Comparison of Steady-State SVC Models in Load Flow Calculations
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...
AC-DC integrated load flow calculation for variable speed offshore wind farms
Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede
2005-01-01
This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....
余光正; 林涛; 徐遐龄; 叶婧; 周思远; 陈汝斯
2015-01-01
谐波概率潮流是评估风电接入对电网运行影响的基础。针对具有间歇性和波动性的风力发电装置接入电网时注入的谐波电流幅值和相位具有不确定性的问题，提出了一种基于2m+1点估计法的谐波概率潮流分析方法。该方法避免建立已知随机变量和待求随机变量之间的解析关系式，也无需已知输入随机变量的概率密度分布，仅根据样本数据的高阶矩构造估计点，得到电网支路谐波电流的期望、方差等统计信息，进而求得电网各支路谐波电流的分布范围。基于实际电网算例对文中所述方法进行验证，结果表明在计算精度相仿的情况下该方法比蒙特卡洛法仿真计算量更少，并且比区间分析法所得的结果更科学、合理。此外，考虑谐波注入源谐波电流幅值和相位的双重不确定性分析所得结果更符合实际情况。%Probabilistic harmonic power flow (PHPF) is basis of evaluating impact of wind power integration on grid. A PHPF scheme based on 2m+1 point estimate is proposed on account of uncertainties of injected harmonic current amplitudes and phases caused by intermittent and volatile new energy power generation device connected to electricity grid. This method eliminates establishment of analytic relationship between input and output random variables, dispenses with probability density function of input random variables. According to higher moment of sample data for making up estimation point, expectation, variance and other statistical parameters of branches can be calculated. Actual example is adopted to validate the proposed method and results show that accuracy of this method is similar to that of the Monte Carlo simulation with less calculation time. In comparison with interval analysis method, the proposed method is more scientific and reasonable. Moreover, results considering double uncertainty amplitude and phase of harmonic injection source conform
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
H. Hadj Abdallah
2005-09-01
Full Text Available This work presents a method for solving the problem of load flow in electric power systems including a wind power station with asynchronous generators. For this type of power station, the generated active power is only known and consequently the absorbed reactive power must be determined. So we have used the circular diagram at each iteration and by considering this node as a consuming node in the load flow program. Since the wind speed is not constant, the generated power is neither constant. To predict the state of the network in real time, we have used the artificial neural networks after a stage of training using a rich base of data.
Load Flow Calculation of Electric Power System Based on MATLAB%基于MATLAB的电力系统潮流计算
毕永廷; 杨海波; 师秀凤
2016-01-01
通过应用MATLAB软件对给定的电力系统进行潮流计算。通过比较MATLAB程序、Simulink仿真和Matpower同一负荷变化情况下的潮流计算结果，结果满足系统要求，验证了三种方法的有效性。同时三种方法运算效率符合现在潮流计算的发展，为电网潮流计算开辟了新方向。%MATLAB is used to calculate the load flow of the electric system. By comparing the calculation results of MATLAB, Simulation and Matpower under the same load change, it is found that all the results meet the system requirements, thus the three methods' effectiveness is verified. And the calculation efficiency of the three methods conform to the development of modern load flow calculation, so these methods have opened up a new direction for power flow calculation.
Harmonic calculation software for industrial applications with ASDs
Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan
2007-01-01
This article describes the evaluation of new harmonic calculation software. By using a combination of a prestored database and new interpolation techniques the software can provide the harmonic data on real applications of a very fast speed. The harmonic results obtained with this software have a...
Intelligent System for Radial Distribution Load Flow
Vaishali Holkar
2012-10-01
Full Text Available This paper shows an application of Artificial Neural Networks (ANNs to determine the bus voltages and phase angles of a radial distribution system, without executing the complicated load flow algorithm, for any given load. The performance of the conventional load flow methods such as Newtoh-Raphson load flow, Fast decoupled load flow is found to be very poor under critical conditions such as high R/X ratio, heavily loading condition etc.To overcome the limitations of these regularly used methods a simple and reliable ladder iterative technique is used for solving the power balance equations of radial distribution system (RDS. The proposed method make use of a multi-layer feed forward ANN with error back propagation learning algorithm for calculation of bus voltages and its angles. A sample IEEE 33-bus is extensively tested with the proposed ANN based approach indicating its viability for RDS load flow assessment and results are presented.
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper reviews the development of the probabilistic load flow (PLF) techniques. Applications of the PLF techniques in different areas of power system steady-state analysis are also discussed. The purpose of the review is to identify different available PLF techniques and their corresponding...
Load flow analysis using decoupled fuzzy load flow under critical ...
user
of power system, reliable fuzzy load flow is developed to overcome the limitations of the ... of power mismatches are taken as two inputs for fuzzy logic controller. ..... Programming Based Load Flow Algorithm For Systems Containing Unified ...
Quasi-harmonic calculations of the isotope effect in diffusion
Harding, J.H.
1986-11-10
It is shown how the kinetic energy factor for isotope diffusion may be calculated within the quasi-harmonic approximation using methods devised to calculate the vibrational contribution to defect entropies. The results are compared with experiment in the cases of CoO and NiO and good agreement found.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Huehnerbein, Benjamin Rudolf
2011-07-01
The load flow situation has significantly changed in electric power systems throughout the deregulation of European electricity market and the development of renewable energy sources. In the past load profiles of transmission lines and transformers were only dependent on the customers power demand. Today it is a mixture of load curves, power feed in by renewables and power transits which affect the usage of the transmission system. This leads to a fluctuating utilisation with a certain probability for each state with respect to the stochastic character of the above influences. Knowledge of the utilisation is the precondition for an efficient dimensioning of the power system. For these specific requirements the probabilistic power flow calculation is introduced and further developed. The state variables of the power system are defined as random variables and the probability of each grid state is determined. Different types of network equations and calculation techniques, resulting from various assumptions and simplifications of the well-known power flow equations are compared. The solution is found by either convolution techniques or Monte-Carlo-Simulation. The mathematic models is completed by implementation of a balanced power generation as well as by the integration of a correlation approach. This allows more or less realistic behavior for the interaction of load and generation on the one hand and the concurrence of similar nodal powers on the other hand. The result is proven by a boundary load flow on the base of the exact load flow equations. This allows a comparison of the minimum and the maximum values between the linearised and the exact solution. As long as this deviation is known, the results of the probabilistic power flow can be used in power system evaluation. At least an approach for the combination of probabilistic power flow and reliability evaluation is outlined to determine the probability for overloading components for the reason of network
蒋国顺; 李建华; 夏道止; 黄莹
2011-01-01
针对高压直流输电系统非特征谐波潮流算法中非线性方程组具有变量多、维数高的特点,采用牛顿-拉夫逊算法迭代求解,提高了非特征谐波算法的收敛性,推导了换流装置交流侧三相电流和直流侧电压及Y、d换流变压器△绕组内零序环流的解析式.根据交、直流网络与换流装置的相互关系,组成换流站母线三相谐波电流平衡方程、直流网络谐波电流平衡方程,形成了修正方程式,以统一基波和特征谐波潮流结果为初值,运用牛顿-拉夫逊算法迭代求解全系统非线性方程组.采用该算法计算了南方电网云广±800 kV特高压直流输电系统非特征谐波潮流,计算结果合理,收敛性良好,证明了所提算法的正确性和有效性.%In the non-characteristic harmonic load flow algorithm for high voltage direct current (HVDC) system, the nonlinear equations are charactered by the multivariable and huge dimension.Newton-Raphson iterative method is applied to improve the convergence of the non-characteristic harmonic load flow algorithm.The analytic expressions of three phases AC current, DC voltage, and circulation current at △ side in Y, d transformer are deduced.According to the relationship between the AC-DC network and converter device, balance equations of three-phase harmonic current of AC bus and DC network harmonic current are deduced, the modified equation for whole system is hence constructed and solved iteratively by taking the unified fundamental and characteristic harmonic load flow as the initial value.The non-characteristic harmonic load flows of China Southern Power Grid Yunguang ± 800 kV UHVDC transmission system are evaluated to verify the reasonableness and effectiveness.
Harmonic Calculation Software for Industrial Applications with Adjustable Speed Drives
Asiminoaei, Lucian; Hansen, S.; Blaabjerg, Frede
2005-01-01
This paper describes the evaluation of a new harmonic software. By using a combination of a pre-stored database and new interpolation techniques the software can very fast provide the harmonic data on real applications. The harmonic results obtained with this software have acceptable precision even...
The Impact of Harmonics Calculation Methods on Power Quality Assessment in Wind Farms
Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth
2010-01-01
Different methods of calculating harmonics in measurements obtained from offshore wind farms are shown in this paper. Appropriate data processing methods are suggested for harmonics with different origin and nature. Enhancements of discrete Fourier transform application in order to reduce...... measurement data processing errors are proposed and compared with classical methods. Comparison of signal processing methods for harmonic studies is presented and application dependent on harmonics origin and nature recommended. Certain aspects related to magnitude and phase calculation in stationary...... measurement data are analysed and described. Qualitative indices of measurement data harmonic analysis in order to assess the calculation accuracy are suggested and used....
Ratta G.
2011-10-01
the world due to the increasing use of electronic power devices and nonlinear loads (NLL. Several methods have been developed for the computational analysis of PS harmonic load-flow (HLF. These approaches allow harmonic distortion to be estimated at each PS bus when NLLs (the harmonic sources are distributed throughout a whole network. Some widely accepted deterministic formulations are used in HLF analysis; however, harmonic distortion in PS is a timevarying phenomenon because both linear loads (LL and NLLs change non-predictably all the time. Moreover, network configuration also varies and such considerations make HLF calculation a mathematical problem which must be able to model the uncertainty associated with input data. Some approaches based on probability theory and others using fuzzy sets and possibility theories have been proposed for modeling such uncertainty. This paper was thus aimed at providing an overview regarding these approaches. The main HLF formulations within probabilistic and possibilistic frameworks have thus been introduced and some numerical comparisons have been made to clarify some concepts raised.
邓威; 李欣然; 徐振华; 宋军英; 陈德生; 陈冬林
2012-01-01
Correlation of wind speed among different find farms affects the calculation results ofprobabilistic load flows. By means of performing linear transform of independent multidimensional random samples the multi-dimensional random samples with arbitrary correlation are obtained, thus the probabilistic load flow in which the Correlation of wind speed is taken into account can be calculated. In view of the feature of asynchronous wind power generator that it absorbs reactive power, to describe such a feature a variable coefficient quadratic polynomial model is proposed. At the same time that the random disturbance of load is considered, the influencing variation law of wind speed correlation on nodal probabilistic density of nodal voltage and probabilistic distribution of branch load flow as well as the configuration of reactive power compensation capacity at grid-connecting point of wind farms under the consideration of wind speed correlation are researched and analyzed. Simulation results of IEEE 30-bus system to which four wind farms are added show that the proposed method is effective and feasible; considering wind speed correlation the analysis and evaluation of the influences of wind farms on system static voltage and transmission of branch transmission power can be more reasonable, thus it is possible to offer more accurate reference information to system planning and determination of operation modes.%不同风电场之间风速的相关性会影响概率潮流计算的结果。通过对多维独立随机样本进行线性变换，得到具有任意相关性的多维随机样本，从而可计算考虑风速相关性的概率潮流；针对风电场异步发电机吸收无功的特性，提出了一种描述该特性的变系数二次多项式模型。在计及负荷随机扰动的同时，研究并分析了风速相关性的变化对节点电压概率密度和支路潮流概率分布的影响规律，以及考虑相关性后对风电场并网点无功补偿容
吴巍; 汪可友; 李国杰
2015-01-01
光伏发电相关性以及波动性会对系统的运行产生影响，因此需要通过计及光伏出力相关性的概率潮流(probabilistic load flow，PLF)计算来获取系统运行特征量的统计信息。文中提出采用改进Nataf变换处理光伏相关性。 在传统Nataf变换基础上，结合三阶多项式正态变换简化其计算。同时，为解决 PLF 的输入和输出变量之间非线性关系带来的计算复杂性，提出采用多重积分法(multiple integral method，MIM)和Gram-Charlier级数，仅需在少数输入点处进行潮流计算即可得到输出量统计特征的高精度结果。对IEEE 39节点系统进行仿真计算，结果验证了所提算法的有效性、准确性、计算高效性。与半不变量法的对比则验证了半不变量法的局限性以及MIM法的优良性能。%Due to the impact of the correlation and uncertainty of photovoltaic (PV) generation on power system, it is necessary to apply probabilistic load flow (PLF) considering correlation of PV generation to obtain the statistics of system characteristic quantities. A modified Nataf transformation was proposed to handle the correlation of PV generation in this paper. Based on the traditional Nataf transformation, a third-order polynomial normal transformation was adopted to reduce computational effort of traditional Nataf transformation. In order to simplify the computational complexity induced by the nonlinear relationship between input and output variables of PLF, multiple integral method (MIM) and Gram-Charlier expansion were introduced. Based on load flow calculation corresponding to specified input variables, high precision results of output statistics can be estimated. An IEEE 39-bus system was tested in the simulation study. The simulation results verified the effectiveness, accuracy and efficiency of the proposed algorithm. Comparison between cumulant method and MIM confirmed the limitation of cumulant method and well
Harmonic Calculation Toolbox in Industry Application for Adjustable Speed Drive
Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan
2004-01-01
parameters to be aware oFrede This paper focuses on estimation of line-side harmonic distortion when connecting one or multiple six-pulse diode rectifiers to any supply transformer. Results are put into a practical PC software toolbox for harmonic estimation on real applications. Through a combination...... of an off-line database and new interpolation techniques very good results have been achieved. The final results obtained are very close to the measurements on real applications and the toolbox can be used for future ASD designs and installations....
Modeling of D-STATCOM in distribution systems load flow
无
2007-01-01
This paper presents modeling of Distribution STATCOM (D-STATCOM) in load flow calculations for the steadystate voltage compensation. An accurate model for D-STATCOM is derived to use in load flow calculations. The rating of this device as well as the direction of required reactive power injection for voltage compensation in the desired value (1 p.u.) is derived and discussed analytically and mathematically by the phasor diagram method. Furthermore, an efficient method for node and line identification used in load flow calculations is presented. The validity of the proposed model is examined by using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of D-STATCOM for under voltage problem mitigation approach in the distribution networks is determined. The results validate the proposed model for DSTATCOM in large distribution systems.
The calculating formula for radial matrix elements of a relativistic harmonic oscillator
强稳朝
2003-01-01
A universal practical formula is given for calculating an integral which includes two confluent hypergeometric functions, power and exponential functions; then by means of this formula, the expressions of the radial matrix elements for a relativistic harmonic oscillator are given.
An improved filtered spherical harmonic method for transport calculations
Ahrens, C. [Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401 (United States); Merton, S. [Computational Physics Group, AWE Aldermaston, Berkshire (United Kingdom)
2013-07-01
Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)
Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.
2014-11-01
This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more
Modular load flow for restructured power systems
Hariharan, M V; Gupta, Pragati P
2016-01-01
In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2015-10-28
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.
Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations
Jianxue Wang
2014-01-01
Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.
Aydin, E. D.; Katsimichas, S.; de Oliveira, C. R. E.
2005-10-01
In this paper, the finite-element-spherical harmonics (FE-PN) method is applied to the solution of transient Boltzmann transport equation. Firstly, transport and diffusion calculations are obtained for homogeneous and inhomogeneous circular regions. Results are compared in order to show the effects of different absorption coefficient values on the propagation of photons. Significant differences between two theories are shown to occur especially in cases when the absorption is increased. Secondly, to validate the FE-PN method, results from this method are compared with Monte Carlo calculations for different cases. Comparisons show good agreements between FE-transport and Monte Carlo solutions and demonstrate the correctness of the results obtained.
Ganeev, Rashid A
2014-01-01
Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o
A.V. Erisov
2016-05-01
Full Text Available Purpose. Simplification of accounting ratio to determine the magnetic field strength of electric power lines, and assessment of their environmental safety. Methodology. Description of the transmission lines of the magnetic field by using techniques of spatial harmonic analysis in the cylindrical coordinate system is carried out. Results. For engineering calculations of electric power lines magnetic field with sufficient accuracy describes their first spatial harmonic magnetic field. Originality. Substantial simplification of the definition of the impact of the construction of transmission line poles on the value of its magnetic field and the bands of land alienation sizes. Practical value. The environmentally friendly projection electric power lines on the level of the magnetic field.
Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2016-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.
Tang, Xiaoli [Physics Department, Auburn University, Auburn, Alabama (United States); Dong, Jianjun [Physics Department, Auburn University, Auburn, Alabama (United States)
2009-06-01
We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.
Tsogbayar, Ts
2014-01-01
We present Floquet calculations of high harmonic generation (HHG) for the lowest two electronic states of the $\\mbox{H}_2^+$ ion by strong continuous-wave laser fields. We solve the non-Hermitian matrix problem to get accurate solutions to the periodic time-dependent Schr\\"odinger equation (TDSE) by applying a pseudospectral representation combined with a complex absorbing potential method. This represents an alternative approach to direct TDSE solutions to obtain the harmonic spectra for the ion. We compare our HHG rates for the lower and upper states of $\\mbox{H}^{+}_{2}$, which correspond to the gerade and ungerade ground states in the field-free case, with previously obtained results in the literature. We show that the enhancement of the ionization rates at the critical internuclear separation $R_{c}\\approx 8\\,au$ plays some role in the appearance of very strong harmonic orders $n=5-11$ at $\\lambda = 1064\\,nm$ and $n=5-9$ at $\\lambda = 800\\,nm$ and intensity $I=10^{14}\\,W/cm^{2}$.
Infrared and ultraviolet cutoffs in variational calculations with a harmonic oscillator basis
Coon, Sidney A
2013-01-01
I abstract from a recent publication [1] the motivations for, analysis in and conclusions of a study of the ultraviolet and infrared momentum regulators induced by the necessary truncation of the model spaces formed by a variational trial wave function. This trial function is built systematically from a complete set of many-body basis states based upon three-dimensional harmonic oscillator (HO) functions. Each model space is defined by a truncation of the expansion characterized by a counting number (N) and by the intrinsic scale ($\\hbar\\omega$) of the HO basis. Extending both the uv cutoff to infinity and the ir cutoff to zero is prescribed for a converged calculation. In [1] we established practical procedures which utilize these regulators to obtain the extrapolated result from sequences of calculations with model spaces. Finally, I update this subject by mentioning recent work on our extrapolation prescriptions which have appeared since the submission of [1]. The numerical example chosen for this contribu...
Gaussian continuum basis functions for calculating high-harmonic generation spectra
Coccia, Emanuele; Labeye, Marie; Caillat, Jérémie; Taieb, Richard; Toulouse, Julien; Luppi, Eleonora
2016-01-01
We explore the computation of high-harmonic generation spectra by means of Gaussian basis sets in approaches propagating the time-dependent Schr{\\"o}dinger equation. We investigate the efficiency of Gaussian functions specifically designed for the description of the continuum proposed by Kaufmann et al. [ J. Phys. B 22 , 2223 (1989) ]. We assess the range of applicability of this approach by studying the hydrogen atom , i. e. the simplest atom for which "exact" calculations on a grid can be performed. We notably study the effect of increasing the basis set cardinal number , the number of diffuse basis functions , and the number of Gaussian pseudo-continuum basis functions for various laser parameters. Our results show that the latter significantly improve the description of the low-lying continuum states , and provide a satisfactory agreement with grid calculations for laser wavelengths $\\lambda$0 = 800 and 1064 nm. The Kaufmann continuum functions therefore appear as a promising way of constructing Gaussian ...
TANG Yi; FANG Yong-li; YANG Luo; SUN Yu-xin; YU Zheng-hua
2012-01-01
A new accurate calculation method of electric power harmonic parameters was presented.Based on the delay time theorem of Fourier transform,the frequency of the electric power was calculated,and then,suing interpolation in the frequency domain of the windows,the parameters (amplitude and phase) of each harmonic frequency signals were calculated accurately.In the paper,the effect of the delay time and the windows on the electric power harmonic calculation accuracy was analysed.The digital simulation and the physical measurement tests show that the proposed method is effective and has more advantages than other methods which are based on multipoint interpolation especially in calculation time cost; therefore,it is very suitable to be used in the single chip DSP micro-processor.
Weibert, Kirsten; Main, Jörg; Wunner, Günter
2001-12-01
A method is proposed for the calculation of diffusion constants for one-dimensional maps exhibiting deterministic diffusion. The procedure is based on harmonic inversion and uses a known relation between the diffusion constant and the periodic orbits of a map. The method is tested on an example map for which results calculated by different other techniques are available for comparison.
N. J. Milardovich
2014-10-01
Full Text Available A numerical investigation on the harmonic disturbances in low-voltage cables feeding large LED loads is reported. A frequency domain analysis on several commercially-available LEDs was performed to investigate the signature of the harmonic current injected into the power system. Four-core cables and four single-core cable arrangements (three phases and neutral of small, medium, and large conductor cross sections, with the neutral conductor cross section approximately equal to the half of the phase conductors, were examined. The cables were modelled by using electromagnetic finite-element analysis software. High harmonic power losses (up to 2.5 times the value corresponding to an undistorted current of the same rms value of the first harmonic of the LED current were found. A generalized ampacity model was employed for re-rating the cables. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high-level of triplen harmonics in the distorted current. The ampacity of the cables should be derated by about 40 %, almost independent of the conductor cross sections. The calculation have shown that an incoming widespread use of LED lamps in lighting could create significant additional harmonic losses in the supplying low-voltage lines, and thus more severely harmonic emission limits should be defined for LED lamps.
Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.
2016-04-01
The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.
Miliordos, Evangelos; Xantheas, Sotiris S
2013-08-15
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. In all cases the frequencies based on internal coordinates differ on average by coordinates.
Probabilistic Load Flow Considering Wind Generation Uncertainty
R. Ramezani
2011-10-01
Full Text Available Renewable energy sources, such as wind, solar and hydro, are increasingly incorporated into power grids, as a direct consequence of energy and environmental issues. These types of energies are variable and intermittent by nature and their exploitation introduces uncertainties into the power grid. Therefore, probabilistic analysis of the system performance is of significant interest. This paper describes a new approach to Probabilistic Load Flow (PLF by modifying the Two Point Estimation Method (2PEM to cover some drawbacks of other currently used methods. The proposed method is examined using two case studies, the IEEE 9-bus and the IEEE 57-bus test systems. In order to justify the effectiveness of the method, numerical comparison with Monte Carlo Simulation (MCS method is presented. Simulation results indicate that the proposed method significantly reduces the computational burden while maintaining a high level of accuracy. Moreover, that the unsymmetrical 2PEM has a higher level of accuracy than the symmetrical 2PEM with equal computing burden, when the Probability Density Function (PDF of uncertain variables is asymmetric.
DING De-Sheng; ZHANG Yu
2004-01-01
@@ We present a simple calculation approach for the fundamental and second-harmonic sound beams with an arbitrary distribution source in the quasilinear approximation. The analysis is based on the assumption that the source function with an arbitrary geometry and distribution is expanded into the sum of a set of two-dimensional Gaussian functions. The two- and five-dimensional integral solutions for the fundamental and second-harmonic fields are, respectively, reduced in terms of Gaussian functions and simple one-dimensional integrals. The numerical evaluation of field distributions is then greatly simplified.
Load flow analysis for variable speed offshore wind farms
Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede
2009-01-01
A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated...
A Parallel Probabilistic Load Flow Method Considering Nodal Correlations
Jun Liu
2016-12-01
Full Text Available With the introduction of more and more random factors in power systems, probabilistic load flow (PLF has become one of the most important tasks for power system planning and operation. Cumulants-based PLF is an effective algorithm to calculate PLF in an analytical way, however, the correlations among the nodal injections to the system level have rarely been studied. A novel parallel cumulants-based PLF method considering nodal correlations is proposed in this paper, which is able to deal with the correlations among all system nodes, and avoid the Jacobian matrix inversion in the traditional cumulants-based PLF as well. In addition, parallel computing is introduced to improve the efficiency of the numerical calculations. The accuracy of the proposed method is validated by numerical tests on the standard IEEE-14 system, comparing with the results from Correlation Latin hypercube sampling Monte Carlo Simulation (CLMCS method. And the efficiency and parallel performance is proven by the tests on the modified IEEE-300, C703, N1047 systems with distributed generation (DG. Numerical simulations show that the proposed parallel cumulants-based PLF method considering nodal correlations is able to get more accurate results using less computational time and physical memory, and have higher efficiency and better parallel performance than the traditional one.
Germanas, D.; Stepšys, A.; Mickevičius, S.; Kalinauskas, R. K.
2017-06-01
This is a new version of the HOTB code designed to calculate three and four particle harmonic oscillator (HO) transformation brackets and their matrices. The new version uses the OpenMP parallel communication standard for calculations of harmonic oscillator transformation brackets. A package of Fortran code is presented. Calculation time of large matrices, orthogonality conditions and array of coefficients can be significantly reduced using effective parallel code. Other functionalities of the original code (for example calculation of single harmonic oscillator brackets) have not been modified.
Holomorphic Embedded Load Flow for autonomous spacecraft power systems Project
National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...
Cammi, R; Cappelli, C; Mennucci, B; Tomasi, J
2012-10-21
We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.
Meier, Patrick; Rauhut, Guntram
2015-12-01
Three different approaches for calculating Franck-Condon factors beyond the harmonic approximation are compared and discussed in detail. Duschinsky effects are accounted for either by a rotation of the initial or final wavefunctions - which are obtained from state-specific configuration-selective vibrational configuration interaction calculations - or by a rotation of the underlying multi-dimensional potential energy surfaces being determined from explicitly correlated coupled-cluster approaches. An analysis of the Duschinsky effects in dependence on the rotational angles and the anisotropy of the wavefunction is provided. Benchmark calculations for the photoelectron spectra of ClO2, HS-2 and ZnOH- are presented. An application of the favoured approach for calculating Franck-Condon factors to the oxidation of Zn(H2O)+ and Zn2(H2O)+ demonstrates its applicability to systems with more than three atoms.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
Gupta, Atma Ram; Kumar, Ashwani
2017-08-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: - Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. - Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. - Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
Three-Phase Unbalanced Load Flow Tool for Distribution Networks
Demirok, Erhan; Kjær, Søren Bækhøj; Sera, Dezso;
2012-01-01
This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based on Matlab®. The tool can be used to assess steady-state voltage variations, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV) generators where...... most of the systems are single phase. New ancillary service such as static reactive power support by PV inverters can be also merged together with the load flow solution tool and thus, the impact of the various reactive power control strategies on the steady-state grid operation can be simply...... investigated. Performance of the load flow solution tool in the sense of resulting bus voltage magnitudes is compared and validated with IEEE 13-bus test feeder....
Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow
Yingyun Sun
2016-03-01
Full Text Available An intrusive spectral method of probabilistic load flow (PLF is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.
Computation of Load Flow Problems with Homotopy Methods
陈玉荣; 蔡大用
2001-01-01
Load flow computations are the basis for voltage security assessments in power systems. All of theflow equation solutions must be computed to explore the mechanisms of voltage instability and voltagecollapse. Conventional algorithms, such as Newton's methods and its variations, are not very desirablebecause they can not be easily used to find all of the solutions. This paper investigates homotopy methodswhich can be used for numerically computing the set of all isolated solutions of multivariate polynomial systemsresulting from load flow computations. The results significantly reduce the number of paths being followed.``
Nanda, T.; Bijwe, P.R.; Kothari, D.P.
1982-10-01
This paper presents the development of a highly effective piecewise fast developed load flow algorithm which has a promising potential for practical application. The algorithm requires minimal storage which is almost independent of the sytem size thus enabling power flow solutions of large systems being accomplished on available small size computers and microprocessors. The potential of the suggested algorithm for practical application has been demonstrated by obtaining the load flow results for a few sample systems. It is envisaged that the algorithm would immensely appeal to the utility engineers, since the engineer not only needs the minimum memory for solving the problem but also can develop the program with utmost care and confidence since the algorithm is devoid of such programming complexities like sparsity exploitation and optimal ordering inherent with modern load flow programs. It is believed that the algorithm would find great popularity with the utilities.
A Study of Load Flow Analysis Using Particle Swarm Optimization
Deepak Saini
2015-01-01
Full Text Available Load flow study is done to determine the power system static states (voltage magnitudes and voltage angles at each bus to find the steady state working condition of a power system. It is important and most frequently carried out study performed by power utilities for power system planning, optimization, operation and control. In this project a Particle Swarm Optimization (PSO is proposed to solve load flow problem under different loading/ contingency conditions for computing bus voltage magnitudes and angles of the power system. With the increasing size of power system, this is very necessary to finding the solution to maximize the utilization of existing system and to provide adequate voltage support. For this the good voltage profile is must. STATCOM, if placed optimally can be effective in providing good voltage profile and in turn resulting into stable power system. The study presents a hybrid particle swarm based methodology for solving load flow in electrical power systems. Load flow is an electrical engineering well-known problem which provides the system status in the steady-state and is required by several functions performed in power system control centers.
Load flow computations in hybrid transmission - distributed power systems
Wobbes, E.D.; Lahaye, D.J.P.
2013-01-01
We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting
Determination of multiple solutions of load flow equations
PANKAJ MAHATA; P S NAGENDRA RAO
2016-08-01
This paper is concerned with the problem of finding all the real solutions (all components of the solution vector must be real values) of load flow equations. Solutions in which some of the components are complex values are of no interest as they have no physical significance as a load flow solution. This problem issignificant not only because of its theoretical challenge but also, its relationship with several system behavior related issues. Approaches suggested so far for solving this problem are rather ad hoc, computationally demanding and have been demonstrated only on very small systems. Further, it has been subsequently shown by others that many of these methods are not capable of finding all solutions. In this work a new approach is proposed which is more systematic and seems to have the potential to handle even large problems. We show that for any system it is possible to find the multiple load flow solutions (MLFS) corresponding to a given operating point extremely easily, starting from a set of points that are referred to as zero load solutions (ZLS) in this paper.It is shown that the complete set of ZLS is unique for a system and MLFS for any other operating point can be obtained starting from these ZLS using only the Newton’s load flow method. The set of procedures for implementing the proposed scheme are illustrated and their features are highlighted by considering several sample systems.
Yu, Rong Mei; Zan, Li Rong; Jiao, Li Guang; Ho, Yew Kam
2017-09-01
Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for < rn \\rangle was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies.
Load Flow Analysis Using Real Coded Genetic Algorithm
Himakar Udatha
2014-02-01
Full Text Available This paper presents a Real Coded Genetic Algorithm (RCGA for finding the load flow solution of electrical power systems. The proposed method is based on the minimization of the real and reactive power mismatches at various buses. The traditional methods such as Gauss-Seidel method and Newton-Raphson (NR method have certain drawbacks under abnormal operating condition. In order to overcome these problems, the load flow solution based on Real Coded Genetic Algorithm (RCGA is presented in this paper. Two cross over techniques, Arithmetic crossover and heuristic crossover are used to solve the power flow problem. The proposed method is applied for 3-bus, 5-bus and 6-bus systems and the results are presented.
Probabilistic Aspects of Harmonic Emission of Large Offshore Wind Farms
Jensen, Christian Flytkjær; Bak, Claus Leth; Kocewiak, Lukasz Hubert
2011-01-01
In this article, a new probabilistic method of as-sessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single...... turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues...... of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some diffi-culties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farm is connected must be included in the study. Furthermore, a very detailed...
Nanda, J.; Bijwe, P.R.; Kothari, D.P.
1982-10-01
A highly effective piecewise fast developed load flow algorithm has been developed which has a promising potential for practical application. The algorithm requires minimal storage which is almost independent of the systems size thus enabling power flow solutions of large systems being accomplished on available small size computers and microprocessors. The potential of the suggested algorithm for practical applications has been demonstrated by obtaining the load flow results for a few sample systems. It is envisaged that the algorithm would immensely appeal to utility engineers who not only need the minimum memory for solving the problem but also can develop the program with utmost care and confidence since the algorithm i devoid of such programming complexities like sparsity exploitation and optimal ordering inherent with modern load programs.
On load flow control in electric power systems
Herbig, Arnim
2000-01-01
This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers
Three-Phase Load Flow for Unbalanced Systems.
Chang, Yih-Ping
Traditionally, transmission systems are assumed to be balanced in power system analysis. A single phase positive sequence circuit is used in transmission system load flow analysis to simplify the study. However, when untransposed transmission lines are used in a power system due to economic considerations, space limitation; or when large unbalanced load is on the system; or when an unbalance contingency occurs on the system, this assumption may not hold true. The unbalance condition in some isolated systems are so precarious that disaster can result. One such incident occurred on a generator unit of the third nuclear power plant of Taipower in 1985. In that particular case, the turbine blades were broken and a spark ignited the liquid hydrogen when the blade vibration resonated with the 120.5 Hz rotor current. One cause of this rotor current generation is system unbalance. The unbalanced three-phase load flow program is needed in today's power system analysis. An advanced three-phase unbalanced transmission load flow program, capable of locating the unbalanced problem of large electric network systems, was proposed to be developed and tested in this research. Features of this program include simultaneous power flow of multiple voltage levels on an individual phase basis; PV bus generator, cogenerator, transformer simulation, and load modeling. It is found that delta-grounded wye step-up transformer reduces the convergence speed greatly. When too many delta-grounded wye step-up transformers exist in a large scale system and a quick approximate result of the unbalance conditions is needed, these step-up transformers can be substituted by grounded-wye to grounded-wye type transformers. This is tested on a Taipower system case which included 345KV, 161KV and 69KV feeders, network transformers, 34 PV bus generators and 188 three-phase buses. Impending unbalance problems in Taipower system were located. When not too many delta-grounded wye type transformers are in the
SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS
Krzysztof Pulikowski
2014-12-01
Full Text Available In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values calculated for each month rarely exceed the value of 0.01 kg P ∙ ha-1. Culmination of loads bringing away is a bit more extended in a time compared to the catchment located on Sudety Mts. Foreland. Much higher loads are observed during the period from January to April – this period has a major impact on the size of phosphorus load that flows out from this catchment during whole hydrological year. The obtained results clearly indicate that the threat of watercourses and water reservoirs supply in phosphorus compounds from agricultural land is periodic and it is particularly high during early spring. Phosphorus load flowing out from the analyzed catchments is very diverse. From facility located on Sudety Foothill in hydrological year, during research period, flowed away average 0.81 kg P ∙ ha-1. Significantly lower values were obtained for second facility and it was average 0.15 kg P ∙ ha-1 during a year. The size of load discharged during a year is largely determined by amount of phosphorus load flowing out during winter half of the year (from XI to IV. In case of foothill catchment in this period flowed out average 0.56 kg P ∙ ha-1, which presents 69% of annual load and in lowland catchment this percentage was even slightly higher and was 73%.
Reine, Simen; Tellgren, Erik; Helgaker, Trygve
2007-09-14
Utilizing the fact that solid-harmonic combinations of Cartesian and Hermite Gaussian atomic orbitals are identical, a new scheme for the evaluation of molecular integrals over solid-harmonic atomic orbitals is presented, where the integration is carried out over Hermite rather than Cartesian atomic orbitals. Since Hermite Gaussians are defined as derivatives of spherical Gaussians, the corresponding molecular integrals become the derivatives of integrals over spherical Gaussians, whose transformation to the solid-harmonic basis is performed in the same manner as for integrals over Cartesian Gaussians, using the same expansion coefficients. The presented solid-harmonic Hermite scheme simplifies the evaluation of derivative molecular integrals, since differentiation by nuclear coordinates merely increments the Hermite quantum numbers, thereby providing a unified scheme for undifferentiated and differentiated four-center molecular integrals. For two- and three-center two-electron integrals, the solid-harmonic Hermite scheme is particularly efficient, significantly reducing the cost relative to the Cartesian scheme.
范偲偲; 黄永宁; 张爽; 梁剑; 黄欣
2015-01-01
为了满足太阳山换流站滤波器设计对电网背景谐波数据的要求,对2013年宁夏电网与太阳山密切相关的变电站进行全面的背景谐波测试,通过实测谐波数据与网架潮流计算数据的一致性分析,验证了计算方法的可行性和准确性;考虑系统网架变化,将太阳山换流站接入系统,同时考虑新能源、谐波源、网架和负荷的发展,计算得出2016年太阳山换流站750 kV母线谐波电压值,并在此基础上,给出了有一定裕度的推荐值供设计单位采用.%In order to meet the demand of the filter design in Taiyangshan converting substation for background harmonic data of the power grid,makes complete background harmonic test of the substations closely related with Taiyangshan in Ningxia power grid in 2013. By analyzing the consistency between practical measured harmonic data and network frame power flow calculation data,verifies the feasibility and accuracy of the calculation method;considering the change of system network frame, access the Taiyangshan converting substation into power system, Simultaneously taking into account the development of new energy,harmonic source,network frame and load,calculates and obtains 750 kV bus harmonic voltage values of Taiyangshan converting substation in 2016,on this basis,provides a certain margin recommended values for filter designer.
Yuye Wang; Jianquan Yao; Degang Xu; Pu Zhao; Peng Wang
2006-01-01
@@ A method of precisely calculating the external applied voltage and the optimum type-Ⅱ phase matching angles for KTP crystal, which is used as both an intracavity electro-optic (EO) Q-switch and a frequency doubler, is presented. The effective EO coefficient along the phase-matching direction is defined to calculate the half-wave voltage and the quarter-wave voltage, and the precise calculation for the phase matching angles in the condition of KTP crystal optimum second harmonic phase matching is theoretically realized.
Niancheng Zhou
2014-08-01
Full Text Available The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.
Wide Area Protection Scheme Preventing Cascading Events Caused by Load Flow Transferring
Liu, Zhou; Chen, Zhe; Sun, Haishun;
2013-01-01
Load flow transferring after an initial contingency is regarded as one of the main reasons of causing unexpected cascading trips. A multi agent system (MAS) based wide area protection strategy is proposed in this paper to predict the load flow transferring from the point of view of impedance relays...
GHRS observations of mass-loaded flows in Abell 78
Harrington, J. Patrick; Borkowski, Kazimierz J.; Tsvetanov, Zlatan
1995-01-01
Spectroscopic observations of the central star of the planetary nebula Abell 78 were obtained with the Goddard High Resolution Spectrograph (GHRS) onboard the Hubble Space Telescope (HST) in the vicinity of the C IV lambda 1548.2, 1550.8 doublet. We find a series of narrow absorption features superposed on the broad, P Cygni stellar wind profile. These features are seen in both components of the doublet at heliocentric radial velocities of -18, -71, -131, and -192 km/s. At higher velocities, individual components are no longer distinct but, rather, merge into a continuous absorption extending to approximately -385 km/s. This is among the highest velocities ever detected for gas in a planetary nebula. The -18 km/s feature originates in an outer envelope of normal composition, while the -71 km/s feature is produced in the wind-swept shell encircling an irregular wind-blown bubble in the planetary nebula center. The hydrogen-poor ejecta of Abell 78, consisting of dense knots with wind-blown tails, are located in the bubble's interior, in the vicinity of the stellar wind termination shock. The high-velocity C IV lambda 154 absorption features can be explained as due to parcels of ejecta being accelerated to high velocities as they are swept up by the stellar wind during its interaction with dense condensations of H-poor ejecta. As the ablated material is accelerated, it will partially mix with the stellar wind, creating a mass-loaded flow. The abundance anomalies seen at the rim of the bubble attest to the transport of H-poor knot material by such a flow.
Ignacio Pérez Abril
2012-07-01
Full Text Available Los filtros de armónicos cumplen la función de evitar la circulación de las corrientes de armónico por el sistema y reducir la distorsión de la tensión. Estos pueden ser pasivos (compuestos por arreglos de impedancias o activos(basados en electrónica de potencia. Las características de los filtros pasivos pueden encontrarse en la bibliografía especializada. Sin embargo, las ecuaciones para el diseño de los mismos no se muestran en todos los casos, lo que dificulta el cálculo de sus componentes y de su estrés en condiciones de operación. El objetivo fundamental de este trabajo es desarrollar el procedimiento general para el cálculo de los filtros pasivos de armónicos y determinar las ecuaciones correspondientes a los distintos tipos de filtro. Además, se describe una aplicación en Matlab que calcula los parámetros R, L y C de los distintos tipos de filtro y evalúa el estrés a que se someten los componentes de los mismos. The purpose of the harmonic filters in the electrical power systems is the avoiding the harmonic currents circulation in the network and the reduction of the voltages waveform distortion. The harmonic filters can be of passive type (composite of impedances or active type (based on power electronic. The characteristics of passive filters can be found in the specialized bibliography. However, the equations for the filter design are not showed in all cases, which difficult the filter’s components calculation and the evaluation of its stress in operation conditions. The objective of thepresented work is the developing of a general procedure for the harmonic passive filters parameters calculation and the determination of the needed equations for each type of filter. Besides, a Matlab application that calculates the R, L and C parameters, and the stress of all the treated filters is showed.
Li, Yuhui; Zhang, Shancai
2004-01-01
The high-gain harmonic generation (HGHG) free-electron laser (FEL) is an important candidate for a fourth-generation light source. Lots of theoretical work has been performed. Recently a further 1D theory about HGHG FEL has been developed. It considers the effects of different parameters for the whole process. An initial program based on this theory has been made. In this paper, a brief comparison of the results from this 1D program and from TDA (3D code) is discussed. It also analyses the parameters for Shanghai deep ultra violate free-electron laser source (SDUV-FEL), including electron beam energy spread, seed laser power, strength of dispersion section etc.
Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Lizée, Aude
2006-03-01
The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion (square signals) of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring.
Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.
2013-01-01
In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.
Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)
2014-05-15
Highlights: • Nonlinear optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) were investigated. • The compounds have large uniaxial anisotropy and large negative birefringence. • The second order susceptibility and the first hyperpolarizability were calculated. • CdGa{sub 2}Se{sub 4} posses huge second harmonic generation. - Abstract: All electron full potential linear augmented plane wave method was used for calculating the nonlinear optical susceptibilities of CdGa{sub 2}X{sub 4} (X = S, Se) within the framework of density functional theory. The exchange correlation potential was solved by recently developed modified Becke and Johnson (mBJ) approximation. The crystal structure of CdGa{sub 2}S{sub 4} and CdGa{sub 2}Se{sub 4} reveals a large uniaxial dielectric anisotropy ensuing the birefringence of −0.036 and −0.066 which make it suitable for second harmonic generation. The second order susceptibility |χ{sub ijk}{sup (2)}(ω)| and microscopic first hyperpolarizability β{sub ijk}(ω) were calculated. The calculated |χ{sub 123}{sup (2)}(ω)| and |χ{sub 312}{sup (2)}(ω)| static values for the dominant components found to be 18.36 pm/V and 22.23 pm/V for CdGa{sub 2}S{sub 4} and CdGa{sub 2}Se{sub 4}. Both values shifted to be 60.12 pm/V and 108.86 pm/V at λ = 1064 nm. The calculated values of β{sub 123}(ω) is 6.47 × 10{sup −30} esu at static limit and 12.42 × 10{sup −30} esu at λ = 1064 nm for CdGa{sub 2}S{sub 4}, whereas it is 8.82 × 10{sup −30} esu at static limit and 20.51 × 10{sup −30} esu at λ = 1064 nm for CdGa{sub 2}Se{sub 4}. The evaluation of second order susceptibilities and first hyperpolarizabilties suggest that CdGa{sub 2}X{sub 4} possess huge second harmonic generation.
Service Oriented Architectural Model for Load Flow Analysis in Power Systems
Muthu, Balasingh Moses; Veilumuthu, Ramachandran; Ponnusamy, Lakshmi
2011-07-01
The main objective of this paper is to develop the Service Oriented Architectural (SOA) Model for representation of power systems, especially of computing load flow analysis of large interconnected power systems. The proposed SOA model has three elements namely load flow service provider, power systems registry and client. The exchange of data using XML makes the power system services standardized and adaptable. The load flow service is provided by the service provider, which is published in power systems registry for enabling universal visibility and access to the service. The message oriented style of SOA using Simple Object Access Protocol (SOAP) makes the service provider and the power systems client to exist in a loosely coupled environment. This proposed model, portraits the load flow services as Web services in service oriented environment. To suit the power system industry needs, it easily integrates with the Web applications which enables faster power system operations.
Carlos Ferrer
2009-01-01
Full Text Available Harmonics-to-noise ratios (HNRs are affected by general aperiodicity in voiced speech signals. To specifically reflect a signal-to-additive-noise ratio, the measurement should be insensitive to other periodicity perturbations, like jitter, shimmer, and waveform variability. The ensemble averaging technique is a time-domain method which has been gradually refined in terms of its sensitivity to jitter and waveform variability and required number of pulses. In this paper, shimmer is introduced in the model of the ensemble average, and a formula is derived which allows the reduction of shimmer effects in HNR calculation. The validity of the technique is evaluated using synthetically shimmered signals, and the prerequisites (glottal pulse positions and amplitudes are obtained by means of fully automated methods. The results demonstrate the feasibility and usefulness of the correction.
JIN Jing; TANG Yi
2007-01-01
The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually, the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition,by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.
Integrating lv network models and load-flow calculations into smart grid planning
Hoogsteen, Gerwin; Molderink, Albert; Bakker, Vincent; Smit, Gerard J.M.
2013-01-01
Increasing energy prices and the greenhouse effect demand a more efficient supply of energy. More residents start to install their own energy generation sources such as photovoltaic cells. The introduction of distributed generation in the low-voltage network can have effects that were unexpected whe
Radial basis function neural network for power system load-flow
Karami, A.; Mohammadi, M.S. [Faculty of Engineering, The University of Guilan, P.O. Box 41635-3756, Rasht (Iran)
2008-01-15
This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)
Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)
2016-07-01
Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.
Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies
Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)
2009-01-01
This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...
Vlachogiannis, Ioannis (John)
2009-01-01
A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...
Eliazar, Iddo
2017-05-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.
The Harmonic Calculation of Novel Linear Combination Sampling SPWM%新型线性组合采样法SPWM谐波数值分析
严海龙; 王榕生
2012-01-01
This article first illustrates the shortcoming of the asymmetric regular sampling SPWM, it requires a large sampling numbers, and so occupy a large processor resources. Then a detailed analysis of the linear combination sampling method to solve this problem is given. Through the comparison of symmetric regular sampling method and two-vertex sampling method, this article leads to novel linear combination sampling method, and then uses Matlab numerical calculation functions for harmonic analysis of several sampling SPWM wave, also finally gives a few key procedures in the analysis process. The analysis results validated the linear combination sampling method, it also proved that the two-vertex sampling method is not practical.%阐明了常用的不对称规则采样法SPWM的采样次数多、占用处理器资源大的问题,详细分析了能够解决这一问题的线性组合采样法的整体原理。通过双顶点采样法与对称规则采样法的比较,引出新型线性组合采样法,并利用Matlab强大的数值计算功能对几种采样法SPWM波行进行谐波分析,同时给出了分析过程中的关键程序段。分析结果证明了线性组合采样法的有效性,也证明了双顶点采样法是不实用的。
Load flow studies using Newton Raphson decouled method exploiting sparsity. Technical report
1980-10-01
The rapid growth of power systems to meet the ever increasing demand for energy has cast a great challenge upon the power system engineer. It devolves on the engineer to technically and economically analyse the various plans before him and assess their relative merits in order to ensure reliable and economical operations of power systems. This, in turn, calls for rigorous and accurate modelling of power systems and their analysis. As a first step, load flow studies form a vital part of system planning and operational studies. There is always a need to improve the technique of analysing the load flow problem and for its accurate and quick analysis. A computer program was developed in CPRI using Newton Raphson decoupled approach which may be of use to various electricity boards.
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Investigation of schemes for incorporating generator Q limits in the fast decoupled load flow method
Lakshmi Sundaresh; P S Nagendra Rao
2015-06-01
Fast Decoupled Load Flow (FDLF) is a very popular and widely used power flow analysis method because of its simplicity and efficiency. Even though the basic FDLF algorithm is well investigated, the same is not true in the case of additional schemes/modifications required to obtain adjusted load flow solutions using the FDLF method. Handling generator Q limits is one such important feature needed in any practical load flow method. This paper presents a comprehensive investigation of two classes of schemes intended to handle this aspect i.e. the bus type switching scheme and the sensitivity scheme. We propose two new sensitivity based schemes and assess their performance in comparison with the existing schemes. In addition, a new scheme to avoid the possibility of anomalous solutions encountered while using the conventional schemes is also proposed and evaluated. Results from extensive simulation studies are provided to highlight the strengths and weaknesses of these existing and proposed schemes, especially from the point of view of reliability.
刘俊磊; 王钢; 李海锋; 周全; 郑伟
2014-01-01
An accurate converter model is the foundation of AC/DC system fault analysis and harmonic calculation.Based on the dynamic switching characteristics of inverter and fault response characteristics of DC control system of various fault-types,a DC system model able to directly interface with AC systems is developed for AC/DC system fault analysis and harmonic calculation.By referring to the AC and DC power grid harmonic equivalent network,an high voltage direct current (HVDC) system harmonic calculation method suitable for AC asymmetric fault condition is proposed.The method is used in the harmonic calculation of CIGRE HVDC system and Guiguang Ⅱ HVDC system.Compared with simulation results using PSCAD/EMTDC software,the results obtained show that the proposed model and method are accurate and effective,providing a basis for quantitative analysis of harmonic mitigation,filter configuration and protection setting of the AC/DC system.%准确的直流系统模型是交直流系统故障分析和谐波计算的基础。文中在换流器开关函数模型的基础上，结合直流控制系统的故障响应特性，建立了可与交流系统直接接口的适用于交直流系统故障分析和谐波计算的直流系统等值模型；结合交流系统等值谐波网络，提出了一种交流电网故障时的高压直流输电系统谐波分析计算方法。将所提方法应用于国际大电网会议高压直流输电(CIGRE HVDC)系统标准模型和贵广Ⅱ回高压直流输电系统详细模型的谐波计算，并与PSCAD/EMTDC软件所得数字仿真结果进行比较，表明所提模型和方法准确、有效，为交直流输电系统的谐波抑制、滤波装置的配置和继电保护的整定配合等提供了定量分析依据。
Automated system for load flow prediction in power substations using artificial neural networks
Arlys Michel Lastre Aleaga
2015-09-01
Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.
Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Lizée, Aude
2005-01-01
The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has later been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying every periodic solution of the model, whether stable or unstable without care of i...
Tamilselvan V.
2016-06-01
Full Text Available The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA. To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.
韩力; 王华; 马南平; 刘航航
2012-01-01
Aiming at abundant harmonics and large harmonic losses of brushless doubly-fed machine (BD-FM) , the loss calculation models of BDFM were presented by considering the influence of harmonic magnetic field, harmonic currents, skin effect and rotating magnetization. Based on 2D time-stepping finite element model coupled with the circuit and the harmonic analysis method, two different models of rotor copper loss calculation and three different models of stator and rotor iron losses calculation were established , and the influence of different models on the rotor copper loss and the stator and rotor iron losses were analyzed. The variation tendency of BDFM harmonic copper and iron losses were then obtained. The results show that the model 2 of rotor copper loss and the model 3 of stator and rotor iron losses are more accurate. With the increase of control winding voltage of BDFM, the stator and rotor copper losses decrease first and then increase, the stator and rotor iron losses increase constantly. With the increase of BDFM load torque, the copper and iron losses both on stator and rotor increase continually. By comparison of the calculated results of copper and iron losses with the electromagnetic design data and the test data of a similar asynchronous machine, the correctness of the presented models and the calculated results are verified.%针对无刷双馈电机谐波含量高、谐波损耗大的问题,提出考虑谐波磁场、谐波电流、集肤效应和旋转磁化影响的BDFM损耗计算模型.基于二维场路耦合时步有限元模型和谐波分析方法,分别建立两种转子铜耗计算模型和三种定转子铁耗计算模型,分析不同计算模型对转子铜耗和定转子铁耗的影响,得到定转子谐波铜耗和铁耗的变化规律.结果表明,转子铜耗模型2以及定转子铁耗模型3更精确；随着控制绕组电压的增加,定转子铜耗先减小后增加,定转子铁耗持续增加；随着负载转矩的增加,定转
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth
2009-01-01
The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken into consideration. The wind farm is simulated in DIgSILENT Power Factory software in order to determine and assess harmonic emission in the point of common coupling. Different modelling methods of power electronic devices installed in wind turbines are presented. Harmonic load flow analysis and impedance...
Renewable Distributed Generation Models in Three-Phase Load Flow Analysis for Smart Grid
K. M. Nor
2013-11-01
Full Text Available The paper presents renewable distributed generationÂ (RDG models as three-phase resource in load flow computation and analyzes their effect when they are connected in composite networks. The RDG models that have been considered comprise of photovoltaic (PV and wind turbine generation (WTG. The voltage-controlled node and complex power injection node are used in the models. These improvement models are suitable for smart grid power system analysis. The combination of IEEE transmission and distribution data used to test and analyze the algorithm in solving balanced/unbalanced active systems. The combination of IEEE transmission data and IEEE test feeder are used to test the the algorithm for balanced and unbalanced multi-phase distribution system problem. The simulation results show that by increased number and size of RDG units have improved voltage profile and reduced system losses.
Farner, S; Kergomard, J; Lizée, A; Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Liz\\'{e}e, Aude
2005-01-01
The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has later been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying every periodic solution of the model, whether stable or unstable without care of initial conditions. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, Harmbal, has been developed based on the HBM. The method as well as convergence improvements and continuations facilities are thorougly presented and discussed in the present paper. Application of the method is demonstrated on various problems related to a common model of the clarinet: a reed modelled as a simple spring with and without mass and damping, a nonlinear coupling and a cubic simplification of...
刘蓉晖; 李琛; 章跃进
2013-01-01
The harmonic gear utilizes the change of the magnetic permeability caused by eccentric structure to achieve speed change and torque transmission with high gear ratios. This paper established an eccentric magnetic harmonic gear analytical model based on the boundary perturbation method. The eccentric air-gap magnetic field was calculated due to the permanent magnets of the eccentric rotor or stator acting alone, and then the air-gap magnetic field of the magnetic harmonic gear was obtained according to the superposition principle. Comparing air-gap flux density and electromagnetic torque of the analytical results with the finite element analysis results, the proposed method is proved to be correct and effective.%偏心式谐波磁力齿轮利用转子偏心引起气隙磁导的变化，从而实现高速比变速和转矩传递。该文应用边界摄动法，建立了偏心式谐波磁力齿轮气隙磁场二维解析模型。首先分别计算偏心转子和定子永磁体单独作用时的偏心气隙磁场，再根据叠加原理合成谐波齿轮气隙磁场。气隙磁通密度和电磁转矩的解析结果与有限元分析结果相比较，验证了解析模型的正确性和有效性。
Phononic High Harmonic Generation
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.
Load Flow and Short Circuit Analysis of the Class III Power System of HANARO
Kim, H. K.; Jung, H. S
2005-12-15
The planning, design, and operation of electric power system require engineering studies to assist in the evaluation of the system performance, reliability, safety and economics. The Class III power of HANARO supplies power for not only HANARO but also RIPF and IMEF. The starting current of most ac motors is five to ten times normal full load current. The loads of the Class III power are connected in consecutive orders at an interval for 10 seconds to avoid excessive voltage drop. This technical report deals with the load flow study and motor starting study for the Class III power of HANARO using ETAP(Electrical Transient Analyzer Program) to verify the capacity of the diesel generator. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. From this study, we verify the short circuit current capacity of air circuit breaker(ACB) and automatic transfer switch(ATS) of the Class III power.
吴方劼; 史梦梦; 胡志坚; 王小飞; 陈彬; 汤鹏; 邱骁奇
2016-01-01
换流站母线处谐波阻抗值可为直流输电系统中滤波器的设计提供参数依据,对抑制系统谐波至关重要.在完善发电机、变压器、线路、母线负荷等电气元件谐波阻抗模型的基础上,研究基于中国版BPA数据的系统谐波阻抗等值计算方法.提出基于半动态-遗传算法的节点编号优化方法,利用连线矩阵改进节点导纳矩阵的形成,采用稀疏矩阵技术中的排零存储和排零运算提高程序的运行效率.用PSCAD对标准的IEEE 9节点系统进行仿真,验证了所提方法的正确性和有效性.根据电网BPA数据,对某特高压直流输电工程的谐波阻抗进行阻抗扫描,在N-O、N-1及N-2开断方式下分别对丰大、丰小、枯大、枯小运行方式进行谐波阻抗计算,得到了阻抗随频率变化的阻抗图及扇形包络图,为该地区特高压直流输电系统的交流滤波器参数设计提供了依据.%The harmonic impedance at the bus of converter station is a critical parameter in the filter design of HVDC transmission system for suppressing harmonics.The electric element harmonic impedance models are improved for generator,transformer,line and bus load,based on which,the method for calculating the system harmonic impedance equivalent is researched based on the BPA data of China version.A node numbering optimization method based on the semi-dynamic genetic algorithm is proposed,the connection matrix is adopted to improve the formation of node admittance matrix,and the zero-exclusive storage & operation of sparse matrix technology are used to improve the operational efficiency of program.PSCAD simulation is carried out for the standard IEEE 9-bus system to verify the correctness and effectiveness of the proposed method.Based on the BPA data,the harmonic impedance equivalent of a HVDC transmission system is calculated respectively for three switching patterns,i.e.N-0,N-1 and N-2,in four operating modes,i.e.,flood season large power flow
Computing with Harmonic Functions
Axler, Sheldon
2015-01-01
This document is the manual for a free Mathematica package for computing with harmonic functions. This package allows the user to make calculations that would take a prohibitive amount of time if done without a computer. For example, the Poisson integral of any polynomial can be computed exactly. This software can find exact solutions to Dirichlet, Neumann, and biDirichlet problems in R^n with polynomial data on balls, ellipsoids, and annular regions. It can also find bases for spaces of sphe...
Sunspots and Their Simple Harmonic Motion
Ribeiro, C. I.
2013-01-01
In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.
Negahdar, M J; Kadbi, Mo; Cha, J; Cebral, J; Amini, A
2013-01-01
Use of phase-contrast (PC) MRI in assessment of hemodynamics has significant clinical importance. In this paper we develop a novel approach to determination of hemodynamic pressures. 3D gradients of pressure obtained from Navier-Stokes equation are expanded into a series of orthogonal basis functions, and are subsequently projected onto an integrable subspace. Before the projection step however, a scheme is devised to eliminate the discontinuity at the vessel and image boundaries. In terms of the computation time, the proposed approach significantly improves on previous iterative methods for pressure calculations. The method has been validated using computational fluid dynamic simulations and in-vitro MRI studies of stenotic flows.
Piotr FOLĘGA
2014-03-01
Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.
Yu Ben-Hai; Shi De-Heng; Sun Jin-Feng; Zhu Zun-Lue; Liu Yu-Fang; Yang Xiang-Dong
2007-01-01
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c3∑+g and B1∏u states of dimer 7Li2 is made at numerous basis sets by using a symmetryadapted-cluster configuration-interaction (SAC-CI) method in the Gaussian 03 program package. In this paper the difference of the equilibrium geometries obtained by SPES and by OPT is reported. The results obtained by SPES are found to be more reasonable than those obtained by OPT in full active space at the present SAC-CI level of theory. And the conclusion is attained that the cc-PVTZ is a most suitable basis set for these states. The calculated dissociation energies and equilibrium geometries are 0.8818 eV and 0.3090 nm for c3∑+g state, and 0.3668 eV and 0.2932 nm for B1∏u state respectively. The potential energy curves are calculated over a wide internuclear distance range from about 2.5a0 to 37a0 and have a least-squares fit into the Murrell-Sorbie function. According to the calculated analytic potential energy functions, the harmonic frequencies (ωe) and other spectroscopic data (ωeχe, Be and αe) are calculated. Comparison of the theoretical determinations at present work with the experiments and other theories clearly shows that the present work is the most complete effort and thus represents an improvement over previous theoretical results.
RHIC susceptibility to variations in systematic magnetic harmonic errors
Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.
1994-08-01
Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established.
Validation of phantom-based harmonization for patient harmonization.
Panetta, Joseph V; Daube-Witherspoon, Margaret E; Karp, Joel S
2017-07-01
calculated over the three sphere sizes was significantly reduced in the subjects using postfiltering strategies chosen to harmonize CRCmean or CRCmax based on phantom measurements: RMSpd of the CRCmean values in subjects was reduced from 36% to < 8% after harmonizing CRCmean , while RMSpd for CRCmax was reduced from ~33% to < 6% after harmonizing CRCmax with a different strategy. However, with this strategy designed to harmonize CRCmax , the RMSpd for CRCmean only improved to ~14% in subjects. The consistency of the CRC measurements between the phantom and subject data demonstrates that harmonization strategies defined with phantom studies track well to patient images. However, quantitative agreement between different scanners as represented by the RMSpd depends on the metric chosen for harmonization. © 2017 American Association of Physicists in Medicine.
Islam, Mujahidul
from the vast network. A path tracing methodology is developed to identify the power lines that are vulnerable to an unscheduled flow effect in the sub-transmission network. It is much harder to aggregate power system network sensitivity information or data from measuring load flow physically than to simulate in software. System dynamics is one of the key factors to determine an appropriate dynamic control mechanism at an optimum network location. Once a model of deterministic but variable power generator is used, the simulation can be meaningful in justifying this claim. The method used to model the variable generator is named the two-components phase distortion model. The model was validated from the high resolution data collected from three pilot photovoltaic sites in Florida - two in the city of St. Petersburg and one in the city of Tampa. The high resolution data was correlated with weather radar closest to the sites during the design stage of the model. Technically the deterministic model cannot replicate a stochastic model which is more realistically applicable for solar isolation and involves a Markov chain. The author justified the proposition based on the fact that for analysis of the response functions of different systems, the excitation function should be common for comparison. Moreover, there could be many possible simulation scenarios but fewer worst cases. Almost all commercial systems are protected against potential faults and contingencies to a certain extent. Hence, the proposed model for worst case studies was designed within a reasonable limit. The simulation includes steady state and transient mode using multiple software modules including MatlabRTM, PSCADRTM and Paladin Design BaseRTM. It is shown that by identifying vulnerable or sensitive branches in the network, the control mechanisms can be coordinated reliably. In the long run this can save money by preventing unscheduled power flow in the network and eventually stabilizing the energy market.
General -Harmonic Blaschke Bodies
Yibin Feng; Weidong Wang
2014-02-01
Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties. In particular, we obtain the extreme values concerning the volume and the -dual geominimal surface area of this new notion.
OECD Maximum Residue Limit Calculator
With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.
Axler, Sheldon; Ramey, Wade
2013-01-01
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
High-order harmonic generation from eld-distorted orbitals
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field-distortio......We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field...
Covariant harmonic oscillators and coupled harmonic oscillators
Han, Daesoo; Kim, Young S.; Noz, Marilyn E.
1995-01-01
It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.
Simulation of Second Harmonic Ultrasound Fields
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2010-01-01
A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second......, and the fundamental pressure is calculated by Field II. The second harmonic pressure in k-space along the propagating direction is calculated as an auto-convolution of the fundamental pressure multiplied by an exponential propagating coefficient. In this case, the second harmonic pressure can be calculated using ASA...
DFIG Harmonic Current Controlling with the Grid Low Harmonic Voltage
Huan Wang
2014-01-01
Full Text Available This study presents a vector control strategy based on stator harmonic current closed-loop, it adds individually the control loop about of each stator harmonic current to restrain the stator harmonic current, in order to meet the THD criteria. The control strategy of restraining the harmonic current presents the design of the stator harmonic current restrains the current controller. It influences the rotor voltage of the stator harmonic current restraining strategies.
On conformal supergravity and harmonic superspace
Butter, Daniel
2015-01-01
This paper describes a fully covariant approach to harmonic superspace. It is based on the conformal superspace description of conformal supergravity and involves extending the supermanifold M^{4|8} by the tangent bundle of CP^1. The resulting superspace M^{4|8} x TCP^1 can be identified in a certain gauge with the conventional harmonic superspace M^{4|8} x S^2. This approach not only makes the connection to projective superspace transparent, but simplifies calculations in harmonic superspace significantly by eliminating the need to deal directly with supergravity prepotentials. As an application of the covariant approach, we derive from harmonic superspace the full component action for the sigma model of a hyperkahler cone coupled to conformal supergravity. Further applications are also sketched.
Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization
HU Xiao-Gen; LI Yu-He; LIN Hao-Shan; WANG Dong-Sheng; QI Xin
2011-01-01
We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferornetry. The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles. This approach has been successfully utilized to measure the pitch of a standard sample. The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.%@@ We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferometry.The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles.This approach has been successfully utilized to measure the pitch of a standard sample.The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.
Making space for harmonic oscillators
Michelotti, Leo; /Fermilab
2004-11-01
If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.
High-order-harmonic generation from field-distorted orbitals
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
2013-01-01
We investigate the effect on high-order-harmonic generation of the distortion of molecular orbitals by the driving laser field. Calculations for high-order-harmonic generation including orbital distortion are performed for N2. Our results allow us to suggest that field distortion is the reason why...
Goos-Hänchen shifts in harmonic generation from metals.
Yallapragada, V J; Gopal, Achanta Venu; Agarwal, G S
2013-05-06
We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.
候媛媛
2014-01-01
With the development of variable frequency speed control system, variable frequency speed control system of AV driving motor has become the mainstream of the AC speed control. Variable frequency speed control system,as one of the important harmonic sources of power grid,is necessary to be analysed in terms of harmonic influence. Through harmonic calculation on inverter-driven induction motor connecting to Pinglu pump station and trunk line of Yellow River diversion project,it is indicated that after the motor being put into operation,it will cause harmonic pollution on power grid. Therefore,it is proposed to control the number of frequency converter sets which are put into operation concurrently,and to install filter on inverter device.%阐述了随着变频调速技术的日益成熟，变频器驱动交流电动机的变频调速系统已成为交流调速的主流，变频调速系统作为供电网的主要谐波源之一，对其进行谐波分析是必要的。针对万家寨引黄工程平鲁泵站及各干线的变频调速机组进行谐波分析计算，结果表明泵机投运后会对电网造成谐波污染，建议控制变频机组同时投运数量，并且在变频装置中装设滤波器。
Implementation of transformer models in three-phase load flow program%应用于三相潮流程序的变压器模型的实现
徐树文; 李亚楼
2011-01-01
介绍一种三相潮流程序中的变压器模型的实现方法.其思路是将变压器分左右两块实现:左侧部分包含一次侧的联结组别和三相的变比值,右侧部分包含二次侧联结组别和变压器阻抗值,并分别以子程序实现.计算中根据实际变压器类型调用相应子程序,通过组合得到完整的变压器模型.该方法思路简洁,易于编程实现,能方便地实现多种不同接法的变压器模型,可以很好地应用于三相潮流程序.通过一个简单算例对模型的有效性进行验证和分析.%Implementation of three-phase transformer models in a three-phase load flow program was studied. The transformer was divided into two parts. One part includes the primary connection and ratios of three-phase turns, the other contains the secondary connection and transformer impedance values. The two parts were implemented by two independent subroutines. According to the actual types of transformers, the corresponding subroutines were combined to get complete transformer models. The proposed method is simple and clear and can be implemented easily in programming with different transformer connection models. It is also suitable for three-phase load flow calculation. The validity of the proposed method was analyzed and verified by an example.
Reconstruction of harmonic signals based on bispectrum
FAN Yangyu; SUN Jincai; LI Pingan; XU Jiadong; SHANG Jiuhao
2000-01-01
A method for accurate reconstruction of the harmonic signals from bispectrum is presented. Based on the analysis of the measured harmonic signal, a sinusoid signal with 0phase, 1-amplitude and half of the fundamental frequency combines with the measured signal to form a combined signal, and then the bispectrum analysis is carried out to reconstruct the phase and the amplitude of the measured signal accurately. Without the zero-phase assumption of the fundamental component, using the new method eliminates the phase shifting between the calculated Fourier phase and the true Fourier phase in the existing signal retrieval methods based on bispectrum. The simulation results show the effectiveness of the new method.
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
In this paper two methods of validation of transmission network harmonic models are introduced. The methods were developed as a result of the work presented in [1]. The first method allows calculating the transfer harmonic impedance between two nodes of a network. Switching a linear, series network...... are used for calculation of the transfer harmonic impedance between the nodes. The determined transfer harmonic impedance can be used to validate a computer model of the network. The second method is an extension of the fist one. It allows switching a series element that contains a shunt branch......, as for example a transmission line. Both methods require that harmonic measurements performed at two ends of the disconnected element are precisely synchronized....
Second harmonic generation imaging
2013-01-01
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Spherical harmonics, invariant theory and Maxwell's poles
Dowker, J S
2008-01-01
I discuss the relation between harmonic polynomials and invariant theory and show that homogeneous, harmonic polynomials correspond to ternary forms that are apolar to a base conic (the absolute). The calculation of Schlesinger that replaces such a form by a polarised binary form is reviewed. It is suggested that Sylvester's theorem on the uniqueness of Maxwell's pole expression for harmonics is renamed the Clebsch-Sylvester theorem. The relation between certain constructs in invariant theory and angular momentum theory is enlarged upon and I resurrect the Joos--Weinberg matrices. Hilbert's projection operators are considered and their generalisations by Story and Elliott are related to similar, more recent constructions in group theory and quantum mechanics, the ternary case being equivalent to SU(3).
Booster Double Harmonic Setup Notes
Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
High-harmonic spectroscopy of molecular isomers
Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Spanner, M.; Patchkovskii, S. [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 (Canada)
2011-11-15
We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).
液压振动台负载流量补偿方法的研究%Study on load-flow compensation of hydraulic vibration table
刘博; 侯京锋; 窦雪川; 张静; 郝岩研; 王家乐; 王有杰
2014-01-01
通过将负载变化折算为相应控制指令，并与期望指令相叠加后，作为最终的控制指令输出给伺服阀，构造负载流量与期望控制指令之间的比例关系，实现了液压振动台抑制负载干扰对流量波动的影响，提高了液压振动台运动控制精度。经过流量补偿后的液压振动台在负载变化时可以实现对输入指令较好的跟踪，可对机械振动或冲击环境进行更好的模拟。%By superposing the control command converted from the varying load and the expected control command as the last control command, the linear dependency between the load-flow and the expected control command is constructed. The method could achieve the suppression of load-flow fluctuation influenced by load variation, and improve the control precision of the table. The hydraulic vibration table could track the expected command with load varying well by the load-flow compensation method, and simulate the vibration environment and the shock environment better.
Reduction of multiple harmonic sums and harmonic polylogarithms
Bluemlein, J. [DESY, Deutsches Elektronen Synchrotron, DESY, Platanenallee 6, D-15735 Zeuthen (Germany)]. E-mail: johannes.blumlein@desy.de
2004-11-21
The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index class rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be =<1/d, where d is the depth of the sums considered and is given by the 2nd Witt formula. It can be also determined by counting the Lyndon words of the respective index set. The relations derived can be used to simplify results of higher-order calculations in QED and QCD.
Reduction of multiple harmonic sums and harmonic polylogarithms
Blümlein, J.
2004-11-01
The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index class rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be ⩽1/d, where d is the depth of the sums considered and is given by the 2nd Witt formula. It can be also determined by counting the Lyndon words of the respective index set. The relations derived can be used to simplify results of higher-order calculations in QED and QCD.
Harmonic Intravascular Ultrasound
M.E. Frijlink (Martijn)
2006-01-01
textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Harmonic Intravascular Ultrasound
M.E. Frijlink (Martijn)
2006-01-01
textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte
Harmonization versus Mutual Recognition
Jørgensen, Jan Guldager; Schröder, Philipp
with the opportunity to start export sales. In contrast, harmonization, in particular the prospect that one’s own national (but not the foreign) standard becomes the only globally accepted standard, opens the foreign market without balancing entry at home. We study these scenarios in a reduced form lobby game with two...
ZHAOZhen-gang
2005-01-01
We have constructed the positive definite metric matrixes for the bounded domains of Rn and proved an inequality which is about the Jacobi matrix of a harmonic mapping on a bounded domain of Rn and the metric matrix of the same bounded domain.
Harmonics in transmission power systems
Wiechowski, Wojciech Tomasz
to perform more detailed harmonic studies emerged. Since the transmission network has a complex structure and its impedance varies with frequency in a nonlinear fashion, such harmonic study would require a detailed computer model of the network. Consequently, a PhD project proposal titled "Harmonics....... It is concluded that since some background harmonic distortion is practically always present in the network, a method based on variation of harmonic values must be used. The incremental values of harmonic distortion will allow to verify the harmonic model, despite the existence of background harmonic distortion...... GPS-synchronized OMICRON CMC256 units. Two such units are installed at 400 kV substations at both ends of the disconnected line and a third unit is located at a substation in a distance of 80 km. Time domain "snap-shot" measurements of three-phase voltages and currents are synchronously taken for some...
Young children's harmonic perception.
Costa-Giomi, Eugenia
2003-11-01
Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.
Second harmonic optical coherence tomography
Jiang,Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping
2004-01-01
Second harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical response of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second harmonic generation on molecular ...
Principles of harmonic analysis
Deitmar, Anton
2014-01-01
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.
Harmonization versus Mutual Recognition
Jørgensen, Jan Guldager; Schröder, Philipp
The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired......, harmonized standards may fail to harvest the full pro-competitive effects from trade liberalization compared to mutual recognition; moreover, the issue is most pronounced in markets featuring price competition....
Harmonic sums and polylogarithms generated by cyclotomic polynomials
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2011-05-15
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Rectification Efficiency of Two Harmonically Coupled Particles
SUN Lian-Xiu
2009-01-01
@@ Transportation properties of two harmonically coupled particles moving in a flashing or rocking ratchet potential are investigated in terms of Langevin simulation. The efficiency for rectification of non-equilibrium fluctuation is calculated by using a new definition. The results show that both the average current and efficiency of two coupled particles in the flashing ratchet are larger than that of a single particle and these quantities are non-monotonous functions of the potential remaining time.
Deformed quantum harmonic oscillator with diffusion and dissipation
Isar, A
2002-01-01
A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model by using perturbation theory. The coefficients of the master equation and of equations of motion for observables depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation.
Deformed quantum harmonic oscillator with diffusion and dissipation
Isar, A.; Scheid, W.
2002-07-01
A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model by using perturbation theory. The coefficients of the master equation and of equations of motion for observables depend on the deformation function. The steady-state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation.
Cavalcante, Patricia L.; Murari, Carlos Alberto F.; Salas, Silvio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Eletrica e de Computacao], Emails: plc@dsee.fee.unicamp.br, murari@dsee.fee.unicamp.br, ssegura@dsee.fee.unicamp.br
2009-07-01
During the development of models for power systems, the researchers aim always to get results compatible with reality, and in this research it was our objective consider that some electric system variables are not deterministic, i e there is imprecision or variations, for example, on the loads. In this study, imprecise variables are represented as fuzzy numbers (the bell shape) and is presented a methodology for analysis of electrical networks of distribution through a specialist three-phase load flow that incorporates fuzzy sets and mathematical operations based on fuzzy logic. The results confirm the good performance of this new method.
Towards automated biomedical ontology harmonization.
Uribe, Gustavo A; Lopez, Diego M; Blobel, Bernd
2014-01-01
The use of biomedical ontologies is increasing, especially in the context of health systems interoperability. Ontologies are key pieces to understand the semantics of information exchanged. However, given the diversity of biomedical ontologies, it is essential to develop tools that support harmonization processes amongst them. Several algorithms and tools are proposed by computer scientist for partially supporting ontology harmonization. However, these tools face several problems, especially in the biomedical domain where ontologies are large and complex. In the harmonization process, matching is a basic task. This paper explains the different ontology harmonization processes, analyzes existing matching tools, and proposes a prototype of an ontology harmonization service. The results demonstrate that there are many open issues in the field of biomedical ontology harmonization, such as: overcoming structural discrepancies between ontologies; the lack of semantic algorithms to automate the process; the low matching efficiency of existing algorithms; and the use of domain and top level ontologies in the matching process.
Harmonic space and quaternionic manifolds
Galperin, A; Ogievetsky, O V
1994-01-01
We find a principle of harmonic analyticity underlying the quaternionic (quaternion-K\\"ahler) geometry and solve the differential constraints which define this geometry. To this end the original $4n$-dimensional quaternionic manifold is extended to a bi-harmonic space. The latter includes additional harmonic coordinates associated with both the tangent local $Sp(1)$ group and an extra rigid $SU(2)$ group rotating the complex structures. Then the constraints can be rewritten as integrability conditions for the existence of an analytic subspace in the bi-harmonic space and solved in terms of two unconstrained potentials on the analytic subspace. Geometrically, the potentials have the meaning of vielbeins associated with the harmonic coordinates. We also establish a one-to-one correspondence between the quaternionic spaces and off-shell $N=2$ supersymmetric sigma-models coupled to $N=2$ supergravity. The general $N=2$ sigma-model Lagrangian when written in the harmonic superspace is composed of the quaternionic ...
Next generation data harmonization
Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg
2015-05-01
Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.
Second harmonic generation microscopy
Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens
2010-01-01
Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...
M. A. Navascués
2013-01-01
Full Text Available This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.
Two- and four-point Kapitza resistance between harmonic solids
Maassen van den Brink, A.; Dekker, H.
1996-01-01
The calculation of the Kapitza boundary resistance between dissimilar harmonic solids has since long (Little [Can. J. Phys. 37 (1959) 334]) suffered from a paradox: this resistance erroneously tends to a finite value in the limit of identical solids. We resolve this paradox by calculating temperatur
Coulomb time delays in high harmonic generation
Smirnova, Olga
2016-01-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization using newly developed attosecond spectroscopies has been a focus of many recent experiments. However, the outcome of such measurement depends on measurement protocols and specific observables available in each particular experiment. One of such protocols relies on high harmonic generation. First, we derive rigorous and general expressions for ionization and recombination times in high harmonic generation experiments. We show that these times are different from, but related to ionization times measured in photo-electron spectroscopy, i.e. using attosecond streak camera, RABBITT and atto-clock methods. Second, we use the Analytical R-Matrix theory (ARM) to calculate these times and compare them with experimental values.
Coulomb time delays in high harmonic generation
Torlina, Lisa; Smirnova, Olga
2017-02-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization has been the focus of a number of recent experiments using newly developed attosecond spectroscopies. The interpretation of such measurements, however, depends critically on the measurement protocol and the specific observables available in each experiment. One such protocol relies on high harmonic generation. In this paper, we derive rigorous and general expressions for ionisation and recombination times in high harmonic generation experiments. We show that these times are different from, but related to, ionisation times measured in photoelectron spectroscopy: that is, those obtained using the attosecond streak camera, RABBITT and attoclock methods. We then proceed to use the analytical R-matrix theory to calculate these times and compare them with experimental values.
Plasma effect on the phase matching of high harmonic generation
Hui Lu; Candong Liu; Shitong Zhao; Peng Liu
2011-01-01
By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.
Harmonics radiation of graphene surface plasmon polaritons in terahertz regime
Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)
2016-06-03
This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.
Autonomous Mobile Robot Navigation Using Harmonic Potential Field
Panati, Subbash; Baasandorj, Bayanjargal; Chong, Kil To
2015-05-01
Mobile robot navigation has been an area of robotics which has gained massive attention among the researchers of robotics community. Path planning and obstacle avoidance are the key aspects of mobile robot navigation. This paper presents harmonic potential field based navigation algorithm for mobile robots. Harmonic potential field method overcomes the issue of local minima which was a major bottleneck in the case of artificial potential field method. The harmonic potential field is calculated using harmonic functions and Dirichlet boundary conditions are used for the obstacles, goal and initial position. The simulation results shows that the proposed method is able to overcome the local minima issue and navigate successfully from initial position to the goal without colliding into obstacles in static environment.
On The Harmonic Oscillator Group
Lopez, Raquel M; Vega-Guzman, Jose M
2011-01-01
We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.
EXTENSIONS OF EULER HARMONIC SUMS
Djurdje Cvijović
2012-10-01
Full Text Available Three new closed-form summation formulae involving harmonic numbers are established using simple arguments and they are very general extensions of Euler’s famous harmonic sum identity. Some illustrative special cases as well as immediate consequences of the main results are also considered.
Harmonic Series Meets Fibonacci Sequence
Chen, Hongwei; Kennedy, Chris
2012-01-01
The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?
Tissue Harmonic Synthetic Aperture Imaging
Rasmussen, Joachim
The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...... harmonic techniques have been made, but none of these methods have so far been applicable for in-vivo imaging. The basis of this project is a synthetic aperture technique known as synthetic aperture sequential beamforming (SASB). The technique utilizes a two step beamforming approach to drastically reduce...
Nonlinear circuit analysis of harmonic currents in a floating Langmuir probe with a capacitive load
Kim, Kyung-Hyun; Kim, Dong-Hwan; Chung, Chin-Wook
2017-02-01
Plasma diagnostics using the floating harmonic technique were first used to obtain the electron temperature in a tokamak plasma. In this technique, the electron temperature depends on the ratio of the harmonic currents in a resistive sheath. Because these harmonic currents are determined by a modulated sheath voltage, calculation of the exact modulated voltage across the sheath is important; in general, the voltage is calculated using a phase of the first harmonic current. However, when a series load capacitance is present, the second harmonic currents are abnormally reduced compared to those expected by the conventional floating harmonic model, resulting in an unreliable measurement of the electron temperature. To describe this phenomenon, we used a modified floating harmonic model by applying the harmonic balance technique, a method that analyzes nonlinear circuits. Theoretical prediction of the harmonic current obtained from the modified model was compared with the experimental results, and they are in good agreement. In addition, the degrees of sheath nonlinearity, defined as the ratio of the second harmonic current (or voltage) to the fundamental current (or voltage), are discussed.
Chiou, See-Ying; Forsberg, Flemming; Fox, Traci B; Needleman, Laurence
2007-11-01
The purpose of this study was to compare fundamental gray scale sonography, tissue harmonic imaging (THI), and differential tissue harmonic imaging (DTHI) for depicting normal and abnormal livers. The in vitro lateral resolution of DTHI, THI, and sonography was assessed in a phantom. Sagittal and transverse images of right and left hepatic lobes of 5 volunteers and 20 patients and images of 27 liver lesions were also acquired. Three independent blinded readers scored all randomized images for noise, detail resolution, image quality, and margin (for lesions) on a 7-point scale. Next, images from the same location obtained with all 3 modes were compared blindly side by side and rated by all readers. Contrast-to-noise ratios were calculated for the lesions, and the depth of penetration (centimeters) was determined for all images. In vitro, the lateral resolution of DTHI was significantly better than fundamental sonography (P = .009) and showed a trend toward significance versus THI (P = .06). In the far field, DTHI performed better than both modes (P images were scored, and for all parameters, DTHI and THI did better than sonography (P tissue harmonic imaging scored significantly higher than THI with regard to detail resolution and image quality (P Tissue harmonic imaging and DTHI do better than fundamental sonography for hepatic imaging, with DTHI being rated the best of the 3 techniques.
Optimal Selective Harmonic Control for Power Harmonics Mitigation
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
the cost, the complexity and the performance: high accuracy, fast transient response, easy-implementation, cost-effective, and also easy-to-design. The analysis and synthesis of the optimal SHC system are addressed. The proposed SHC offers power convert-ers a tailor-made optimal control solution......This paper proposes an Internal Model Principle (IMP) based optimal Selective Harmonic Controller (SHC) for power converters to mitigate power harmonics. According to the harmonics distribution caused by power converters, a universal recursive SHC module is developed to deal with a featured group...... of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
FROM THE HARMONIZATION NEED TO THE SPONTANEOUS ACCOUNTING HARMONIZATION
2009-01-01
The issue of international accounting harmonization has achieved, mainly within the last decade, a significant dimension in the field of international accounting research. The main determinant factor for this state of the art is the process aiming at redu
Power quality issues current harmonics
Mikkili, Suresh
2015-01-01
Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi
Information cloning of harmonic oscillator coherent states
N D Hari Dass; Pradeep Ganesh
2002-08-01
We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use of this perfect information cloning it would be possible to estimate the original state through measurements and make arbitrary number of copies of the estimator. We deﬁne the notion of a measurement ﬁdelity and calculate it for our case as well as for the Gaussian cloners.
Harmonic Vibrational Analysis in Delocalized Internal Coordinates.
Jensen, Frank; Palmer, David S
2011-01-11
It is shown that a principal component analysis of a large set of internal coordinates can be used to define a nonredundant set of delocalized internal coordinates suitable for the calculation of harmonic vibrational normal modes. The selection of internal coordinates and the principal component analysis provide large degrees of freedom in extracting a nonredundant set of coordinates, and thus influence how the vibrational normal modes are described. It is shown that long-range coordinates may be especially suitable for describing low-frequency global deformation modes in proteins.
Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.
2016-05-01
Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.
Lattice harmonics expansion revisited
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Crane, Edward; Volkov, Stanislav; Wade, Andrew; Waters, Robert
2009-01-01
We study a generalized Polya urn model with two types of ball. If the drawn ball is red it is replaced together with a black ball, but if the drawn ball is black it is replaced and a red ball is thrown out of the urn. When only black balls remain, the roles of the colours are swapped and the process restarts. We prove that the resulting Markov chain is transient but that if we throw out a ball every time the colours swap, the process is positive-recurrent. We show that the embedded process obtained by observing the number of balls in the urn at the swapping times has a scaling limit that is essentially the square of a Bessel diffusion. We consider an oriented percolation model naturally associated with the urn process, and obtain detailed information about its structure, showing that the open subgraph is an infinite tree with a single end. We also study a natural continuous-time embedding of the urn process that demonstrates the relation to the simple harmonic oscillator; in this setting our transience result...
A Cepstrum-Based Technique for Determining a Harmonics-to-Noise Ratio in Speech Signals.
de Krom, Guus
1993-01-01
A new method to calculate a spectral harmonics-to-noise (HNR) ratio is presented. The method discriminates between harmonic and noise energy in the magnitude spectrum by means of a comb-filtering operation in the cepstrum domain. HNR is seen to be a useful parameter in the analysis of voice quality. (Author/DB)
Explaining the harmonic sequence paradox.
Schmidt, Ulrich; Zimper, Alexander
2012-05-01
According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced.
Introduction to abstract harmonic analysis
Loomis, Lynn H
2011-01-01
Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.
Pythagorean Triples from Harmonic Sequences.
DiDomenico, Angelo S.; Tanner, Randy J.
2001-01-01
Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)
Morrey spaces in harmonic analysis
David R. Adams; Xiao, Jie
2012-01-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Morrey spaces in harmonic analysis
Adams, David R.; Xiao, Jie
2012-10-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Foliated stochastic calculus: Harmonic measures
Catuogno, Pedro J; Ruffino, Paulo R
2010-01-01
In this article we present an intrinsec construction of foliated Brownian motion via stochastic calculus adapted to foliation. The stochastic approach together with a proposed foliated vector calculus provide a natural method to work on harmonic measures. Other results include a decomposition of the Laplacian in terms of the foliated and basic Laplacians, a characterization of totally invariant measures and a differential equation for the density of harmonic measures.
Harmonic structures and intrinsic torsion
Conti, Diego; Madsen, Thomas Bruun
We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough inv...... investigation of the intrinsic torsion of such structures; in addition to the construction of harmonic structures, this analysis leads to explicit Lie group examples with invariant intrinsic torsion....
Cluster size dependence of high-order harmonic generation
Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.
2017-08-01
We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.
Harmonic Current Predictors for Wind Turbines
Shun-Yu Chan
2013-03-01
Full Text Available The harmonic impact caused by wind turbines should be carefully investigated before wind turbines are interconnected. However, the harmonic currents of wind turbines are not easily predicted due to the variations of wind speed. If the harmonic current outputs can be predicted accurately, the harmonic impact of wind turbines and wind farms for power grids can be analyzed efficiently. Therefore, this paper analyzes the harmonic current characteristics of wind turbines and investigates the feasibility of developing harmonic current predictors. Field measurement, data sorting, and analysis are conducted for wind turbines. Two harmonic current predictors are proposed based on the measured harmonic data. One is the Auto-Regressive and Moving Average (ARMA-based harmonic current predictor, which can be used for real-time prediction. The other is the stochastic harmonic current predictor considering the probability density distributions of harmonic currents. It uses the measured harmonic data to establish the probability density distributions of harmonic currents at different wind speeds, and then uses them to implement a long-term harmonic current prediction. Test results use the measured data to validate the forecast ability of these two harmonic current predictors. The ARMA-based predictor obtains poor performance on some harmonic orders due to the stochastic characteristics of harmonic current caused by the variations of wind speed. Relatively, the prediction results of stochastic harmonic current predictor show that the harmonic currents of a wind turbine in long-term operation can be effectively analyzed by the established probability density distributions. Therefore, the proposed stochastic harmonic current predictor is helpful in predicting and analyzing the possible harmonic problems during the operation of wind turbines and wind farms.
Spherical harmonics in texture analysis
Schaeben, Helmut; van den Boogaart, K. Gerald
2003-07-01
The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.
Complex structure of spatially resolved high-order-harmonic spectra
Catoire, F.; Ferré, A.; Hort, O.; Dubrouil, A.; Quintard, L.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Mairesse, Y.; Constant, E.
2016-12-01
We investigate the spatiospectral coupling appearing in the spatially resolved high-order-harmonic spectra generated in gases. When ionization is weak, harmonic generation in the far field often exhibits rings surrounding a central spot centered on each odd harmonics in the spatiospectral domain. The nature of these structures is debated. They could stem from interferences between the emission of short and long trajectories, or could be the signature of the temporal and spatial dependence of the longitudinal phase matching of long trajectories (Maker fringes). We conducted spectrally and spatially resolved measurements of the harmonic spectra as a function of pressure, intensity, and ellipticity. In addition, we performed calculations where only a single emission plane is included (i.e., omitting deliberately the longitudinal phase matching), reproducing the features experimentally observed. This study has been completed by the spatiospectral coupling when strong ionization occurs leading to complex patterns which have been compared to calculations using the same model and also show good agreement. We conclude that many spatiospectral structures of the harmonic spectrum can be interpreted in terms of spatial and temporal transverse coherence of the emitting medium without resorting to longitudinal phase matching or quantum phase interference between short and long trajectories.
Induction Motor Speed Estimator Using Rotor Slot Harmonics
RATA, G.
2009-02-01
Full Text Available This paper presents a solution for the estimation of induction machine rotor speed utilizing harmonic saliencies created by rotor and stator slotting. This solution purposes to add a carrier-signal voltage at the fundamental excitation. We obtain a carrier-signal current that contains the spatial information. The PWM reference voltage is calculated with DSP - ADMC401, from Analog Device.
Dispersive waves in fs cascaded second-harmonic generation
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Twisted Conformal Algebra and Quantum Statistics of Harmonic Oscillators
J. Naji
2014-01-01
Full Text Available We consider noncommutative two-dimensional quantum harmonic oscillators and extend them to the case of twisted algebra. We obtained modified raising and lowering operators. Also we study statistical mechanics and thermodynamics and calculated partition function which yields the free energy of the system.
Evaluation of an Advanced Harmonic Filter for Adjustable Speed Drives using a Toolbox Approach
Asiminoaei, Lucian; Hansen, Steffan; Blaabjerg, Frede
2004-01-01
the performance of different topologies. This paper presents a method to integrate the model of the filter into an existing harmonic calculation toolbox dedicated for harmonic analysis on the 6-pulse converter. The results are linked together into a practical PC software toolbox for harmonic estimation. By using...... harmonic reduction performance at the same time with small costs and engineering. In the event that such filters are used to replace existing solutions, the assessment of the harmonic performance before commissioning is a necessity. This assessment is possible by using software tools to compare...... a combination of a pre-stored database and new interpolation techniques the toolbox can provide the harmonic data on real applications allowing comparisons between different mitigation solutions....
谢金森; 于涛; 左国平; 何丽华; 李小华
2013-01-01
MUSE (Multiplication with an external source) seres experiments carried out by the EU show that the Pulsed Neutron Source (PNS) method is appropriate for keff measurement in deep sub-critical conditions.In PNS method,the accuracy of prompt neutron attenuation constant α plays a key role for accuratelykeffr measurement.In this paper,the analysis of α constant measurement on fast-thermal coupled subcritical facility Venus-1# is performed.By using high order harmonic wave filtering technique,the time interval for α fitting is obtained and the fitted α values are spatially independent with locations of detectors.Furthermore,the comparison of prompt multiplication factorskp,derived from fitted α and calculated by MCNP (Monte Carlo N Particles) is made,which shows a good conformation.Results in this research indicate that,the high order harmonic wave filtering method can effectively avoid the problem that the measured α values depend on the locations of detectors,and the α values obtained from which can be used for keff off-line monitoring in ADS sub-critical reactors.%欧盟开展的外源倍增(MUSE)系列实验表明:脉冲中子源(PNS)方法是一种适用于深次临界堆中子增殖系数(keff)测量的方法,在PNS方法中,瞬发中子衰减常数α的准确与否是精确测量keff的关键.本文针对“快热”耦合次临界装置——“启明星1#”上的α测量进行分析,采用高次谐波滤除方法,得到拟合α值的时间区间,在该时间区间内得到的α与探测器位置无关.同时将由α计算出的次临界系统的瞬发中子倍增系数kp与蒙特卡罗程序(MCNP)计算结果进行对比分析,两者符合较好.研究表明:高次谐波滤除方法可有效避免α值测量依赖于探测器位置的问题,由该方法得到的α值可用于加速器驱动洁净核能系统(ADS)次临界反应堆keff离线监督.
Prony Analysis for Power System Transient Harmonics
Qi Li
2007-01-01
Full Text Available Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Not required to have prior knowledge of existing harmonics, Prony analysis detects frequencies, magnitudes, phases, and especially damping factors of exponential decaying or growing transient harmonics. In this paper, Prony analysis is implemented to supervise power system transient harmonics, or time-varying harmonics. Further, to improve power quality when transient harmonics appear, the dominant harmonics identified from Prony analysis are used as the harmonic reference for harmonic selective active filters. Simulation results of two test systems during transformer energizing and induction motor starting confirm the effectiveness of the Prony analysis in supervising and canceling power system transient harmonics.
Electron dynamics from low-order harmonics generated by short laser pulses
Xiong, Wei-Hao; Gong, Qihuang; Peng, Liang-You
2017-08-01
Recently, low-order harmonics have gained much attention due to their applications as coherent light sources with a high repetition rate. In addition, the generation process is highly related to the bound electrons and can thus be applied to detect the dynamics of these electrons. In this work, we theoretically investigate the low-order harmonics below the first excited state, produced by a single-cycle optical pulse. We numerically solve the three-dimensional time-dependent Schrödinger equation (TDSE) to calculate the harmonic spectrum. With the help of a perturbation model, we can transparently understand the generation process of the spectrum. The results indicate that the harmonic spectrum can be sensitively influenced by the frequency component of the driving field. We find that the carrier envelope phase (CEP) dependence of low-order-harmonic generation originates from the interference of different harmonic orders. For these harmonics, the CEP effects can only be observed when the spectrum of the driving laser is extremely wide, which corresponds to the very short driving pulse. From the CEP-dependent interference structure, the phase relation of the third and the fifth harmonic can be extracted. The extracted information indicates that the atomic response induces a positive chirp for the emitted low-order harmonics. In addition, we investigated the harmonic phase calculated from the TDSE results. The harmonic phase is different from the phase predicted by the adiabatic model, and this phase difference can be related to the time delay of the electronic response. We extract the time delay from the harmonic phase and explore the CEP and intensity dependence of this time delay.
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator
Norbury, J. W.; Badavi, F. F.; Townsend, L. W.
1986-01-01
The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator
Norbury, J. W.; Badavi, F. F.; Townsend, L. W.
1986-01-01
The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.
Theory of high gain harmonic generation an analytical estimate
Yu Li Hua
2002-01-01
We discuss the theory of the High Gain Harmonic Generation (HGHG). First, we describe an analytical estimate using the HGHG parameters in the DUVFEL project at BNL as an example. We show that the effective energy spread in a chicane dispersion section is found to be very small, and the effect of finite emittance can be neglected during the calculation of coherent harmonic generation. Then we discuss some issues such as the intensity stability, and how to use HGHG to obtain information about local energy spread. We compare these issues with recent experimental results in the infrared. We discuss some of the key issues in the cascading HGHG scheme and its possible limitations.
Dynamical mean field theory of optical third harmonic generation
Jafari, S. A.; Tohyama, T.; Maekawa, S.
2006-01-01
We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT) approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the vertex corrections to current vertices are identically zero, and hence the calculation of the THG spectrum reduces to a time-ordered convolution, followd by appropriate analytic continuuation. We present the typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation...
Harmonic morphisms and subharmonic functions
Gabjin Yun
2005-03-01
Full Text Available Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let ÃÂ•:MÃ¢Â†Â’N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and ÃÂ• has finite energy, then ÃÂ• is a constant map. Similarly, if f is a subharmonic function on N which is not harmonic and such that |df| is bounded, and if Ã¢ÂˆÂ«M|dÃÂ•|<Ã¢ÂˆÂž, then ÃÂ• is a constant map. We also show that if Nm(mÃ¢Â‰Â¥3 has at least two ends of infinite volume satisfying the Sobolev inequality or positivity of the first eigenvalue of the Laplacian, then there are no nonconstant surjective harmonic morphisms with finite energy. For p-harmonic morphisms, similar results hold.
TAX HARMONIZATION VERSUS FISCAL COMPETITION
Florin Alexandru MACSIM
2016-12-01
Full Text Available Recent years have brought into discussion once again subjects like tax harmonization and fiscal competition. Every time the European Union tends to take a step forward critics enter the scene and give contrary arguments to European integration. Through this article we have offered our readers a compelling view over the “battle” between tax harmonization and fiscal competition. While tax harmonization has key advantages as less costs regarding public revenues, leads to higher degree of integration and allows the usage of fiscal transfers between regions, fiscal competition is no less and presents key advantages as high reductions in tax rates and opens a large path for new investments, especially FDI. Choosing tax harmonization or fiscal competition depends on a multitude of variables, of circumstances, the decision of choosing one path or the other being ultimately influenced by the view of central and local authorities. Our analysis indicates that if we refer to a group of countries that are a part of a monetary union or that form a federation, tax harmonization seems to be the best path to choose. Moving the analysis to a group of regions that aren’t taking any kind of correlated actions or that have not signed any major treaties regarding monetary or fiscal policies, the optimal solution is fiscal competition.
Transformation between harmonic-oscillator wave functions in different coordinate bases
Davies, K.T.R.; Krieger, S.J.
1981-10-01
Coefficients are derived for transformations between harmonic oscillator wave functions in different coordinate representations. Such coefficients have been found especially useful in performing static Hartree-Fock calculations for nuclei of widely varying shapes.
Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-01-15
In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from {+-}1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincare iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation w.r.t. the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.
Harmonic structures and intrinsic torsion
Conti, Diego; Madsen, Thomas Bruun
We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough inv...... investigation of the intrinsic torsion of such structures; in addition to the construction of harmonic structures, this analysis leads to explicit Lie group examples with invariant intrinsic torsion.......We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough...
Harmonics radiation of graphene surface plasmon polaritons in terahertz regime
Li, D.; Wang, Y.; Nakajima, M.; Hashida, M.; Wei, Y.; Miyamoto, S.
2016-06-01
This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation.
Study on UPF Harmonic Current Detection Method Based on DSP
Zhao, H J [Northwestern Polytechnical University, Xi' an 710072 (China); Pang, Y F [Xi' an University of Technology, Xi' an 710048 (China); Qiu, Z M [Xi' an University of Technology, Xi' an 710048 (China); Chen, M [Northwestern Polytechnical University, Xi' an 710072 (China)
2006-10-15
Unity power factor (UPF) harmonic current detection method applied to active power filter (APF) is presented in this paper. The intention of this method is to make nonlinear loads and active power filter in parallel to be an equivalent resistance. So after compensation, source current is sinusoidal, and has the same shape of source voltage. Meanwhile, there is no harmonic in source current, and the power factor becomes one. The mathematic model of proposed method and the optimum project for equivalent low pass filter in measurement are presented. Finally, the proposed detection method applied to a shunt active power filter experimental prototype based on DSP TMS320F2812 is developed. Simulation and experiment results indicate the method is simple and easy to implement, and can obtain the real-time calculation of harmonic current exactly.
Elements of abstract harmonic analysis
Bachman, George
2013-01-01
Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give
Harmonic functions with varying coefficients
Jacek Dziok
2016-05-01
Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.
Harmonic morphisms and bicomplex numbers
Baird, Paul
2009-01-01
We use functions of a bicomplex variable to unify the existing constructions of harmonic morphisms from a 3-dimensional Euclidean or pseudo-Euclidean space to a Riemannian or Lorentzian surface. This is done by using the notion of complex-harmonic morphism between complex Riemannian manifolds and showing how these are given by bicomplex-holomorphic functions when the codomain is one-bicomplex dimensional. Interesting compactifications involving bicomplex manifolds are given. By taking real slices, we recover well-known compactifications for the three possible real cases.
The Obstacle Problem for the -Harmonic Equation
Bao Gejun
2010-01-01
Full Text Available Firstly, we define an order for differential forms. Secondly, we also define the supersolution and subsolution of the -harmonic equation and the obstacle problems for differential forms which satisfy the -harmonic equation, and we obtain the relations between the solutions to -harmonic equation and the solution to the obstacle problem of the -harmonic equation. Finally, as an application of the obstacle problem, we prove the existence and uniqueness of the solution to the -harmonic equation on a bounded domain with a smooth boundary , where the -harmonic equation satisfies where is any given differential form which belongs to .
Third Harmonic Imaging using a Pulse Inversion
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd harmonic component for imaging on any ultrasound system capable of PI. PI was used to perform 3rd harmonic Bmode scans of a water-filled wire phantom on an experimental ultrasound system. The 3rd harmonic...
Odd Harmonics in Exoplanet Photometry: Weather or Artifact?
Chayes, Victoria; Cowan, Nicholas; Bouffard, Élie; Haggard, Hal
2017-01-01
In the Fourier decomposition of light curves of exoplanets observed by the Kepler mission, one expects to see power in the first mode, from the planet orbiting the star, and the second mode, from ellipsoidal variations. Observations of power in the third mode of planets such as HAT-P-7b and Kepler-13Ab are as of yet unexplained. Using a spherical harmonic basis we analyze planet maps to find their corresponding light curves and show that no planet observed edge-on can produce these third harmonics with either reflected light or thermal emissions. Further numerical and analytic calculations put upper bounds on the power in the third mode that can be produced by planets not transiting perfectly edge-on, or with time-variable maps. We find the expected order of magnitude of these contributions to be at most two orders of magnitude below the first harmonic. The North-South asymmetric features or time-variable maps that could produce such harmonics would suggest exoplanetary weather if observed. However, more careful analysis of tidal effects on the stars of HAT-P-7b and Kepler-13Ab suggest that these particular harmonics are stellar in origin. Élie Bouffard was supported by an iREx summer internship. We thank the International Space Science Institute in Bern, Switzerland, for hosting the Exo-Cartography workshop series.
High-order harmonic conversion efficiency in helium
Crane, J.K.
1992-10-23
Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L{sub coh}={pi}b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N{sub q}=[({pi}{sup z}n{sup z}b{sup 3}{tau}{sub q}{vert_bar}d{sub q}{vert_bar}{sup z})/4h]{l_brace}(p/q)(2l/b){sup z}{r_brace}. N{sub q} - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; {tau}{sub q} - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).
High-order harmonic conversion efficiency in helium
Crane, J.K.
1992-10-23
Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L[sub coh]=[pi]b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N[sub q]=[([pi][sup z]n[sup z]b[sup 3][tau][sub q][vert bar]d[sub q][vert bar][sup z])/4h][l brace](p/q)(2l/b)[sup z][r brace]. N[sub q] - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; [tau][sub q] - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).
Harmonic analysis of precipitation climatology in Saudi Arabia
Tarawneh, Qassem
2016-04-01
Annual rainfall records of 20 stations for 30 years are used in order to detect rainfall regimes and climatic features of Saudi Arabia using harmonic analysis techniques. In this study, the percentages of variance, amplitudes, and phase angles are calculated in order to depict the spatial and temporal characteristics of the country's rainfall. The first harmonic explains 42 % of rainfall variation in the western (W) region. This percentage increases toward east (E) and north (N) with 69 and 67 %, respectively. In the southwest (SW) region, the percentages explain 43 % of rainfall variation. The percentages of variance in W and SW are lower than in the E, NW, and central (C) regions. This implies significant contributions of the second harmonic in W and SW regions with 26 and 16 %, respectively. The high percentages of the second and third harmonics in W and SW regions suggest that these two regions are affected by different weather systems at different times. The SW region has the highest amplitudes of the first, second, and third harmonics. The amplitude of the first harmonic reaches to 21 mm in SW and 9 mm in both C and E regions. The time of maximum rainfall is calculated using phase angle; the result reflects that maximum rainfall is shifted forward on the time axis toward the spring season in SW and C regions, January in E and NW regions, and October and November in the W region. This reveals that the SW region is a completely different climatic region, though some of what affects this region also affects the central region. Conditions in the E and NW regions are mainly affected by Mediterranean weather systems, while the W region is affected by unstable conditions caused by the active Red Sea Trough (RST) in October and November.
FROM THE HARMONIZATION NEED TO THE SPONTANEOUS ACCOUNTING HARMONIZATION
Matis Dumitru
2009-05-01
Full Text Available The issue of international accounting harmonization has achieved, mainly within the last decade, a significant dimension in the field of international accounting research. The main determinant factor for this state of the art is the process aiming at redu
HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD
Mehmet YUMURTACI
2009-01-01
Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.
Image composition with color harmonization
Congde Wang; Rong Zhang; Fan Deng
2009-01-01
Image matting and color transfer are combined to achieve image composition.Firstly,digital matting is used to pull out the region of interest.Secondly,taking color harmonization into account,color transfer techniques are introduced in pasting the region onto the target image.Experimental results show that the proposed approach generates visually plea.sing composite images.
Tides and tidal harmonics at Umbharat, Gujarat
Suryanarayana, A.; Swamy, G.N.
A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...
Atomic harmonic generation in time-dependent R-matrix theory
Brown, A. C.; Robinson, D. J.; van der Hart, H. W.
2012-11-01
We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390-nm laser light with intensities up to 4×1014 W cm-2 using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the helium code, finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the helium code, but models comprising only physical orbitals also produce accurate results.
Atomic harmonic generation in time-dependent R-matrix theory
Brown, A C; van der Hart, H W
2012-01-01
We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390 nm laser light with intensities up to 4 x 10(14) W cm(-2) using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the HELIUM code finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but models comprising only physical orbitals also produce accurate results.
Third harmonic measurement in printed electronics
Samano, A; Xu, Y.; Harrison, D.; Hunt, C; Wickham, M; Thomas, O.
2014-01-01
The purpose of this research paper is to investigate the defects detecting technique in printed electronics by the third harmonic measurements. Various types of defects were introduced on the samples and the third harmonic signal was measured using a component linearity tester (Radiometer CLT1). The relationship between the defects in the printed samples and the third harmonic signal and the third harmonic ratio was identified.
Third Harmonic Imaging using a Pulse Inversion
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Harmonic functions of superprocesses and conditioned superprocesses’
赵学雷
1996-01-01
The harmonic functions for superprocesses are defined by applying the martingale property. Under a general condition, a classification theorem of harmonic functions for homogeneous superprocesses is obtained in terms of the solutions to a measure functional equation. The conditioned superdiffusions in a regular domain by Doob’s harmonic transform are defined and investigated.
Harmonic oscillator: an analysis via Fourier series
de Castro, A S
2013-01-01
The Fourier series method is used to solve the homogeneous equation governing the motion of the harmonic oscillator. It is shown that the general solution to the problem can be found in a surprisingly simple way for the case of the simple harmonic oscillator. It is also shown that the damped harmonic oscillator is susceptible to the analysis.
Nonsymmetrized hyperspherical harmonics with realistic NN potentials
Deflorian, Sergio; Leidemann, Winfried; Orlandini, Giuseppina
2012-01-01
The Schroedinger equation is solved for an A-nucleon system using an expansion of the wave function in nonsymmetrized hyperspherical harmonics. Our approach is both an extension and a modification of the formalism developed by Gattobigio et al.. The extension consists in the inclusion of spin and isospin degrees of freedom such that a calculation with more realistic NN potential models becomes possible, whereas the modification allows a much simpler determination of the fermionic ground state. The approach is applied to four- and six-body nuclei (4He, 6Li) with various NN potential models. It is shown that the results for ground-state energy and radius agree well with those from the literature.
Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model
Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei
2017-01-01
the shortcomings of the present harmonic analysis methods, such as the time-domain simulation, or the Fourier analysis, this paper proposes a Harmonic State Space model to study the harmonics performance for this type of drive. In this study, this model is utilized to describe the behavior of the harmonic...... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...
Second-Harmonic and Third-Harmonic Generations in the Thue-Morse Dielectric Superlattice
蔡祥宝
2002-01-01
Theoretical work on the optical properties of the one-dimensional dielectric superlattice is extended. 3Byv means of a transfer matrix method, the second-harmonic and third-harmonic generations in a one-dimensional tinite Thue Morse dielectric superlattice are analysed. The electric field amplitude variables of the second-harmonic and third-harmonic can be expressed by the formula of matrices. Taking advantage of numerical procedure, we discuss the dependence of the second-harmonic and third-harmonic on the fundamental wavelength and the field amplitude variables of the fundamental wave. High conversion efficiency of the third-harmonic can be obtained at some special fundamental wavelength.
High-order harmonic generation with a two-color laser pulse
Luo Lao-Yong; Du Hong-Chuan; Hu Bi-Tao
2012-01-01
We theoretically investigate the electron dynamics of the high-order harmonics generation process by combining a near-infrared 800 nm driving pulse with a mid-infrared 2000 nm control field.We also investigate the emission time of harmonics using time-frequency analysis to illustrate the physical mechanisms of high-order harmonic generation.We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variations in harmonic intensity for different control field strengths and delays.We find that the width of the harmonic plateau can be extended when the control electric field is added,and a supercontinuum from 198 to 435 eV is generated,from which an isolated 61-as pulse can be directly obtained.
Development of Motor Model of Rotor Slot Harmonics for Speed Sensorless Control of Induction Motor
Okubo, Tatsuya; Ishida, Muneaki; Doki, Shinji
This paper proposes a novel mathematical dynamic model to represent steady-state and transient-state characteristics of rotor slot harmonics of an induction motor for sensorless control. Although it is well known that the rotor slot harmonics originate from the mechanical structure of the induction motor, a mathematical model that describes the relationship between stator/rotor currents of the induction motor and the slot harmonics has not yet been proposed. Therefore, in this paper, a three-phase model of the induction motor that depicts the rotor slot harmonics is developed by taking into consideration the magnetomotive force harmonics and the change in the magnetic air gap caused by the rotor slots. Moreover, the validity of the proposed model is verified by comparing the experimental results and the calculated values.
Attosecond pulse production using resonantly-enhanced high-order harmonics
Strelkov, V V
2016-01-01
We study theoretically the effect of the giant resonance in Xe on the phase difference between the consecutive high order resonantly-enhanced harmonics and calculate the duration of the attosecond pulses produced by these harmonics. For certain conditions resonantly-induced dephasing compensates the phase difference which is intrinsic for the off-resonance harmonics. We find these conditions analytically and compare them with the numerical results. This harmonic synchronization allows attosecond pulse shortening in conjunction with the resonance-induced intensity increase by more than an order of magnitude; the latter enhancement relaxes the requirements for the UV filtering needed for the attosecond pulse production. Using a two-color driving field allows further increase of the intensity. In particular, a caustic-like feature in the harmonic spectrum leads to the generation efficiency growth up to two orders of magnitude, however accompanied by an elongation of the XUV pulse.
Macroscopic effect of plasmon-driven high-order-harmonic generation
Wang, Feng; Liu, Weiwei; He, Lixin; Li, Liang; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-09-01
We present a numerical method to calculate the macroscopic harmonic spectrum generated from the gas-exposed nanostructure. This method includes the propagation of plasmonic and harmonic fields in the macroscopic medium as well as the response of the single atom exposed to plasmonic field. Based on the simulation, we demonstrate that the macroscopic harmonic yields drop dramatically in the high-energy region. This result well interprets the disagreement in the cutoff between the single-atom prediction and the experimental detection. Moreover, we also show that the harmonic cutoff difference induced by a π shift in carrier-envelope phase (CEP) of laser pulses depends sensitively on the spatial position. However, when the collective effect of plasmon-driven high-order-harmonic generation is considered, this cutoff difference is eliminated.
Lorentz Harmonics, Squeeze Harmonics and Their Physical Applications
Marilyn E. Noz
2011-02-01
Full Text Available Among the symmetries in physics, the rotation symmetry is most familiar to us. It is known that the spherical harmonics serve useful purposes when the world is rotated. Squeeze transformations are also becoming more prominent in physics, particularly in optical sciences and in high-energy physics. As can be seen from Dirac’s light-cone coordinate system, Lorentz boosts are squeeze transformations. Thus the squeeze transformation is one of the fundamental transformations in Einstein’s Lorentz-covariant world. It is possible to define a complete set of orthonormal functions defined for one Lorentz frame. It is shown that the same set can be used for other Lorentz frames. Transformation properties are discussed. Physical applications are discussed in both optics and high-energy physics. It is shown that the Lorentz harmonics provide the mathematical basis for squeezed states of light. It is shown also that the same set of harmonics can be used for understanding Lorentz-boosted hadrons in high-energy physics. It is thus possible to transmit physics from one branch of physics to the other branch using the mathematical basis common to them.
Harmonic Detection at Initialization With Kalman Filter
Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa
2014-01-01
the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized......Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...
Exact propagators in harmonic superspace
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
Exact propagators in harmonic superspace
Kuzenko, S M
2004-01-01
Within the background field formulation in harmonic superspace for quantum N = 2 super Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super Yang-Mills theory.
Coulomb crystals in the harmonic lattice approximation
Baiko, D A; De Witt, H E; Slattery, W L
2000-01-01
The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...
Detection of Harmonic Occurring using Kalman Filtering
Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed
2014-01-01
As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics......./current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...
Harmonic vibrations of multispan beams
Dyrbye, Claes
1996-01-01
Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....
Harmonic ratcheting for fast acceleration
Cook, N.; Brennan, J. M.; Peggs, S.
2014-04-01
A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.
Representation Discovery using Harmonic Analysis
Mahadevan, Sridhar
2008-01-01
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu
Harmonic Lattice Dynamics of Germanium
Nelin, G.
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Experimental observation of second-harmonic generation and diffusion inside random media
Faez, Sanli; Johnson, P. M.; Mazurenko, D. A.; Lagendijk, Ad
2009-01-01
We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly-scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for several samples at various wavelengths. By combining these measurements with a diffusion model for second-harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of the distribution of the second-harmonic intensity inside the slab. We find that the ratio $\\ell_{2\\omega}/L_c$ of the mean free path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calculations, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic yield, our experiments show that the scattering parameter at the fundamental frequency $\\k_{1\\omega}\\ell_{1\\omega}$ is the most relevant parameter in our type of samples.
Properties of Fermion Spherical Harmonics
Hunter, G; Hunter, Geoffrey; Emami-Razavi, Mohsen
2005-01-01
The Fermion Spherical harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer $\\ell$ and $m$ - presented in a previous paper] are shown to have the same eigenfunction properties as the well-known Boson Spherical Harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for integer $\\ell$ and $m$]. The Fermion functions are shown to differ from the Boson functions in so far as the ladder operators $M_+$ ($M_-$) that ascend (descend) the sequence of harmonics over the values of $m$ for a given value of $\\ell$, do not produce the expected result {\\em in just one case}: when the value of $m$ changes from $\\pm{1/2}$ to $\\mp{1/2}$; i.e. when $m$ changes sign; in all other cases the ladder operators produce the usually expected result including anihilation when a ladder operator attempts to take $m$ outside the range: $-\\ell\\le m\\le +\\ell$. The unexpected result in the one case does not invalidate this scalar coordinate representation of spin angular momentum, because the eigenfunction property is essential for a valid quantum mechani...
Molecular Simulations using Spherical Harmonics
CAI, Wen-Sheng; XU, Jia-Wei; SHAO, Xue-Guang; MAIGRET, Bernard
2003-01-01
Computer-aided drug design is to develop a chemical that binds to a target macromolecule known to play a key role in a disease state. In recognition of ligands by their protein receptors,molecular surfaces are often used because they represent the interacting part of molecules and they should reflex the complementarity between ligand and receptor. However, assessing the surface complementarity by searching all relative position of two surfaces is often computationally expensive. The complementarity of lobe-hole is very important in protein-ligand interactions. Spherical harmonic models based on expansions of spherical harmonic functions were used as a fingerprint to approximate the binding cavity and the ligand, respectively. This defines a new way to identify the complementarity between lobes and holes. The advantage of this method is that two spherical harmonic surfaces to be compared can be defined separately. This method can be used as a filter to eliminate candidates among a large number of conformations, and it will speed up the docking procedure. Therefore, it is possible to select complementary ligands or complementary conformations of a ligand and the macromoleeules, by comparing their fingerprints previously stored in a database.
Parnis, J. Mark; Thompson, Matthew G. K.
2004-01-01
An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.
Bose gases in one-dimensional harmonic trap
JI-XUAN HOU; JING YANG
2016-10-01
Thermodynamic quantities, occupation numbers and their fluctuations of a one-dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in microcanonical ensemble. The visible difference of the ground state occupation number in grand-canonical ensemble and microcanonical ensemble is found to decrease by power law as the number of particles increases.
Thermal state of the general time-dependent harmonic oscillator
Jeong-Ryeol Choi
2003-07-01
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator satisfying Leouville–von Neumann equation to calculate various expectation values in the thermal state. We applied our theory to a special case which is the forced Caldirola–Kanai oscillator.
Few interacting fermions in one-dimensional harmonic trap
Sowiński, Tomasz; Dutta, Omjyoti; Lewenstein, Maciej
2013-01-01
We study spin-1/2 fermions, interacting via a two-body contact potential, in a one-dimensional harmonic trap. Applying exact diagonalization, we investigate the behavior at finite interaction strength, and discuss the role of a ground state degeneracy which occurs for sufficiently strong repulsive interaction. Even low temperature or a completely depolarizing channel may then dramatically influence the system's behavior. We calculate level occupation numbers as signatures of thermalization, and we discuss the mechanisms to break the degeneracy.
Vacuum high harmonic generation in the shock regime
Böhl, P; Ruhl, H
2015-01-01
Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantised nature of vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant crossed background is calculated using numerical simulation and by analytically solving the corresponding wave equation. The electromagnetic shock resulting from vacuum high harmonic generation is investigated and a nonlinear shock parameter identified.
Analysis of higher harmonic contamination with a modified approach using a grating analyser
Gupta, Rajkumar, E-mail: rkg@rract.gov.in; Modi, Mohammed H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Kumar, M.; Chakera, J. A. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)
2014-04-15
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50–360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90–180 Å. The total harmonic contribution increases from 6%–60% in the wavelength range of 150–260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120–360 Å wavelength range.
Oliveira, Aloisio de
1989-07-01
A general approach of the state of art of the harmonic generation, its sources, its limits, its measurement methods and its effects on the electric system components is presented. This thesis shows that this is an open field to research, modelling and solutions. It also helps towards the investigation of the effects caused by harmonics on the conventional KWh energy meters and on potential and current transformers. It presents the basis for the development and construction of prototypes to be utilized in the generation and measurement of harmonics. Finally a practical approach has been given to calculate the equivalent harmonic impedance as seen by a giving consumer. (author)
Commutation effect of Adjustable Speed Drives due to installation of active harmonic filters
Asiminoaei, Lucian; Kalaschnikow, Sergej; Hansen, Steffan;
2011-01-01
The success of designing an industrial installation with Active Filters depends on how precise the load profile of the application is known, because this determines the amount of harmonic currents to be compensated. However, once the Active Filter is added to the installation, the harmonic curren...... and sizing industrial Active Filter applications together with Adjustable Speed Drives. Examples of using the developed toolbox are given in the paper, supported with practical measurements....... the commutation behavior of Adjustable Speed Drives when their harmonic currents are compensated by a Shunt Active Filter. The method is formulated as an analytical computation algorithm verified by simulations. Further on the method is implemented in a Harmonic Calculation Toolbox which facilitates calculation...
Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at RHIC
Noronha-Hostler, J; Grassi, F
2014-01-01
The interplay between shear and bulk viscosities on the flow harmonics, $v_n$'s, at RHIC is investigated using the newly developed relativistic 2+1 hydrodynamical code v-USPhydro that includes bulk and shear viscosity effects both in the hydrodynamic evolution and also at freeze-out. While shear viscosity is known to attenuate the flow harmonics, we find that the inclusion of bulk viscosity decreases the shear viscosity-induced suppression of the flow harmonics bringing them closer to their values in ideal hydrodynamical calculations. Depending on the value of the bulk viscosity to entropy density ratio, $\\zeta/s$, in the quark-gluon plasma, the bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics may require a re-evaluation of the previous estimates of the shear viscosity to entropy density ratio, $\\eta/s$, of the quark-gluon plasma previously extracted by comparing hydrodynamic calculations to heavy ion data.
Temporal Behaviour of Harmonics from One-Dimensional H2+ in an UltrashortLaser Pulse
屈卫星; 李儒新; 徐至展; 夏宇兴; 甘明龙
2001-01-01
With the method of wavelet transform, we consider the temporal behaviour of high-order harmonic generationfrom one-dimensional H2+ exposed to an ultrashort laser pulse with a duration of tens of femtoseconds. The results, which are calculated by numerically solving the corresponding time-dependent Schrodinger equation with the split-operator method in the non-Born-Oppenheimer approach, show that: (1) the high-order harmonics in the cut-off range emitted as a train of pulses have better coherence than those in the plateau; (2) the harmonics are emitted early in time when the intensity of the laser pulse increases.
High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses
陆伟新; 刘婷婷; 杨宏; 孙騊亨; 龚旗煌
2003-01-01
We have studied the high-order harmonic generated by two coherent pulses in argon gas produced by a gas jet. A loop in the relationship of the harmonic intensity versus the absolute values of relative phase difference was observed for non-collinear arrangement. Compared with the collinear arrangement, increase of 10 times of the conversion efficiency for 17th-order harmonic generation at an appropriate relative phase difference was obtained. The calculation of the intensity and phase for the laser field near the focus gives a simple reason for these phenomena.
Effect of the shape of quantum dots on the third-harmonic generations
Li, Keyin; Guo, Kangxian; Liang, Litao
2017-02-01
The effect of the shape of quantum dots on the third-harmonic generations is theoretically investigated. Using the effective-mass approximation, calculations are performed employing methods of both the compact-density-matrix and the matrix diagonalization. We discuss the properties of the third-harmonic generations (THG) coefficients as a function of the incident photon frequency in elliptic and triangular shaped quantum dots. The results reveal that the shape of quantum dots has a great influence on the third-harmonic generations.
Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields
Shahbaz, Atif; Müller, Carsten
2010-01-01
High-harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is calculated. Systems of low nuclear charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schr\\"odinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent gamma-ray pulses.
Nonlinear Fano Profiles in the Optical Second-Harmonic Generation from Silver Nanoparticles
Butet, J; Russier-Antoine, I; Bertorelle, F; Mosset, A; Lascoux, N; Jonin, C; Benichou, E; Brevet, P -F
2012-01-01
The resonance effects on the optical second harmonic generation from 140 nm silver nanoparticles is studied experimentally by hyper-Rayleigh scattering and numerically by finite element method calculations. We find that the interferences between the broad dipolar and narrow octupolar surface plasmon resonances leads to nonlinear Fano profiles that can be externally controlled by the incident polarization angle. These profiles are responsible for the nonlinear plasmon-induced transparency in the second harmonic generation.
Measurement and Analysis Harmonics Using DSP
Lee, Sang Ik; Yoo, Jae Geun; Jeon, Jonog Chay [Korea Electrical Safety Corporation (Korea)
2002-07-01
Limitation countermeasure on harmonics occurred by power conversion installation. motor speed control equipment, and so on of power system is very important problem, and first of all, accuracy harmonics analysis in system is required for appropriate limitation counterplan. Analysis and judgement on power system harmonic by measurement are needed because analysis by mathematical model generally used for these harmonic analysis, if nonlinear ingredient is included in system, is not relatively correct. So, in this paper, system to measure and analyze harmonic by installing it in a power system, using DSP(Digital Signal Processor), is designed and developed, Also, it's performance is verified by installing it in the system that harmonics occurred. (author). 5 refs., 10 figs.
High-harmonic spectroscopy of aligned molecules
Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee
2017-01-01
High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.
Anomalous Dissipative Quantum Harmonic Oscillator
CHEN Dian-Yong; BAI Zhan-Wu; DONG Yu-Bing
2008-01-01
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as r-4and r-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
Excited Sessile Drops Perform Harmonically
Chang, Chun-Ti; Steen, Paul H
2013-01-01
In our fluid dynamics video, we demonstrate our method of visualizing and identifying various mode shapes of mechanically oscillated sessile drops. By placing metal mesh under an oscillating drop and projecting light from below, the drop's shape is visualized by the visually deformed mesh pattern seen in the top view. The observed modes are subsequently identified by their number of layers and sectors. An alternative identification associates them with spherical harmonics, as demonstrated in the tutorial. Clips of various observed modes are presented, followed by a 10-second quiz of mode identification.
Quantizing the damped harmonic oscillator
Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)
2005-03-04
We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.
Effective field theory in the harmonic-oscillator basis
Binder, S; Hagen, G; Papenbrock, T; Wendt, K A
2015-01-01
We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. We derive useful analytical expressions for an exact and efficient calculation of matrix elements. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn exhibit a fast convergence of ground-state energies and radii in feasible model spaces.
Killing vector fields and harmonic superfield theories
Groeger, Josua, E-mail: groegerj@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin (Germany)
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Polarization-fan high-order harmonics
Fleischer, Avner; Bordo, Eliyahu; Kfir, Ofer; Sidorenko, Pavel; Cohen, Oren
2017-02-01
We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies with frequency continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics where each harmonic in the spectrum has the following property: it is nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Also, we show that polarization-fan high harmonics with modulated ellipticity are obtained when elliptical drivers are used. Polarization-fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles in a two-dimensional plane. The use of bichromatic drivers with close central frequencies largely preserves the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized. Thus, it should offer several attracting features, including (i) a direct route for extending the maximal photon energy of observed helical high harmonics to keV by using bichromatic drivers only in the mid-IR region and (ii) utilizing phase matching methods that were developed for ‘ordinary’ high harmonic generation driven by quasi-monochromatic pulses (e.g. pressure tuning phase matching). These polarization-fan harmonics may be utilized for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
Harmonic functions on groups and Fourier algebras
Chu, Cho-Ho
2002-01-01
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Second-harmonic optical coherence tomography
Jiang, Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping
2004-05-01
Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.
Harmonic Retrieval in Colored ARMA Noise
无
2000-01-01
We propose a new approach to harmonic retrieval in colored ARMA noise. A suitable filter is first used to remove all the sharp power spectrum peaks of the noisy observed process, then some kinds of cross correlation is employed to identify the noise characteristics. After filtering the noisy observed process with the identified noise characteristics again, SVD-TLS method can be applied to retrieve the harmonics. The proposed approach can be used to retrieve real-valued harmonic signals in colored ARMA noise with no restrictions on the phase coupling of harmonics and the distribution of the noise. Simulation examples show its effectiveness.
Effects of harmonic roving on pitch discrimination
Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra
2015-01-01
Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...
Second harmonic generation of shear waves in crystals.
Jiang, Wenhua; Cao, Wenwu
2004-02-01
Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.
Unitary fermions on the lattice I: in a harmonic trap
Endres, Michael G; Lee, Jong-Wan; Nicholson, Amy N
2011-01-01
We present a new lattice Monte Carlo approach developed for studying large numbers of strongly interacting nonrelativistic fermions, and apply it to a dilute gas of unitary fermions confined to a harmonic trap. Our lattice action is highly improved, with sources of discretization and finite volume errors systematically removed; we are able to demonstrate the expected volume scaling of energy levels of two and three untrapped fermions, and to reproduce the high precision calculations published previously for the ground state energies for N = 3 unitary fermions in a box (to within our 0.3% uncertainty), and for N = 3, . . ., 6 unitary fermions in a harmonic trap (to within our ~ 1% uncertainty). We use this action to determine the ground state energies of up to 70 unpolarized fermions trapped in a harmonic potential on a lattice as large as 64^3 x 72; our approach avoids the use of importance sampling or calculation of a fermion determinant and employs a novel statistical method for estimating observables, allo...
Harmonization of European track quality
Popović Zdenka
2014-01-01
Full Text Available This paper deals with characterisation of track geometry, track measuring and recording system, as well as geometric quality levels. The legal framework and state of the art in the field of harmonization of track geometry technical regulation in the Republic of Serbia were presented. In particular, the paper discusses the European standard EN 13848 Series (Parts 1-6. Principal track geometric parameters were analyzed according to EN 13848-1. Track geometric quality levels were examined according to EN 13848-5. The evaluation of track geometry quality according to prEN 13848-6 was analyzed as well. The objective of creation of the European standard EN 13848 Series (Parts 1-6 was defining a unique approach for the evaluation of track geometry quality of various European railway infrastructures. The Institute for Standardization of Serbia has adopted and published five of six parts of this standard. This paper is a part of an effort to harmonize the Serbian railway technical regulations with those of the European Union. .
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
Butet, Jérémy; Dutta-Gupta, Shourya; Martin, Olivier J. F.
2014-06-01
The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes of the nanoparticle clusters are first determined using an ab initio approach based on the Green's functions method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure can be used to optimize the generation of the second harmonic.
Hawking Temperature of a Static Black Hole in Harmonic Coordinates
He, Guan-Sheng; Lin, Wei-Bin
2015-12-01
Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole. Supported in part by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20110184110016, the National Basic Research Program of China (973 Program) Grant No. 2013CB328904, and the Fundamental Research Funds for the Central Universities under Grant No. 2682014ZT32
Quantum kicked harmonic oscillator in contact with a heat bath
Prado Reynoso, M. Á.; López Vázquez, P. C.; Gorin, T.
2017-02-01
We consider the quantum harmonic oscillator in contact with a finite-temperature bath, modeled by the Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different dynamical regimes between classical integrability and chaos, on the one hand, and ballistic or diffusive energy absorption, on the other. We then investigate the influence of the heat bath on the oscillator in each case. Phase-space techniques allow us to simulate the evolution of the system efficiently. In this way, we calculate high-resolution Wigner functions at long times, where the system approaches a quasistationary cyclic evolution. Thereby, we perform an accurate study of the thermodynamic properties of a nonintegrable, quantum chaotic system in contact with a heat bath at finite temperature. In particular, we find that the heat transfer between harmonic oscillator and heat bath is governed by Fourier's law.
Hyperspherical harmonics expansion techniques application to problems in physics
Das, Tapan Kumar
2016-01-01
The book provides a generalized theoretical technique for solving the fewbody Schrödinger equation. Straight forward approaches to solve it in terms of position vectors of constituent particles and using standard mathematical techniques become too cumbersome and inconvenient when the system contains more than two particles. The introduction of Jacobi vectors, hyperspherical variables and hyperspherical harmonics as an expansion basis is an elegant way to tackle systematically the problem of an increasing number of interacting particles. Analytic expressions for hyperspherical harmonics, appropriate symmetrisation of the wave function under exchange of identical particles and calculation of matrix elements of the interaction have been presented. Applications of this technique to various problems of physics have been discussed. In spite of straight forward generalization of the mathematical tools for increasing number of particles, the method becomes computationally difficult for more than a few particles. Hen...
Frequency shift in high order harmonic generation from isotopic molecules
He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang
2016-01-01
We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.
Studies of dual-harmonic acceleration at CSNS-Ⅱ
CHEN Jin-Fang; TANG Jing-Yu
2010-01-01
The Rapid Cycling Synchrotron(RCS)of the China Spallation Neutron Source(CSNS)complex is designed to provide 1.56×1013 protons per pulse(ppp)during the initial stage,and it is upgradeable to3.12×1013 ppp during the second stage and 6.24×1013 ppp during the ultimate stage.The high beam intensity in the RCS requires alleviation of space charge effects to reduce beam losses,which is key in such high beam power accelerators.With higher intensities in the upgrading phases,a dual-harmonic RF system is planned to produce fiat-topped bunches that are useful to reduce the space charge effects.We have studied different schemes to apply the dual-harmonic acceleration in CSNS-Ⅱ,and have calculated the main parameters of the RF systems,which are presented in this paper.
Bose Einstein condensation of gases in a harmonic potential trap
M. E. Zomorrodian
2005-03-01
Full Text Available One of the most interesting properties of boson gases is that under special conditions, there is a possibility of a phase transition, in a critical temperature below which all bosons condensate into the ground state. This phenomenon is called Bose – Einstein Condensation (BEC. In this paper, we investigate BEC in a harmonic oscillator trap. We conclude that, in contrast to a free boson gas, there is no critical temperature for phase transition in a harmonic oscillator trap. However , by numerical and analytical calculation, it is possible to obtain a temperature at which the heat capacity is maximum. We call this the critical temperature . Possible explanation for all these features will be explained in this paper.
Discretized representations of harmonic variables by bilateral Jacobi operators
Andreas Ruffing
2000-01-01
Full Text Available Starting from a discrete Heisenberg algebra we solve several representation problems for a discretized quantum oscillator in a weighted sequence space. The Schrödinger operator for a discrete harmonic oscillator is derived. The representation problem for a q-oscillator algebra is studied in detail. The main result of the article is the fact that the energy representation for the discretized momentum operator can be interpreted as follows: It allows to calculate quantum properties of a large number of non-interacting harmonic oscillators at the same time. The results can be directly related to current research on squeezed laser states in quantum optics. They reveal and confirm the observation that discrete versions of continuum Schrodinger operators allow more structural freedom than their continuum analogs do.
2D magnetic nanoparticle imaging using magnetization response second harmonic
Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi [Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Zhang, Yi [Peter Gruenberg Institute, Forschungszentrum Juelich, Juelich D-52425 (Germany)
2015-06-01
A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field H{sub ac}/H{sub k} is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of G{sub z}=3.17 T/m transverse to the imaging bore and G{sub x}=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm{sup 2} vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.
Dependence of high-order-harmonic generation on dipole moment in Si O2 crystals
Yu, Chao; Zhang, Xirui; Jiang, Shicheng; Cao, Xu; Yuan, Guanglu; Wu, Tong; Bai, Lihua; Lu, Ruifeng
2016-07-01
High-order-harmonic generation in α-quartz Si O2 is theoretically investigated under a strong laser field by solving the extended semiconductor Bloch equations. The accurate band structures as well as dipole moments between different bands are obtained from state-of-the-art first-principles calculations. We find that the shapes of k -space-dependent dipole moments play an important role in harmonic generation. The calculated results show that harmonic conversion efficiency is significantly enhanced and the cutoff energy is distinctly increased when the dipole moments change greatly along a valley in the k direction in the solid. Based on that dependence on the dipole moment, we also show that symmetry groups greatly affect the harmonic spectra from the solid materials. Moreover, a two-color synthesized field is used to achieve a supercontinuum harmonic spectrum near the cutoff region, and isolated attosecond pulses can be obtained directly by filtering out the harmonic radiation. We hope the contribution presented in this work provides a useful reference for future studies on laser-crystal interactions.
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
Alves, D.A. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia. Dept. de Engenharia Eletrica]. E-mail: dalves@dee.feis.unesp.br
2001-07-01
This article presents a model for the distributed dynamical simulation of Load and Frequency Control (CLF), including the loss effects of active power in the transmission lines. The participation factors, determined by the Optimum Load Flow (OLC) and used by CLF, consider the effects of losses minimization of active power and restrictions imposed by the power net (limits in the bar load voltages magnitudes and in the active power flows of the transmission lines). Also the results of the dynamical simulation of the flow control effect are presented, that one can be obtained in regimen with OLC during the power transfer between two points of the power net.
Second harmonic generation in carbon nanotubes induced by transversal electrostatic field.
Trolle, Mads Lund; Pedersen, Thomas Garm
2013-08-14
Carbon nanotubes (CNTs) of armchair and zigzag type contain an inversion centre, and are thus intrinsically unable to generate dipole even-order nonlinearities, such as second harmonic generation (SHG). Breaking the inversion symmetry by application of an external voltage transversal to the CNT axis will, however, induce a second harmonic response. Similarly, additional non-vanishing second harmonic tensor elements will be induced in chiral tubes already displaying an intrinsic response. Many geometries realizing such a setup can be envisaged, e.g., an experimental gate setup or deposition of CNTs on, or integration in, strongly polarized host media, perhaps facilitating a tunable second harmonic response. In this work, we calculate the SHG signal from CNTs under transversally applied electric fields based on a tight-binding model.
A Hierarchical Control Scheme for Reactive Power and Harmonic Current Sharing in Islanded Microgrids
Lorzadeh, Iman; Firoozabadi, Mehdi Savaghebi; Askarian Abyaneh, Hossein
2015-01-01
of each inverter output current are extracted at primary level and transmitted to the secondary controller. Then, instantaneous circulating currents at different frequencies are calculated and applied by the secondary level to generate proper control signals for accurate reactive power and harmonic......In this paper, a hierarchical control scheme consisting of primary and secondary levels is proposed for achieving accurate reactive power and harmonic currents sharing among interface inverters of distributed generators (DGs) in islanded microgrids. Firstly, fundamental and main harmonic components...... current sharing among the inverters. Consequently, these signals are sent to the primary level and inserted as voltage references after passing the control blocks. In contrast to the conventional virtual impedance schemes, where reactive power and harmonic current sharing are realized at the expense...
High-order harmonic generation at high laser intensities beyond the tunnel regime
Pérez-Hernández, J A; Lewenstein, M; Zaïr, A; Roso, L
2014-01-01
We present studies of high-order harmonic generation (HHG) at laser intensities well above saturation. We use driving laser pulses which present a particular electron dynamics in the turn-on stage. Our results predict an increasing on the harmonic yield, after an initial dropping, when the laser intensity is increased. This fact contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities. We have identified a particular set of trajectories which emerges in the turn-on stage of these singular laser pulses, responsible of the unexpected growth on the harmonic efficiency at this high intensity regime. Our study combines two complementary approaches: classical analysis and full quantum mechanical calculations resulting from the numerical integration of the 3-dimensional time-dependent Schr\\"odinger equation complemented with the time-frequency analysis.
Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire
2014-09-01
The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.
The harmonized INFOGEST in vitro digestion method
Egger, Lotti; Ménard, Olivia; Delgado-Andrade, Cristina; Alvito, Paula; Assunção, Ricardo; Balance, Simon; Barberá, Reyes; Brodkorb, Andre; Cattenoz, Thomas; Clemente, Alfonso; Comi, Irene; Dupont, Didier; Garcia-Llatas, Guadalupe; Lagarda, María Jesús; Feunteun, Le Steven; Janssen Duijghuijsen, Lonneke; Karakaya, Sibel; Lesmes, Uri; Mackie, Alan R.; Martins, Carla; Meynier, Anne; Miralles, Beatriz; Murray, B.S.; Pihlanto, Anne; Picariello, Gianluca; Santos, C.N.; Simsek, Sebnem; Recio, Isidra; Rigby, Neil; Rioux, Laurie Eve; Stoffers, Helena; Tavares, Ana; Tavares, Lucelia; Turgeon, Sylvie; Ulleberg, E.K.; Vegarud, G.E.; Vergères, Guy; Portmann, Reto
2016-01-01
Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary
The Harmonic Organization of Auditory Cortex
Xiaoqin eWang
2013-12-01
Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.
Pairwise harmonics for shape analysis
Zheng, Youyi
2013-07-01
This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.
Libsharp - spherical harmonic transforms revisited
Reinecke, Martin
2013-01-01
We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library, addressing several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License.
High Orbital Angular Momentum Harmonic Generation
Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.
2016-12-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.
High orbital angular momentum harmonic generation
Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O
2016-01-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.
Harmonics Monitoring Survey on LED Lamps
Abdelrahman Ahmed Akila
2017-03-01
Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.
Power Factor Correction to Mitigate Harmonic Distortion
Kochetkov, Gary
Many direct current (DC) devices must receive their power from the alternating current (AC) grid. Rectifiers use diodes to create DC for these devices. Due to diodes' non-linear nature however, harmonics are created and these travel back into the grid. A significant presence of harmonics causes component heating and possible malfunction. A harmonic mitigation procedure is needed. With the correct usage of transistors, the current drawn by a rectifier can be manipulated to remove almost all harmonics. This process is called power factor correction (PFC), and formally acts to reduce the total harmonic distortion (THD) of the current. To investigate this, a three phase active rectifier was computer simulated and a controller was designed to provide switching signals for the transistors. Finally, the device was constructed in the laboratory to drive a DC motor, verifying its operating principle outside of the idealities of simulation.
Harmonics mitigation on industrial loads using series and parallel ...
This work compared the use of series and parallel resonant harmonic filters in suppressing harmonics using Simulink ... From the analysis, series resonant filter mitigated the total harmonic distortion from 30.080% to 3.460%. ... Article Metrics.
High order harmonic generation in rare gases
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Harmonic gauge perturbations of the Schwarzschild metric
Berndtson, Mark V
1996-01-01
The satellite observatory LISA will be capable of detecting gravitational waves from extreme mass ratio inspirals (EMRIs), such as a small black hole orbiting a supermassive black hole. The gravitational effects of the much smaller mass can be treated as the perturbation of a known background metric, here the Schwarzschild metric. The perturbed Einstein field equations form a system of ten coupled partial differential equations. We solve the equations in the harmonic gauge, also called the Lorentz gauge or Lorenz gauge. Using separation of variables and Fourier transforms, we write the frequency domain solutions in terms of six radial functions which satisfy decoupled ordinary differential equations. The six functions are the Zerilli and five generalized Regge-Wheeler functions of spin 2,1,0. We use the solutions to calculate the gravitational self-force for circular orbits. The self-force gives the first order perturbative corrections to the equations of motion. Section 1.2 of the thesis has a more detailed ...
A diffusion quantum Monte Carlo study of geometries and harmonic frequencies of molecules
Lu, Shih-I.
2004-01-01
This article describes an approach in determination of equilibrium geometries and harmonic frequencies of molecules by the Ornstein-Uhlenbeck diffusion quantum Monte Carlo method based on the floating spherical Gaussians. In conjunction with a projected and renormalized Hellmann-Feynman gradient and an electronic energy at variational Monte Carlo and diffusion quantum Monte Carlo, respectively, the quasi-Newton algorithm implemented with the Broyden-Fletcher-Goldfarb-Shanno updated Hessian was used to find the optimized molecular geometry. We applied this approach to N2 and H2O molecules. The geometry and harmonic frequencies calculated were consistent with some sophisticated ab initio calculated values within reasonable statistical uncertainty.
Field measurement and analysis of harmonic levels
Karunakara, K.; Muthu Kumar, E.; Rajesh Kumar, O.; Nambudiri, P.V.V.; Srinivasan, K.N. [Central Power Research Institute, Bangalore (India)
1999-07-01
The level of harmonics on the transmission and distribution network is rising over the years, due to the rapid development and usage of electronic and semiconductor devices in the industries, as these devices produce harmonic currents. As the harmonic currents produced by these devices are unproductive and affect the ideal sinusoidal waveshapes, these have to be limited to a tolerable limit at the Point of Common Coupling (PCC). Before setting a tolerable limit on harmonics it is necessary to know the level of harmonics already present in the system, so that the limits suggested are comprehensive and practicable. To have a fair idea about the current and voltage harmonics on the Indian system, Central Power Research Institute (CPRI) has carried out a lot of measurements both on the distribution network and transmission network over the past 13 years. This paper discusses the harmonic measurements carried out by CPRI on different loads and voltage levels on the Indian network. The methodology adopted for measurement and results are also discussed in this paper. (author)
Intravascular ultrasound tissue harmonic imaging in vivo.
Frijlink, Martijn E; Goertz, David E; van Damme, Luc C A; Krams, Rob; van der Steen, Antonius F W
2006-10-01
Tissue harmonic imaging (THI) has been shown to increase image quality of medical ultrasound in the frequency range from 2 to 10 MHz and might, therefore, also be used to improve image quality in intravascular ultrasound (IVUS). In this study we constructed a prototype IVUS system that could operate in both fundamental frequency and second harmonic imaging modes. This system uses a conventional, continuously rotating, single-element IVUS catheter and was operated in fundamental 20 MHz, fundamental 40 MHz, and harmonic 40 MHz modes (transmit 20 MHz, receive 40 MHz). Hydrophone beam characterization measurements demonstrated the build-up of a second harmonic signal as a function of increasing pressure. Imaging experiments were conducted in both a tissue-mimicking phantom and in an atherosclerotic animal model in vivo. Acquisitions of fundamental 20 and 40 MHz and second harmonic acquisitions resulted in cross sections of the phantom and a rabbit aorta. The harmonic results of the imaging experiments showed the feasibility of intravascular THI with a conventional IVUS catheter both in a phantom and in vivo. The harmonic acquisitions also showed the potential of THI to reduce image artifacts compared to fundamental imaging.
Schneidmiller, E A
2012-01-01
Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust...
Zhang Chao
2015-12-01
Full Text Available Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT model is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative damage method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.
Zhang Chao; Wang Shaoping; Wang Zimeng; Wang Xingjian
2015-01-01
Harmonic drives have various distinctive advantages and are widely used in space drive mechanisms. Accelerated life test (ALT) is commonly conducted to shorten test time and reduce associated costs. An appropriate ALT model is needed to predict the lifetime of harmonic drives with ALT data. However, harmonic drives which are used in space usually work under a segmental stress history, and traditional ALT models can hardly be used in this situation. This paper proposes a dedicated ALT model for harmonic drives applied in space systems. A comprehensive ALT model is established and genetic algorithm (GA) is adopted to obtain optimal parameters in the model using the Manson fatigue damage rule to describe the fatigue failure process and a cumulative dam-age method to calculate and accumulate the damage caused by each segment in the stress history. An ALT of harmonic drives was carried out and experimental results show that this model is acceptable and effective.
Harmonic Aspects of Offshore Wind Farms
Kocewiak, Lukasz Hubert; Bak, Claus Leth; Hjerrild, Jesper
2010-01-01
This paper presents the aim, the work and the findings of a PhD project entitled "Harmonics in Large Offshore Wind Farms". It focuses on the importance of harmonic analysis in order to obtain a better performance of future wind farms. The topic is investigated by the PhD project at Aalborg...... of offshore wind farm (OWF) systems....... University (AAU) and DONG Energy. The objective of the project is to improve and understand the nature of harmonic emission and propagation in wind farms (WFs), based on available information, measurement data and simulation tools. The aim of the project is to obtain validated models and analysis methods...
Double Harmonic Transmission (D.H.T.
Sava Ianici
2006-10-01
Full Text Available The paper presents the construction and functioning of a new type of harmonic drive named double harmonic transmission (D.H.T.. In the second part of this paper is presented the dynamic analysis of the double harmonic transmission, which is based on the results of the experimental researches on the D.H.T. This study of the stress status and the forces distribution is necessary for to determine the durability on the portant elements of the D.H.T.
Selective harmonic control for power converters
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede;
2014-01-01
This paper proposes an Internal Model Principle (IMP) based Selective Harmonic Controller (SHC) for power converters. The proposed SHC offers an optimal control solution for power converters to mitigate power harmonics. It makes a good trade-off among cost, complexity and performance. It has high...... accuracy and fast transient response, and it is cost-effective, easy for real-time implementation, and compatible for design rules-of-thumb. An application on a three-phase PWM converter has confirmed the effectiveness of the proposed control scheme in terms of harmonic mitigation....
Harmonic Distortion in CMOS Current Mirrors
Bruun, Erik
1998-01-01
One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...... distortion is not achievable with CMOS current mirrors...
Asymptotic porosity of planar harmonic measure
Graczyk, Jacek; Świaţek, Grzegorz
2013-04-01
We study the distribution of harmonic measure on connected Julia sets of unicritical polynomials. Harmonic measure on a full compact set in ℂ is always concentrated on a set which is porous for a positive density of scales. We prove that there is a topologically generic set {A} in the boundary of the Mandelbrot set such that for every cin {A}, β>0, and λ∈(0,1), the corresponding Julia set is a full compact set with harmonic measure concentrated on a set which is not β-porous in scale λ n for n from a set with positive density amongst natural numbers.
Harmonic analysis of a cruise ship network
Guerin, P.; Miegeville, L. [GE44, France (France); Sahnouni, K. [Chantiers de l' Atlantique (France)
2000-07-01
The number and the power rating of equipment using power electronics have been increasing on board of the ships for many years. At present, the harmonic disturbance must be taken into account from the design stage in order to ensure the smooth running of the installation. This paper presents a harmonic analysis of the electrical distribution system of a cruise ship. The comparison between the evaluated and the real harmonic levels allows us to discuss about the interest and the limits of the estimates. (authors)
Associated Legendre Polynomials and Spherical Harmonics Computation for Chemistry Applications
Limpanuparb, Taweetham
2014-01-01
Associated Legendre polynomials and spherical harmonics are central to calculations in many fields of science and mathematics - not only chemistry but computer graphics, magnetic, seismology and geodesy. There are a number of algorithms for these functions published since 1960 but none of them satisfy our requirements. In this paper, we present a comprehensive review of algorithms in the literature and, based on them, propose an efficient and accurate code for quantum chemistry. Our requirements are to efficiently calculate these functions for all non-negative integer degrees and orders up to a given number (<=1000) and the absolute or the relative error of each calculated value should not exceed 10E-10. We achieve this by normalizing the polynomials, employing efficient and stable recurrence relations, and precomputing coefficients. The algorithm presented here is straightforward and may be used in other areas of science.
Elementary derivation of the quantum propagator for the harmonic oscillator
Shao, Jiushu
2016-10-01
Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.
Inverse Integral Kernel for Diffusion in a Harmonic Potential
Kosugi, Taichi
2014-05-01
The inverse integral kernel for diffusion in a harmonic potential of an overdamped Brownian particle is derived in the present study. It is numerically demonstrated that a sufficiently large number of polynomials for the calculation of the inverse integral kernel are needed for the accurate reproduction of a probability distribution function at past. The inverse integral kernel derived can be used around each of the minima of a generic potential, provided that the lifetimes of the population in the neighboring higher wells are much longer than the negative time lapse.
Isolated Attosecond Pulses using a Detuned Second-harmonic Field
Merdji, Hamed; /Saclay /SLAC, PULSE; Auguste, Thierry; Boutu, Willem; Caumes, J.-Pascal; Carre, Bertrand; /Saclay; Pfeifer, Thomas; Jullien, Aurelie; Neumark, Daniel M.; Leone, Stephen R.; /UC, Berkeley /LBL, Berkeley
2007-11-07
Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at {omega} and the other a strong field detuned from 2{omega}. The slight detuning {delta}{omega} of the second harmonic is used to break the symmetry of the electric field over many optical cycles and provides a coherent control for the formation of an isolated attosecond pulse.
Harmonic oscillation in a spatially finite array waveguide.
Gordon, R
2004-12-01
A waveguide array is presented that behaves as an oscillator, showing periodic image reconstruction, focusing, and transverse wave-packet oscillation. The oscillator has a finite width, which removes the need for premature truncation. The array waveguide oscillator shows properties analogous to those of a pedagogically important one-dimensional quantum harmonic oscillator, which are fundamentally different from previously demonstrated oscillations in Wannier-Stark waveguide arrays. Calculations of the entire array waveguide oscillator are presented that quantify higher-order corrections to the coupled-mode approach. These results can be extended to waveguide oscillators in other systems, such as electrons in superlattices.
Studying the triple - α reaction in hyperspherical harmonic approach
Nguyen, Ngoc; Nunes, Filomena
2010-11-01
The triple-α reaction is studied by using hyperspherical harmonic (HH) method [1]. Starting from three body model, we determine the 2^+ state and the 0^+ resonance as well as the quadrupole strength function B(E2). The triple-α reaction rate are calculated. We also carefully consider the contributions of the nonresonant continuum states to the reaction rate at low temperature (T Ogata, M.Kan, M.Kamimura, Prog. Theor. Phys. 122, 1055 (2009).[0pt] [3] R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, arXiv:1005.5647v1.
Estimating Illumination Parameters Using Spherical Harmonics Coefficients in Frequency Space
XIE Feng; TAO Linmi; XU Guangyou
2007-01-01
An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps:first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by calculating the parameters in the low dimensional subspace.The test results using the CMU PIE database and Yale Database B show the stability and effectiveness of the method.The resulting illumination information can be used to synthesize more realistic relighting images and to recognize objects under variable illumination.
Reconstruction of complementary images in second harmonic generation microscopy
Gao, Liang; Jin, Lei; Xue, Ping; Xu, Jun; Wang, Yi; Ma, Hui; Chen, Dieyan
2006-05-01
Second harmonic generation microscopy(SHGM) has become widely used to image biological samples. Due to the complexity of biological samples, more and more effort has been put on polarization imaging in SHGM technology to uncover their structures. In this work, we put forward a novel stitching method based on careful mathematical calculation, and accomplish it by rotating laser polarization. We first show its validity in imaging a perfectly synthesized bio-origin polymer poly (3-hyroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Then, we test its power by getting a true image of fibrillar collagen structure of rat-tail tendon.
Harmonic Oscillators and Elementary Particles
Sobouti, Y
2016-01-01
Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...
Harmonization of immunotoxicology study guidelines
NakaK
2002-01-01
Guidance for immunotoxicology studies has been intensively discussed.The European Medicnes Evaluation Agency published the draft guidance on immunotoxicity on December 16,1999 and finalized it on July 27,2000.In the meantime,the US Food and Drug Administration (FDA) published the draft guidance on May 11,2001.The Japanese Ministry of Health,Labor and Welfare and the Japan Pharmaceutical Manufactures Association submitted their interim draft guidance to the International Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use(ICH) for discussion of Decemeber 20,2001.The approaches are taken in these(draft) guidance documents.A major difference among the guidance of the three regions is that only the EU guidance requires some immune function tests for all new medicinal products.The informal expert working proup meeting held in the ICH on February 7,2002 resched the conchusion that the guidelines should be eventually hamonized after collecting more data.A scientific session on immunotoxicity testing will be included in the ICH6,Osake,November 2003.
Harmonics Estimation Investigation using a New Fuzzy Adeline Neural Network Method
S. Sajedi
2012-04-01
Full Text Available Artificial Intelligence (AI techniques, particularly the neural networks, are recently having significant impact on power electronics and motor drives. Neural networks have created a new and advancing frontier in power electronics, which is already a complex and multidisciplinary technology that is going through dynamic evolution in the recent years. In this paper, a new method is proposed to approximate the harmonics symmetric components exist in three-phase distribution system. In the proposed method, the amplitude and phase components of the fundamental harmonic and the harmonics of each phase can be extracted. The positive, negative, and the zero sequences are obtained from the harmonics existed in this system performing an independent Fortescue Transform for each harmonic. The proposed estimator is simulated in MATLAB/Simulink in order to assess the functionality of the method. The simulation results show higher efficiency of the proposed method in symmetric components estimation of an artificial three-phase signal harmonics and its higher performance in extracting such components in compare with that of the processing unit structure in a sample three-phase system under unbalance and nonlinear loads existence. The proposed system can be applied in power quality monitoring and be used as a control strategy in custom power devices, according to its advantageous such as fast respond, high accuracy, and low calculation extent.
Lehtonen, M. [VTT Energy, Espoo (Finland). Energy Systems
1996-11-01
In this report the effects of harmonics in marine power systems is discussed and a comparison is given between the most typical converter types, including pulse width modulated drives, load commutated inverters and cycloconverters. The effect of harmonic distortion on the power system equipment and loads is first briefly discussed. Special attention is given to the circumstances in the low voltage distribution system, where general load equipment is connected. In addition to the total harmonic distortion the effect of voltage deviation to the supply quality is also considered. The origin of harmonics in the load currents of the three converter types is then considered. The differences between the converters are outlined, and the most typical spectra are presented. The possible means for reducing the harmonic distortion are also studied. The solutions considered are the increasing of the short circuit level, the use of harmonic filters and the increasing of the pulse number. In the case of cycloconverters, the optimization of the phase shift between the parallel operating bridges is also presented. Finally the effects of different converter types on the voltage quality are compared using calculations made for a typical marine power system. (author)
High-order harmonics with frequency-varying polarization within each harmonic
Fleischer, Avner; Sidorenko, Pavel; Cohen, Oren
2014-01-01
We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics which are nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Polarization fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles. The process can be phase-matched using standard methods (e.g. pressure tuning phase matching) and maintains the single-atom polarization property through propagation. These polarization-fan harmonics may be used for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot
Cavity-Enhanced Third Harmonic Generation
YANG Xiao-Xue; WU Ying
2005-01-01
We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microcavities with any dimensions and arbitrary geometric shapes.
Developing Castable Metal Harmonic Drives Project
National Aeronautics and Space Administration — This effort utilizes the high elastic strain limit and net-shaped processing of metallic glasses to fabricate low-cost harmonic drives that outperform steel. ...
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
Reduction of Harmonics by 18-Pulse Rectifier
Stanislav Kocman
2008-01-01
Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.
Terahertz optics: Terahertz-driven harmonics
Kim, K. Y.; You, Y. S.
2014-02-01
Researchers have demonstrated high-harmonic generation using strong terahertz pulses in a bulk solid without damaging it. The mechanism underpinning such an extreme nonlinearity also generates coherent electromagnetic radiation covering the terahertz, infrared and optical regions.
Multiculturalism, Europhilia and harmonization: harmony or disharmony?
Ruth Sefton-Green
2010-11-01
Full Text Available This paper examines the difficulties of reconciling the values promoted by multiculturalism with the objectives of harmonization. In the event of conflict, examples from English and French law show that harmonization of private law rules does not always achieve its aim of approximating national laws but, on the contrary, often backfires. The question of whether and why these divergences produce Europhile or Eurosceptic positions amongst Member States is addressed. It appears that when maximum harmonisation clashes with multiculturalism this can lead to legal nationalism, whereas minimum harmonization has less negative effects and can stimulate legal experimentation. It is suggested that harmonization requires a mutual listening and learning process in order to accommodate the multiculturalism of Member States and enable Europhilia to flourish in the European Union.
Stable Stationary Harmonic Maps to Spheres
Fang Hua LIN; Chang You WANG
2006-01-01
For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere Sk. We show that the singular set of stable-stationary harmonic maps from B5 to S3 is the union of finitely many isolated singular points and finitely many Holder continuous curves. We also discuss the minimization problem among continuous maps from Bn to S2.
Harmonic distortion in microwave photonic filters.
Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José
2012-04-09
We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.
Structural relations between nested harmonic sums
Bluemlein, J.
2008-07-15
We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)
Fractal harmonic law and waterproof/dustproof
Kong Hai-Yan
2014-01-01
Full Text Available The fractal harmonic law admits that the friction between the pure water and the moving surface is the minimum when fractal dimensions of water in Angstrom scale are equal to fractal dimensions of the moving surface in micro scale. In the paper, the fractal harmonic law is applied to demonstrate the mechanism of waterproof/ dustproof. The waterproof phenomenon of goose feathers and lotus leaves is illustrated to verify our results and experimental results agree well with our theoretical analysis.
Harmonic moment dynamics in Laplacian growth.
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B; Swinney, Harry L
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
Cao Wei; Lu Peixiang; Lan Pengfei; Hong Weiyi; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2007-03-14
The time-frequency properties of high harmonic generation (HHG) driven by a bichromatic field consisting of a fundamental and a weak third harmonic field are investigated. The selection of an individual quantum path contributing to harmonic generation can be achieved by adjusting the relative phase between the two components of the driving field. The classical trajectory simulation of the strong-field electron dynamics is performed to analyse the physical process. Our calculations show that it is the control of the ionization step that leads to the quantum path selection. This quantum selection can be used to generate regular and strong attosecond pulses.
Enhanced harmonic generation and wave-mixing via two-color multiphoton excitation of atoms/molecules
Avetissian, H K; Mkrtchian, G F
2016-01-01
We consider harmonics generation and wave-mixing by two-color multi photon resonant excitation of three-level atoms/molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atom and homonuclear diatomic molecular ion show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.
Second round robin for plasma hepcidin methods: first steps toward harmonization.
Kroot, Joyce J C; van Herwaarden, Antonius E; Tjalsma, Harold; Jansen, Rob T P; Hendriks, Jan C M; Swinkels, Dorine W
2012-10-01
Measurements of the iron regulatory hormone hepcidin by various methodologies and laboratories are not harmonized. As a result different numeric results are obtained for the same clinical sample. We investigated whether better agreement between plasma hepcidin methods can be achieved by harmonization. Native plasma pools (n = 11) of a variety of hepcidin concentrations and blank plasma spiked with three different quantities of synthetic hepcidin-25 purchased from two different commercial sources (n = 6), were distributed in duplicate among 21 methods worldwide. We assessed commutability by comparing results from synthetic hepcidin with those from native samples in various method couples by Bland-Altman plots. Methods differed substantially in absolute values and reproducibility. For the majority of methods we found that samples with synthetic hepcidin-25 were noncommutable with the native samples. In an attempt to harmonize by using native hepcidin results, we selected two methods that showed good mutual agreement of native results and calculated consensus values as the medians for the 11 duplicate native samples obtained by these two methods. Finally, we constructed algorithms enabling the laboratories to calculate the hepcidin consensus (HEPCON) value using their own native hepcidin results. We found that the use of these algorithms substantially reduced the between-method CV. Until commutable materials are defined, hepcidin harmonization can be achieved by exploiting specific algorithms, allowing each lab to report their native hepcidin concentrations in HEPCON values. This study represents the first step toward harmonization of plasma hepcidin methods and facilitates aggregation of hepcidin data from different research investigations.
Harmonic response of a class of finite extensibility nonlinear oscillators
Febbo, M.
2011-06-01
Finite extensibility oscillators are widely used to simulate those systems that cannot be extended to infinity. For example, they are used when modelling the bonds between molecules in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this paper, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented and studied. To this end, the harmonic balance method is applied to determine the amplitude-frequency and amplitude-phase equations. The distinguishable feature in this case is the bending of the amplitude-frequency curve to the frequency axis, making it asymptotically approach the limit of maximum elongation of the oscillator, which physically represents the impossibility of the system reaching this limit. Also, the stability condition that defines stable and unstable steady-state solutions is derived. The study of the effect of the system parameters on the response reveals that a decreasing value of the damping coefficient or an increasing value of the excitation amplitude leads to the appearance of a multi-valued response and to the existence of a jump phenomenon. In this sense, the critical amplitude of the excitation, which means here a certain value of external excitation that results in the occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects of system parameters on the frequency-amplitude response are performed and compared with analytical calculations. At a low value of the damping coefficient or at a high value of excitation amplitude, the agreement is poor for low frequencies but good for high frequencies. It is demonstrated that the disagreement is caused by the neglect of higher-order harmonics in the analytical formulation. These higher-order harmonics, which appear as distinguishable peaks at certain values in the frequency response curves, are possible to calculate considering not the linearized frequency of the oscillator but its actual
Two-colour multiphoton ionization of hydrogen by an intense laser field and its third harmonic
Potvliege, R.M.; Smith, P.H.G. (Durham Univ. (United Kingdom). Dept. of Physics)
1991-12-28
We present results of ab initio non-perturbative Floquet calculations of rates for multiphoton ionization of atomic hydrogen by an intense laser field and its third harmonic, discussing in particular resonant ionization and the dependence of the ionization rate on the relative phase of the two fields. (author).
Nonsequential double-recombination high-order-harmonic generation in molecularlike systems
Hansen, Kenneth Christian Klochmann; Madsen, Lars Bojer
2017-01-01
We present a study of nonsequential double-recombination (NSDR) high-harmonic generation (HHG) in a molecularlike system. We have calculated the HHG spectrum for a wide range of internuclear distances, and using a Coulomb-corrected three-step model we are able to analyze and predict the observed...
Shen, Che-Chou; Shi, Tai-Yu
2011-07-01
Ultrasound tissue harmonic signal generally provides superior image quality as compared to the linear signal. However, since the generation of the tissue harmonic signal is based on finite amplitude distortion of the propagating waveform, the penetration and the sensitivity in tissue harmonic imaging are markedly limited because of the low signal-to-noise ratio (SNR). The method of third harmonic (3f(0)) transmit phasing can improve the tissue harmonic SNR by transmitting at both the fundamental (2.25MHz) and the 3f(0) (6.75MHz) frequencies to achieve mutual enhancement between the frequency-sum and the frequency-difference components of the second harmonic signal. To further increase the SNR without excessive transmit pressure, coded excitation can be incorporated in 3f(0) transmit phasing to boost the tissue harmonic generation. Our analyses indicate that the phase-encoded Golay excitation is suitable in 3f(0) transmit phasing due to its superior transmit bandwidth efficiency. The resultant frequency-sum and frequency-difference components of tissue harmonic signal can be simultaneously Golay-encoded for SNR improvement. The increase of the main-lobe signal with the Golay excitation in 3f(0) transmit phasing are consistent between the tissue harmonic measurements and the simulations. B-mode images of the speckle generating phantom also demonstrate the increases of tissue harmonic SNR for about 11dB without noticeable compression artifacts. For tissue harmonic imaging in combination with the 3f(0) transmit phasing method, the Golay excitation can provide further SNR improvement. Meanwhile, the axial resolution can be effectively restored by pulse compression while the lateral resolution remains unchanged. Copyright © 2010 Elsevier B.V. All rights reserved.
Structural characterization of particle systems using spherical harmonics
Feinauer, Julian, E-mail: julian.feinauer@uni-ulm.de [Deutsche ACCUmotive GmbH & Co. KG, Neue Straße 95, 73230 Kirchheim unter Teck (Germany); Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany); Spettl, Aaron, E-mail: aaron.spettl@uni-ulm.de [Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany); Manke, Ingo, E-mail: manke@helmholtz-berlin.de [Institute of Applied Materials, Helmholtz-Centre Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Strege, Stefan, E-mail: stefan.strege@basf.com [Institute for Particle Technology, TU Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig (Germany); Kwade, Arno, E-mail: a.kwade@tu-bs.de [Institute for Particle Technology, TU Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig (Germany); Pott, Andres, E-mail: andres.pott@daimler.com [Deutsche ACCUmotive GmbH & Co. KG, Neue Straße 95, 73230 Kirchheim unter Teck (Germany); Schmidt, Volker, E-mail: volker.schmidt@uni-ulm.de [Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm (Germany)
2015-08-15
Many important properties of particulate materials are heavily influenced by the size and shape of the constituent particles. Thus, in order to control and improve product quality, it is important to develop a good understanding of the shape and size of the particles that make up a given particulate material. In this paper, we show how the spherical harmonics expansion can be used to approximate particles obtained from tomographic 3D images. This yields an analytic representation of the particles which can be used to calculate structural characteristics. We present an estimation method for the optimal length of expansion depending on individual particle shapes, based on statistical hypothesis testing. A suitable choice of this parameter leads to a smooth approximation that preserves the main shape features of the original particle. To show the wide applicability of this procedure, we use it to approximate particles obtained from two different tomographic 3D datasets of particulate materials. The first one describes an anode material from lithium-ion cells that consists of sphere-like particles with different sizes. The second dataset describes a powder of highly non-spherical titanium dioxide particles. - Highlights: • Complex particle shapes are described analytically by spherical harmonics expansion. • The optimal length of the expansion is estimated for each particle individually. • Characteristics like, e.g., particle surface areas can be calculated efficiently. • The method is applied to two tomographic datasets of particulate materials.
Walter Ruiz Porras
2012-04-01
Full Text Available Este trabajo consiste en estudiar, modelar y simular un Compensador Estático de Reactivos (SVC, para analizar el efecto del mismo en el problema de Flujo de Carga de un Sistema Eléctrico de Potencia (SEP. Se emplea un programa, de la literatura revisada, escrito en Matlab. Se presenta el modelo matemático del SVC que se emplea en el programa y que utiliza el concepto de susceptancia en derivación variable e incorpora el modelo del ángulo de disparo de los tiristores como variable de estado en la fórmula de Newton Raphson. Se comparan los resultados obtenidos en el flujo de carga, sin SVC, en los ensayos que se realizan con el sistema de 9 barras de la IEEE con los resultados alcanzado utilizando la versión académica del Simulador Power World. El SVC se emplea para controlar el valor de la tensión en una de las barras del caso estudio. This work consists on studying, to model and to simulate a Static Vars Compensator (SVC, to analyze the effect of the same one in the Load Flow problem of an Electric Power System (SEP. A program is used, of the revised literature, written in Matlab. The mathematical model of the SVC is presented that is used in the program and that it uses the concept of susceptance variable shunt and it incorporates the model of the fire angle of the tiristores like state variable in Newton Raphson methods. The results obtained are compared in the load flow, without SVC, in the rehearsals that are carried out with the system of 9 bars of the IEEE with the reached results using the academic version of the Power World Simulator. The SVC is used to control the value of the voltage in one of the bars of the case study.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Density excitations of a harmonically trapped ideal gas
Jai Carol Cruz; C N Kumar; K N Pathak; J Bosse
2010-01-01
The dynamic structure factor $S(\\mathbf{q}, )$ of a harmonically trapped Bose gas has been calculated well above the Bose–Einstein condensation temperature by treating the gas cloud as a canonical ensemble of non-interacting classical particles. The static structure factor is found to vanish $\\varpropto q^{2}$ in the long-wavelength limit. We also incorporate a relaxation mechanism phenomenologically by including a stochastic friction force to study $S(\\mathbf{q}, ).$ A significant temperature dependence of the density fluctuation spectra is found. The Debye–Waller factor has been calculated for the trapped thermal cloud as a function of q and the number $\\mathcal{N}$ of atoms. A substantial difference is found for small- and large-$\\mathcal{N}$ clouds.
Avalanche effect and gain saturation in high harmonic generation
Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian
2015-01-01
Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...
Calculation of the α-Particle Ground State
Viviani, M.; Kievsky, A.; Rosati, S.
1995-01-01
The correlated hyperspherical harmonic expansion method is used to calculate α-particle properties with a realistic Hamiltonian consisting of the Argonne V14 two-nucleon and Urbana model VIII three-nucleon potentials. The calculated binding energy, mass radius and wave percentages are close to the corresponding quantities obtained with Green's-function Monte-Carlo and Faddeev-Yakubovsky techniques.
Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh
2015-12-01
The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection
Hamiltonian of mean force and a damped harmonic oscillator in an anisotropic medium
Jafari, Marjan; Kheirandish, Fardin
2017-01-01
The quantum dynamics of a damped harmonic oscillator is investigated in the presence of an anisotropic heat bath. The medium is modeled by a continuum of three dimensional harmonic oscillators and anisotropic coupling is treated by introducing tensor coupling functions. Starting from a classical Lagrangian, the total system is quantized in the framework of the canonical quantization. Following the Fano technique, the Hamiltonian of the system is diagonalized in terms of creation and annihilation operators that are linear combinations of the basic dynamical variables. Using the diagonalized Hamiltonian, the mean force internal energy, free energy and entropy of the damped oscillator are calculated.
Non-local separable solutions of two interacting particles in a harmonic trap
Gonzalez-Santander, C., E-mail: cglezsantander@fis.ucm.e [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Dominguez-Adame, F. [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain)
2011-01-17
We calculate the energy levels of two particles trapped in a harmonic potential. The actual two-body potential, assumed to be spherically symmetric, is replaced by a projective operator (non-local separable potential) to determine the energy levels in a closed form. This approach overcomes the limitations of the regularized Fermi pseudopotential when the characteristic length of the two-body interaction potential is of the order of the size of the harmonic trap. In addition, we recover the results obtained with the Fermi pseudopotential when the length of the interaction is much smaller than the size of the trap.
THERMAL DESIGN FOR HARMON DRY-COOLING SYSTEM IN LARGE POWER STATION
无
2002-01-01
Based on the analysis of air flow and heat transfer in the dry-cooling tower for Harmon system, a combined iteration method is presented to solve the coupled heat transfer and draft equations derived from theoretical and empirical formulas, with the size of the exchangers and the cooling tower or the systematic parameters being determined. Taking the 686 MW unit as an example, the present calculating results are well agreed with those of the real case, and thus the method presented is practical and feasible for reasonable design of Harmon system.
Harmonic losses of single-phase induction motors under nonsinusoidal voltages
Lin, D.; Batan, T.; Fuchs, E.F. [Univ. of Colorado, Boulder, CO (United States); Grady, W.M. [Univ. of Texas, Austin, TX (United States)
1996-06-01
Parameters of a capacitor-start, capacitor-run single-phase induction motor with closed or semi-closed rotor slots are measured and a model for the investigation of the performance of the machine in the frequency domain under the influence of harmonic voltages is presented. An algorithm taking into account the nonlinear rotor leakage inductance is established. This algorithm is applied to estimate the current in the time domain, and the harmonic losses at rated-load operation without and with run capacitors are calculated. Computational results are compared with those from experimentation and the differences between both are discussed.
High order harmonic generation in noble gases using plasmonic field enhancement
Ciappina, M F; Lewenstein, M
2012-01-01
We present theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. We demonstrate that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. Our models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations.
Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd
2017-07-01
Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.
The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle
HE JiZhou; HE Xian; TANG Wei
2009-01-01
In this paper,an irreversible quantum Otto refrigeration cycle working with harmonic systems is estab-lished.Base on Heisenberg quantum master equation,the equations of motion for the set of harmonic systems thermodynamic observables are derived.The simulated diagrams of the quantum Otto refrig-eration cycle are plotted.The relationship between average power of friction,cooling rate,power input,and the time of adiabatic process is analyzed by using numerical calculation.Moreover,the influence of the heat conductance and the time of iso-frequency process on the performance of the cycle is dis-cussed.
The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle
无
2009-01-01
In this paper, an irreversible quantum Otto refrigeration cycle working with harmonic systems is established. Base on Heisenberg quantum master equation, the equations of motion for the set of harmonic systems thermodynamic observables are derived. The simulated diagrams of the quantum Otto refrigeration cycle are plotted. The relationship between average power of friction, cooling rate, power input, and the time of adiabatic process is analyzed by using numerical calculation. Moreover, the influence of the heat conductance and the time of iso-frequency process on the performance of the cycle is discussed.
Spherical harmonics method for neutron transport equation based on unstructured-meshes
CAO Liang-Zhi; WU Hong-Chun
2004-01-01
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on unstructured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
Harmonics on the factored three-sphere and the Hopf map
Dowker, J S
2009-01-01
Laplacian eigenmodes on homogeneous Clifford-Klein factors of the three-sphere are obtained as pullbacks of harmonics on the orbifolded two-sphere using the Hopf map. A method of obtaining these polyhedral harmonics using binary invariants is presented which has computational advantages over those based on projection techniques, or those using invariants constructed in terms of Cartesian coordinates. In addition, modes transforming according to the irreps of the deck group are found in easy fashion using the covariants already conveniently calculated by Desmier and Sharp.
Nonlinear harmonics in the high-gain harmonic generation (HGHG) experiment
Biedron, S G; Milton, S V; Yu, L H; Wang, X J
2001-01-01
We have previously performed rigorous analyses of the nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) using a 3D simulation code. To date, we have presented only preliminary results of these higher harmonics resulting in the high-gain harmonic generation (HGHG) process. A single-pass, high-gain FEL experiment based on the HGHG theory is underway at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Using the above experiment's design parameters, the specific case of the harmonic output from the HGHG experiment will be examined using a 3D simulation code. The sensitivity of nonlinear harmonic output for this HGHG experiment as functions of emittance, energy spread, and peak current in both cases, and for the dispersive section strength and input seed power in the HGHG case, will be presented.
Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average-model, are in...... behavior interaction and dynamic transfer procedure. Frequency domain as well as time domain simulation results are represented by means of HSS modeling to verify the theoretical analysis. Experimental results are also included to validate the method....... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...
Harmonic Theory and Machine Learning
Nanclares, Jorge; Rapallini, Ulises Mario Alberto
2007-01-01
A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested. Facultad de Informática
A method of spherical harmonic analysis in the geosciences via hierarchical Bayesian inference
Muir, J. B.; Tkalčić, H.
2015-11-01
The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.
Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma
Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; de Nalda, R.; Castillejo, M.
2017-01-01
Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear medium.
Generation of high harmonics from silicon
Vampa, Giulio; Thiré, Nicolas; Schmidt, Bruno E; Légaré, Francois; Klug, Dennis D; Corkum, Paul B
2016-01-01
We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$\\mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.
Coded excitation for ultrasound tissue harmonic imaging.
Song, Jaehee; Kim, Sangwon; Sohn, Hak-Yeol; Song, Tai-Kyong; Yoo, Yang Mo
2010-05-01
Coded excitation can improve the signal-to-noise ratio (SNR) in ultrasound tissue harmonic imaging (THI). However, it could suffer from the increased sidelobe artifact caused by incomplete pulse compression due to the spectral overlap between the fundamental and harmonic components of ultrasound signal after nonlinear propagation in tissues. In this paper, three coded tissue harmonic imaging (CTHI) techniques based on bandpass filtering, power modulation and pulse inversion (i.e., CTHI-BF, CTHI-PM, and CTHI-PI) were evaluated by measuring the peak range sidelobe level (PRSL) with varying frequency bandwidths. From simulation and in vitro studies, the CTHI-PI outperforms the CTHI-BF and CTHI-PM methods in terms of the PRSL, e.g., -43.5dB vs. -24.8dB and -23.0dB, respectively. Copyright 2010 Elsevier B.V. All rights reserved.
The harmonic oscillator and nuclear physics
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Harmonic and complex analysis in several variables
Krantz, Steven G
2017-01-01
Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...
High harmonic phase in molecular nitrogen
McFarland, Brian K.
2009-10-17
Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.
Microscopic optical buffering in a harmonic potential
Sumetsky, M
2015-01-01
In the early days of quantum mechanics, Schr\\"odinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices.
Robust Speech Recognition Using a Harmonic Model
许超; 曹志刚
2004-01-01
Automatic speech recognition under conditions of a noisy environment remains a challenging problem. Traditionally, methods focused on noise structure, such as spectral subtraction, have been employed to address this problem, and thus the performance of such methods depends on the accuracy in noise estimation. In this paper, an alternative method, using a harmonic-based spectral reconstruction algorithm, is proposed for the enhancement of robust automatic speech recognition. Neither noise estimation nor noise-model training are required in the proposed approach. A spectral subtraction integrated autocorrelation function is proposed to determine the pitch for the harmonic model. Recognition results show that the harmonic-based spectral reconstruction approach outperforms spectral subtraction in the middle- and low-signal noise ratio (SNR) ranges. The advantage of the proposed method is more manifest for non-stationary noise, as the algorithm does not require an assumption of stationary noise.
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Theory of harmonic dissipation in disordered solids
Damart, T.; Tanguy, A.; Rodney, D.
2017-02-01
Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
Does high harmonic generation conserve angular momentum?
Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren
2013-01-01
High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...
RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS
Tatiana Danescu
2016-12-01
Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
FENG HE
2017-03-01
Full Text Available In this paper, an effective tool based on harmonic balance method to assess the forced response of these systems under parametric changes is developed. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated and modeled using finite element method. The forced response of this asymmetrically supported system is calculated using the harmonic balance method with a predictor-corrector procedure by changing unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. It is observed that under large unbalance forces, jump phenomenon occurs due to the nonlinear forces of SFD which indicates the presence of multiple harmonics within the response of the SFD operating at high eccentricity ratios and shows the insensitivity of the damper to surrounding gyroscopic variation.
High-order harmonic generation and multi-photon ionization of Na2 in laser fields
Zhang Yan-Ping; Zhang Feng-Shou; Meng Ke-Lai; Xiao Guo-Qing
2007-01-01
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede
2016-01-01
For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...... and loads and other converters. Hence, time-domain simulations are usually required to consider such a complex system behavior. However, simulations in the time-domain may increase the calculation time and the utilization of computer memory. Furthermore, frequency coupling driven by multiple converters...
Digital model for harmonic interactions in AC/DC/AC systems
Guarini, A.P.; Rangel, R.D.; Pilotto, L.A.S.; Pinto, R.J.; Passos Junior, R. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)
1994-12-31
The main purpose of this paper is to present a model for calculation of HVdc converter harmonics taking into account the influence of the harmonic interactions between the ac systems in dc link transmissions. The ideas and methodologies used in the model development take into account the dc current ripple and ac voltage distortion in the ac systems. The theory of switching functions is applied to contemplate for the frequency conversions between the ac and dc sides, in an iterative process. It is possible then to obtain, even in balanced situations, non-characteristic harmonics that are produced by frequencies originated in the other terminal, which can be significant in a strongly coupled system, such as back-to-back configuration. (author) 9 refs., 3 figs.
Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)
Woessner, Jochen; Giardini, Domenico; SHARE Consortium
2010-05-01
Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Harmonic analysis and the theory of probability
Bochner, Salomon
2005-01-01
Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic pro
Harmonic Cavity Performance for NSLS-II
Blednykh, Alexei; Podobedov, Boris; Rose, James; Towne, Nathan A; Wang, Jiunn-Ming
2005-01-01
NSLS-II is a 3 GeV ultra-high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. Ultra-low emittance bunch combined with a short bunch length results in the Touschek lifetime of only a few hours, which strongly advocates including harmonic RF in the baseline design of NSLS-II. This paper describes the required harmonic RF parameters, trade-offs between the possible choices and the expected system performance, including the implications on lifetime and instabilities.
Perturbative Semiclassical Trace Formulae for Harmonic Oscillators
Møller-Andersen, Jakob; Ögren, Magnus
2015-01-01
In this article we extend previous semiclassical studies by including more general perturbative potentials of the harmonic oscillator in arbitrary spatial dimensions. Our starting point is a radial harmonic potential with an arbitrary even monomial perturbation, which we use to study the resulting...... U(D) to O(D) symmetry breaking. We derive the gross structure of the semiclassical spectrum from periodic orbit theory, in the form of a perturbative (ħ → 0) trace formula. We then show how to apply the results to even-order polynomial potentials, possibly including mean-field terms. We have drawn...
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Harmonic Inverse FEL Interaction at 800nm
Sears, C M S; Siemann, R; Spencer, J E
2005-01-01
The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.
Fast algorithms for spherical harmonic expansions, III
Tygert, Mark
2009-01-01
We accelerate the computation of spherical harmonic transforms, using what is known as the butterfly scheme. This provides a convenient alternative to the approach taken in the second paper from this series on "Fast algorithms for spherical harmonic expansions." The requisite precomputations become manageable when organized as a "depth-first traversal" of the program's control-flow graph, rather than as the perhaps more natural "breadth-first traversal" that processes one-by-one each level of the multilevel procedure. We illustrate the results via several numerical examples.
Music of the heavens Kepler's harmonic astronomy
Stephenson, Bruce
2014-01-01
Valued today for its development of the third law of planetary motion, Harmonice mundi (1619) was intended by Kepler to expand on ancient efforts to discern a Creator's plan for the planetary system--an arrangement thought to be based on harmonic relationships. Challenging critics who characterize Kepler's theories of harmonic astronomy as ""mystical,"" Bruce Stephenson offers the first thorough technical analysis of the music the astronomer thought the heavens made, and the logic that led him to find musical patterns in his data. In so doing, Stephenson illuminates crucial aspects of Kepler'
Artificial Neural Network in Harmonic Reduction of STATCOM
Li Hongmei; Li Zhenran; Zheng Peiying
2005-01-01
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
Cascaded third harmonic generation in hybrid graphene-semiconductor waveguides
Smirnova, Daria A
2015-01-01
We study cascaded harmonic generation of hybrid surface plasmons in integrated planar waveguides composed of a graphene layer and a doped-semiconductor slab. We derive a comprehensive model of cascaded third harmonic generation through phase-matched nonlinear interaction of fundamental, second harmonic and third harmonic plasmonic modes supported by the structure. We show that hybrid graphene-semiconductor waveguides can simultaneously phase-match these three interacting harmonics, increasing the total third-harmonic output by a factor of 5 compared to the non-cascaded regime.
Design of a second cyclotron harmonic gyrotron oscillator with photonic band-gap cavity
Liu Gaofeng; Chen Xiaoan; Tang Changjian, E-mail: angelchen765@163.com [College of Physical Science and Technology of Sichuan University, Chengdu 610065 (China)
2011-07-27
A photonic band-gap cavity (PBGC) gyrotron with a frequency of about 98 GHz is designed. Theoretical analyses and numerical calculations are made for the PBGC operating at fundamental and second cyclotron harmonic with a TE{sub 34} waveguide mode to demonstrate the beam-wave interaction. The results show that mode competition is successfully eliminated in the PBGC using mode selectivity and choosing the appropriate operating parameters. As a result, the second harmonic PBGC gyrotron operating at TE{sub 34} mode achieves a higher output efficiency than that of the fundamental. It is also demonstrated that, in the case of the chosen parameters for TE{sub 34} waveguide mode, the use of PBG structure in the second harmonic gyrotron brings about not only a lower operating B-field but also a weaker mode competition. The results show that the high-order electromagnetic mode can be developed to interact with the high cyclotron harmonic using the selectivity of the PBGC, which gives an encouraging outlook for the development of high-harmonic gyrotrons.
Enhanced Dynamical Stability with Harmonic Slip-stacking
Eldred, Jeffrey
2016-01-01
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal dis...
罗佳
2012-01-01
A crossover point approach was studied for low-cost LEO cluster precise orbit data to recover the global time-variable information without accelerometer system (ACC) or K-band ranging system (KBR) measurements. This approach can reduce the non-gravitational force effects on LEO, obviously. Data coverage and the orbit radial error effect on this approach was analyzed based on COSMIC (constellation observing system for meteorology ionosphere & climate) satellites data. And then, the the low degree zonal harmonic terms,C2^0 and C3^0, simulation results of the approach were given.%新一代重力卫星计划主要依靠高精度星载加速度计（ACC）、星间测距系统（KBR）或星载梯度计（SGG）进行地球重力场探测。搭载高精度星载GPS接收机的低轨卫星（low earth orbit，LEO）可以相对较低成本获取LEO卫星的精密轨道。卫星精密轨道一方面服务予LEO的主任务（如遥感、气象等）；另一方面可以将这类LEO卫星和星座综舍起来，构成LEO星群LEO星群精密轨道数据包含的丰富地球重力场信息为获取地球重力场的时变信息提供可能。本文给出一种利用LEO星群精密轨道数据反演地球重力场低阶带谐系数时变信息的实用方法——交叠点法，该方法可有效消弱非保守力等因素对重力场反演的影响。然后，以COSMIC（constellation observing system for meteorology ionosphere＆climate）为实例分析LEO星群交叠点的覆盖特性，径向轨道精度对交叠点法的影响。最后进行低阶带谐系数（C2^0和C3^0）时变信号的模拟计算，并对结果进行分析。
Perfusion harmonic imaging of the human brain
Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til
2003-05-01
The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.
Challenges and Opportunities for Harmonizing Research Methodology
van Hees, V. T.; Thaler-Kall, K.; Wolf, K. H.
2016-01-01
Objectives: Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how ...
determination of determination of total harmonic distortion
eobe
Harmonic Distortion (THD) of the Distribution lines in the 33kV distri .... guidelines based on industrial distribution system design. IEEE 519-1992 defines ..... studies and also reviewed issues related to the concept. The results of power flow and ...
Sobolev Spaces Associated to the Harmonic Oscillator
B Bongioanni; J L Torrea
2006-08-01
We define the Hermite-Sobolev spaces naturally associated to the harmonic oscillator $H= - + |x|^2$. Structural properties, relations with the classical Sobolev spaces, boundedness of operators and almost everywhere convergence of solutions of the Schrödinger equation are also considered.
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
The Berry Phase for Simple Harmonic Oscillators
Suslov, Sergei K
2011-01-01
We evaluate the Berry phase for a "missing" family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables. It is obtained by the action of the maximal kinematical invariance group on the standard solutions. An explicit simple formula for the phase is found by integration with the help of a computer algebra system.
Collective excitations of harmonically trapped ideal gases
Van Schaeybroeck, B.; Lazarides, A.
2009-01-01
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show
Harmonic generation with multiple wiggler schemes
Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Regularity of harmonic maps with the potential
CHU; Yuming
2006-01-01
The aim of this work is to prove the partial regularity of the harmonic maps with potential. The main difficulty caused by the potential is how to find the equation satisfied by the scaling function. Under the assumption on the potential we can obtain the equation, however, for a general potential, even if it is smooth, the partial regularity is still open.
Parameter estimation of harmonic polluting industrial loads
Maza-Ortega, J.M.; Gomez-Exposito, A.; Trigo-Garcia, J.L.; Burgos-Payan, M. [University of Sevilla, Sevilla (Spain). Department of Electrical Engineering
2005-12-01
This paper develops a methodology for the estimation of relevant parameters characterizing harmonic polluting industrial loads through a set of measurements acquired at the point of common coupling. The proposed method is capable of obtaining an accurate load model in absence of detailed information about its internal structure and composition. (author)
Transducer for harmonic intravascular ultrasound imaging
Vos, Hendrik J.; Frijlink, Martijn E.; Droog, E.J.; Goertz, David E.; Blacquiere, Gerrit; Gisolf, Anton; de Jong, N.; van der Steen, Antonius F.W.
2005-01-01
A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer
Feasibility of 3D harmonic contrast imaging
Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; ten Cate, F.; de Jong, N.
2004-01-01
Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it
Toeplitz operators on harmonic Bergman spaces
Choe, Boo Rim; Lee, Young Joo; Na, Kyunguk
2004-01-01
We study Toeplitz operators on the harmonic Bergman spaces on bounded smooth domains. Two classes of symbols are considered; one is the class of positive symbols and the other is the class of uniformly continuous symbols. For positive symbols, boundedness, compactness, and membership in the Schatten classes are characterized. For uniformly continuous symbols, the essential spectra are described.
Local Dynamics in an Infinite Harmonic Chain
M. Howard Lee
2016-04-01
Full Text Available By the method of recurrence relations, the time evolution in a local variable in a harmonic chain is obtained. In particular, the autocorrelation function is obtained analytically. Using this result, a number of important dynamical quantities are obtained, including the memory function of the generalized Langevin equation. Also studied are the ergodicity and chaos in a local dynamical variable.
The Harmonic Oscillator–A Simplified Approach
L. R. Ganesan
2008-01-01
Full Text Available Among the early problems in quantum chemistry, the one dimensional harmonic oscillator problem is an important one, providing a valuable exercise in the study of quantum mechanical methods. There are several approaches to this problem, the time honoured infinite series method, the ladder operator method etc. A method which is much shorter, mathematically simpler is presented here.
Coherent control of High-harmonic generation
Barreaux, J.L.P.
2012-01-01
High-harmonic generation (HHG) is a non-linear optical process that can convert laser light with standard wavelengths, such as infrared light, into coherent radiation at much shorter wavelengths in the XUV (extreme ultraviolet) or soft X-ray regime. As opposed to low-order nonlinear frequency
ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING
Valentin Gabriel CRISTEA
2017-05-01
Full Text Available There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.
Psychoacoustic Approaches for Harmonic Music Mixing
Roman B. Gebhardt
2016-05-01
Full Text Available The practice of harmonic mixing is a technique used by DJs for the beat-synchronous and harmonic alignment of two or more pieces of music. In this paper, we present a new harmonic mixing method based on psychoacoustic principles. Unlike existing commercial DJ-mixing software, which determines compatible matches between songs via key estimation and harmonic relationships in the circle of fifths, our approach is built around the measurement of musical consonance. Given two tracks, we first extract a set of partials using a sinusoidal model and average this information over sixteenth note temporal frames. By scaling the partials of one track over ±6 semitones (in 1/8th semitone steps, we determine the pitch-shift that maximizes the consonance of the resulting mix. For this, we measure the consonance between all combinations of dyads within each frame according to psychoacoustic models of roughness and pitch commonality. To evaluate our method, we conducted a listening test where short musical excerpts were mixed together under different pitch shifts and rated according to consonance and pleasantness. Results demonstrate that sensory roughness computed from a small number of partials in each of the musical audio signals constitutes a reliable indicator to yield maximum perceptual consonance and pleasantness ratings by musically-trained listeners.
Large- quantum chromodynamics and harmonic sums
Eduardo De Rafael
2012-06-01
In the large- limit of QCD, two-point functions of local operators become harmonic sums. I review some properties which follow from this fact and which are relevant for phenomenological applications. This has led us to consider a class of analytic number theory functions as toy models of large- QCD which also is discussed.
Harmonic cascade FEL designs for LUX
Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.
2004-07-16
LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Virial expansion coefficients in the harmonic approximation
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated...
The harmonics detection method based on neural network applied ...
user
Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ... Recently, some methods based on artificial intelligence have been applied In order to improve ..... The effect is the reduction of.
Estimates on Bloch constants for planar harmonic mappings
无
2009-01-01
The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Grigoryan.
Harmonic Damping in DG-Penetrated Distribution Network
Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.
2016-01-01
Grid background harmonics may be amplified, propagate through a long distribution feeder and even lead to power system instability. In this paper, harmonic propagation issue is investigated and mitigation of the harmonics is analyzed by using transmission line theory which has already been applied...... in power systems. It is demonstrated that a specific harmonic will not be amplified if the feeder’s length is less than one quarter of the harmonic wavelength meanwhile the terminal impedance is less than characteristic impedance. Besides, three scenarios will be considered in accordance...... with the relationship between the feeder’s length and harmonic wavelength. Harmonic suppression control strategies will be respectively designed considering 5th and 7th harmonics coexisting in the distribution line. Finally, a simulation study has been performed to verify the theoretical analysis and demonstrate...
harmonics mitigation on industrial loads using series and parallel ...
user
This work compared the use of series and parallel resonant harmonic filters in suppressing harmonics ... industrial applications high technology devices related to communication .... magnification is large because of high circuit Q-factor or.
Product of Toeplitz Operators on the Harmonic Dirichlet Space
Lian Kuo ZHAO
2012-01-01
In this paper,we study Toeplitz operators with harmonic symbols on the harmonic Dirichlet space,and show that the product of two Toeplitz operators is another Toeplitz operator only if one factor is constant.
Strongly Dispersive Transient Bragg Grating for High Harmonics
Farrell, J.; Spector, L.S.; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Gaarde, M.B.; /SLAC, PULSE /Louisiana State U.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.
2010-06-04
We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.
Zheng Min
2016-01-01
Full Text Available In this paper, numerical calculations of harmonic response with acoustic-vibration coupling of the combustion chamber under different combustion conditions has been performed by combining CFD and FEM methods. Temperature and sound pressure fields created by the flame in the combustion chamber are calculated first. And then the results of the CFD are exported to the FEM analysis for the interaction between acoustic waves and wall vibrations. The possible acoustic-vibration coupled eigenfrequencies at given combustion conditions are predicted by the harmonic response analysis.
HARMONIC DISTORTION ASSESSMENT BY AREA BASED APPROACH AT SINGLE PHASING OF AN INDUCTION MOTOR
Surajit Chattopadhyay
2013-11-01
Full Text Available ABSTRACT: This paper presents harmonic distortion assessment by area based approach at single phasing of an induction motor. This has been achieved by assessing voltage and current signals using area based approach. Some specific reference signals have been defined, after which, real power system data are plotted with this reference signal and areas thus formed by the real power system data with the reference signal have been calculated wherefrom contributions of fundamental waveform and harmonic components in real and reactive powers have been assessed separately. Single phasing is done on induction machine and total harmonic distortion factors have then been calculated. Significant change is observed in harmonic distortion due to single phasing. ABSTRAK: Kertas kerja ini membentangkan penilaian herotan harmonik menggunakan kaedah keluasan kawasan pada pemfasaan tunggal motor aruhan. Menggunakan kaedah keluasan kawasan, penilaian terhasil dengan memantau isyarat arus dan voltan. Sesetengah isyarat rujukan tertentu dikenal pasti, di mana, data sistem kuasa sebenar diplotkan berdasarkan isyarat rujukan ini. Kawasan kemudiannya dibentuk dengan adanya data sistem kuasa sebenar dengan menggunakan pengiraan isyarat rujukan. Pengiraan ini memberikan bentuk gelombang asas dan komponen harmonik sebenar di mana kuasa reaktif ditentukan secara berasingan. Pemfasaan tunggal ditentukan menggunakan mesin aruhan dan faktor jumlah herotan harmonik diambil kira .Perubahan yang ketara dikenal pasti dalam herotan harmonik yang disebabkan oleh pemfasaan tunggal.
Deterministic and Stochastic Study of Wind Farm Harmonic Currents
Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus;
2010-01-01
Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic...... characterization of wind farm harmonic currents is analyzed. Specific issues addressed in the paper include the harmonic variation with the wind farm operating point and the random characteristics of their magnitude and phase angle....
The current issues of internal control and internal audit harmonization
Синюгіна, Наталія Вікторівна
2013-01-01
The relevance of topics related to a harmonization of internal control and internal audit system of internal financial control is being proved. It is high lightened the essence of harmonization period by reviewing existing thoughts on this object, a concept of 'harmonization of internal control and internal audit", and provided reasonably practical recommendations to ensure such harmonization in the modern world. The scientific impact of this research is to clarify the concept of "harmonizati...
Lipschitz spaces and bounded mean oscillation of harmonic mappings
Chen, Sh; Vuorinen, M; Wang, X
2012-01-01
In this paper, we first study the bounded mean oscillation of planar harmonic mappings, then a relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings is established. At last, we obtain sharp estimates on Lipschitz number of planar harmonic mappings in terms of bounded mean oscillation norm, which shows that the harmonic Bloch space is isomorphic to $BMO_{2}$ as a Banach space.
Second-Harmonic Generation of Bessel Beams in Lossy Media
丁德胜; 许坚毅; 王耀俊
2002-01-01
We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.
A Designated Harmonic Suppression Technology for Sampled SPWM
YANG Ping
2005-01-01
Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for sampled SPWM, which is an improved algorithm for the harmonic suppression in high voltage and high frequency spectrum. As the technology is applied in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic of SP WM is also improved.
A Look at Damped Harmonic Oscillators through the Phase Plane
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
Harmonic Mitigation Methods in Large Offshore Wind Power Plants
Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo
2013-01-01
Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive and remed......Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...... and remedial harmonic mitigation methods in terms of passive and active filtering are described. It is shown that WPP components such as long HVAC cables and park transformers can introduce significant low-frequency resonances which can affect wind turbine control system operation and overall WPP stability...... as well as amplification of harmonic distortion. It is underlined that there is a potential in terms of active filtering in modern grid-side converters in e.g. wind turbines, STATCOMs or HVDC stations utilized in modern large WPPs. It is also emphasized that the grid-side converter controller should...
The harmonic force field and absolute infrared intensities of diacetylene
Koops, Th.; Visser, T.; Smit, W.M.A.
1984-01-01
The frequencies, harmonic force field and absolute IR intensities for C4H2 and C4D2 are reported. The experimental harmonized frequencies obey the Teller—Redlich product rule very well. An approximate harmonic force field was obtained from a refinement procedure in which the starting values are adj
Twenty-Four Tuba Harmonics Using a Single Pipe Length
Holmes, Bud; Ruiz, Michael J.
2017-01-01
Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 "YouTube: Tuba Harmonics" (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the…
Double-Undulator Fel for Governing by the Harmonics Generation
Tulupov, A. V.
1993-01-01
Generation of harmonics in the double-undulator FEL based on the additional cyclotron resonance is considered. It is shown that efficient control of harmonics generation is feasible. Only one selected harmonic is generated while the others are suppressed. This effect takes place under a small value
Chiral potential renormalized in harmonic-oscillator space
Yang, C -J
2016-01-01
We renormalize the chiral effective field theory (EFT) potential in harmonic-oscillator (HO) model space. The low energy constants (LECs) are utilized to absorb not just the ultra-violet part of the physics due to the cutoff, but also the infrared part due to the truncation of model space. We use the inverse J-matrix method to reproduce the nucleon-nucleon (NN) scattering phase shifts in the given model space. We demonstrate that by including the NLO correction, the nucleon-nucleon scattering in the continuum could be well reproduced in the truncated HO trap space up to laboratory energy $T_{lab}=100$ MeV with number of HO basis $n_{max}$ as small as 10. A perturbative power counting starts at subleading order is adopted in this work, and how to extract the perturbative contribution is demonstrated. Our work serves as the input to perform ab-initio calculations.
Modeling of higher harmonics formation in medical ultrasound systems
Taylor, Louise Kold; Schlaikjer, Malene; Jensen, Jørgen Arendt
2002-01-01
The pressure eld emitted from multi-element medical ultrasound transducers can be simulated with Field II in the linear regime. By expanding this program's application to the nonlinear regime, beamforming schemes can be studied under strong focusing and high pressure levels as well, providing...... a valuable tool for simulating ultrasound harmonic imaging. An extended version of Field II is obtained by means of operator splitting. The pressure eld is calculated by propagation of the eld from the transducer through a number of planes. Every plane serves as a virtual aperture for the next plane......, and nonlinear distortion is accounted for by the lossless Burgers' Equation. This method has no plane-wave approximation and the full eects of diraction, attenuation, and nonlinear wave propagation can be observed under electronic focusing of array transducers in medical ultrasound systems. A single example...
Analytical approach to high harmonics spectrum in the nanobunching regime
Cherednychek, Mykyta
2016-01-01
With the high-order harmonic generation (HHG) from plasma sur- faces it is possible to turn a laser pulse into a train of attosecond or even zeptosecond pulses in the backward radiation. These attosecond pulses may have amplitude several orders of magnitude higher than that of the laser pulse under appropriate conditions. We study this process in detail, especially the nanobunching of the plasma electron density. We derive an analytical expression that describes the electron density pro- file and obtain a good agreement with particle-in-cell simulation results. We investigate the most efficient case of HHG at moderate laser intensity (I = 2*10^20 W/cm^2 ) on the over-dense plasma slab with an exponential profile pre-plasma. Subsequently we calculate the spectra of a single at- tosecond pulse from the backward radiation using our expression for the density shape in combination with the equation for the spectrum of the nanobunch radiation.
Conserved Quantities of harmonic asymptotic initial data sets
Chen, Po-Ning
2014-01-01
In the first half of this article, we survey the new quasi-local and total angular momentum and center of mass defined in [9] and summarize the important properties of these definitions. To compute these conserved quantities involves solving a nonlinear PDE system (the optimal isometric embedding equation), which is rather difficult in general. We found a large family of initial data sets on which such a calculation can be carried out effectively. These are initial data sets of harmonic asymptotics, first proposed by Corvino and Schoen to solve the full vacuum constraint equation. In the second half of this article, the new total angular momentum and center of mass for these initial data sets are computed explicitly.
Effective field theory in the harmonic oscillator basis
Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.
2016-04-01
We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.
Harmonic space analysis of pulsar timing array redshift maps
Roebber, Elinore
2016-01-01
In this paper, we propose a new framework for treating the angular information in the pulsar timing array response to a gravitational wave background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random gravitational wave background. The angular power spectrum is the harmonic transform of the Hellings & Downs curve. We use the power spectrum to examine the expected variance in the Hellings & Downs curve in both cases. Finally, we discuss the extent to which pulsar timing arrays are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.
REAL TIME GA AND ANN BASED SELECTIVE HARMONIC ELIMINATION IN 9 LEVEL UPS INVERTER
E. Anandha Banu
2016-07-01
Full Text Available High quality power is very much critical and essential for medical, research and industrial applications to bring good quality results with accurate evaluation. Hence all the sensitive equipments and critical loads need to be provided with high quality and reliable power, where Uninterruptible Power Supplies (UPS are mainly used to supply reliable power to these loads. Inverter is the main component of a UPS. In the recent times, by the advanced usage of semiconductor devices and non linear loads, harmonics are unavoidable. So the actual challenge for UPS is, under a non linear condition of load, it has to maintain a high quality sinusoidal output voltage. In this paper, the inverter of UPS is replaced by a nine level cascaded H bridge multilevel inverter with equal DC sources and harmonics can be eliminated by the optimal selection of switching angle by using Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM technique along with a hybrid technique to optimize and minimize the Total Harmonic Distortion(THD. The proposed hybrid technique utilizes the Genetic Algorithm (GA and Neural Network (NN. The switching angles are calculated offline using Genetic Algorithm. Then the NN is trained by these switching angles and the real time switching angles are found out by Neural Network. The proposed technique is tested over a nine level cascaded H-bridge inverter and the resultant fundamental and harmonic voltages are analysed. Then, simulation is carried out in Matlab/Simulink environment and the results indicate that the switching angles obtained using this method results in efficient harmonic minimization.
The rating reliability calculator
Solomon David J
2004-04-01
Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop ba...
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...
Addition theorems for spin spherical harmonics: II. Results
Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2011-04-22
Based on the results of part I (2011 J. Phys. A: Math. Theor. 44 165301), we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-s' and one spin-s spherical harmonics with s', s = 1/2, 1, 3/2, and |s' - s| = 0, 1. We also obtain a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics.
Twenty-four tuba harmonics using a single pipe length
Holmes, Bud; Ruiz, Michael J.
2017-03-01
Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 YouTube: Tuba Harmonics (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the harmonics, measured with the free software program Audacity, fall excellently on a linear fit using a spreadsheet. The skillful musical production of so many harmonics with a fixed pipe length is an extraordinary illustration of physics.
Harmonics in large offshore wind farms
Kocewiak, Lukasz Hubert
harmonic origin and observe short-term variation. Non-parametric spectrum estimation is successfully applied to interpolated signals adjusted according to the varying power system frequency. Different data processing techniques are presented and applied depending on the signal (i.e. stationary or non...... suitable data processing methods. Before any of the above aspects could be seriously taken into consideration, a reliable and robust measurement system is needed. This is achieved by carefully designing the hardware and the software layers of the measurement system. It is explained in the report...... that it is of great importance to know the nature of generated harmonics in large offshore wind farms in order to apply the most suitable data processing technique. Time-frequency analysis based on multiresolution wavelet transform is used in order to perform time-frequency domain analysis helpful to distinguish...
Shunt Active Filter in Damping Harmonics Propagation
BERBAOUI, B.
2010-08-01
Full Text Available This paper deals with a hybrid shunt active power filter applied on 500 kV HVDC, after a description of the causes and effects harmonic pollution which may damage equipments and interrupt electric power customers service; in this paper we present the deferent solutions of this problem among one has to study the two most recent types of filtering: passive and hybrid filter. The hybrid filter consists of active filter connected in shunt with passive filter. The hybrid shunt active filter proposed is based on three levels PWM inverter and characterized by detecting the harmonic current flowing into the passive filter and controlled by notch algorithm. This structure has been applied on a test HVDC power system, is presented as a technical solution makes it possible to eliminate the disadvantages from passive filtering, and also economic price of active filtering part. The simulation results justified the effectiveness of this type of filter face of the classic passive filter.
Super/subradiant second harmonic generation
Koganov, Gennady A.; Shuker, Reuben
2017-04-01
A scheme for active second harmonics generation is suggested. The system comprises N three-level atoms in ladder configuration, situated into a resonant cavity. The system generates the field whose frequency is twice the frequency of the pumping laser, and the field phase is locked to the phase of the pumping field. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms N. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion. For experimental realization of the super/subradiant second harmonics generation we propose semiconductor quantum well structures, superconducting quantum circuits, and evanescently coupled waveguides in which equally spaced levels relevant to this study exist.
A remark on infinity harmonic functions
Michael G. Crandall
2001-01-01
Full Text Available A real-valued function $u$ is said to be {it infinity harmonic} if it solves the nonlinear degenerate elliptic equation $-sum_{i,j=1}^nu_{x_1}u_{x_j}u_{x_ix_j}=0$ in the viscosity sense. This is equivalent to the requirement that $u$ enjoys comparison with cones, an elementary notion explained below. Perhaps the primary open problem concerning infinity harmonic functions is to determine whether or not they are continuously differentiable. Results in this note reduce the problem of whether or not a function $u$ which enjoys comparison with cones has a derivative at a point $x_0$ in its domain to determining whether or not maximum points of $u$ relative to spheres centered at $x_0$ have a limiting direction as the radius shrinks to zero.
Harmonic oscillator model for the helium atom
Carlsen, Martin
2015-01-01
A harmonic oscillator model in four dimensions is presented for the helium atom to estimate the distance to the inner and outer electron from the nucleus, the angle between electrons and the energy levels. The method is algebraic and is not based on the choice of correct trial wave function. Three harmonic oscillators and thus three quantum numbers are sufficient to describe the two-electron system. We derive a simple formula for the energy in the general case and in the special case of the Wannier Ridge. For a set of quantum numbers the distance to the electrons and the angle between the electrons are uniquely determined as the intersection between three surfaces. We show that the excited states converge either towards ionization thresholds or towards extreme parallel or antiparallel states and provide an estimate of the ground state energy.
Harmonic beam splitter design and fabrication
Xiaofeng Ma(马小凤); Yingjian Wang(王英剑); Zhengxiu Fan(范正修); Jianda Shao(邵建达)
2004-01-01
Two problems of half-wave hole and high ripples in the transmittance region for a harmonic beam splitter had been pointed out and analyzed. Based on the application of a half-wavelength control and a new admittance matching methods, a harmonic beam splitter was designed and fabricated. The former method eliminated the half-wave hole fundamentally, and the latter smoothed high ripples in the transmittance region effectively. The matching stack consisted of a symmetrically periodic structure and provided a complete matching at the desired wavelength, i.e., both conditions for the equivalent admittance and phase thickness were fulfilled. Furthermore, both the theoretical and the tested curves had been given, and a good agreement between them was obtained.
Harmonic dynamical behaviour of thallous halides
Sarvesh K Tiwari; L J Shukla; K S Upadhyaya
2010-05-01
Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.
Quantum Harmonic Oscillator Algebra and Link Invariants
Gómez, C
1991-01-01
The $q$--deformation $U_q (h_4)$ of the harmonic oscillator algebra is defined and proved to be a Ribbon Hopf algebra.Associated with this Hopf algebra we define an infinite dimensional braid group representation on the Hilbert space of the harmonic oscillator, and an extended Yang--Baxter system in the sense of Turaev. The corresponding link invariant is computed in some particular cases and coincides with the inverse of the Alexander--Conway polynomial. The $R$ matrix of $U_q (h_4)$ can be interpreted as defining a baxterization of the intertwiners for semicyclic representations of $SU(2)_q$ at $q=e^{2 \\pi i/N}$ in the $N \\rightarrow \\infty$ limit.Finally we define new multicolored braid group representations and study their relation to the multivariable Alexander--Conway polynomial.
Effects of harmonic roving on pitch discrimination
Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra
2015-01-01
Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. Perceptual limitations may be characterized by measuring an observer’s change in performance when introducting...... external noise in the physical stimulus (Lu and Dosher, 2008). The present study used this approach to attempt to quantify the “internal noise” involved in pitch coding of harmonic complex tones by estimating the amount of harmonic roving required to impair pitch discrimination performance. It remains...... a matter of debate whether pitch perception of natural complex sounds mostly relies on either spectral excitation-based information or temporal periodicity information. Comparing the way internal noise affects the internal representations of such information to how it affects pitch discrimination...
Harmonics in a Wind Power Plant: Preprint
Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.
2015-04-02
Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.
Bak, Claus Leth; Bak-Jensen, Birgitte; Wiechowski, Wojciech
2008-01-01
This paper demonstrates the results of implementation and verification of an already existing algorithm that allows for calculating saturation characteristics of singlephase power transformers. The algorithm was described for the first time in 1993. Now this algorithm has been implemented using...... the DIgSILENT Programming Language (DPL) as an external script in the harmonic domain calculations of a power system analysis tool PowerFactory [10]. The algorithm is verified by harmonic measurements on a single-phase power transformer. A theoretical analysis of the core nonlinearities phenomena...... in single and three-phase transformers is also presented. This analysis leads to the conclusion that the method can be applied for modelling nonlinearities of three-phase autotransformers....
Response Analysis of Frame Supporting Structure of Slope under Harmonic Vibration
Jian Duan
2014-01-01
Full Text Available Based on certain assumptions, the dynamic mechanical model for frame supporting structure of slope is established, the dynamic equilibrium governing equation for vertical beam under forced vibration is derived, and hence its analytical solutions to harmonic forced vibration are obtained. What is more, the finite difference format and corresponding calculation procedure for vertical beam under forced vibration are given and programmed by using MATLAB language. In the case studies, comparative analyses have been performed to the response of vertical beam under horizontal harmonic forced vibration by using different calculating methods and with anchoring system damping effect neglected or considered. As a result, the feasibility, correctness, and characteristics of different methods can be revealed and the horizontal forced vibration law of vertical beam can be unveiled as well.
The harmonic force field and vibrational spectra of pyrrole
Xie, Yaoming; Fan, Kangnian; Boggs, James E.
The complete harmonic vibrational force field of pyrrole has been calculated by the ab initio gradient method at the Hartree-Fock level using the 4-21 basis set. The force field was then scaled with a set of six factors transferred from benzene, and the vibrational spectrum of pyrrole was calculated. This a priori prediction, made with no reference to observations on pyrrole, agreed with the known experimental fundamental frequencies with a mean deviation of 12 cm-1 for in-plane modes and 20 cm-1 for out-of-plane modes except for the NH wagging and NH stretch. A new set of ten scale factors was next obtained by direct fitting of the computed force field to the observed pyrrole spectrum, producing the best force field obtainable by combined use of the theoretical and experimental information. This force field reproduced the entire pyrrole spectrum with mean deviations of 4·2 cm-1 (in-plane) and 5·9 cm-1 (out-of-plane). The spectra of three deuterated forms of pyrrole were also computed. Infrared absorption intensities were calculated and proved very useful in examining assignments of the two ring torsional modes and the CH stretching modes.
Considering the Harmonic Sequence “Paradox”
Robert Vivian
2011-06-01
Full Text Available Blavatskyy (2006 formulated a game of chance based on the harmonic series which, he suggests, leads to a St Petersburg type of paradox. In view of the importance of the St Petersburg game in decision theory, any game which leads to a St Petersburg game type paradox is of interest. Blavatskyy’s game is re-examined in this article to conclude that it does not lead to a St Petersburg type paradox.
Interpolating Spherical Harmonics for Computing Antenna Patterns
2011-07-01
the specific radon-transform algorithms of ISAR. 28 References [1] Arfken , George [1970] Mathematical Methods for Physicists, second edi- tion...approximation methods . Section 2 sets out two antenna patterns to be tested in the spline algorithm. Section 3 reviews the spherical harmonic functions Y mn...number of samples on the sphere [12]. This compressed sensing result will not reduce the method of moment computations. All the current must be
Harmonic analysis of Doubly Fed Induction Generators
Lindholm, Morten; Rasmussen, Tonny Wederberg
2003-01-01
This paper gives an overview of the frequency spectrum of the stator and rotor currents in a doubly fed induction generator (DFIG) used in wind power applications. The paper also presents a method to eliminate higher harmonics and interharmonics in the DFIG stator current. The method is implemented...... on a 40 kW laboratory model connected to the utility-grid, where the DFIG is supplied by a back-to-back 3-level NPC-converter....
Curvature and bubble convergence of harmonic maps
Kokarev, Gerasim
2010-01-01
We explore geometric aspects of bubble convergence for harmonic maps. More precisely, we show that the formation of bubbles is characterised by the local excess of curvature on the target manifold. We give a universal estimate for curvature concentration masses at each bubble point and show that there is no curvature loss in the necks. Our principal hypothesis is that the target manifold is Kaehler.
Rotating field transformers eliminate rectifier harmonics
Pastor, C.E. [Westinghouse Motor Co., Round Rock, TX (United States); Buckle, K.A. [Univ. of South Florida, Tampa, FL (United States); Luce, J.W. [Luce (John W.), Tampa, FL (United States)
1995-10-01
The rotating field transformer is a static device that has the same magnetic field as a three phase motor. When used to feed diode rectifiers, it converts ac to dc with low ripple on the output voltage and remarkably low current distortion on the input. Filters are not needed. This is a timely development because it is an economical and very effective solution to the growing problem of power system harmonics.
Harmonic Resonances in Wind Power Plants
Fernandez, Francisco Daniel Freijedo; Chaudhary, Sanjay; Teodorescu, Remus
2015-01-01
converters. Subsequently, pros and cons of frequency and time domain analysis methods are outlined. The next sections are devoted to mitigation methods implemented in the power electronics converters. From the wind turbine perspective, different techniques to enhance the robustness of the controller...... are analyzed. Subsequently, the suitability for active damping of harmonics using STATCOM devices is assessed, with focus both on control techniques and power converter technologies....
Fischer decomposition in symplectic harmonic analysis
Brackx, Fred; De Schepper, Hennie; Eelbode, David; Lávička, Roman; Soucek, Vladimir
2014-01-01
In the framework of quaternionic Clifford analysis in Euclidean space , which constitutes a refinement of Euclidean and Hermitian Clifford analysis, the Fischer decomposition of the space of complex valued polynomials is obtained in terms of spaces of so-called (adjoint) symplectic spherical harmonics, which are irreducible modules for the symplectic group Sp. Its Howe dual partner is determined to be sl(2, C) circle plus sl(2, C) = so(4, C).
Unitary representations and harmonic analysis an introduction
Sugiura, M
1990-01-01
The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou''s theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.
Food legislation and its harmonization in Russia.
Shamtsyan, Mark
2014-08-01
Bringing Russian legislation into compliance with international norms and standards is necessary after its accession to the World Trade Organization. Harmonization of food legislation and of sanitary and phytosanitary measures are among the problems that had to be solved first. Many Russian food and trade regulations had been changed or are still in the process of being reformed, largely owing to a policy of integration pursued by the Customs Union of Russia, Belarus and Kazakhstan. However, as a member of the Eurasian Economic Community, Russia is also engaged not only in harmonization throughout the Customs Union but also Kirgizstan and Tajikistan, and Armenia, Moldova and Ukraine as observer countries. Russia also continues to coordinate policy reforms closely with the European Union, its primary trade partner, ultimately bringing Russian food and sanitary norms closer to international standards (e.g. Codex). Today, all participants in the Russian food production chain, processing and sale of foods have to deal with growing numbers of security standards. Many organizations are certified under several schemes, which leads to unnecessary costs. Harmonization of standards has helped promote solutions in the domestic market as well as import-export of foods and raw materials for production. Priorities have included food safety for human health, consumer protection, removal of hazardous and/or adulterated products and increased competition within the domestic food market as well as mutual recognition of certification in bilateral and multilateral (inter)national agreements. © 2013 Society of Chemical Industry.
Harmonics of circadian gene transcription in mammals.
Michael E Hughes
2009-04-01
Full Text Available The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.
Harmonics of circadian gene transcription in mammals.
Hughes, Michael E; DiTacchio, Luciano; Hayes, Kevin R; Vollmers, Christopher; Pulivarthy, S; Baggs, Julie E; Panda, Satchidananda; Hogenesch, John B
2009-04-01
The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.
Means of Harmonization in Religious Discourse
Irina Ščukina
2012-12-01
Full Text Available Means of harmonization of religious discourse are considered by studying communicational behaviour (verbal and nonverbal between the religion institution and believers. The following factors defining specificity of realization of harmonization in Orthodox and other religious texts are taken into account: the communication channel between the author and the reader, a defining speech genre, the command of language (communication code, and extra-linguistic factors. It is shown that sharing the general social, historical and national experience, as well as a lexical overlapping of actors on both sides of the communication channel are the deciding elements of the harmonization process. The analysis also shows that usage of rational argumentation is more likely to lead to harmonisation in comparison to other rhetoric tools (i. e. affective ones or story-telling. Rational and unemotional sermonic discourse is perceived as a sign of respect (namely, for the listener's intelligence. Another successful and much-applied way seems to be evoking a feeling of equality, unity and/or identity between clerics and their flocks.
The use of second-harmonic generation to study diffusion through films under a liquid phase.
van der Veen, Monique A; De Roeck, Marjan; Vankelecom, Ivo F J; De Vos, Dirk E; Verbiest, Thierry
2010-03-15
Knowledge of the diffusion of chemicals through buried films is important for a wide variety of systems--from sensing to drug delivery. Herein, we show that second-harmonic generation (SHG) can be used to follow the diffusion through a thin film buried under a liquid in situ. More specifically, the diffusion of 4-(4-diethylaminostyryl)-1-methylpyridinium iodide through zeolite precursor films of different thickness is followed. The diffusion coefficients are calculated according to Fick's law.
Quality of potential harmonics expansion method for dilute Bose–Einstein condensate
Anasuya Kundu; Barnali Chakrabarti
2007-09-01
We present and examine an approximate but ab initio many-body approach, viz., potential harmonics expansion method (PHEM), which includes two-body correlations for dilute Bose–Einstein condensates. Comparing the total ground state energy for three trapped interacting bosons calculated in PHEM with the exact energy, the new method is shown to be very good in the low density limit which is necessary for achieving Bose–Einstein condensation experimentally.
Lee, J. J.
2016-01-01
Full Text Available Here we provide a description of the IRT estimation method known as Normal Ogive Harmonic Analysis Robust Method (NOHARM. Although in some ways this method has been superseded by new computer programs that also adopt a specifically factor-analytic approach, its fundamental principles remain useful in certain applications, which include calculating the residual covariance matrix and rescaling the distribution of the common factor (latent trait. These principles can be applied to parameter estimates obtained by any method.
Li, Guihua; Xie, Hongqiang; Zeng, Bin; Yao, Jinping; Chu, Wei; Zhang, Haisu; Jing, Chenrui; He, Fei; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan
2013-01-01
We demonstrate unexpectedly strong second harmonic generation (SHG) in Argon gas by use of spatiotemporally focused (SF) femtosecond laser pulses. The resulting SHG by the SF scheme at a 75 cm distance shows a significantly enhanced efficiency than that achieved with conventional focusing scheme, which offers a new promising possibility for standoff applications. Our theoretical calculations reasonably reproduce the experimental observations, which indicate that the observed SHG mainly originates from the gradient of nonuniform plasma dynamically controlled by the SF laser field.
Zhang, Pei [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; The Cockcroft Institute, Daresbury, Warrington (United Kingdom)
2012-06-15
The third harmonic nine-cell cavity (3.9 GHz) for FLASH and the European XFEL has been investigated using simulations performed with the computer code CST Microwave Studio registered. The band structure of monopole, dipole, quadrupole and sextupole modes for an ideal cavity has been studied. The higher order modes for the nine-cell structure are compared with that of the cavity mid-cell. The R/Q of these eigenmodes are calculated.
Non-collinear Generation of Angularly Isolated Circularly Polarized High Harmonics
2015-09-21
the electromagnetic field propagator49. The target (gas jet) was discretized into elementary radiators and propagated the emitted field Ej(rd,t) to...harmonic generation using analytical descriptions in both the photon and wave models. Advanced numerical simulations indicate that this non-collinear mixing...collinear HHG using both intuitive physical models as well as advanced numerical calculations. In the photon picture (Fig. 1b), we show that the NCP
Wei Xie(谢威); Xianfeng Chen(陈险峰); Like He(何利科); Yuping Chen(陈玉萍); Yuxing Xia(夏宇兴)
2004-01-01
The direct fourth harmonic generation (FHG) is theoretically demonstrated based on quasi-phase-matching (QPM) configuration in periodically poled lithium tantalate (PPLT). The wavelength dependence of the period of FHG QPM gratings is calculated. Bandwidths of fundamental wavelength, temperature, and incident angle are also studied. A very wide bandwidth, as large as 119.5 nm, of fundamental wavelength near 3699 nm is found with the QPM period of 9.442 μm and the crystal length of 1 cm.
Johansson, M. [Dansk Energi Analyse A/S, Glostrup (Denmark); Kehr, J.M. [ABB A/S, Skovlunde (Denmark); Hoejte Hansen, H. [Balslev A/S, Glostrup (Denmark)
2012-03-15
The purpose of the project was to provide evidence of power saving based on measurements in electric installations, in which the harmonics were reduced by active filters. The project has included knowledge building on the basis of literature and discussions with a Swedish and a Belgian producer of active filters. In connection with the project, tests have been made on a production line at the firm of Faerch Plast, where the distortion from the harmonics, measured as THDU, was 6 to 7 %. Measurements during two days with the active filter switched on and off with an interval of 10 minutes showed a very small difference in power input in the two situations. The power was 2.7 kW higher with connected filter than without filter. As the own consumption of the filter was 5.8 kW, the consumption of the installation itself was 3.1 kW lower, equal to 1 % of the load of the directly supplied induction motors. As a consequence of the very small differences, measured at Faerch Plast, it was decided to transfer the further work to a laboratory in order to measure under so controlled circumstances as possible. Measurements have been taken at KME (Copenhagen School of Marine Engineering and Technology Management) and at TI (Danish Technological Institute). The result of measurements on a 5.5 kW induction motor with a distortion from the harmonics (THDU) of 2.65 % shows no significant change in the input power compared to the situation with almost no distortion. Neither, it appears, is there a significant difference in the motor losses in a situation, where the measurement was taken with two rather distorted mains voltages with a THDU of 6.33 % and 7.66 %, respectively. Calculations on the basis of the equivalent diagram of the motor show that the additional motor losses in a 5.5 kW motor as a consequence of 5. harmonics of 5 % of the mains voltage (THDU 5 %) only is 2 W, while an experimentally derived formula results in a difference of approx 9 W or 0.2 % of the rated power of
Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator
Belendez, Augusto [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Pascual, Carolina [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)
2007-11-19
The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A.
Saeid Haghbin
2014-10-01
Full Text Available Closed-form analytical formulas are provided to calculate the dc bus harmonics of a three-phase sinusoidal pulse width modulation (SPWM inverter. The harmonic analysis is performed by using a double Fourier series approach to determine the dc bus current frequency spectrum. For an arbitrary modulation index and load power factor, the full harmonic components of the inverter dc side current are calculated. Based on the developed analytical model, an equivalent circuit is proposed for the inverter harmonic analysis towards the dc bus. Moreover, the impacts of line harmonics and zero sequence injection in controller towards the dc bus are presented. The results show that the 5th and 7th ac line harmonics on the dc side current is appearance of the 6th harmonic in the dc side. The impact of zero sequence injection to the controller on the dc side is negligible. In addition to analytical formulation, different simulations and extensive measurements performed which the results verified the presented analytical framework.
Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets.
Jacobsen, Ruth L; Johnson, Russell D; Irikura, Karl K; Kacker, Raghu N
2013-02-12
Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the accuracy of harmonic and anharmonic predictions from Hartree-Fock, second-order perturbation, and density functional theories combined with 6-31G(d) and 6-31+G(d,p) basis sets. As expected, anharmonic frequencies are closer than harmonic frequencies to experimental fundamentals. However, common practice is to correct harmonic predictions using multiplicative scaling. The surprising conclusion is that scaled anharmonic calculations are no more accurate than scaled harmonic calculations for the basis sets we used. The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.
无
2002-01-01
“Coherent control of high-harmonic generation in a two-color field” has been widely concerned. Using split-operator algorithm, we have calculated the high-harmonic generation for helium ion He+ in a two-color field which is composed of a driving field and a weak subsidiary high frequency field (Is=I0/100, （ω,13ω), …(ω, 120ω)) and found that such a field can produce much higher harmonic intensity, typically increasing the harmonics corresponding to the incident frequency of the subsidiary field. The different effects coming from the different subsidiary fields are calculated and analyzed. It is indicated that one of the important underlying mechanisms is high frequency photon induced radiation.
Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Bazo Alba, Jose Luis; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cerello, Piergiorgio; Chandra, Sinjini; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hladky, Jan; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Llope, William; Lodato, Davide Francesco; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Lucio Martinez, Jose Antonio; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Nag, Dipanjan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scharenberg, Rolf Paul; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silaeva, Svetlana; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Yalcin, Serpil; Yamakawa, Kosei; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang
2017-01-01
The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb--Pb collisions at $\\mathbf{\\sqrt{s_{\\rm NN}}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed Symmetric Cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular $v_4$ and pentagonal $v_5$ flow) and the lower order harmonics (the elliptic $v_2$ and triangular $v_3$ flow) is presented. The transverse momentum dependence of correlations between $v_3$ and $v_2$ and between $v_4$ and $v_2$ is also reported. The results are compared to calculations from viscous hydrodynamics and A Multi-Phase Transport ({AMPT}) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditi...
A Mathematica program for the calculation of five-body Moshinsky brackets
Xiao, Shuyuan; Mu, Xueli; Liu, Tingting; Chen, Hong
2016-06-01
Five-body Moshinsky brackets that relate harmonic oscillator wavefunctions in two different sets of Jacobi coordinates make it straightforward to calculate some matrix elements in the variational calculations of five-body systems. The analytical expression of these transformation coefficients and the computer code written in the Mathematica language are presented here for accurate calculations.
THE ACQM THEORETICAL CALCULATION OF LOW—LYING EXCITED STATES FOR HeH
Q.Q.GOU; Z.Y.Huang; 等
1990-01-01
The Low-lying excited states of HeH have been calculated by arrangement channel quantum mechanics(ACQM),The calculated potential curves,equilibrium geometry,Rc.dissociation energy Dc.harmonic vibration frequency ω0 and quadratic force coustant F2 are comparable with Ci calculations.
Nonlinear diffusion of indirect excitons in an ideal bilayer with an in-plane harmonic trap
Wang, Li; Wang, Qinglu
2009-06-01
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of μm away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.
Nonlinear diffusion of indirect excitons in an ideal bilayer with an in-plane harmonic trap
Wang Li [Physics Department of Tangshan Teachers College, Tangshan 063000, Hebei (China)], E-mail: wangli@mail.semi.ac.cn; Wang Qinglu [Physics Department of Tangshan Teachers College, Tangshan 063000, Hebei (China)
2009-06-01
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of {mu}m away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.
On inverting gravity changes with the harmonic inversion method: Teide (Tenerife) case study
Pohánka, Vladimír; Vajda, Peter; Pánisová, Jaroslava
2015-06-01
Here we investigate the applicability of the harmonic inversion method to time-lapse gravity changes observed in volcanic areas. We carry out our study on gravity changes occured over the period of 2004-2005 during the unrest of the Central Volcanic Complex on Tenerife, Canary Islands. The harmonic inversion method is unique in that it calculates the solution of the form of compact homogeneous source bodies via the mediating 3-harmonic function called quasigravitation. The latter is defined in the whole subsurface domain and it is a linear integral transformation of the surface gravity field. At the beginning the seeds of the future source bodies are introduced: these are quasi-spherical bodies located at the extrema of the quasigravitation (calculated from the input gravity data) and their differential densities are free parameters preselected by the interpreter. In the following automatic iterative process the source bodies change their size and shape according to the local values of quasigravitation (calculated in each iterative step from the residual surface gravity field); the process stops when the residual surface gravity field is sufficiently small. In the case of inverting temporal gravity changes, the source bodies represent the volumetric domains of temporal mass-density changes. The focus of the presented work is to investigate the dependence of the size and shape of the found source bodies on their differential densities. We do not aim here (yet) at interpreting the found solutions in terms of volcanic processes associated with intruding or rejuvenating magma and/or migrating volatiles.
Campione, Salvatore, E-mail: sncampi@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697 (United States); Benz, Alexander; Brener, Igal, E-mail: ibrener@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sinclair, Michael B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697 (United States)
2014-03-31
We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at ∼30 THz and an orthogonally polarized resonance at the second harmonic frequency (∼60 THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be ∼1.3 × 10{sup −2} W/W{sup 2}—a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10 μm). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs.
Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station
Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott
2008-01-01
Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.
Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions
Rashid, H.; Desmaris, V.; Pavolotsky, A.; Belitsky, V.
2016-04-01
In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.
Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions
H. Rashid
2016-04-01
Full Text Available In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.
Analytic model of bunched beams for harmonic generation in thelow-gain free electron laser regime
Penn, G.; Reinsch, M.; Wurtele, J.S.
2006-02-20
One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.
Minimal Length Schrödinger Equation with Harmonic Potential in the Presence of a Magnetic Field
H. Hassanabadi
2013-01-01
Full Text Available Minimal length Schrödinger equation is investigated for harmonic potential in the presence of magnetic field and illustrates the wave functions in the momentum space. The energy eigenvalues are reported and the corresponding wave functions are calculated in terms of hypergeometric functions.