uhlenbeck process with respect to the Gaussian measure. We focus on two areas. One is

  8. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  9. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  10. New ultrafast X-ray sources and their applications. Coherent ultrashort X UV emission by harmonic generation

    International Nuclear Information System (INIS)

    Salieres, P.; Le deroff, L.; Hergott, J.F.; Merdji, H.; Carre, B.

    2000-01-01

    By focusing an intense short-pulse laser into a rare gas jet, high-order harmonics of the laser frequency are generated. Considerable progress have been made in the last few years, with the observation of harmonic orders higher that 200, extending the emission down to 3 nm. Besides its fundamental interest, this XUV emission represents a new source with unique properties of coherence and ultrashort (femtosecond) duration. A growing number of applications are reported, ranging from atomic and molecular spectroscopy to solid-state and plasma physics. (authors)

  11. Symmetries in physics and harmonics; Symmetrien in Physik und Harmonik

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, D.

    2006-07-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  12. Voltage harmonic elimination with RLC based interface smoothing filter

    International Nuclear Information System (INIS)

    Chandrasekaran, K; Ramachandaramurthy, V K

    2015-01-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented. (paper)

  13. Probabilistic Aspects of Harmonic Emission of Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Kocewiak, Lukasz Hubert

    2011-01-01

    In this article, a new probabilistic method of as-sessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single...... turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues...... of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some diffi-culties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farm is connected must be included in the study. Furthermore, a very detailed...

  14. Hail, Procrustes! Harmonized accounting standards as a Procrustean bed

    NARCIS (Netherlands)

    Stecher, J.; Suijs, J.P.M.

    2012-01-01

    This article finds that the use of a harmonized accounting standard, such as the International Financial Reporting Standards, increases the information available to markets only if institutional differences across countries using the harmonized standard are insignificant. In all other cases,

  15. Harmonic Damping in DG-Penetrated Distribution Network

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2016-01-01

    Grid background harmonics may be amplified, propagate through a long distribution feeder and even lead to power system instability. In this paper, harmonic propagation issue is investigated and mitigation of the harmonics is analyzed by using transmission line theory which has already been applied...... in power systems. It is demonstrated that a specific harmonic will not be amplified if the feeder’s length is less than one quarter of the harmonic wavelength meanwhile the terminal impedance is less than characteristic impedance. Besides, three scenarios will be considered in accordance...... with the relationship between the feeder’s length and harmonic wavelength. Harmonic suppression control strategies will be respectively designed considering 5th and 7th harmonics coexisting in the distribution line. Finally, a simulation study has been performed to verify the theoretical analysis and demonstrate...

  16. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [University Hospital, Nuclear Medicine Department, Caen (France); Caen University, Inserm U1086 ANTICIPE, Caen (France); Lasnon, Charline [Caen University, Inserm U1086 ANTICIPE, Caen (France); Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen (France); Veit-Haibach, Patrick [University Hospital Zurich, Department of Nuclear Medicine and Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Health Network, University of Toronto, Joint Department Medical Imaging, Toronto (Canada); Sera, Terez [University of Szeged, Nuclear Medicine Department, Szeged (Hungary); Sattler, Bernhard [University Hospital of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Boellaard, Ronald [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands)

    2017-08-15

    Quantitative positron emission tomography/computed tomography (PET/CT) can be used as diagnostic or prognostic tools (i.e. single measurement) or for therapy monitoring (i.e. longitudinal studies) in multicentre studies. Use of quantitative parameters, such as standardized uptake values (SUVs), metabolic active tumor volumes (MATVs) or total lesion glycolysis (TLG), in a multicenter setting requires that these parameters be comparable among patients and sites, regardless of the PET/CT system used. This review describes the motivations and the methodologies for quantitative PET/CT performance harmonization with emphasis on the EANM Research Ltd. (EARL) Fluorodeoxyglucose (FDG) PET/CT accreditation program, one of the international harmonization programs aiming at using FDG PET as a quantitative imaging biomarker. In addition, future accreditation initiatives will be discussed. The validation of the EARL accreditation program to harmonize SUVs and MATVs is described in a wide range of tumor types, with focus on therapy assessment using either the European Organization for Research and Treatment of Cancer (EORTC) criteria or PET Evaluation Response Criteria in Solid Tumors (PERCIST), as well as liver-based scales such as the Deauville score. Finally, also presented in this paper are the results from a survey across 51 EARL-accredited centers reporting how the program was implemented and its impact on daily routine and in clinical trials, harmonization of new metrics such as MATV and heterogeneity features. (orig.)

  17. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  18. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  19. Harmonic Calculation Software for Industrial Applications with Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Hansen, S.; Blaabjerg, Frede

    2005-01-01

    This paper describes the evaluation of a new harmonic software. By using a combination of a pre-stored database and new interpolation techniques the software can very fast provide the harmonic data on real applications. The harmonic results obtained with this software have acceptable precision even...

  20. Harmonic calculation software for industrial applications with ASDs

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan

    2007-01-01

    This article describes the evaluation of new harmonic calculation software. By using a combination of a prestored database and new interpolation techniques the software can provide the harmonic data on real applications of a very fast speed. The harmonic results obtained with this software have a...

  1. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  2. A Look at Damped Harmonic Oscillators through the Phase Plane

    Science.gov (United States)

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  3. Harmonic Function of Poincare Cone Condition In Solving Dirichlet ...

    African Journals Online (AJOL)

    Harmonic Function of Poincare Cone Condition In Solving Dirichlet Problem. ... Journal of the Nigerian Association of Mathematical Physics ... theorem, the dirichlet problem and maximum principle where we conclude that the application of sums , differences and scalar multiples of harmonic functions are again harmonic.

  4. HARMONICS SURFACES OF GRAPHIC TYPE IN R3

    Directory of Open Access Journals (Sweden)

    Carlos Carrión Riveros

    2016-06-01

    Full Text Available In this research we study harmonic surfaces immersed in R3. We dened Harmonic surfaces of graphic type and showed that a harmonious surface graphic type is minimal if and only if it is part of a plane or a helix. Also, we give a characterization of harmonic surfaces graphic type parameterized by asymptotic lines and some examples.

  5. Pitch identification and discrimination for complex tones with many harmonics

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Smurzyński, J.

    1990-01-01

    Four experiments are reported that deal with pitch perception of harmonic complex tones containing up to 11 successive harmonics. In particular, the question is raised whether the pitch percept of the missing fundamental is mediated only by low-order resolvable harmonics, or whether it can also be

  6. Twenty-Four Tuba Harmonics Using a Single Pipe Length

    Science.gov (United States)

    Holmes, Bud; Ruiz, Michael J.

    2017-01-01

    Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 "YouTube: Tuba Harmonics" (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the…

  7. Audibility of high harmonics in a periodic pulse

    NARCIS (Netherlands)

    Duifhuis, H.

    1970-01-01

    A periodic pulse consisting of sufficiently narrow pulses has a frequency spectrum which contains all harmonics with equal amplitude. Owing to the limited resolving power of the hearing organ, only the low harmonics can be perceived separately. The high harmonics are heard together as one complex

  8. The spherical harmonics method, 1 (general development of the theory)

    International Nuclear Information System (INIS)

    Mark, C.

    1957-02-01

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle Ψ(→/r, →/Ω) in spherical harmonic tensors formed from →/Ω the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density Ψ (o) (r). This equation has the form where the numbers ν i depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of Ψ(→/r, →/Ω) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of Ψ(→/r, →/Ω) which we retain be continuous; and this determines the constants in the solution for Ψ (o) (→/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  9. The spherical harmonics method, 1 (general development of the theory)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1957-02-15

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle {Psi}({yields}/r, {yields}/{Omega}) in spherical harmonic tensors formed from {yields}/{Omega} the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density {Psi}{sup (o)}(r). This equation has the form where the numbers {nu}{sub i} depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of {Psi}({yields}/r, {yields}/{Omega}) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of {Psi}({yields}/r, {yields}/{Omega}) which we retain be continuous; and this determines the constants in the solution for {Psi}{sup (o)}({yields}/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  10. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  11. Physics of tissue harmonic imaging by ultrasound

    Science.gov (United States)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  12. Exact solution of the time-dependent harmonic plus an inverse harmonic potential with a time-dependent electromagnetic field

    International Nuclear Information System (INIS)

    Yuece, Cem

    2003-01-01

    In this paper, the problem of the charged harmonic plus an inverse harmonic oscillator with time-dependent mass and frequency in a time-dependent electromagnetic field is investigated. It is reduced to the problem of the inverse harmonic oscillator with time-independent parameters and the exact wave function is obtained

  13. Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...

  14. Sequence Domain Harmonic Modeling of Type-IV Wind Turbines

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim Høj; Rasmussen, Tonny Wederberg

    2017-01-01

    -sampled pulsewidth modulation and an analysis of converter generated voltage harmonics due to compensated dead-time. The decoupling capabilities of the proposed the SD harmonic model are verified through a power quality (PQ) assessment of a 3MW Type-IV wind turbine. The assessment shows that the magnitude and phase...... of low-order odd converter generated voltage harmonics are dependent on the converter operating point and the phase of the fundamental component of converter current respectively. The SD harmonic model can be used to make PQ assessments of Type-IV wind turbines or incorporated into harmonic load flows...... for computation of PQ in wind power plants....

  15. Harmonic Resonances in Wind Power Plants

    DEFF Research Database (Denmark)

    Fernandez, Francisco Daniel Freijedo; Chaudhary, Sanjay; Teodorescu, Remus

    2015-01-01

    This work reviews the state-of-the-art in the field of harmonic resonance problems in Wind Power Plants (WPPs). Firstly, a generic WPP is modeled according to the equivalent circuits of its passive and active components. Main focus is put on modeling active components, i.e. the ones based on power...... converters. Subsequently, pros and cons of frequency and time domain analysis methods are outlined. The next sections are devoted to mitigation methods implemented in the power electronics converters. From the wind turbine perspective, different techniques to enhance the robustness of the controller...... are analyzed. Subsequently, the suitability for active damping of harmonics using STATCOM devices is assessed, with focus both on control techniques and power converter technologies....

  16. Background harmonic superfields in N=2 supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1998-01-01

    A modification of the harmonic superfield formalism in D=4, N=2 supergravity using a subsidiary condition of covariance under the background supersymmetry with a central charge (B-covariance) is considered. Conservation of analyticity together with the B-covariance leads to the appearance of linear gravitational superfields. Analytic prepotentials arise in a decomposition of the background linear superfields in terms of spinor coordinates and transform in a nonstandard way under the background supersymmetry. The linear gravitational superfields can be written via spinor derivatives of nonanalytic spinor prepotentials. The perturbative expansion of supergravity action in terms of the B-covariant superfields and the corresponding version of the differential-geometric formalism are considered. We discuss the dual harmonic representation of the linearized extended supergravity, which corresponds to the dynamical condition of Grassmann analyticity

  17. Harmonization game. [Need for management to resolve

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, I

    1977-01-01

    The problem is to try to harmonize socio-economic and environmental goals by redefining patterns of resource use and the uses of growth. The author uses examples mainly of developing countries, with the exception of the time uses, but the same framework can be applied to industrial countries faced by a development crisis of their own. The interrrelations that exist between demand, supply, and the environment are summarized. The development goal consists of a mix of goods and service which reflects the working time of the population as well as of different models of use of available non-working time. It is concluded that for industrialized and developing countries the harmonization game cannot happen instantly. Some measures require only imagination while others require retooling of the economy with low-waste technology or the promotion of solar house heating requiring time and investment. (MCW)

  18. Simulation of Second Harmonic Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2010-01-01

    A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second...... harmonic component based on ASA and Field II, and to compare with results from the simulation program Abersim. A linear array transducer with a center frequency of 4 MHz and 64 active elements is used as the transmitting source. The initial plane is 5 mm away from the transducer surface...

  19. Overhead distribution line models for harmonics studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, M.; Xu, W.; Dommel, H.W.

    1994-01-01

    Carson's formulae and Maxwell's potential coefficients are used for calculating the per unit length series impedances and shunt capacitances of the overhead lines. The per unit length values are then used for building the models, nominal pi-circuit, and equivalent pi-circuit at the harmonic frequencies. This paper studies the accuracy of these models for presenting the overhead distribution lines in steady-state harmonic solutions at frequencies up to 5 kHz. The models are verified with a field test on a 25 kV distribution line and the sensitivity of the models to ground resistivity, skin effect, and multiple grounding is reported.

  20. Generating transverse response explicitly from harmonic oscillators

    Science.gov (United States)

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  1. MMS Observations of Harmonic Electromagnetic Cyclotron Waves

    Science.gov (United States)

    Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.

    2017-12-01

    Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.

  2. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  3. Spherical harmonics and integration in superspace

    International Nuclear Information System (INIS)

    Bie, H de; Sommen, F

    2007-01-01

    In this paper, the classical theory of spherical harmonics in R m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral

  4. Harmonic surface wave propagation in plasma

    International Nuclear Information System (INIS)

    Shivarova, A.; Stoychev, T.

    1980-01-01

    Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)

  5. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  6. Investigation of Student Reasoning about Harmonic Motions

    Science.gov (United States)

    Tongnopparat, N.; Poonyawatpornkul, J.; Wattanakasiwich, P.

    This study aimed to investigate student reasoning about harmonic oscillations. We conducted a semi-structured interview based on three situations of harmonic motions—(1) a mass attaching to spring and horizontally oscillating without damping, (2) the same situation but vertically oscillating and (3) a mass attaching to spring and oscillating in viscous liquid. Forty-five second-year students taking a vibrations and wave course at Chiang Mai University, Thailand participated in a fifteen-minute interview, which was video-recorded. The videos were transcribed and analyzed by three physics instructors. As results, we found that most students had misconceptions about angular frequency and energy mostly in the second and third situations.

  7. Advanced Gouy phase high harmonics interferometer

    Science.gov (United States)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  8. Harmonics in a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  9. Harmonic curvatures and generalized helices in En

    International Nuclear Information System (INIS)

    Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi

    2009-01-01

    In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.

  10. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-01-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α 2 ≃ 2α 1

  11. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    Science.gov (United States)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2015-09-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.

  12. Dirac monopole without strings: monopole harmonics

    International Nuclear Information System (INIS)

    Wu, T.T.; Yang, C.N.

    1983-01-01

    Using the ideas developed in a previous paper which are borrowed from the mathematics of fiber bundles, it is shown that the wave function psi of a particle of charge Ze around a Dirac monopole of strength g should be regarded as a section. The section is without discontinuities. Thus the monopole does not possess strings of singularities in the field around it. The eigensections of the angular momentum operators are monopole harmonics which are explicitly exhibited. 7 references, 2 figures, 1 table

  13. Harmonic polylogarithms for massive Bhabha scattering

    International Nuclear Information System (INIS)

    Czakon, M.; Riemann, T.

    2005-08-01

    One- and two-dimensional harmonic polylogarithms, HPLs and GPLs, appear in calculations of multi-loop integrals. We discuss them in the context of analytical solutions for two-loop master integrals in the case of massive Bhabha scattering in QED. For the GPLs we discuss analytical representations, conformal transformations, and also their transformations corresponding to relations between master integrals in the s- and t-channel. (orig.)

  14. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.

  15. Excises Harmonization Stage Within the European Union

    OpenAIRE

    Drăcea, Raluca; Buziernescu, Radu

    2007-01-01

    Tax policy in the European Union consists of two components: direct taxation, which remains the sole responsibility of Member States, and indirect taxation, which affects free movement of goods and the freedom to provide services. The most important efforts for the tax harmonization were made in the domain of the indirect taxation, the consumption taxes influence the price supported by the final consumer and prevent the fiscal neutrality necessary for a fair competition on the ...

  16. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  17. Prediction of Metastasis Using Second Harmonic Generation

    Science.gov (United States)

    2016-07-01

    small but statistically significant difference in average F/B of treated US patients versus untreated Dutch patients. Fig. 1. Display of all...predictive ability of models incorporating F/B using a multivariate linear model, but this time applying the analysis to the entire ER+ and ER- cohort. As...AWARD NUMBER: W81XWH-15-1-0040 TITLE: Prediction of Metastasis Using Second Harmonic Generation PRINCIPAL INVESTIGATOR: Edward Brown

  18. The International Politics of IFRS Harmonization

    OpenAIRE

    Ramanna, Karthik

    2013-01-01

    The globalization of accounting standards as seen through the proliferation of IFRS worldwide is one of the most important developments in corporate governance over the last decade. I offer an analysis of some international political dynamics of countries' IFRS harmonization decisions. The analysis is based on field studies in three jurisdictions: Canada, China, and India. Across these jurisdictions, I first describe unique elements of domestic political economies that are shaping IFRS polici...

  19. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  20. Harmonic currents circulation in electrical networks simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Em-Mamlouk, W.M. [MEP, Cairo (Egypt); El-Sharkawy, M.A. [Shams Univ., Cairo (Egypt). Dept. of Electrical Power and Machines; Mostafa, H.E. [Jazan Univ., Jazan (Saudi Arabia). Electrical Dept.

    2009-07-01

    A detailed harmonic flow analysis for a 13-bus balanced industrial distribution system was presented. The aim of the study was to determine the influence of harmonic sources in various branches of the system on voltage and current waveforms before disruptions to the utility supply system occurred. The current harmonic contents of an adjustable speed drive (ASD) were studied under various loading conditions. The test system was simulated using a standard study test system. Harmonic effects from multiple sources were investigated, and voltage distortion on the different buses was monitored. The study demonstrated that while the harmonic loads circulated harmonic currents in all system branches, no harmonic source was directly connected to the system buses. Many of the investigated cases exceeded allowable voltage total harmonic distortion and or current total harmonic distortion standards set by the Institute of Electrical and Electronic Engineers (IEEE). It was concluded that active harmonic filters should be used to prevent the effects of harmonic current circulation at different buses on neighbouring loads within a system. 8 refs., 11 tabs., 15 figs.

  1. Plasma wave and second harmonic generation

    International Nuclear Information System (INIS)

    Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.

    1978-01-01

    An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)

  2. Means of Harmonization in Religious Discourse

    Directory of Open Access Journals (Sweden)

    Irina Ščukina

    2012-12-01

    Full Text Available Means of harmonization of religious discourse are considered by studying communicational behaviour (verbal and nonverbal between the religion institution and believers. The following factors defining specificity of realization of harmonization in Orthodox and other religious texts are taken into account: the communication channel between the author and the reader, a defining speech genre, the command of language (communication code, and extra-linguistic factors. It is shown that sharing the general social, historical and national experience, as well as a lexical overlapping of actors on both sides of the communication channel are the deciding elements of the harmonization process. The analysis also shows that usage of rational argumentation is more likely to lead to harmonisation in comparison to other rhetoric tools (i. e. affective ones or story-telling. Rational and unemotional sermonic discourse is perceived as a sign of respect (namely, for the listener's intelligence. Another successful and much-applied way seems to be evoking a feeling of equality, unity and/or identity between clerics and their flocks.

  3. Potential harmonic expansion for atomic wave functions

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.; Larsen, S.Y.

    1991-01-01

    One way to reduce the large degeneracy of the Hyperspherical Harmonic basis for solving few- and many-body bound state problems is to introduce an optimal basis truncation called the Potential Harmonic (PH) basis. Various PH truncation schemes are introduced, and their accuracies are evaluated in predicting the energies of the Helium and H - ground states , and the excited 2 1 S level of the Helium atom. It was found that the part of the PH basis that accounts for one-body correlations gives a better ground state energy for He than the Hartree-Fock approximation. When an orthogonal complement is introduced to the basis to account for e-e correlations, the error in the binding energy is found to be .00025 au and .00015 au for ground and excited helium, resp., and .00035 au for H - . Furthermore, the PH truncation is about 99.9% accurate in accounting for contributions coming from large values of the global angular momentum. This PH scheme is also much more accurate than previous versions based on the Faddeev equations. The present results indicate that the PH truncation can render the Hyperspherical Harmonic method useful for systems with N>3. (R.P.) 14 refs., 4 tabs

  4. Food legislation and its harmonization in Russia.

    Science.gov (United States)

    Shamtsyan, Mark

    2014-08-01

    Bringing Russian legislation into compliance with international norms and standards is necessary after its accession to the World Trade Organization. Harmonization of food legislation and of sanitary and phytosanitary measures are among the problems that had to be solved first. Many Russian food and trade regulations had been changed or are still in the process of being reformed, largely owing to a policy of integration pursued by the Customs Union of Russia, Belarus and Kazakhstan. However, as a member of the Eurasian Economic Community, Russia is also engaged not only in harmonization throughout the Customs Union but also Kirgizstan and Tajikistan, and Armenia, Moldova and Ukraine as observer countries. Russia also continues to coordinate policy reforms closely with the European Union, its primary trade partner, ultimately bringing Russian food and sanitary norms closer to international standards (e.g. Codex). Today, all participants in the Russian food production chain, processing and sale of foods have to deal with growing numbers of security standards. Many organizations are certified under several schemes, which leads to unnecessary costs. Harmonization of standards has helped promote solutions in the domestic market as well as import-export of foods and raw materials for production. Priorities have included food safety for human health, consumer protection, removal of hazardous and/or adulterated products and increased competition within the domestic food market as well as mutual recognition of certification in bilateral and multilateral (inter)national agreements. © 2013 Society of Chemical Industry.

  5. EUROPEAN HARMONIZATION OF CONSOLIDATED FINANCIAL STATEMENTS REGULATIONS?

    Directory of Open Access Journals (Sweden)

    Cirstea Andreea

    2012-07-01

    Full Text Available The purpose of this paper is to analyze the degree of formal accounting harmonization within the European Union with respect to the EC Regulation No. 1606/2002 adopted by the European Parliament and European Council on the 19th of July 2002, which regulates the application of IAS/IFRS regarding the financial reporting of listed European companies. The conclusions of the paper were drawn after the completion of a thorough analysis performed by using correlation and/ or association coefficients, namely: the Jaccard’s Correlation Coefficients, Rogers and Tanimoto Coefficient, Lance and Williams Coefficient and Binary Euclidian Distance Coefficient. The results lead us to conclude that although our first hypothesis is verified, the degree of harmonization between the accounting systems of EU Member States could be truly quantified only through an analysis of the material accounting harmonization, more precisely by analyzing the way the companies put into practice the requirements imposed through the EC Regulation No. 1606/2002.

  6. Harmonic Mitigation Methods in Large Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo

    2013-01-01

    Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...... and remedial harmonic mitigation methods in terms of passive and active filtering are described. It is shown that WPP components such as long HVAC cables and park transformers can introduce significant low-frequency resonances which can affect wind turbine control system operation and overall WPP stability...... as well as amplification of harmonic distortion. It is underlined that there is a potential in terms of active filtering in modern grid-side converters in e.g. wind turbines, STATCOMs or HVDC stations utilized in modern large WPPs. It is also emphasized that the grid-side converter controller should...

  7. Analyzing correlation functions with tesseral and Cartesian spherical harmonics

    International Nuclear Information System (INIS)

    Danielewicz, Pawel; Pratt, Scott

    2007-01-01

    The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regard to determining angular features of emission regions is investigated. The considered final-state effects include identity interference, strong interactions, and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs

  8. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    Science.gov (United States)

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  9. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  10. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  11. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  12. Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator

    International Nuclear Information System (INIS)

    Belendez, Augusto; Pascual, Carolina

    2007-01-01

    The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A

  13. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  14. Fokker-Planck transport in solid state accelerator concepts

    International Nuclear Information System (INIS)

    Newberger, B.; Tajima, T.

    1989-01-01

    Particle transport in a crystalline solid under channeling conditions is considered by means of a Fokker-Planck description. The model includes electron multiple scattering, radiation damping and an accelerating electric field. Analytic solutions have been obtained using a harmonic potential model to describe the channeling forces. These solutions will be described

  15. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  16. HARMONIZATION OF TAX POLICIES: REVIEWING MACEDONIA AND CROATIA

    Directory of Open Access Journals (Sweden)

    Sasho Kozuharov

    2015-12-01

    Full Text Available The tax harmonization is a complex issue in the process of European integration. The tax harmonization is a process of convergence of the tax system based on mutual set of rules and, in general, it means existence of identical or similar tax rates for the tax payers in European Union, i.e. Euro zone. In case there are identical tax rates, then we are talking about a, so called, total explicit tax harmonization, whereas, if there are similar tax rates, we are talking about partial explicit tax harmonization, which refers to determination of the highest and the lowest tax rates. Thus, countries can determine the tax rates of certain taxes. The total harmonization, besides tax rates harmonization, means structural harmonization or harmonization of the tax structure. The harmonization of direct taxes mainly relies on the following main objectives: avoiding tax evasion and elimination of double taxation. The harmonization of regulations and directives in the field of indirect taxes is necessary in terms of establishing a single market, or removal of barriers to the free movement of goods, people, services and capital.

  17. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  18. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  19. Sparse tensor spherical harmonics approximation in radiative transfer

    International Nuclear Information System (INIS)

    Grella, K.; Schwab, Ch.

    2011-01-01

    The stationary monochromatic radiative transfer equation is a partial differential transport equation stated on a five-dimensional phase space. To obtain a well-posed problem, boundary conditions have to be prescribed on the inflow part of the domain boundary. We solve the equation with a multi-level Galerkin FEM in physical space and a spectral discretization with harmonics in solid angle and show that the benefits of the concept of sparse tensor products, known from the context of sparse grids, can also be leveraged in combination with a spectral discretization. Our method allows us to include high spectral orders without incurring the 'curse of dimension' of a five-dimensional computational domain. Neglecting boundary conditions, we find analytically that for smooth solutions, the convergence rate of the full tensor product method is retained in our method up to a logarithmic factor, while the number of degrees of freedom grows essentially only as fast as for the purely spatial problem. For the case with boundary conditions, we propose a splitting of the physical function space and a conforming tensorization. Numerical experiments in two physical and one angular dimension show evidence for the theoretical convergence rates to hold in the latter case as well.

  20. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  1. Harmonic analysis of the precipitation in Greece

    Science.gov (United States)

    Nastos, P. T.; Zerefos, C. S.

    2009-04-01

    Greece is a country with a big variety of climates due to its geographical position, to the many mountain ranges and also to the multifarious and long coastline. The mountainous volumes are of such orientation that influences the distribution of the precipitation, having as a result, Western Greece to present great differentiations from Central and Eastern Greece. The application of harmonic analysis to the annual variability of precipitation is the goal of this study, so that the components, which compose the annual variability, be elicited. For this purpose, the mean monthly precipitation data from 30 meteorological stations of National Meteorological Service were used for the time period 1950-2000. The initial target is to reduce the number of variables and to detect structure in the relationships between variables. The most commonly used technique for this purpose is the application of Factor Analysis to a table having as columns the meteorological stations-variables and rows the monthly mean precipitation, so that 2 main factors were calculated, which explain the 98% of total variability of precipitation in Greece. Factor 1, representing the so-called uniform field and interpreting the most of the total variance, refers in fact to the Mediterranean depressions, affecting mainly the West of Greece and also the East Aegean and the Asia Minor coasts. In the process, the Fourier Analysis was applied to the factor scores extracted from the Factor Analysis, so that 2 harmonic components are resulted, which explain above the 98% of the total variability of each main factor, and are due to different synoptic and thermodynamic processes associated with Greece's precipitation construction. Finally, the calculation of the time of occurrence of the maximum precipitation, for each harmonic component of each one of the two main factors, gives the spatial distribution of appearance of the maximum precipitation in the Hellenic region.

  2. Harmonization of radiobiological assays: why and how?

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    The International Atomic Energy Agency has made available a technical manual for cytogenetic biodosimetry assays (dicentric chromosome aberration (DCA) and cytokinesis-block micronucleus (CBMN) assays) used for radiation dose assessment in radiation accidents. The International Standardization Organization, which develops standards and guidelines, also provides an avenue for laboratory accreditation, has developed guidelines and recommendations for performing cytogenetic biodosimetry assays. Harmonization of DCA and CBMN assays, has improved their accuracy. Double-blinded inter-laboratory comparison studies involving several networks have further validated DCA and CBMN assays and improved the confidence in their potential use for radiation dose assessment in mass casualties. This kind of international harmonization is lacking for pre-clinical radiobiology assays. The widely used pre-clinical assays that are relatively important to set stage for clinical trials include clonogenic assays, flow-cytometry assays, apoptotic assays, and tumor regression and growth delay assays. However, significant inter-laboratory variations occur with respect to data among laboratories. This raises concerns on the reliability and reproducibility of preclinical data that drives further development and translation. Lack of reproducibility may stem from a variety of factors such as poor scientist training, less than optimal experimental design, inadequate description of methodology, and impulse to publish only the positive data etc. Availability of technical manuals, standard operating procedures, accreditation avenues for laboratories performing such assays, inter-laboratory comparisons, and use of standardized protocols are necessary to enhance reliability and reproducibility. Thus, it is important that radiobiological assays are harmonized for laboratory protocols to ensure successful translation of pre-clinical research on radiation effect modulators to help design clinic trials with

  3. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    Science.gov (United States)

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  5. The macroscopic harmonic oscillator and quantum measurements

    International Nuclear Information System (INIS)

    Hayward, R.W.

    1982-01-01

    A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)

  6. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  7. Second harmonics HOE recording in Bayfol HX

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  8. Hyperchaotic circuit with damped harmonic oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    2001-01-01

    A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....

  9. A quantum harmonic oscillator and strong chaos

    International Nuclear Information System (INIS)

    Oprocha, Piotr

    2006-01-01

    It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models

  10. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck

    2000-01-01

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  11. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  12. Estimation and reduction of harmonic currents from power converters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian

    -based method depends very much on the amount and accuracy of collected data in the development stage. The outcome of this investigation is a Harmonic Calculation Software compiled into a Graphical User Interface PC-software application, which can be applied for fast estimations of the harmonic currents...... control of the proposed topologies are given together with laboratory tests. One harmonic current mitigation solution found is to connect (two) smaller power APF's in parallel, sharing the same ac- and dc-bus. It is proven that parallel APF's may have lower passive components although other issues arises......, like circulation currents, which is removed here by common mode coils. Another harmonic solution is to use cascade connection of (two) independent APF's that cooperatively share the task of the harmonic mitigation. Two cooperative control methods are proposed called load-sharing and harmonic-sharing...

  13. Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Hansen, Steffan

    This thesis deals with the harmonic distortion of the diode rectifier and a number of alternative rectifier topologies for adjustable speed drives. The main intention of this thesis is to provide models and tools that allow easy prediction of the harmonic distortion of ASD’s in a given system...... rectifier are presented. The first level is an ideal model where the diode rectifier basically is treated as an independent (harmonic) current source. The second level is an empirical model, where simulated (or measured) values of the harmonic currents of the diode rectifier for different parameters......-angle of the individual harmonic currents of different diode rectifier types is analyzed. Four selected rectifier topologies with a high input power factor are presented. It is shown that using ac- or dc-coils is a very simple and efficient method to reduce the harmonic currents compared to the basic diode rectifier...

  14. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  15. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    International Nuclear Information System (INIS)

    Cabasse, A; Hazera, Ch; Quintard, L; Cormier, E; Petit, S; Constant, E

    2016-01-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 10 10 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects. (paper)

  16. A Harmonic Impedance Measurement System for Reduction of Harmonics in the Electricity Grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  17. A harmonic impedance measurement system for reduction of harmonics in the electricity grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  18. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  19. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  20. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  1. Some theorems on a class of harmonic manifolds

    International Nuclear Information System (INIS)

    Rahman, M.S.; Chen Weihuan.

    1993-08-01

    A class of harmonic n-manifold, denoted by HM n , is, in fact, focussed on a Riemannian manifold with harmonic curvature. A variety of results, with properties, on HM n is presented in a fair order. Harmonic manifolds are then touched upon manifolds with recurrent Ricci curvature, biRicci-recurrent curvature and recurrent conformal curvature, and, in consequence, a sequence of theorems are deduced. (author). 21 refs

  2. Phase-matched third harmonic generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.; Fisch, N.J.

    1993-01-01

    Relativistic third harmonic generation in a plasma is investigated. The growth of a third harmonic wave is limited by the difference between the phase velocity of the pump and driven waves. This phase velocity mismatch results in a third harmonic amplitude saturation and oscillation. In order to overcome this saturation, the authors describe a phase-matching scheme based on a resonant density modulation. The limitations of this scheme are analyzed

  3. Harmonic Analysis and Active Filtering in Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Freijedo Fernandez, Francisco Daniel; Guerrero, Josep M.

    2015-01-01

    Due to presence of long high voltage cable networks, and power transformers for the grid connection, the offshore wind power plants (OWPPs) are susceptible to harmonic distortion and resonances. The grid connection of OWPP should not cause the harmonic distortion beyond the permissible limits...... at the point of common coupling (PCC). The resonance conditions should be avoided in all cases. This paper describes the harmonic analysis techniques applied on an OWPP network model. A method is proposed to estimate the harmonic current compensation from a shunt-connected active power filter to mitigate...

  4. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  5. Direct computation of harmonic moments for tomographic reconstruction

    International Nuclear Information System (INIS)

    Nara, Takaaki; Ito, Nobutaka; Takamatsu, Tomonori; Sakurai, Tetsuya

    2007-01-01

    A novel algorithm to compute harmonic moments of a density function from its projections is presented for tomographic reconstruction. For projection p(r, θ), we define harmonic moments of projection by ∫ π 0 ∫ ∞ -∞ p(r,θ)(re iθ ) n drd θ and show that it coincides with the harmonic moments of the density function except a constant. Furthermore, we show that the harmonic moment of projection of order n can be exactly computed by using n+ 1 projection directions, which leads to an efficient algorithm to reconstruct the vertices of a polygon from projections.

  6. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  7. Enhancement of harmonic generation using a two section undulator

    International Nuclear Information System (INIS)

    Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.

    1999-01-01

    Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture

  8. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  9. Analysing harmonic motions with an iPhone’s magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  10. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  11. Limitations and improvements for harmonic generation measurements

    International Nuclear Information System (INIS)

    Best, Steven; Croxford, Anthony; Neild, Simon

    2014-01-01

    A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, β, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized

  12. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  13. The Harmonically Coupled 2-Beam FEL

    CERN Document Server

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  14. Beam dynamics in CIME for third harmonic

    International Nuclear Information System (INIS)

    Chautard, F.; Bourgarel, M.P.

    2000-01-01

    This report presents the results from simulations for beam dynamics in CIME third harmonics. Details are given regarding the procedures to reach the adaptation at the inflector exit. The aim of these simulation is to determine, for any given ion, the beam correlations at the inflector exit as well as the current values in the isochronous coils for all the field levels. Although not all the steps of the simulation are thoroughly displayed, the report gathers all the the elements necessary for CIME control. Information useful for controlling the Very Low Energy line, the main field and the isochronous coils are also presented. The report has the following content: I. Introduction. II. The field maps and the used codes. A. The maps of CIME magnetic fields; B. The 3D map of CIME electric potentials; C. The maps of 3D electric potentials in the CIME central region; D. Code LIONS and sorting codes. III. Central region. A. An outlook. B.Central rays; IV. Determination of beam correlations. A. Analytical calculation of adaptation conditions; B. Calculation of adaptation conditions based on particle distributions; C. Creating the beam matrices. D. Calculation method for inverse return correlations. V. Results of simulations. VI. Interpolation of isochronous coils at the referential frequency. VII. The interpolation code PARAM. VIII. Conclusions. The paper is supplemented by 4 appendices. The harmonics 2, 4 and 5 are currently under way and the results will be reported in a future paper

  15. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  16. Introduction to Classical and Quantum Harmonic Oscillators

    International Nuclear Information System (INIS)

    Latal, H

    1997-01-01

    As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)

  17. Third-harmonic generation for photoionization studies

    International Nuclear Information System (INIS)

    Compton, R.N.; Miller, J.C.

    1982-01-01

    Our group at Oak Ridge National Laboratory (ORNL) has studied resonantly enhanced multiphoton ionization (MPI) of alkali atoms, rare gases, and small molecules using tightly focused dye laser beams (power densities of 10 9 to 10 11 W/cm 2 ). In the case of alkali atoms, some ionization signals appear as a result of gas density effects (dimers or quasi-collisions) as previously discovered by Collins and his collaborators. These have been termed hybrid-resonances. By contrast, in the case of the rare gases, certain resonance ionization signals disappear with increasing gas density. The disappearance of the ionization signals in the rare gases is due to the interference of excitation of the third-harmonic and fundamental laser beam. At low pressure (10 -7 to 10 -5 torr) we have studied (1) mass spectra, (2) kinetic energy released in ionic fragmentation, and (3) photoelectron kinetic energy spectra using time-of-flight mass analysis and a 160 0 spherical sector electrostatic energy analyzer. These experiments, combined with two-color dye laser experiments, can often offer an unambiguous and detailed description of the MPI and subsequent fragmentation events. The major part of this talk will be devoted to the production and the use of vacuum ultraviolet (VUV) light from third-harmonic generation (THG) in the rare gases

  18. Transient regime in second harmonic generation

    Science.gov (United States)

    Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine

    2013-09-01

    The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.

  19. Harmonic ultrasound fields through layered liquid media.

    Science.gov (United States)

    Li, Yadong; Chen, Quan; Zagzebski, James

    2004-02-01

    Harmonic field generation through a layered liquid media is studied experimentally and theoretically. Lateral and axial beam profiles of the fundamental to the 4th harmonic component of the field from a focused, 19-mm diameter transducer were measured using a calibrated hydrophone in a water tank. Measurements were performed before and after the insertion of a cylindrical phantom containing vegetable oil. A frequency domain numerical solution to the "KZK" equation was used to calculate the beam profile, taking into account the acoustic properties of the medium and phantom. Effects of nonlinear propagation, diffraction, attenuation, and reflection are include in the calculation. Agreement within 5% was obtained between measurements and theoretical predictions throughout the mid- and far-field of the transducer for both the uniform path and the layered media. Measurements also were carried out using an unfocused transducer as a receiver. The shape of the axial beam profile using this receiver agreed very well with the theoretical prediction using the "KZK" equation, after accounting for phase variations over the finite-sized detector in the calculated field.

  20. A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz

    International Nuclear Information System (INIS)

    Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.

    1995-01-01

    Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. copyright 1995 American Institute of Physics

  1. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  2. High-frequency harmonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  3. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  4. Asymmetric network connectivity using weighted harmonic averages

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  5. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  6. Harmonic states for the free particle

    International Nuclear Information System (INIS)

    Guerrero, J; López-Ruiz, F F; Aldaya, V; Cossío, F

    2011-01-01

    Different families of states, which are solutions of the time-dependent free Schrödinger equation, are imported from the harmonic oscillator using the quantum Arnold transformation introduced in Aldaya et al (2011 J. Phys. A: Math. Theor.44 065302). Among them, infinite series of states are given that are normalizable, expand the whole space of solutions, are spatially multi-localized and are eigenstates of a suitably defined number operator. Associated with these states new sets of coherent and squeezed states for the free particle are defined representing traveling, squeezed, multi-localized wave packets. These states are also constructed in higher dimensions, leading to the quantum mechanical version of the Hermite–Gauss and Laguerre–Gauss states of paraxial wave optics. Some applications of these new families of states and procedures to experimentally realize and manipulate them are outlined. (paper)

  7. Indefinite harmonic forms and gauge theory

    International Nuclear Information System (INIS)

    Nakashima, M.

    1988-01-01

    Indecomposable representations have been extensively used in the construction of conformal and de Sitter gauge theories. It is thus noteworthy that certain unitary highest weight representations have been given a geometric realization as the unitary quotient of an indecomposable representation using indefinite harmonic forms [RSW]. We apply this construction to SU(2,2) and the de Sitter group. The relation is established between these representations and the massless, positive energy representations of SU(2,2) obtained in the physics literature. We investigate the extent to which this construction allows twistors to be viewed as a gauge theory of SU(2,2). For the de Sitter group, on which the gauge theory of singletons is based, we find that this construction is not directly applicable. (orig.)

  8. Harmonizing human exposure and toxicity characterization

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, O.; McKone, T.E.

    2017-01-01

    The UNEP-SETAC Life Cycle Initiative has launched a project to provide global guidance and build consensus on environmental life cycle impact assessment (LCIA) indicators. Human health effects from exposure to toxic chemicals was selected as impact category due to high relevance of human toxicity...... and harmonizing human toxicity characterization in LCIA. Building on initial work for the far-field and indoor air environments, and combining it with latest work on near-field consumer and occupational exposure assessment, dose-response and severity data, we aim at providing revised guidance on the development...... and use of impact factors for toxic chemicals. We propose to couple fate processes in consumer and occupational environments with existing environmental compartments and processes via a consistent and mass balance-based set of transfer fractions to quantify overall aggregated exposure to toxic substances...

  9. Ferromagnetic rollers in a harmonic confinement

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    We present the emergence of flocking and global rotation in a system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field confined in a harmonic potential. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clock / counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We also emphasize a subtle role of rotational noise: While the low-frequency flocking appears to be noise-insensitive, the reentrant flocking happens to be noise-activated. Moreover, we uncover a new relation between collective motion and synchronisation.

  10. Second Harmonic Generation of Unpolarized Light

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  11. Factorization Procedure for Harmonically Bound Brownian Particle

    International Nuclear Information System (INIS)

    Omolo, JK.

    2006-01-01

    The method of factorization to solve the problem of the one-dimensional harmonically bound Brownian particle was applied. Assuming the the rapidily fluctuating random force is Gaussian and has an infinitely short correlation time, explicit expressions for the position-position,velocity-velocity, and the position-velocity correlation functions, which are also use to write down appropriate distribution functions were used. The correlation and distribution functions for the complex quantity (amplititude) which provides the expressions for the position and velocity of the particle are calculated. Finally, Fokker-Planck equations for the joint probability distribution functions for the amplititude and it's complex conjugate as well as for the position and velocity of the particle are obtained. (author)

  12. Correcting sample drift using Fourier harmonics.

    Science.gov (United States)

    Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Reyes, D F; Braza, V; Yañez, A; Nuñez-Moraleda, B; González, D; Galindo, P L

    2018-07-01

    During image acquisition of crystalline materials by high-resolution scanning transmission electron microscopy, the sample drift could lead to distortions and shears that hinder their quantitative analysis and characterization. In order to measure and correct this effect, several authors have proposed different methodologies making use of series of images. In this work, we introduce a methodology to determine the drift angle via Fourier analysis by using a single image based on the measurements between the angles of the second Fourier harmonics in different quadrants. Two different approaches, that are independent of the angle of acquisition of the image, are evaluated. In addition, our results demonstrate that the determination of the drift angle is more accurate by using the measurements of non-consecutive quadrants when the angle of acquisition is an odd multiple of 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Harmonic analysis on exponential solvable Lie groups

    CERN Document Server

    Fujiwara, Hidenori

    2015-01-01

    This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated alge...

  14. Frequency Adaptive Selective Harmonic Control for Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Wang, Huai

    2015-01-01

    SHC scheme consists of multiple parallel recursive (nk±m)-order (k = 0, 1, 2, . . ., and m ≤ n/2) harmonic control modules with independent control gains, which can be optimally weighted in accordance with the harmonic distribution. The hybrid SHC thus offers an optimal trade-off among cost...

  15. Secondary Voltage Control for Harmonics Suppression in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Guerrero, Josep M.; Blaabjerg, Frede

    2011-01-01

    in islanded microgrids. In addition to the centralized controller for fundamental frequency voltage component, a selective harmonic compensator is implemented in the secondary voltage control system. With the help of Park transformation, the cyclic references generated by the selective harmonic compensator...

  16. Harmonic Riemannian Maps on Locally Conformal Kaehler Manifolds

    Indian Academy of Sciences (India)

    We study harmonic Riemannian maps on locally conformal Kaehler manifolds ( l c K manifolds). We show that if a Riemannian holomorphic map between l c K manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, we ...

  17. Single-gap multi-harmonic buncher for NSC Pelletron

    International Nuclear Information System (INIS)

    Sarkar, A.; Ghosh, S.; Barua, P.

    1998-01-01

    A single gap multi harmonic buncher has been installed in the pre-acceleration region of the NSC pelletron. For the operation of the booster LINAC, presently under construction, a pre-tandem buncher is required with higher efficiency and producing beam bunches of smaller time spread. The multi harmonic buncher meets all these requirements

  18. Transient state work fluctuation theorem for a classical harmonic ...

    Indian Academy of Sciences (India)

    Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we ...

  19. Spectral inverse problem for q-deformed harmonic oscillator

    Indian Academy of Sciences (India)

    The supersymmetric quantization condition is used to study the wave functions of SWKB equivalent -deformed harmonic oscillator which are obtained by using only the knowledge of bound-state spectra of -deformed harmonic oscillator. We have also studied the nonuniqueness of the obtained interactions by this ...

  20. Variational Integrals of a Class of Nonhomogeneous -Harmonic Equations

    Directory of Open Access Journals (Sweden)

    Guanfeng Li

    2014-01-01

    Full Text Available We introduce a class of variational integrals whose Euler equations are nonhomogeneous -harmonic equations. We investigate the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some nonhomogeneous -harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some interesting results on variational integrals.

  1. Deterministic and Stochastic Study of Wind Farm Harmonic Currents

    DEFF Research Database (Denmark)

    Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus

    2010-01-01

    Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic char...

  2. Some remarks on geodesics in gauge groups and harmonic maps

    International Nuclear Information System (INIS)

    Valli, G.

    1987-08-01

    The following topics are discussed: Euler's equations for geodesics in the gauge groups and in gauge orbits of connections, conserved quantities and moment map, existence and uniqueness of solutions for the Cauchy problem, stationary solutions and harmonic bundles, harmonic gauges on Riemann surfaces and Lax pairs, low geodesics in gauge groups over Riemann surfaces produce, by Hodge decomposition, paths of holomorphic differentials. 19 refs

  3. Harmonics: Generation and Suppression in AC System Networks ...

    African Journals Online (AJOL)

    However, reactive power flow in electrical networks has adverse effects depending on their magnitude and the nature of the supply network. How these harmonics are generated by nonlinear loads and the means by which they can be kept low are the focus of this paper. Keywords: non-linear loads, harmonics, reactive ...

  4. Regulations for marine microalgal toxins: Towards harmonization of ...

    African Journals Online (AJOL)

    The World Trade Organization and the General Agreements on Tariffs and Trade encourage the harmonization of regulations on food safety requirements. The current policy on trade liberalization of seafood is presented, together with a review of the regulations for marine microalgal toxins. Activities on harmonization of ...

  5. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  6. On harmonicity in some Moufang-Klingenberg planes

    OpenAIRE

    ÇELİK, Basri; AKPINAR, Atilla; ÇİFTÇİ, Süleyman

    2010-01-01

    In this paper we study Moufang-Klingenberg planes M (A) defined over a local alternative ring A of dual numbers. We show that some collineations of M (A) preserve cross-ratio and thus establish a relation between harmonicity and harmonic position.

  7. Operator Arithmetic-Harmonic Mean Inequality on Krein Spaces

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2014-03-01

    Full Text Available We prove an operator arithmetic-harmonic mean type inequality in Krein space setting, by using some block matrix techniques of indefinite type. We also give an example which shows that the operator arithmetic-geometric-harmonic mean inequality for two invertible selfadjoint operators on Krein spaces is not valid, in general.

  8. Harmonic Function of Poincare Cone Condition In Solving Dirichlet ...

    African Journals Online (AJOL)

    This paper describes the set of harmonic functions on a given open set U which can be seen as the kernel of the Laplace operator and is therefore a vector space over R .It also reviews the harmonic theorem, the dirichlet problem and maximum principle where we conclude that the application of sums , differences and ...

  9. Harmonics mitigation on industrial loads using series and parallel ...

    African Journals Online (AJOL)

    Most industrial loads are inductive in nature and therefore absorb Volts Ampere Reactance (VARs) leading to lagging power factor. Some inductive loads also produce current and voltage signals with frequencies in integer multiples of the 50 or 60 Hz fundamental frequencies called harmonics. Harmonics in power system ...

  10. Variation of Rainfall in Three Nigerian Stations, Using harmonic ...

    African Journals Online (AJOL)

    This work is on the variation of rainfall using harmonic analysis for Portharcourt, Kano and Makurdi data, for the three stations the period of study covered 1977 to 2010, for which the time series plot, the amplitude, the first, second and third harmonics were generated. Portharcourt has a gently increasing trend with ...

  11. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  12. Free Sixteen Harmonic Fourier Series Web App with Sound

    Science.gov (United States)

    Ruiz, Michael J.

    2018-01-01

    An online HTML5 Fourier synthesizer app is provided that allows students to manipulate sixteen harmonics and construct periodic waves. Students can set the amplitudes and phases for each harmonic, seeing the resulting waveforms and hearing the sounds. Five waveform presets are included: sine, triangle, square, ramp (sawtooth), and pulse train. The…

  13. Probabilistic aspects of harmonic emission of large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Christian F. [Energinet.dk, Fredericia (Denmark); Bak, Claus L. [Aalborg Univ. (Denmark). Dept. of Energy Technology; Kocewiak, Lukasz; Hjerrild, Jesper [DONG Energy, Skaerbaek (Denmark); Berthelsen, Kasper K. [Aalborg Univ. (Denmark). Dept. of Mathematical Sciences

    2011-07-01

    In this article, a new probabilistic method of assessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some difficulties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farms is connected must be included in the study. Furthermore, a very detailed representation of the frequency dependent short circuit impedance must be used before sufficiently accurate results can be obtained from the model. (orig.)

  14. Harmonization of education and training in radiation protection

    International Nuclear Information System (INIS)

    John, S.G.; Soelter, B.; Vogt, H.G.

    2005-01-01

    Based on a consideration of the international activities in harmonization of education and training in radiation protection and the mutual acknowledgement of expertise the Arbeitskreis Ausbildung starts an opinion poll, to find out the real need of harmonization and acknowledgement. (orig.)

  15. Molecular integrals for exponential-type orbitals using hyperspherical harmonics

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2015-01-01

    -dimensional hypersphere. Using this projection, Fock was able to show that the Fourier transforms of Coulomb Sturmian basis functions are very simply related to four-dimensional hyperspherical harmonics.With the help of Fock's relationships and the theory of hyperspherical harmonics we are able to evaluate molecular...

  16. Frequency Adaptability of Harmonics Controllers for Grid-Interfaced Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2017-01-01

    sensitivity of the most popular harmonic controllers for grid-interfaced converters. The frequency adaptability of these harmonic controllers is evaluated in the presence of a variable grid frequency within a specified reasonable range, e.g., +-1% of the nominal grid frequency (50 Hz). Solutions...

  17. Higher-order harmonics of limited diffraction Bessel beams

    Science.gov (United States)

    Ding; Lu

    2000-03-01

    We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.

  18. Analysing Harmonic Motions with an iPhone's Magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  19. Harmonic sums and polylogarithms generated by cyclotomic polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-05-15

    The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)

  20. Harmonic maps of V-manifolds

    International Nuclear Information System (INIS)

    Chiang, Yuan-Jen.

    1989-01-01

    Harmonic maps between manifolds are described as the critical maps of their associated energy functionals. By using Sampson's method [Sam1], the author constructs a Sobolev's chain on a compact V-manifold and obtain Rellich's Theorem (Theorem 3.1), Sobolev's Theorem (Theorem 3.2), the regularity theorem (Theorem 3.3), the property of the eigenspaces for the Laplacian (Theorem 3.5) and the solvability of Laplacian (Theorem 3.6). Then, with these results, he constructs the Green's functions for the Laplacian on a compact V-manifold M in Proposition 4.1; and obtain an orthonormal basis for L 2 (M) formed by the eigenfunctions of the Laplacian corresponding to the eigenvalues in Proposition 4.2. He also estimates the eigenvalues and eigenfunctions of the Laplacian in Theorem 4.3, which is used to construct the heat kernel on a compact V-manifold in Proposition 5.1. Afterwards, he compares the G-invariant heat kernel functions with the G-invariant fundamental solutions of heat equations in the finite V-charts of a compact V-manifold in Theorem 6.1, and then study two integral operators associated to the heat kernel on a compact V-manifold in section 7. With all the preceding results established, in Theorem 8.3 he uses successive approximations to prove the existence of the solutions of parabolic equations on V-manifolds. Finally, he uses Theorem 8.3 to show the existence of harmonic maps from compact V-manifolds into compact Riemannian manifolds in Theorem 9.1 which extends Eells-Sampson's results [E-S

  1. Harmonic sextupole magnets for Indus-2

    International Nuclear Information System (INIS)

    Thakur, Vanshree; Das, S.; Kumar, Sudhir; Sreeramulu, K.; Kumar, Ashok; Srinivasan, B.; Singh, Kushraj; Mishra, Anil Kumar; Shinde, R.S.

    2015-01-01

    The chromaticity correction of electron beam in Indus-2 is done using 32 sextupole magnets. To suppress the non-linearity induced by these chromatic sextupole magnets and thereby to improve the dynamic aperture, harmonic sextupole magnets are required in Indus-2. Due to the limitation of space in the ring, these magnets also incorporate windings for skew quadrupole component to reduce the coupling between the two transverse planes and combined function (horizontal-H and vertical-V) steering field components for the beam orbit correction. These magnets will replace the existing 32 combined function H and V steering magnets. The limited space along and across the beam direction in the ring put a restriction on the size of the magnet. Also space constraint in the power cable tray demands the use of low current air cooled conductor for the coil windings of skew quadrupole and steering dipole components. These restrictions made the design optimization of harmonic sextupole magnet is more challenging. The design has been carried out using 2d POISSON and OPERA 3d codes. The steel length is chosen as 126 mm to keep the overall physical length of the magnet within 250 mm to accommodate it in the existing limited available space in Indus-2. The magnet is designed with the aperture radius of 60 mm for the maximum integrated strength of 17 T/m and 0.1 T for the sextupole and skew quadrupole fields respectively and 1.6 mrad kick strength for the horizontal and vertical steering. A prototype magnet with core made of low carbon steel material has been developed. The details of the design and development of the prototype magnet with results will be discussed in this paper. (author)

  2. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  3. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  4. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  5. Microgrid Reactive and Harmonic Power Sharing Using Enhanced Virtual Impedance

    DEFF Research Database (Denmark)

    He, Jinwei; Wei Li, Yun; Guerrero, Josep M.

    2013-01-01

    To address the load sharing problem in islanding microgrids, this paper proposes an improved approach which regulates the distributed generation (DG) unit interfacing virtual impedance at fundamental and selected harmonic frequencies. In contrast to the conventional virtual impedance control where...... only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedances at fundamental and harmonic frequencies are realized using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the mismatched DG...... feeder impedances can be properly compensated, resulting in accurate reactive and harmonic power sharing at the same time. In addition, this paper shows that the microgrid PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, an improved...

  6. Generalized Harmonic Functions and the Dewetting of Thin Films

    International Nuclear Information System (INIS)

    Auchmuty, Giles; Kloucek, Petr

    2007-01-01

    This paper describes the solvability of Dirichlet problems for Laplace's equation when the boundary data is not smooth enough for the existence of a weak solution in H 1 Ω. Scales of spaces of harmonic functions and of boundary traces are defined and the solutions are characterized as limits of classical harmonic functions in special norms. The generalized harmonic functions, and their norms, are defined using series expansions involving harmonic Steklov eigenfunctions on the domain. It is shown that the usual trace operator has a continuous extension to an isometric isomorphism of specific spaces. This provides a characterization of the generalized solutions of harmonic Dirichlet problems. Numerical simulations of a model problem are described. This problem is related to the dewetting of thin films and the associated phenomenology is described

  7. Quantization of a 3D Nonstationary Harmonic plus an Inverse Harmonic Potential System

    Directory of Open Access Journals (Sweden)

    Salim Medjber

    2016-01-01

    Full Text Available The Schrödinger solutions for a three-dimensional central potential system whose Hamiltonian is composed of a time-dependent harmonic plus an inverse harmonic potential are investigated. Because of the time-dependence of parameters, we cannot solve the Schrödinger solutions relying only on the conventional method of separation of variables. To overcome this difficulty, special mathematical methods, which are the invariant operator method, the unitary transformation method, and the Nikiforov-Uvarov method, are used when we derive solutions of the Schrödinger equation for the system. In particular, the Nikiforov-Uvarov method with an appropriate coordinate transformation enabled us to reduce the eigenvalue equation of the invariant operator, which is a second-order differential equation, to a hypergeometric-type equation that is convenient to treat. Through this procedure, we derived exact Schrödinger solutions (wave functions of the system. It is confirmed that the wave functions are represented in terms of time-dependent radial functions, spherical harmonics, and general time-varying global phases. Such wave functions are useful for studying various quantum properties of the system. As an example, the uncertainty relations for position and momentum are derived by taking advantage of the wave functions.

  8. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    Science.gov (United States)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  9. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  10. Validation Techniques of network harmonic models based on switching of a series linear component and measuring resultant harmonic increments

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    In this paper two methods of validation of transmission network harmonic models are introduced. The methods were developed as a result of the work presented in [1]. The first method allows calculating the transfer harmonic impedance between two nodes of a network. Switching a linear, series network......, as for example a transmission line. Both methods require that harmonic measurements performed at two ends of the disconnected element are precisely synchronized....... are used for calculation of the transfer harmonic impedance between the nodes. The determined transfer harmonic impedance can be used to validate a computer model of the network. The second method is an extension of the fist one. It allows switching a series element that contains a shunt branch...

  11. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  12. Voltage harmonics mitigation through hybrid active power filer

    International Nuclear Information System (INIS)

    Sahito, A.A.; Tunio, S.M.; Khizer, A.N.

    2016-01-01

    Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion) of 18.91 and 7.61 percentage in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter) is proposed to reduce these THD values below 5 percentage as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5 percentage. (author)

  13. Voltage Harmonics Mitigation through Hybrid Active Power Filter

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2016-01-01

    Full Text Available Fast dynamic response, high efficiency, low cost and small size of power electronic converters have exponentially increased their use in modern power system which resulted in harmonically distorted voltage and currents. Voltage harmonics mainly caused by current harmonics are more dangerous as performance and expected operating life of other power system equipment are affected by harmonically distorted supply voltage. Electronic filter circuits are used to improve system power quality by mitigating adverse effects of harmonics. Hybrid filters having advantages of both passive and active filters are preferred to resolve the problem of harmonics efficiently and avoiding any chance of resonance. In this paper, a three phase three wire network is considered to supply an adjustable speed drive represented by a resistive load connected across a three phase bridge rectifier. Simulation of the considered system shows THD (Total Harmonic Distortion of 18.91 and 7.61% in supply current and voltage respectively. A HAPF (Hybrid Active Power Filter is proposed to reduce these THD values below 5% as recommended by IEEE Standard-519. P-Q theorem is used to calculate required parameters for proposed filter, which is implemented through hysteresis control. Simulation results confirm the effectiveness of the designed filter as THD for both current and voltage have reduced below allowable limit of 5%.

  14. Harmonic generation effect in high-Tc films

    International Nuclear Information System (INIS)

    Khare, Neeraj; Shrivastava, S.K.; Padmanabhan, V.P.N.; Khare, Sangeeta; Gupta, A.K.

    1997-01-01

    Harmonic generation in thick BPSCCO and thin YBCO films are reported. The application of an ac field (H ac > H c1 ) of frequency f causes the generation of odd harmonics of frequency (2n+1)f. The application of dc field in addition to the ac field causes the appearance of even harmonics also in the BPSCCO film. However, the appearance of even harmonics is not observed in YBCO film with high J c ∼ 1.6x10 6 A/cm 2 and appearance of second harmonic with small magnitude is observed in YBCO film with low J c ∼ 2x10 3 A/cm 2 . The variation of amplitudes of these harmonics are studied as a function of magnitude of ac and dc field and the results are explained in the framework of critical state model. A high-T c film magnetometer based on the measurement of the amplitude of second harmonic has been developed whose field sensitivity is ∼ 1.5x10 -8 T. (author)

  15. High-harmonic generation in a dense medium

    International Nuclear Information System (INIS)

    Strelkov, V.V.; Platonenko, V.T.; Becker, A.

    2005-01-01

    The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics

  16. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  17. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  18. Twistor Interpretation of Harmonic Spheres and Yang–Mills Fields

    Directory of Open Access Journals (Sweden)

    Armen Sergeev

    2015-03-01

    Full Text Available We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic spheres conjecture stating the existence of the bijective correspondence between based harmonic spheres in the loop space \\(\\Omega G\\ of a compact Lie group \\(G\\ and the moduli space of Yang–Mills \\(G\\-fields on \\(\\mathbb R^4\\.

  19. Azimuthal anisotropy at RHIC: The first and fourth harmonics

    International Nuclear Information System (INIS)

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2004-01-01

    We report the first observations of the first harmonic (directed flow, v 1 ), and the fourth harmonic (v 4 ), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v 2 ) generated at RHIC. From the correlation of v 2 with v 1 it is determined that v 2 is positive, or in-plane. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  20. Automatic computation and solution of generalized harmonic balance equations

    Science.gov (United States)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  1. Acceleration test with mixed higher harmonics in HIMAC

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sugiura, A.; Misu, T.

    2004-01-01

    In HIMAC synchrotron, beam tests with a magnetic ally loaded cavity have been performed. This cavity has very low Q-value of about 0.5, and can be added higher harmonics with fundamental acceleration frequency. In our tested system for higher harmonics, wave form of a DDS (Direct Digital Synthesizer) can be rewrite, and arbitrary wave form can be used for beam acceleration. In the beam test, second and third harmonic wave were added on the fundamental acceleration frequency, and increases of the accelerated beam intensity have been achieved. In this paper, results of the beam test and the acceleration system are presented. (author)

  2. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  3. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  4. New constructions of twistor lifts for harmonic maps

    DEFF Research Database (Denmark)

    Svensson, Martin; C. Wood, John

    2014-01-01

    We show that given a harmonic map \\varphi from a Riemann surface into a classical simply connected compact inner symmetric space, there is a J_2-holomorphic twistor lift of \\varphi (or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton number, we give...... algebraic formulae in terms of holomorphic data which describes their extended solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of finite uniton number from a surface to the above symmetric spaces....

  5. Modeling of higher harmonics formation in medical ultrasound systems

    DEFF Research Database (Denmark)

    Taylor, Louise Kold; Schlaikjer, Malene; Jensen, Jørgen Arendt

    2002-01-01

    a valuable tool for simulating ultrasound harmonic imaging. An extended version of Field II is obtained by means of operator splitting. The pressure eld is calculated by propagation of the eld from the transducer through a number of planes. Every plane serves as a virtual aperture for the next plane...... of the approach is demonstrated by comparing results from simulations and measurements from a convex array transducer. The new simulation tool is capable of simulating the formation of higher harmonics in water on the acoustical axis. The generation of nonlinear higher harmonic components can be predicted...

  6. Identification and control of harmonic distortions report on Furnas experience

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano Filho, Salvatore; Medeiros, Jose Roberto de; Bezerra, Luiz Roberto; Oliveira, Denise Borges de; Praca, Antonio Augusto Souza; Paiva Fontes, Marco Antonio de; Marques, Luiz Carlos Borges C. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper describes FURNAS experience on identification and control of harmonic distortions obtained from conservation of system operation and research for solutions. Special attention is paid to the harmonic overload observed at Ibiuna substation, the receiving end of the FURNAS HVDC transmission of the Itaipu 50 Hz energy, and the solutions that have been adopted. Methods of measurement and digital simulation have been developed and successfully tested so far. The present stage of those methods will be described. Not less important is the need for a specific legislation on harmonic distortion as explained in this paper. (author) 6 refs., 2 figs.

  7. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  8. Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams.

    Science.gov (United States)

    Koulouklidis, Anastasios D; Papazoglou, Dimitris G; Fedorov, Vladimir Yu; Tzortzakis, Stelios

    2017-12-01

    We demonstrate both theoretically and experimentally that the harmonics from abruptly autofocusing ring-Airy beams present a surprising property: They preserve the phase distribution of the fundamental beam. Consequently, this "phase memory" imparts to the harmonics the abrupt autofocusing behavior, while, under certain conditions, their foci coincide in space with the one of the fundamental. Experiments agree well with our theoretical estimates and detailed numerical calculations. Our findings open the way for the use of such beams and their harmonics in strong field science.

  9. Tax competition and tax harmonization in the European Union

    Directory of Open Access Journals (Sweden)

    Danuše Nerudová

    2004-01-01

    Full Text Available The article deals with the problems of tax competition and harmonization within the European Union. It reveals the single difficulties connected with harmonization, identifies the problems arising from tax competition and points out the harmful tax competition as well. Single compulsory harmonized tax base in connection with prevailing tax competition in the area of tax rates is the suggested solution in the scope of direct taxation. As the solution in the area of indirect taxation could serve the introduction of “principle of origin”. This would cause remarkable administrative costs decrease not only for economic subjects but for tax authorities as well.

  10. Second-harmonic generation of practical Bessel beams

    Science.gov (United States)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  11. Higher-order harmonics of general limited diffraction Bessel beams

    International Nuclear Information System (INIS)

    Ding De-Sheng; Huang Jin-Huang

    2016-01-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)

  12. Higher-order harmonics of general limited diffraction Bessel beams

    Science.gov (United States)

    Ding, De-Sheng; Huang, Jin-Huang

    2016-12-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).

  13. A toolbox for Harmonic Sums and their analytic continuations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [RISC, J. Kepler University, Linz (Austria); Bluemlein, Johannes [DESY, Zeuthen (Germany)

    2010-07-01

    The package HarmonicSums implemented in the computer algebra system Mathematica is presented. It supports higher loop calculations in QCD and QED to represent single-scale quantities like anomalous dimensions and Wilson coefficients. The package allows to reduce general harmonic sums due to their algebraic and different structural relations. We provide a general framework for these reductions and the explicit representations up to weight w=8. For the use in experimental analyzes we also provide an analytic formalism to continue the harmonic sums form their integer arguments into the complex plane, which includes their recursions and asymptotic representations. The main ideas are illustrated by specific examples.

  14. Coupled harmonic oscillators and their quantum entanglement

    Science.gov (United States)

    Makarov, Dmitry N.

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  15. Fighting terrorism in Africa: Benchmarking policy harmonization

    Science.gov (United States)

    Asongu, Simplice A.; Tchamyou, Vanessa S.; Minkoua N., Jules R.; Asongu, Ndemaze; Tchamyou, Nina P.

    2018-02-01

    This study assesses the feasibility of policy harmonization in the fight against terrorism in 53 African countries with data for the period 1980-2012. Four terrorism variables are used, namely: domestic, transnational, unclear and total terrorism dynamics. The empirical evidence is based on absolute beta catch-up and sigma convergence estimation techniques. There is substantial absence of catch-up. The lowest rate of convergence in terrorism is in landlocked countries for regressions pertaining to unclear terrorism (3.43% per annum for 174.9 years) while the highest rate of convergence is in upper-middle-income countries in domestic terrorism regressions (15.33% per annum for 39.13 years). After comparing results from the two estimation techniques, it is apparent that in the contemporary era, countries with low levels of terrorism are not catching-up their counterparts with high levels of terrorism. As a policy implication, whereas some common policies may be feasibly adopted for the fight against terrorism, the findings based on the last periodic phase (2004-2012) are indicative that country-specific policies would better pay-off in the fight against terrorism than blanket common policies. Some suggestions of measures in fighting transnational terrorism have been discussed in the light of an anticipated surge in cross-national terrorism incidences in the coming years.

  16. Harmonic superpositions of M-branes

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1996-01-01

    We present solutions describing supersymmetric configurations of 2 or 3 orthogonally intersecting 2-branes and 5-branes of D=11 supergravity. The configurations which preserve 1/4 or 1/8 of maximal supersymmetry are 2 perpendicular to 2, 5 perpendicular to 5, 2 perpendicular to 5, 2 perpendicular to 2 perpendicular to 2, 5 perpendicular to 5 perpendicular to 5, 2 perpendicular to 2 perpendicular to 5 and 2 perpendicular to 5 perpendicular to 5 (2 perpendicular to 2 stands for orthogonal intersection of two 2-branes over a point, etc.; p-branes of the same type intersect over (p-2)-branes). There exists a simple rule which governs the construction of composite supersymmetric p-brane solutions in D=10 and 11 with a separate harmonic function assigned to each constituent 1/2-supersymmetric p-brane. The resulting picture of intersecting p-brane solutions complements their D-brane interpretation in D=10 and seems to support possible existence of a D=11 analogue of D-brane description. The D=11 solution describing intersecting 2-brane and 5-brane reduces in D=10 to a type II string solution corresponding to a fundamental string lying within a solitonic 5-brane (which further reduces to an extremal D=5 black hole). We also discuss a particular D=11 embedding of the extremal D=4 dyonic black hole solution with finite area of horizon. (orig.)

  17. Sticky orbits of a kicked harmonic oscillator

    International Nuclear Information System (INIS)

    Lowenstein, J H

    2005-01-01

    We study a Hamiltonian dynamical system consisting of a one-dimensional harmonic oscillator kicked impulsively in 4:1 resonance with its natural frequency, with the amplitude of the kick proportional to a sawtooth function of position. For special values of the coupling parameter, the dynamical map W relating the phase-space coordinates just prior to each kick acts locally as a piecewise affine map K on a square with rational rotation number p/q. For λ = 2cos2πp/q a quadratic irrational, a recursive return-map structure allows us to completely characterize the orbits of the map K. The aperiodic orbits of this system are sticky in the sense that they spend all of their time wandering pseudo-chaotically (with strictly zero Lyapunov exponent) in the vicinity of self-similar archipelagos of periodic islands. The same recursive structure used locally for K gives us the asymptotic scaling features of long orbits of W on the infinite plane. For some coupling parameters the orbits remain bounded, but for others the distance from the origin increases as a logarithm or power of the time. In the latter case, we find examples of sub-diffusive, diffusive, super-diffusive, and ballistic power-law behavior

  18. Harmonized technical standards in the nuclear field

    International Nuclear Information System (INIS)

    Carbone, Ferdinando

    1976-01-01

    The need was felt of harmonizing and gradually standardizing technical norms, from the well-known Anglo-Saxon type codes of practice to the equally well-known recommendations of the International Commission on Radiological Protection (ICRP). The latter provide the basis for the Euratom Directives (basic standards), which, following their adoption, were embodied in the national laws of community Member countries. ISO (International Standardization Organization) is active in the nuclear technical regulations field, in particular through its Committee ISO/TC 85 ''Nuclear Energy'' at international level and, in Italy, through the National Italian Unification Agency (UNI) and its Nuclear Unification Commission (UNICEN). At its XI plenary meeting this body, on the proposal of the Secretary-General, set up a Study Group to promote revision of the regulation in force and coordination between legislation and development of UNICEN standards, considered as a set of integrative industrial technical standards. CISDEN, the Italian Nuclear Energy Forum (FIEN) and other interested organizations have been invited to collaborate in this work. (N.E.A.)

  19. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  20. Symmetries of the quantum damped harmonic oscillator

    International Nuclear Information System (INIS)

    Guerrero, J; López-Ruiz, F F; Aldaya, V; Cossío, F

    2012-01-01

    For the non-conservative Caldirola–Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg–Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola–Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes. (paper)

  1. Harmonic Balance Computations of Fan Aeroelastic Stability

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  2. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  3. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    Science.gov (United States)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  4. New Housing and the Harmonized Sales Tax: Lessons from Ontario

    OpenAIRE

    Bev Dahlby; Michael Smart; Benjamin Dachis

    2009-01-01

    Ontario’s revised plan for the tax treatment of new housing under a Harmonized Sales Tax (HST) is a significant improvement over its original proposal in the 2009 Budget, with lower economic cost and less impact on homebuyers’ decisions.

  5. Omega-Harmonic Functions and Inverse Conductivity Problems on Networks

    National Research Council Canada - National Science Library

    Berenstein, Carlos A; Chung, Soon-Yeong

    2003-01-01

    .... To do this, they introduce an elliptic operator DELTA omega and an omega-harmonic function on the graph, with its physical interpretation being the diffusion equation on the graph, which models an electric network...

  6. Comparative analysis of harmonized forest area stimates for European countries

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria; Strobl, P.; Miguel-Ayanz, J. San

    2011-01-01

    Harmonized forest area information provides an important basis for environmental modelling and policy-making at both national and international levels. Traditionally, this information has been provided by national forest inventory statistics but is now increasingly complemented with remote sensing...

  7. harmonics mitigation on industrial loads using series and parallel

    African Journals Online (AJOL)

    user

    harmonics using Simulink model of the power system of NICHEMTEX, a Textile industry in Nigeria as a .... operating loss Akagi [5]. ... where he described the pros and cons of active, passive ... fluorescent lighting, computer switch mode power.

  8. A harmonic oscillator having “volleyball damping”

    Science.gov (United States)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  9. Harmonic currents Compensator Grid-Connected Inverter at the Microgrid

    DEFF Research Database (Denmark)

    Asuhaimi Mohd Zin, A.; Naderipour, A.; Habibuddin, M.H.

    2016-01-01

    The main challenge associated with the grid-connected inverter in distributed generation (DG) systems is to maintain the harmonic contents in output current below the specified values and compensates for unbalanced loads even when the grid is subject to disturbances such as harmonic distortion...... and unbalanced loads. To overcome these challenges, a current control strategy for a three-phase grid-connected inverter under unbalanced and nonlinear load conditions is presented. It enables grid-connected inverter by the proposed control method to inject balanced clean currents to the grid even when the local...... loads are unbalanced and/or nonlinear and also compensate of the harmonic currents and control the active and reactive power. The main advantage and objective of this method is to effectively compensate for the harmonic currents content of the grid current and microgrid without using any compensation...

  10. Five propositions to harmonize environmental footprints of food and beverages

    NARCIS (Netherlands)

    Ponsioen, Tommie; Werf, Van Der H.M.G.

    2017-01-01

    Several attempts have been made to harmonize guidelines for environmental footprints of food and beverages. For example, the food Sustainable Consumption and Production Roundtable, the Leap partnership, and the Environmental Footprint project, in particular within the Cattle Model Working Group.

  11. Application of potential harmonic expansion method to BEC ...

    Indian Academy of Sciences (India)

    We adopt the potential harmonics expansion method for an ab initio solu- ... commonly adopted mean-field theories, our method is capable of handling ..... potentials in self-consistent mean-field calculation [7] gives wrong results as the.

  12. Building Mathematical Models of Simple Harmonic and Damped Motion.

    Science.gov (United States)

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  13. Intelligent harmonic load model based on neural networks

    Science.gov (United States)

    Ji, Pyeong-Shik; Lee, Dae-Jong; Lee, Jong-Pil; Park, Jae-Won; Lim, Jae-Yoon

    2007-12-01

    In this study, we developed a RBFNs(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method implemented by using harmonic information as well as fundamental frequency and voltage which are essential input factors in conventional method. Thus, the proposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. The RBFNs have certain advantage such as simple structure and rapid computation ability compared with multilayer perceptron which is extensively applied for load modeling. To show the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynominal 2nd equation method, MLP and RBF without considering harmonic components.

  14. Iceberg Harmonic Tremor, Seismometer Data, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to...

  15. Harmonized Tariff Schedule of the United States (2015) - Revision 1

    Data.gov (United States)

    US International Trade Commission — This dataset is the 2015 Harmonized Tariff Schedule Revision 1 effective July 1, 2015. It provides the applicable tariff rates and statistical categories for all...

  16. Large aperture harmonic conversion experiments at LLNL: comments

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.

    1983-07-01

    The purpose of this letter is to describe the collabration between Lawrence Livermore National Laboratory and the University of Rochester the subject of harmonic generation of laser radiation for inertial confinement fusion researh. (AIP)

  17. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in ...

  18. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  19. ARTIFICIAL INTELLIGENT SYSTEM FOR MEASUREMENT OF HARMONIC POWERS

    Directory of Open Access Journals (Sweden)

    Jovitha Jerome

    2017-11-01

    Full Text Available The importance of the electric power quality (PQ demands new methodologies and measurement tools in the power industry for the analysis and measurement of the basic electric magnitudes necessary. This paper presents a new measurement procedure based on neural networks for the estimation of harmonic amplitudes of current/voltage and respective harmonic powers. The measurement scheme is built with two neural network modules. The first module is an adaptive linear neuron (ADALINE that is the kernel part of estimation of complex harmonic coefficients of the current/voltage. The second module is feedforward neural network that obtains the harmonic active/reactive powers. In order to perform digital simulation the Feedforward and Adaline neural network tools were developed in LabVIEW. This measurement algorithm was tested for the practical cases and found to be robust, computationally fast and efficient.

  20. Harmonized Spaces, Dissonant Objects, Inventing Europe? Mobilizing Digital Heritage

    NARCIS (Netherlands)

    Badenoch, A.W.|info:eu-repo/dai/nl/298400715

    2011-01-01

    Technology, particularly digitization and the online availability of cultural heritage collections, provides new possibilities for creating new forms of ‘European cultural heritage’. This essay analyzes the emerging sphere of European digital heritage as a project of technological harmonization.