WorldWideScience

Sample records for harmonic ion cyclotron

  1. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  2. High harmonic ion cyclotron heating in DIII-D: Beam ion absorption and sawtooth stabilization

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Fredrickson, E.D.; Mau, T.K.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Rice, B.W.

    1999-01-01

    Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic produce an energetic deuterium beam ion tail in the DIII-D tokamak. When the concentration of thermal hydrogen exceeds ∼ 5%, the beam ion absorption is suppressed in favour of second harmonic hydrogen absorption. As theoretically expected, the beam absorption increases with beam ion gyro-radius; also, central absorption at the fifth harmonic is weaker than central absorption at the fourth harmonic. For central heating at the fourth harmonic, an energetic, perpendicular, beam population forms inside the q = 1 surface. The beam ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity induced Alfven eigenmodes (TAEs). Saturation of the central heating correlates with the onset of the TAEs. Continued expansion of the q = 1 radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. (author)

  3. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van

    2006-01-01

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed

  4. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B T = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of ∼1 MW

  5. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R. I.; Baity, F. W.; Bernabei, S.; Greenough, N.; Heidbrink, W. W.; Mau, T. K.; Petty, C. C.; Porkolab, M.

    1999-01-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f=60 MHz, B T =1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (''monster sawteeth''), at relatively low rf power levels of ∼1 MW. (c) 1999 American Institute of Physics

  6. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  7. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  8. Mode conversion of lower hybrid waves at high ion cyclotron harmonics. Appendix F

    International Nuclear Information System (INIS)

    Swanson, D.G.; Cho, S.

    1985-05-01

    The problem of ion cyclotron harmonic absorption for a lower hybrid wave is shown to be a mode conversion problem. A new form of the dispersion relation is developed and then expanded to get a differential equation identical to that for the second harmonic problem. The validity of this model is restricted to the region far from the lower hybrid resonance layer. It is shown that mode couplings occur among the incident cold wave and two other waves, and the tunneling factor becomes singular there

  9. Quasilinear ion distribution function during first harmonic ion cyclotron heating

    International Nuclear Information System (INIS)

    Brambilla, M.

    1993-12-01

    The quasilinear modification of the ion distribution function during first harmonic ion cyclotron (FHIC) heating is investigated both with a simple already well established analytic one-dimensional approach, and with a new two dimensional steady state solver of the quasilinear kinetic equation, SSFPQL. By accepting to disregard the effects of ion trapping in banana orbits, but including finite Larmor radius effects, the latter code has been made much faster than full surface-averaged codes; yet it can provide most of the relevant information on the suprathermal ion tail produced by this heating method. With SSFPQL we confirm that the one-dimensional model gives fair approximations for global properties of the distribution function, such as the average energy content of the tail and the fusion reactivity. On the other hand the tail is found to be very anisotropic, the increase of the parallel effective temperature being a small fraction of the total energy increase. Information on the anisotropy is essential to study the feedback of the fast ion tail on wave propagation and absorption, which is quite sensitive to the distribution of parallel velocities. The insight gained in the derivation and discussion of this model can be used to build a selfconsistent description of this heating scenario, whose implementation requires only a reasonable numerical effort. (orig.)

  10. RF-heating of plasma in the frequency domain of the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Hahnekamp, H.G.; Stampa, A.; Tuczek, H.; Laeuter, R.; Wulf, H.O.

    1976-01-01

    Experiments on rf-heating of plasmas in the frequency domain of the ion cyclotron harmonics are reported. The rf-power is coupled to the magneto-acoustic wave for frequencies between ωsub(ci) and 5ωsub(ci). The measurements indicate that the damping of the pump wave is mainly due to the excitation of turbulence, whereas direct resonance at 2ωsub(ci) seems to be of minor importance

  11. MMS Observations of Harmonic Electromagnetic Cyclotron Waves

    Science.gov (United States)

    Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.

    2017-12-01

    Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.

  12. Phase-space resolved measurement of 2nd harmonic ion cyclotron heating using FIDA tomography at the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Weiland, M.; Bilato, R.; Geiger, B.

    2017-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade allow to reconstruct the fast-ion phase space at several radial positions with decent energy and pitch resolution. These new diagnostic capabilities are applied to study the physics of 2nd harmonic ion cyclotron heating, w....... Furthermore, comparisons to other fast-ion diagnostics (neutron yield and neutral particle analyzers) are discussed....

  13. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  14. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  15. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  16. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  17. Ion cyclotron emission by spontaneous emission

    International Nuclear Information System (INIS)

    Da Costa, O.; Gresillon, D.

    1994-01-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs

  18. Two dimensional code for modeling of high ione cyclotron harmonic fast wave heating and current drive

    International Nuclear Information System (INIS)

    Grekov, D.; Kasilov, S.; Kernbichler, W.

    2016-01-01

    A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.

  19. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  20. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  1. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  2. Ion extraction in the cyclotron geometry

    International Nuclear Information System (INIS)

    Rodenburg, R.E.

    1985-01-01

    The detailed physics of ion beam extraction from a plasma column by intense sinusoidal radio frequency (rf) electric fields at the ion cyclotron frequency omega/sub ci/ and its harmonics is experimentally studied. Results describe the instantaneous relationship - within one rf period of approx. = 3009 nsec - between applied rf, the plasma response and the ions expelled by rf and plasma fields. Reflex discharges in H 2 , D 2 , and He with ion and electron densities greater than or equal to10 11 cm -3 are subjected to 0-5 kV zero-to-peak rf electric fields E vector and 0.65-9.00 kG background magnetic fields B 0 vector with E vector perpendicular to B 0 vector. Ion currents up to 200 μA are extracted. Nonperturbing optical diagnostics measure the relative amplitude and phase of instantaneous ion and electron density fluctuations induced by the rf during each rf cycle and the time variation of extracted ion bursts, the latter made possible by the use of a phosphor beam-stop. Detailed dependences on external electric and magnetic fields are reported. The plasma density fluctuations are in good agreement with the dispersion relation for electrostatic ion cyclotron waves (EICW), and the beam data show current enhancement at the second harmonic over that at the fundamental and evidence for a radically different mechanism for the rf-driven ion extraction process than conventional wisdom assumes. This work represents the first detailed, systematic study of the ac ion extraction process

  3. Radio frequency heating in the ion-cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1985-01-01

    Both the theory of the absorption process in the ion-cyclotron range of frequencies and some of the experiments which slow the promise and problems with radio frequency plasma heating in this range are discussed. It is shown that mode conversion is invariably involved in the process and so an extensive review of mode conversion theory, expecially as it applies to problems with back-to-back cutoff-resonance pairs, is included. This includes a discussion of the tunneling equation with and without absorption effects and with and without energy conservation. The general theory is applied to various ion-cyclotron harmonics, the two-ion hybrid resonance, and to a case where a wave converts to a Bernstein mode at the plasma edge. The results are given analytically for a variety of cases without absorption, and empirical formulas are given for the second and third harmonics of the ion-cyclotron frequency, which include effects of absorption. Various problem areas in the theory are also discussed with some of the limitations caused by the approximations involved. A number of experiments are also discussed which show effective heating, and some show the features of the mode conversion process, indicating that the general processes of absorption are reasonably well understood. Areas where further work is necessary, both in fundamental theory and in comparing theory with experiment, are also discussed

  4. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  5. Interpretation of ion cyclotron emission from fusion and space plasmas

    International Nuclear Information System (INIS)

    Dendy, R.O.

    1994-01-01

    Superthermal ion cyclotron emission (ICE) is observed in both fusion and space plasma. Typical spectra display strong peaks at sequential multiple ion cyclotron harmonics, and distinct energetic ion populations are present in the emitting regions. In JET and TFTR, for example, ICE appears to be driven by fusion products or by injected beam ions in the outer mid plane; and in the Earth's ring current, radiation belts, and bow shock, ICE has been observed by the spacecraft OGO 3, GEOS 1 and 2 and AMPTE/IRM, often in conjunction with highly non-Maxwellian proton populations. Common emission mechanisms, arising from collective relaxation of energetic ion populations, appear to operate in both the fusion and space plasma environments. These are reviewed here, and the potential role of ICE as a diagnostic of energetic ion populations is also examined. (Author)

  6. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  7. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  8. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  9. Effect of an external alternating electric field non-monochromaticity on parametric excitation of surface ion cyclotron X-modes

    International Nuclear Information System (INIS)

    Girka, V O; Puzyrkov, S Yu; Shpagina, V O; Shpagina, L O

    2012-01-01

    The application of an external alternating electric field in the range of ion cyclotron frequencies is a well-known method for the excitation of surface electromagnetic waves. The present paper is devoted to the development of a kinetic theory of parametric excitation of these eigenwaves propagating across an external steady magnetic field along the plasma boundary at the second harmonic of the ion cyclotron frequency. Unlike previous papers on this subject, parametric excitation of surface ion cyclotron X-modes is studied here under the condition of non-monochromaticity of an external alternating electric field. Non-monochromaticity of the external alternating electric field is modeled by the superposition of two uniform and monochromatic electric fields with different amplitudes and frequencies. The nonlinear boundary condition is formulated for a tangential magnetic field of the studied surface waves. An infinite set of equations for the harmonics of a tangential electric field is solved using the approximation of the wave packet consisting of the main harmonic and two nearest satellite harmonics. Two different regimes of instability have been considered. If one of the applied generators has an operation frequency that is close to the ion cyclotron frequency, then changing the amplitude of the second generator allows one to enhance the growth rate of the parametric instability or to diminish it. But if the operation frequencies of the both generators are not close to the ion cyclotron frequency, then changing the amplitudes of their fields allows one to decrease the growth rate of the instability and even to suppress its development. The problem is studied both analytically and numerically.

  10. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, L., E-mail: L.Carbajal-Gomez@warwick.ac.uk; Cook, J. W. S. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Dendy, R. O. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromsø, N-9037, Tromsø (Norway); Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden (Germany)

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  11. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality.

    Science.gov (United States)

    Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle

    2018-01-01

    Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.

  12. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  13. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  14. Ion beam dynamics in the acceleration region of the Vincy Cyclotron

    International Nuclear Information System (INIS)

    Tomic, S.; Samsonov, E.

    1998-01-01

    Modern concept of heavy ion cyclotrons assumes a tendency of decreasing the gaps between magnet poles, enabling better efficiency of the magnetic field circuit. This restricts possible solutions of acceleration structure and imposes the necessity of installing the dees in valleys of magnetic structures. This approach, which is accepted in the VINCY Cyclotron, requires a detailed study of the ion beam dynamics in the acceleration region. Consequently, we analyzed ion beams with eta = 1,05 and 0.25 in radial and axial phase space. Also, the energy spread in emittances and the influence of the first harmonic of the magnetic field on the radial betatron oscillations are discussed. The transformation of coherent into incoherent radial oscillations as well as the effect to radial off-centering on the beam vertical size at Walkinshaw resonance location, is pointed out (author)

  15. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  16. Second harmonic ion cylotron resonance heating by the fast magnetosonic wave on the PLT tokamak

    International Nuclear Information System (INIS)

    Thompson, H.R. Jr.

    1984-01-01

    Second harmonic ion cyclotron resonance heating by the fast magnetosonic wave, and the propagation of the fast wave from the fundamental of the ion cyclotron frequency to its second harmonic was investigated in a hydrogen plasma on the PLT tokamak. The theory of fast magnetosonic wave propagation was extended to include the effects of density gradients, plasma current, and impurity ion species. The damping of the fast wave at the second harmonic is calculated, where the theory has been extended to include the full radial dependence of the fast wave fields. Power deposition profiles and eigenmode Q's are calculated using this theory. The effects of the interaction between the ion Bernstein wave and the fast magnetosonic wave are calculated, and enhanced fast wave damping is predicted. The antenna loading is calculated including the effects of overlap of the fast wave eigenmodes. During the second harmonic heating experiments, the antenna loading was characterized as a function of the plasma parameters, and efficient coupling of the RF power to the plasma at high density was observed. At very low densities, fast wave eigenmodes were identified on PLT, and their Q's are measured. Eigenmodes with different toroidal directions of propagation were observed to exhibit large splitting in density due to the plasma current. Efficient bulk heating, with centrally peaked profiles, is observed at the second harmonic, and a tail, which decreases monotonically with energy, is observed on the ion distribution

  17. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  18. Synchrotron radiation and absorption at electron cyclotron harmonics in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Hu, Jian-Long.

    1993-01-01

    In order to understand fully the absorption, emission and conversion phenomena for any electron cyclotron harmonic, one must include all relevant mode conversion processes and a finite parallel wave number k parallel . Relativistic plasma mode conversion and tunneling equations at the second and third electron cyclotron harmonics have been derived analytically. A finite k parallel has been introduced which keeps the coupling between the O-mode, the X-mode and the Bernstein wave in the mode conversion problems without absorption have been obtained, and the connection formulas between different wave branches have been established. The corresponding transmission, reflection and conversion coefficients have also been given. Mode conversion problem at any harmonic has been generalized to either a three branch or a five branch problem. A comparison between the coupled equation and the uncoupled equation has been made. The effort has been directed at the third harmonic since the adsorption at ω = 2ω ce is known to be very strong in virtually every fusion case. Both the low density limit and the high density limit cases have been studied separately. The relativistic effects on the mode conversion and absorption problem has been analyzed. The mode conversion equation with absorption has been solved by using the Green function method. The electron cyclotron emission experiments have already begun at 3ω ce , and the third harmonic is the first nontrivial case of importance

  19. Method and apparatus for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  20. A full wave code for ion cyclotron waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1996-02-01

    The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in arbitrary axisymmetric toroidal geometry. The model used describes the compressional and torsional Alfven waves (or, depending on the parallel phase velocity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode conversion near the first ion cyclotron harmonic. In the ion response the broadening of the absorption regions due to the finite width of the cyclotron resonance of individual ions in toroidal geometry is taken into account. The parallel component of the wave electric field is evaluated on the same footing as the transverse ones; the response of the electrons includes Landau damping, Transit Time damping and the mixed term. The numerical approach uses a spectral representation of the solution in the poloidal angle θ, and cubic finite elements in the radial variable ψ. Great flexibility is provided in the way ion Bernstein waves excited by mode conversion are damped when their wavelength becomes comparable with the ion Larmor radius, in the regularization of Alfven resonances, and in the treatment of the outer plasma layers. As an option, we have also implemented the Order Reduction Algorithm, which provides a particularly fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. Thee present report describes the model and its numerical implementation, and provides the information needed to use the code. A few examples illustrating applications of TORIC are also included. (orig.)

  1. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  2. Fundamental harmonic electron cyclotron emission for hot, loss-cone type distributions

    International Nuclear Information System (INIS)

    Bornatici, M.; Ruffina, U.; Westerhof, E.

    1988-01-01

    Electron cyclotron emission (ECE) is an important diagnostic tool for the study of hot plasmas. ECE can be used not only to measure the electron temperature but also to obtain information about non-thermal characteristics of the electron distribution function. One such a nonthermal characteristic is a loss-cone anisotropy. Loss-cone anisotropy can give rise to unstable growth of electro-magnetic waves around the harmonics of the electron cyclotron resonance and to increased emissivity of electron cyclotron waves. In case of high electron temperatures, also the dispersion properties of the extraordinary (X-) mode arond the fundamental electron cyclotron resonance are changed due to loss-cone anisotropy. The consequences of these dispersion properties for the emissivity of the fundamental harmonic X-mode are analyzed for perpendicular propagation. The emissivity, is calculated for two types of distribution functions having a loss-cone anisotropy. These distribution functions are a relativistic Dory-Guest-Harris type distribution function and modified relativistic Maxwellian distribution having a loss-cone with rounded edges (author). 9 refs.; 2 figs

  3. A model for the numerical simulations of ion cyclotron heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1986-05-01

    We present a complete set of equations for the numerical simulation of ion cyclotron heating of tokamak plasmas. The model includes the full geometry of the tokamak equilibrium, full parallel dispersion, and perpendicular dispersion to second order in the Larmor radius. It is therefore capable of describing correctly ion cyclotron damping at the fundamental and first harmonic, as well as mode conversion to the ion Bernstein wave and/or the shear Alfven wave, depending on the heating scenario. It includes also electron magnitude pumping and Landau damping, the latter to lowest order in msub(e)/msub(i). Relying on the knowledge gained from slab and ray tracing analysis, we also situate with respect to this standard model some of the further approximations which are commonly encountered in the literature. Finally, two procedures for the numerical solution of the standard model are proposed. (orig.)

  4. Improving the performance of the power supply of the MGC-20 cyclotron harmonic coils

    International Nuclear Information System (INIS)

    Hagras, A.A.M

    2008-01-01

    Correction of lower harmonics of the MGC-20 cyclotron magnetic field is of great importance for its operation. Actually, stability of the acceleration process, attainment of the final energy of the accelerated beam and efficiency of the beam extraction system depend on the lower harmonics control. Error in the magnetic field lower harmonics can reduce the efficiency of the beam extraction resulting in complete disappearance of the extracted beam of the cyclotron. For control of the cyclotron MGC-20 magnetic field lower harmonics, the so called inner and outer harmonic coils are provided.These harmonic coils must be fed by a very high accuracy current source power supply. This power supply must be equipped with a high resolution measurement and control scheme to achieve the imposed requirements of adjustment of the first harmonic magnetic field.Harmonic coils are supplied with conventional SCR controlled converters with analog control strategy. Frequent interruption of operation and difficulties in the adjustment of harmonic coil current lead to economical and research - time losses.This research project aims to replace this conventional system with a more effective, accurate and less complicated digital control system based on Motorola DSP56F807 and high switching frequency power circuit. Actually all the bulky modules including the analog integrator, the signal monitoring and protection, the pulse phase modulator and the comparator are all replaced by a single module circuit.

  5. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  6. QUANTUM NATURE OF CYCLOTRON HARMONICS IN THERMAL SPECTRA OF NEUTRON STARS

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Werner, K.; Pavlov, G. G.

    2010-01-01

    Some isolated neutron stars (NSs) show harmonically spaced absorption features in their thermal soft X-ray spectra. The interpretation of the features as a cyclotron line and its harmonics has been suggested, but the usual explanation of the harmonics as caused by relativistic effects fails because the relativistic corrections are extremely small in this case. We suggest that the features, known as quantum oscillations, correspond to the peaks in the energy dependence of the free-free opacity in a quantizing magnetic field. The peaks arise when the transitions to new Landau levels become allowed with increasing the photon energy; they are strongly enhanced by the square-root singularities in the phase-space density of quantum states in the case when the free (non-quantized) motion is effectively one dimensional. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B ∼ 10 10 -10 11 G (i.e., electron cyclotron energy E c,e ∼ 0.1-1 keV) and T eff = 1-3 MK. Such conditions are thought to be typical for the so-called central compact objects in supernova remnants, such as 1E 1207.4-5209 in PKS 1209-51/52. We show that observable features at the electron cyclotron harmonics form at moderately large values of the quantization parameter, b eff ≡ E c,e /kT eff ≅ 0.5-20. The equivalent widths of the features can reach ∼100-200 eV; they grow with increasing b eff and are lower for higher harmonics.

  7. Method and apparatuses for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  8. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  9. Shimming of 1-st and 2-d harmonics of the U-120 M cyclotron magnetic field

    International Nuclear Information System (INIS)

    Krzhivanek, M.; Trejbal, Z.

    1985-01-01

    As a result of the development of external ion injection system for the U-120 M isochronous cyclotron the necessity of precise superposition of vertical geometrical axes of accelerating chamber and a hole in the magnet pole piece has arisen. A decrease in the amplitude of the first and second harmonics of the magnetic field is the main problem to be solved for the accelerating chamber centering. The upper and lower gaps between accelerating chamber and magnet pole pieces were used for the shimming of the harmonics. The gaps are filled with profiled duraluminium discs. Wide grooves are cut in the discs so that iron plates of different lengths, which are 3.5 mm thick, can be installed there. Harmonic analysis of field difference in one pair of plates, performed at different levels of induction, made it possible to determine quite accurately the location of the plates in the gaps taking into account their effect on the first and second harmonics of the field

  10. Parallel gradient effects on ICRH (Ion Cyclotron Resonance Heating) in Tokamaks

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1987-01-01

    This dissertation examines the effects on Ion Cyclotron Resonance Heating of parallel nonuniformity in the magnetic field which arises from the poloidal field in a tokamak and the universal (major radius)/sup /minus/1/ scaling of the cyclotron frequency. The goal of the analysis is the macroscopic warm plasma current including temperature in the sense of the finite Larmor radius expansion and the quasilocal approximation of the parallel guiding center motion. A 1-D numerical application of the fully nonlocal integral dielectric is performed. Parallel gradient effects are studied for He-3 minority, 2nd harmonic deuterium, and hydrogen minority heating in tokamaks. The results show quite significant alteration of the toroidal wavenumber absorption spectrum, and a wealth of new behavior on the local propagation scale. 95 refs., 37 figs

  11. Study of first harmonic field effects on beam extraction for VEC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Mallik, C.; Bhandari, R.K.

    2002-01-01

    In superconducting cyclotron large momentum compaction at extraction region makes the turn separation very small. The first harmonic effects on the He +1 beam using simulated magnetic field for VEC K500 cyclotron is reported

  12. Anisotropic distribution function of minority tail ions generated by strong ion-cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Colestock, P.

    1989-05-01

    The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs

  13. Simulation study of generalized electron cyclotron harmonic waves and nonlinear scattering in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinez, R.M.

    1983-01-01

    Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma

  14. Numerical modelisation of RF waves in the ion cyclotron range of frequency for Tokamak plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Picq, H.; Samain, A.; Gambier, D.J.

    1987-12-01

    The purpose of this paper is to present the numerical code ALCYON developed to compute the RF field structure in the ion cyclotron range of frequencies. The code handles fundamental and second harmonic heating while the mode conversion onto modes of decreasing wavelength is simulated by a selective power absorption on slow waves when their wavelength reaches the mesh size

  15. Ion-cyclotron heating with low dissipation in T-10 tokamak

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Vdovin, V.L.; Lisenko, S.E.; Chesnokov, A.V.; Shapotkovskii, N.V.

    1979-02-01

    This paper examines the problem of plasma heating in the T-10 tokamak using the second harmonic of ion-cyclotron frequency ω = 2ω/sub Bi/. There are several promising methods for heating in this frequency range, for example ion-ion hybrid resonance. We will, however, concentrate our attention in this paper on the study of fast wave heating methods under conditions of low dissipation using resonance pumping. Multi-mode character of plasma resonator is a characteristic feature of such a large machine with a dense plasma. It will be shown, therefore, that a comparatively small absorption spans over a majority of modes; this simplifies considerably the matching of the excitation device to the generator under the conditions of changing electron density. An important consequence of mode spanning at low dissipation is the localization of electromagnetic energy under the exciter

  16. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  17. Three-dimensional ray tracing of electrostatic cyclotron harmonic waves and Z mode electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hashimoto, K.; Yamaashi, K.; Kimura, I.; Kyoto Univ., Japan)

    1987-01-01

    Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere. 20 references

  18. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  19. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  20. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a 3 He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs

  1. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  2. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  3. Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET

    NARCIS (Netherlands)

    Lerche, E.; Van Eester, D.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M. L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sergienko, G.; Stamp, M.; Studholme, W.; Tardocchi, M.; Vdovin, V.; Versloot, T.; Voitsekhovitch, I.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; JET-EFDA Contributors,

    2012-01-01

    Two ion cyclotron range of frequencies (ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas—fundamental H majority and second harmonic 3 He ICRF heating—were recently investigated in JET. Although the same magnetic field and RF frequencies ( f ≈ 42 MHz and f

  4. Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics

    International Nuclear Information System (INIS)

    Yeh, Y.S.; Chang, T.H.; Wu, T.S.

    2004-01-01

    A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO

  5. Magnetic field related mechanical tolerances for the proposed Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Heighway, E.A.; Chaplin, K.R.

    1977-11-01

    A four sector azimuthally varying field cyclotron with superconducting main coils has been proposed as a heavy-ion post-accelerator for the Chalk River MP Tandem van de Graaff. The radial profile of the average axial field will be variable using movable steel trim rods. The field errors due to coil, trim rod and flutter pole imperfections are calculated. Those considered are errors in the axial field, first and second azimuthal harmonic axial fields, transverse field and first azimuthal harmonic transverse field. Such fields induce phase slip, axial or radial coherent oscillations and can result in axial or radial beam instability. The allowed imperfections (tolerances) required to retain stability and maintain acceptably small coherent oscillation amplitudes are calculated. (author)

  6. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  7. Influence of the 1st, 2nd and 3rd harmonic magnetic field in mini-cyclotron

    International Nuclear Information System (INIS)

    Lu xiangshun; Chen Maobai; Li Deming; Xu Senlin

    1996-01-01

    The influence of the 1st, 2nd and 3rd harmonic magnetic field on particle's movement in the mini-cyclotron has been studied. The permitted upper limits for each harmonic part are calculated. These data provide a theoretical reference for magnetic trimming

  8. Ion Cyclotron Heating on Proto-MPEX

    Science.gov (United States)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  9. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  10. One-D full-wave description of plasma emission and absorption in the ion cyclotron range of frequency in tokamaks

    International Nuclear Information System (INIS)

    Fraboulet, D.; Becoulet, A.; Nguyen, F.

    1998-11-01

    To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those α-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting α-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author)

  11. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  12. Resonance cones below the ion cyclotron frequency: theory and experiment

    International Nuclear Information System (INIS)

    Bellan, P.

    1976-03-01

    The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves

  13. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  14. Ion sources for cyclotron applications

    International Nuclear Information System (INIS)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations

  15. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine

    International Nuclear Information System (INIS)

    Turner, W.C.

    1977-01-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode

  16. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  17. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  18. On the coupling of cyclotron motion to ion internal degrees of freedom

    International Nuclear Information System (INIS)

    Dunbar, R.C.

    1979-01-01

    A possibility of significant coupling between gas-phase ion cyclotron motion and two internal angular momentum terms is explored. The first case, coupling with ion spin, is treated via the relativistic Hamiltonian, and found to produce only relativistic perturbations which are entirely negligible. The second case, coupling with ion rotation, is developed via its equivalence to a Stark effect. Small shifts in the cyclotron resonances frequency , ωsub(c) and the appearance of a weak cyclotron resonance at 2ωsub(c) are predicted, but these effects are negligible in general. If the cyclotron frequency is near an ion rotational transition, however, a shift of 10 -5 in cyclotron frequency may be observed, and could provide a means of investigating low-frequency rotational transitions of ions. (Auth.)

  19. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  20. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  1. Gyrokinetic theory of perpendicular cyclotron resonance in a nonuniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1989-01-01

    The extension of gyrokinetic theory to arbitrary frequencies by Chen and Tsai [Phys. Fluids 26, 141 (1983); Plasma Phys. 25, 349 (1983)] is used to study cyclotron absorption in a straight magnetic field with a perpendicular, linear gradient in strength. The analysis includes the effects of magnetic field variation across the Larmor orbit and is restricted to propagation perpendicular to the field. It yields the following results for propagation into the field gradient. The standard optical depths for the fundamental O-mode and second harmonic X-mode resonances are obtained from the absorption profiles given in this paper, without invoking relativistic mass variation [see also Antonsen and Manheimer, Phys. Fluids 21, 2295 (1978)]. The compressional Alfven wave is shown to undergo perpendicular cyclotron damping at the fundamental minority resonance in a two-ion species plasma and at second harmonic resonance in a single-ion species plasma. Ion Bernstein waves propagating into the second harmonic resonance are no longer unattenuated, but are increasingly damped as they approach the resonance. It is shown how the kinetic power flow affects absorption profiles, yielding information previously obtainable only from full-wave theory. In all cases, the perpendicular cyclotron damping arises from the inclusion of magnetic field variation across the Larmor orbit

  2. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  3. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  4. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  5. Electron-cyclotron-resonance ion sources (review)

    International Nuclear Information System (INIS)

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs

  6. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...... rotation profiles are seen when heating at the second harmonic cyclotron frequency of He-3 and with mode conversion at high concentrations of He-3. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature...

  7. Ion heating in the ion cyclotron range of frequencies in the Wisconsin Tokapole II

    International Nuclear Information System (INIS)

    Biddle, A.P.

    1980-06-01

    Ion temperatures of 75 eV, a doubling of the ohmic heating temperature in a normal discharge, have been achieved using the fast magnetosonic wave heating at the second, third, and fourth harmonics of the cyclotron frequency in a single component hydrogen plasma. The wave launching structure is a single turn, shielded, insulated loop which constitutes the inductor of the rf source tank circuit. Power levels of 800 kW have been applied to the plasma for periods of up to 1.1 milliseconds. Good agreement has been found between theory and experiment for loading and wave propagation in the plasma for m = 0 and m = +1 modes. Eigenmodes have been observed by peaking of both the rf wave amplitude and the loading of the oscillator, as well as by oscillator frequency shifts imposed by their passage

  8. High power heating in the ion cyclotron range of frequencies in the Wisconsin Tokapole II

    International Nuclear Information System (INIS)

    Biddle, A.P.; Sprott, J.C.

    1981-01-01

    Fast wave heating at the second, third and fourth harmonics of the ion cyclotron resonance, and slow wave heating at the fundamental in a single ion species hydrogen plasma, are found to be in good agreement with warm plasma theory at rf power levels <= 130 kW. Ion heating is negligible off an eigenmode. Ion body temperatures are more than doubled to 75 eV from the 35 eV ohmically heated case with tails comprising 8% of the plasma at 320 eV. No deleterious effects except a non-disruptive 10% shortening of the discharge length caused by impurity influx are noted. A passive mode tracking technique allows approximately equal to 40% increase in power deposition in a passing eigenmode over that of a fixed frequency rf source. Ion temperatures are limited by charge exchange due to the < 50 eV central temperature and the small 13 cm radius current channel. (author)

  9. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  10. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  11. Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Oikawa, Masakazu; Yoshida, Ken-ichi; Kamiya, Tomihiro; Fukuda, Mitsuhiro; Satoh, Takahiro; Nara, Takayuki; Agematsu, Takashi; Ishibori, Ikuo; Yokota, Watalu; Nakamura, Yoshiteru

    2007-01-01

    In order to achieve a heavy-ion microbeam with an energy of hundreds of MeV applied to the research fields of biotechnology and materials science, the JAEA AVF cyclotron (K = 110) has been upgraded to provide a high quality beam with a smaller energy spread and a higher current stability. A flat-top (FT) acceleration system of the cyclotron, designed to produce ion beams with an energy spread of ΔE/E ≤ 0.02%, has been developed to reduce chromatic aberrations in the lenses of the focusing microbeam system. The FT acceleration system provides uniform energy gain of the beam by superimposing a fifth-harmonic voltage on the fundamental one. In addition, stabilization of the acceleration rf voltage and the phase were achieved to accelerate the high quality beam and to provide it stably to the microbeam system connected to a cyclotron beam line. In the latest experiment, we have succeeded to accelerate 260 MeV 20 Ne 7+ with an energy spread of 0.05% in FWHM using the FT acceleration system

  12. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  13. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  14. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Fontheim, E.G.; Ong, R.S.B.

    1984-01-01

    An expression for the linear electromagnetic ion cyclotron convective growth rate has been derived, considering multiple ions in the energetic anisotropic component of the plasma (which provides the free energy for the instability) as well as in the cold component of the plasma. This represents a modification of recent treatments investigating electromagnetic ion cyclotron growth rates which have considered only hydrogen ions in the energetic component. Four major effects on the growth and propagation characteristics result from inclusion of heavy ions in the energetic component. Some wave growth occurs at low frequencies below the corresponding marginally unstable wave mode for each heavy ion. Enhanced quasi-monochronomatic peaks in the convective growth rate appear just below the O + and He + gyrofrequency and can be quite pronounced for certain plasma conditions. Stop bands, decreased group velocity and other effects normally attributed to cold heavy ions can be produced or enhanced by heavy ions in the energetic plasma component. Partial or complete suppression of wave growth at frequencies above the marginally unstable wave mode for a particular energetic heavy ion can greatly alter the growth rates that would occur in the absence of this energetic heavy ion. The expression for the linear electromagnetic ion cyclotron convective growth rate along with appropriate plasma parameters was used to investigate the nature of linear wave growth in the plasmapause region. The frequencies of peaks in the convective growth rate given by this model compare favorably with wave measurements in this region. It is conceivable that through wave-particle interactions, electromagnetic ion cyclotron waves could supply the energy source for various plasmapause region phenomena such as the O + torus, the plasma cloak and stable auroral red arcs

  15. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  16. Experimental studies on the high-frequency heating of a plasma in the frequency range of the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Laeuter, R.

    1976-05-01

    Experiments on the HF heating of a plasma in a cylindrical arrangement with pump frequencies ω 0 in the ion cyclotron harmonics nωsub(ci) are described. A magnetized plasma of relativily high density (approximately 10 14 cm -3 ) is generated in a pinch-like source with pulsated gas inlet, and said plasma then expands along diverging magnetic-field lines in a quasi-static homogeneous guide field B 0 = 330 G. This results in a practically fully ionized, low-impurity and more or less homogeneous plasma column of a diameter of approximately 20 cm at a variable density between 5 x 10 11 and 5 x 10 12 cm -3 and at electron temperatures of 5 to 8 eV. A standing magneto-hydrodynamic wave is excited in this plasma by means of a 1.8 m Stix coil which is part of the anode resonant circuit of a pulsated 1 MHz 500-kW transmitter. The axial wavelength is lambdasub(z) = 45 cm, the pulse duration amounts to tau = 200 μs. The degree of modulation B tilde/B 0 of the quasi-static magnetic field by the HF field is adjustable and ranges between 0.015 and 0.06. The heating at 2ωsub(ci) and 4ωsub(ci) is investigated within this study. Efficiency measurements show that a very effective energy transfer to the plasma occurs with both frequencies. Ion temperatures between 70 and 100 eV are ascertained by means of a retarding-potential spectrometer. For plasma heating, similar turbulent mechanisms seem to be responsible in both cases whereas the linear wave-particle resonance at 2ωsub(ci) seems to be of subordinated importance. The theoretically assumed parametric decay into ion-Bernstein waves, which should be possible at 4 ωsub(ci), is not observed. Measurements with compensated magnetic loops and electrostatic probes make a disturbance of the radial plasma confinement obvious, by which an anormally high pulse frequency might be explained. (orig.) [de

  17. Ion heating up to 1 MeV range with higher harmonic ICRF wave on JT-60U

    International Nuclear Information System (INIS)

    Nemoto, M.; Kusama, Y.; Hamamatsu, K.; Kimura, H.; Fujii, T.; Moriyama, S.; Saigusa, M.; Afanassiev, V.I.

    1997-01-01

    The properties of protons under accleration by an ion cyclotron range of frequency (ICRF) waves with the second to fourth hydrogen harmonics have been investigated in the JT-60U tokamak at the Japan Atomic Energy Research Institute (JAERI). Protons have been accelerated up to 1 MeV in the presence of an ICRF wave of fixed frequency, neutral beams (NB), and a fixed toroidal magnetic field which is scanned through several plasma discharges. The tail temperature of the protons, which is evaluated in the range 0.32-0.86 MeV, has been observed to increase in the second to third harmonics, however increase of the tail temperature in the third to fourth harmonics has not been observed clearly. Furthermore, the dependence of tail temperature on the harmonic number has been found to be in qualitative agreement with results from a simulation code analysis based upon the one-dimensional Fokker-Planck equation coupled with the kinetic wave equation. Experimental values for the stored energy of the accelerated ions have shown, however, that the response of stored energy to changes in absorbed ICRF power is much stronger than the response to changes in harmonic number. Also, the incremental energy confinement times for heating discharges matching the third and fourth harmonics (3 ω CH) and 4 ω CH) of hydrogen have been observed to be less than half that for those matching the second harmonic. It has been found that suppression of the absorbed ICRF power accompanied with the occurence of cavity resonance in the 3ω CH and 4ω CH heating discharges reduces the stored energy of the accelerated ions and the incremental energy confinement time. (Author)

  18. Ion cyclotron instability saturation and turbulent plasma heating in the presence of ions moving across the magnetic field

    International Nuclear Information System (INIS)

    Mikhajlenko, V.S.; Stepanov, K.N.

    1981-01-01

    Ion cyclotron instability saturation is considered in terms of the turbulence theory when there is a beam of heavy ions with large thermal longitudinal velocity spread. The instability excitation is due to a cyclotron interaction with ions of the beam under the anomalous Doppler effect. The instability is shown to be saturated due to an induced plasma ion scattering of ion cyclotron waves when the beam ion charge number Zsub(b) is approximately 1. Decay processes, wave scattering by virtual wave polarization clouds and resonance broadening due to random walk of plasma ions in turbulent instability fields appear to be unimportant. For Zsub(b)>>1 the induced wave scattering by the beam ions is the main process determining the nonlinear stage of the instability. Estimates are given for the oscillation energy density in the instability saturation state and for the turbulent heating rate of plasma and beam ions [ru

  19. Ion-cyclotron instability in magnetic mirrors

    International Nuclear Information System (INIS)

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  20. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Diem, S.J.; Phillips, C.K.; Wilson, J.R.; Ryan, P.M.

    2004-01-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He + and C 2+ ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma

  1. On the problem of negative dissipation of fast waves at the fundamental ion cyclotron resonance and the accuracy of absorption estimates

    International Nuclear Information System (INIS)

    Castejon, F.; Pavlov, S.S.; Swanson, D. G.

    2002-01-01

    Negative dissipation appears when ion cyclotron resonance (ICR) heating at first harmonic in a thermal plasma is estimated using some numerical schemes. The causes of the appearance of such a problem are investigated analytically and numerically in this work showing that the problem is connected with the accuracy with which the absorption coefficient at the first ICR harmonic is estimated. The corrections for the absorption estimation are presented for the case of quasiperpendicular propagation of fast wave in this frequency range. A method to solve the problem of negative dissipation is presented and, as a result, an enhancement of absorption is found for reactor-size plasmas

  2. Study of selective heating at ion cyclotron resonance for the plasma separation process

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Pashkovsky, V.G.

    1995-01-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number k z is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the k z spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field B 0 , and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44 Ca heating measurements, made with an energy analyzer. copyright 1995 American Institute of Physics

  3. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Cartier, S.L.; D'Angelo, N.; Merlino, R.L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism

  4. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  5. External excitation of ion cyclotron drift waves in a two-ion species plasma

    International Nuclear Information System (INIS)

    Kando, M.; Ikezawa, S.; Sugai, H.

    1984-01-01

    Ion cyclotron drift waves propagating across a density gradient and a magnetic field have been excited externally in a two-ion species plasma, with its concentration ratio controlled. The measured dispersion relations agree with the theoretical predictions. (author)

  6. Production of C, N, O, and Ne ions by pulsed ion source and acceleration of these ions in the cyclotron

    International Nuclear Information System (INIS)

    Nakajima, Hisao; Kohara, Shigeo; Kageyama, Tadashi; Kohno, Isao

    1977-01-01

    The heavy ion source, of electron bombarded hot cathode type, is usually operated by applying direct current for arc discharge. In order to accelerate Ne 6+ ion in the cyclotron, a pulsed operation of this source was attempted. Ne 6+ and O 6+ ions were accelerated successfully up to 160 MeV and more than 0.1 μA of these ion were extracted from the cyclotron. C 5+ , Ne 7+ and 22 Ne 6+ ions were also extracted with a modest intensity of beam. The intensity of C 4+ , N 4+ , N 5+ , and O 5+ ions was increased about ten times. (auth.)

  7. Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas

    International Nuclear Information System (INIS)

    Bruno, R.

    1981-12-01

    Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt

  8. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.

    1992-01-01

    Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase

  9. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  10. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    International Nuclear Information System (INIS)

    Santos, M. S. dos; Ziebell, L. F.; Gaelzer, R.

    2015-01-01

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase in the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population

  11. Conceptual design of the RF accelerating cavities for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Maggiore, M.; Calabretta, L.; Di Giacomo, M.; Rifuggiato, D.; Battaglia, D.; Piazza, L.

    2006-01-01

    A superconducting cyclotron accelerating ions up to 250 A MeV, for medical applications and radioactive ions production is being studied at Laboratori Nazionali del Sud in Catania. The radio frequency (RF) system, working in the fourth harmonic, is based on four normal conducting radio frequency cavities operating at 93 MHz. This paper describes an unusual multi-stem cavity design, performed with 3D electromagnetic codes. Our aim is to obtain a cavity, completely housed inside the cyclotron, with a voltage distribution ranging from 65 kV in the injection region to a peak value of 120 kV in the extraction region, and having a low power consumption

  12. Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors

    Science.gov (United States)

    Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.

    2018-04-01

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.

  13. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  14. 3rd harmonic electron cyclotron resonant heating absorption enhancement by 2nd harmonic heating at the same frequency in a tokamak

    International Nuclear Information System (INIS)

    Gnesin, S; Coda, S; Goodman, T P; Decker, J; Peysson, Y; Mazon, D

    2012-01-01

    The fundamental mechanisms responsible for the interplay and synergy between the absorption dynamics of extraordinary-mode electron cyclotron waves at two different harmonic resonances (the 2nd and 3rd) are investigated in the TCV tokamak. An enhanced 3rd harmonic absorption in the presence of suprathermal electrons generated by 2nd harmonic heating is predicted by Fokker–Planck simulations, subject to complex alignment requirements in both physical space and momentum space. The experimental signature for the 2nd/3rd harmonic synergy is sought through the suprathermal bremsstrahlung emission in the hard x-ray range of photon energy. Using a synthetic diagnostic, the emission variation due to synergy is calculated as a function of the injected power and of the radial transport of suprathermal electrons. It is concluded that in the present experimental setup a synergy signature has not been unambiguously detected. The detectability of the synergy is then discussed with respect to variations and uncertainties in the plasma density and effective charge in view of future optimized experiments. (paper)

  15. Experimental study of an ion cyclotron instability in a magnetic well confined plasma

    International Nuclear Information System (INIS)

    Brossier, P.

    1969-01-01

    This report is a contribution to the study of microinstabilities in macroscopically stable plasmas, in the low-β limit. Ion cyclotron instabilities, with k || = 0, have been numerically studied in detail; the computation of the density thresholds and growth rates of the different harmonics showed the relative role played by the following energy sources: density gradient, perpendicular distribution function and cold plasma component. This theoretical model has been compared with the results of a detailed study (density thresholds, wave structure, frequency spectrum, wavelengths, growth rate, amplitude of the electric field) of the instability observed in the DECA II device. This comparison gave a good agreement which shows the destabilising role played by the cold plasma component on a hot plasma with a loss cone distribution function. (author) [fr

  16. Ion cyclotron-resonance heating in a toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1975-01-01

    rf power near the ion cyclotron-resonance frequency has been used to produce a hundredfold increase (from approximately-less-than1 to approx.100 eV) in the ion temperature in a toroidal octupole device. The heating produces no noticeable instabilities or other deleterious effects except for a high reflux of neutrals from the walls. The heating rate is consistent with theory and the limiting ion temperature is determined by charge-exchange losses

  17. Power deposition for ion cyclotron heating in large tokamaks

    International Nuclear Information System (INIS)

    Hellsten, T.; Villard, L.

    1988-01-01

    The power deposition profiles during minority ion cyclotron heating are analysed in large tokamaks by using the global, toroidal wave code LION. For tokamaks with large aspect ratio and with circular cross-section, the wave is focused on the magnetic axis and can be absorbed there by cyclotron absorption when the cyclotron resonance passes through the magnetic axis. The power deposition profile is then essentially determined by the Doppler broadening of the ion cyclotron resonance. For equilibria either non-circular or with a small aspect ratio the power deposition profile depends also on the strength of the damping. In this case the power deposition profile can be expressed as a sum of two power deposition profiles. One is related to the power absorbed in a single pass, and its shape is similar to that obtained for large aspect ratio and circular cross-section. The other profile is obtained by calculating the power deposition in the limit of weak damping, in which case the wave electric field is almost constant along the cyclotron resonance layer. A heuristic formula for the power deposition is given. The formula includes a number of calibration curves and functions which has been calculated with the LION code for JET relevant equilibria. The formula enables calculation of the power deposition profile in a simple way when the launched wave spectrum and damping coefficients are known. (author). 7 refs, 11 figs

  18. Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, A.E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Brodeur, M. [University of Notre Dame, Notre Dame, IN (United States); Bollen, G.; Morrissey, D.J.; Schwarz, S. [National Superconducting Cyclotron Laboratory, Michigan State University, 640 S. Shaw Lane, East Lansing, MI 48824 (United States)

    2016-06-01

    A model device to transport thermal ions in the cyclotron gas stopper, a next-generation beam thermalization device under construction at the National Superconducting Cyclotron Laboratory, is presented. Radioactive ions produced by projectile fragmentation will come to rest at distances as large as 45 cm from the extraction orifice of the cyclotron gas stopper. The thermalized ions will be transported to the exit by RF carpets employing the recently developed “ion surfing” method. A quarter-circle prototype RF carpet was tested with potassium ions, and ion transport velocities as high as 60 m/s were observed over distances greater than 10 cm at a helium buffer gas pressure of 80 mbar. The transport of rubidium ions from an RF carpet to an electrode below was also demonstrated. The results of this study formed the basis of the design of the RF carpets for use in the cyclotron gas stopper.

  19. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  20. An ion source upgrade for an axial injection based commercial cyclotron

    International Nuclear Information System (INIS)

    Dehnel, M.P.; Stewart, T.; Roeder, M.; Le Du, K.

    2005-01-01

    The TRIUMF H - volume-cusp ion source technology licensed by Dehnel Consulting Ltd ranges in output current from 1 to 15 mA with beam energies in the 22-30 keV range. For those Cyclone 30 cyclotrons installed with an early 1980's style Lawrence Berkeley Lab (LBL) volume-cusp ion source, an upgrade to a 5 mA TRIUMF H - volume-cusp ion source would pay dividends in terms of longer filament, filament post and ion source lens lifetime, as well as less eroded material build-up in the source. In addition, the 5 mA ion source would approximately double the beam current available to inject into the cyclotron while reducing the emittance by about a factor of four. The new system has the potential to significantly boost radioisotope production at Cyclone 30 facilities utilizing the older style LBL ion source

  1. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  2. Ion cyclotron resonance study of reactions of ions with hydrogen atoms

    International Nuclear Information System (INIS)

    Karpas, Z.; Anicich, V.; Huntress, W.T. Jr.

    1979-01-01

    Reactions of H 2 + , HeH + , and CO 2 + ions with hydrogen atoms, and the reactions of D 2 + , CO 2 + , CO + , N 2 + and HCN + with deuterium atoms, were studied using ion cyclotron resonance techniques. These reactions proceed predominantly via a charge transfer mechanism. The rate constants measured are: 6.4, 9.1, 1.1, 5.0, 0.84, 0.90, 1.2, and 0.37 x 10 -10 cm 3 /sec, respectively. Hydrocarbon ions of the types CH/sub n/ + and C 2 H/sub n/ + , where n=2--4, do not react with H or D atoms

  3. Theory of the current-driven ion cyclotron instability in the bottomside ionosphere

    International Nuclear Information System (INIS)

    Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.

    1985-01-01

    A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes

  4. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  5. Development of heavy-ion beams at the INS 176-cm SF cyclotron

    International Nuclear Information System (INIS)

    Sato, Kenji; Ohshiro, Yukimitsu; Tanabe, Tetsumi; Sakurada, Yuzo; Yamazaki, Tsutomu.

    1982-10-01

    Heavy-ion beams at the INS SF cyclotron have been developed since the first beam was obtained in 1974. Multiply-charged heavy ions of gaseous material lighter than Ne have been successfully accelerated. An internal ion source for solid material has been made and high-intensity beams of sup(6,7)Li 3 + have been obtained. A pulsed arc power supply of the current-regulator type was constructed by using a tetrode. Two models of the PIG source of the self-heated cold-cathode type have been made and one of them is now in use. Some of the cyclotron components were also improved for efficient use of heavy-ion beams. (author)

  6. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  7. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency ω cα . This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies ω ∼ mω cα

  8. Properties of the TRIUMF cyclotron beam

    International Nuclear Information System (INIS)

    Craddock, M.K.; Blackmore, E.W.; Dutto, G.; Kost, C.J.; Mackenzie, G.H.; Richardson, J.R.; Root, L.W.; Schmor, P.

    1975-08-01

    Eight percent of the 300 keV d.c. beam from the ion source can be transmitted to 500 MeV in the TRIUMF cyclotron, without using the buncher. The beam losses are entirely accounted for; there are no significant losses due to orbit dynamic problems during 1500 turns of acceleration. The phase history is in good agreement with predictions based on the magnetic field survey. The effect of the harmonic coils and injection parameters on beam quality has been investigated. (author)

  9. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  10. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  11. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  12. Ion Bernstein wave heating research

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/k perpendicular ∼ V Ti much-lt V α ) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that k perpendicular ρ i ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research

  13. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    Science.gov (United States)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  14. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  15. Development of Cyclotron Beam Technology for Applications in Materials Science and Biotechnology at JAERI-TIARA

    International Nuclear Information System (INIS)

    Ohara, Y.; Arakawa, K.; Fukuda, M.; Kamiya, T.; Kurashima, S.; Nakamura, Y.; Okumura, S.; Saidoh, M.; Tajima, S.

    2003-01-01

    Recent progress of cyclotron ion beam development for applications in materials science and biotechnology at the ion-irradiation research facility TIARA of the Japan Atomic Energy Research Institute(JAERI) is overviewed. The AVF cyclotron in TIARA can accelerate protons and heavy ions up to 90 MeV and 27.5 MeV/n, respectively. In order to conform to the requirement of a reliable tuning of microbeam formation, the cyclotron beam current has been stabilized by controlling the temperature of the magnet yoke and pole within +/-0.5 deg. and hence by decreasing the variation of the magnetic field ΔB/B below 10-5. A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for researches on biofunctional elucidation in biotechnology. Production of the microbeam with spot size as small as 1μm by quadrupole lenses requires the energy spread of the beam ΔE/E < 2 x 10-4. In order to minimize the energy spread of the cyclotron beam, the fifth-harmonic voltage waveform has been successfully superposed on the fundamental one to make energy gain uniform

  16. Nonlinear parametric phenomena in plasma during radio frequency heating in the ion cyclotron frequency range

    International Nuclear Information System (INIS)

    Stepanov, K.N.

    1996-01-01

    Parametric phenomena in plasma which occur due to varying electric fields with the ion cyclotron frequency are reviewed. Beam-like lower hybrid instability emerges in strong pumping fields provided that the transverse relative velocity of particles is larger than the ion thermal speed (υ Ti ). The resulting turbulence and the following numerous manifestations observed experimentally are addressed. The turbulence may prove important for experiments aimed at plasma production or radio frequency (RF) cleaning of metallic surfaces of vacuum chambers in stellarators, tokamaks and helicon devices. In contrast, for a weak field (U Ti ) the kinetic parametric instabilities of ion cyclotron oscillations arise due to electrons. The issues of the turbulence, mathematical modelling, its role in turbulent heating observed on the torsatron Uragan-3M, decay instabilities associated with ion cyclotron oscillations and the triggering of ion quasimodes are considered. (author)

  17. Effect of hot α-particles on ion cyclotron absorption

    International Nuclear Information System (INIS)

    Cairns, R.A.; Kay, A.; Lashmore-Davies, C.N.

    1987-01-01

    Ion cyclotron heating involves mode conversion of the incident fast wave to a Bernstein mode, which is generally stongly damped and only propagates in a localized region of the plasma. The usual theoretical approach to this problem involves solution of fourth or higher order equations, but by treating the Bernstein mode as a driven response to the fast wave we obtain a simple second order equation. Comparison of its solutions with those of higher order equations shows that this approach gives good results. The same method can be used to consider the effect of a small population of hot α-particles on ion cyclotron heating, since it does away with the need for a small larmor radius expansion. The results indicate that a small concentration of α-particles can absorb a substantial fraction of the incident energy

  18. Ion cyclotron resonance heating in the Wisconsin supported toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1977-01-01

    Ion heating at the fundamental of the cyclotron resonance (1 MHz 12 cm -3 ) with no evidence of parametric decay or enhanced particle loss other than temperature dependent losses such as thermal flow to obstacles. Ion temperatures are limited by charge exchange on the large neutral reflux at the higher rf powers. (author)

  19. Project of a test stand for cyclotron ion sources

    International Nuclear Information System (INIS)

    Buettig, H.; Dietrich, J.; Merker, H.; Odrich, H.; Preusche, S.; Weissig, J.

    1978-10-01

    In the work the construction of a test stand for testing and optimization of ion sources of the Rossendorf cyclotron U-120 is represented. The design procedure and the construction of the electromagnet, the vacuum chamber with monant, the vacuum system, the power supply and the detecting system are demonstrated. The results of calculations of the motion of ions in the magnetic field are presented. (author)

  20. The rate of plasma heating by harmonic ion cyclotron waves in tokamaks

    International Nuclear Information System (INIS)

    Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.

    2002-01-01

    In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)

  1. Focusing and bunching of ion beam in axial injection channel of IPHC cyclotron TR24

    Science.gov (United States)

    Adam, T.; Ivanenko, I.; Kazarinov, N.; Osswald, F.; Traykov, E.

    2017-07-01

    The CYRCe cyclotron (CYclotron pour la ReCherche et l’Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 μA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid are found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the grid-less multi harmonic buncher may increase the accelerated beam current and will give the opportunity to new proton beam applications.

  2. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  3. Effects on Ion Cyclotron Emission of the Orbit Topology Changes from the Wave-Particle Interactions

    International Nuclear Information System (INIS)

    Hellsten, T.; Holmstroem, K.; Johnson, T.; Bergkvist, T.; Laxaback, M.

    2006-01-01

    It is known that non-relaxed distribution functions can give rise to excitation of magnetosonic waves by ion cyclotron interactions when the distribution function increases with respect to the perpendicular velocity. We have found that in a toroidal plasma also collisional relaxed distribution functions of central peaked high-energy ions can destabilise magnetosonic eigenmodes by ion cyclotron interactions, due to the change in localisation of the orbits establishing inverted distribution functions with respect to energy along the characteristics describing the cyclotron interactions. This can take place by interactions with barely co-passing and marginally trapped high-energy ions at the plasma boundary. The interactions are enhanced by tangential interactions, which can also prevent the interactions to reach the stable part of the characteristics where they interact with more deeply trapped orbits. (author)

  4. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Mantsinen, M.

    1999-01-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  5. Improving the thermal performance of the MGC-20 cyclotron accelerator ion source

    International Nuclear Information System (INIS)

    Azab, A.M.N

    2010-01-01

    The ion source is the heart of the cyclotron accelerator machine. It feeds the electrons to start the plasma generation, and consequently the formation of the ions to be accelerated in the cyclotron's chamber. In addition, it controls the ion beam current and intensity. The performance of the ion source is one of the important factors, which determines the durability, and the production efficiency of the cyclotron. The ion source should have a long stable working life in order to provide particles for isotope production.The regular isotope production program in Egypt's cyclotron facility has been interrupted several times by the sudden break down of the traditional tantalum filament cathode of the ion source. This has been the cause of equipment downtime, for filament replacement. A study for the improvement of the ion source lifetime of the MGC-20 cyclotron accelerator has been carried out by selecting three suitable materials for the ion source filament and compare between them. The cathode material plays a very important role for the production of intense ion beams; hence investigation on other low work-function materials is needed to further enhance the source performance. Two materials were selected for the filament, namely tungsten and molybdenum, in addition to the original tantalum filament. The selected materials for the filament have a high melting point and give low wearing rate during the plasma production, since the filament lifetime of the Livingston source, which is the type used in Egypt's Cyclotron, is usually limited due to the high plasma densities near the filament. In the present work, the effect of the normal operation parameters of the MGC-20 cyclotron on the filament's lifetime is studied for solving the lifetime problem of the MGC-20 cyclotron's ion source.The new types of the filaments were machined from wires, 2.5 mm in diameter, to take the same shape and dimensions as the original tantalum (Ta) filament. The three types of filaments

  6. Particle acceleration by electromagnetic ion cyclotron turbulence

    International Nuclear Information System (INIS)

    Crew, G.B.; Chang, Tom

    1990-01-01

    The LF EM-turbulence which furnishes energy for the acceleration of ions in various regions of the earth's magnetosphere efficiently accomplishes its transfer of energy from waves to particles through ion cyclotron resonance (ICR) with the left-hand polarized component of the turbulence; the result of this interaction is a heating of the particle distribution. A general theoretical treatment of ICR heating in a weakly inhomogeneous magnetic geometry is presented, en route to a more detailed examination of auroral ion conics' formation. A substantial simplification of the analysis of the altitude-asymptotic form of the conic distribution is obtained via the similarity transformation introduced into the properties of the electric field spectral density and the earth's dipolar magnetic field. 60 refs

  7. Ion cyclotron heating in TMX-U

    International Nuclear Information System (INIS)

    Dimonte, G.; Barter, J.; Romesser, T.; Molvik, A.W.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1987-01-01

    Ion cyclotron heating (ICH) is applied to TMX-U to improve the thermal barrier performance by reducing the passing ion collisionality. During its development, measurements of the antenna loading resistance, R p , and the absorption efficiency, η, were compared with calculations with the antenna design code ANTENA over a wide range of densities and frequencies. Good agreement in R p was obtained in the short wavelength slow wave regime but not for long wavelength fast waves because the experimental magnetic field gradients are not modelled in ANTENA. Similarly, η is much larger experimentally (40%) than in ANTENA (10%) due to the magnetic beach in TMX-U. In its application, ICH successfully decreased the passing ion collisionality tenfold but did not extend thermal barrier plugging to higher density, indicating that collisional barrier filling is not currently limiting TMX-U performance. (author). 23 refs, 23 figs

  8. Studies of gas phase ion/molecule reactions by Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Kleingeld, J.C.

    1984-01-01

    An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H 3 O - and NH 4 - ions are described whereas the other chapters deal with larger organic complexes. (Auth.)

  9. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    Science.gov (United States)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  10. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  11. On the automatic control of the ITER ion cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G. [Department of General Physics, University of Turin, Via P. Giuria 1, 10 125 Turin (Italy)], E-mail: giuseppe.bosia@to.infn.it

    2007-10-15

    The ITER ion cyclotron heating system requires an efficient control system capable of: (i) providing the desired array radiation spectrum, to optimize plasma coupling and absorption and to minimize parasitic power losses in the plasma edge; (ii) maintaining the RF power flow to the plasma against significant load variations, including fast fluctuations induced by ELMs; (iii) reliably detecting and suppressing RF voltage breakdowns in the array and/or in the transmission system, to avoid local equipment damage and (iv) implementing an accurate real time record of performance. In this paper specific aspects of the tuning control system, related to recent conceptual and engineering effort [K. Vulliez, et al., Design of the ITER ion cyclotron heating launcher based on in-vessel tuning system, Article ID106C, this conference] are addressed.

  12. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  13. A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz

    International Nuclear Information System (INIS)

    Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.

    1995-01-01

    Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. copyright 1995 American Institute of Physics

  14. Experimental test of the electromagnetic ion cyclotron instability within the earth's magnetosphere

    International Nuclear Information System (INIS)

    Mauk, B.H.; McPherron, R.L.

    1980-01-01

    The ATS-6 geostationary satellite has observed many examples of propagating, electromagnetic Alfven/ion cyclotron waves in both plasma particle and magnetic field data. These waves have been viewed predominantly near the afternoon and dusk regions of the earth's magnetosphere with normalized frequencies (ω/Ω/sub H/ + ) ranging between 0.05 and 0.5. Viewed from an average geomagnetic latitude of +10 0 , the waves have only been observed to propagate northward, suggesting that they are generated within the equatorial or minimum BETA regions. Two wave events have been chosen for detailed analysis. Both events appeared coincidentally with the encounter of cool plasma populations (5 eV) which joined the hot populations already present (10--40 keV). These coincidences suggest the popular, yet largely untested, electromagnetic ion cyclotron instability as the wave generation mechanism. As a test of this hypothesis, ion cyclotron amplification profiles are obtained by evaluating the linear growth rate integrals under the measured, anisotropic hot ion distributions. The measured frequencies for both of the chosen events are in good agreement with the quite restricted values which correspond to the peaks of the amplification profiles. As a result of magnetic field inhomogeneities, the interactions remain within the linear regime

  15. Ion-Bernstein wave mode conversion in hot tokamak plasmas

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs

  16. Self excitation of second harmonic ion-acoustic waves in a weakly magnetized plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, I.; Yagishita, T.; Nakamura, Y.

    1994-01-01

    Electrostatic ion-acoustic waves in a weakly magnetized plasma are investigated experimentally. It is observed that finite amplitudes ion acoustic waves excite a new second harmonic wave train behind the initial ion waves excite a new second harmonic wave train behind the initial ion waves in a parallel magnetic field. The excitation of higher harmonic waves can be explained by non-linearity of finite amplitude ion-acoustic waves. The newly excited second harmonics waves satisfy a dispersion relation of the ion-acoustic waves. (author). 3 refs, 5 figs

  17. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  18. Design of the central region for axial injection in the VINCY cyclotron

    International Nuclear Information System (INIS)

    Milinkovic, L.; Toprek, D.

    1996-01-01

    This paper describes the design of the central region for h=1, h=2 and h=4 modes of acceleration in the VINCY cyclotron. The result which is worth reported in that the central region is unique and compatible with the three above mentioned harmonic modes of operation. Only one spiral type inflector will be used. The central region is designed to operate with two external ion sources: (a) an ECR ion source with the maximum extraction voltage of 25 kV for heavy ions, and (b) a multicusp ion source with the maximum extraction voltage of 30 kV for H - and D - ions. Heavy ions will be accelerated by the second and fourth harmonics, D - ions by the second harmonic and H - ions by the first harmonic of the RF field. The central region is equipped with an axial injection system. The electric field distribution in the inflector and in the four acceleration gaps has been numerically calculated from an electric potential map produced by the program RELAX3D. The geometry of the central region has been tested with the computations of orbits carried out by means of the computer code CYCLONE. The optical properties of the spiral inflector and the central region were studied by using the programs CASINO and CYCLONE respectively. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (orig.)

  19. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  20. Heavy stable isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.; Compant La Fontaine, A.; Larousse, B.; Patris, M.

    1994-01-01

    The scientific feasibility of the ion cyclotron resonance process (ICR), as well as the technical one, has been investigated carefully for light metallic elements, whose masses lies between 40 and 100/1,2/. The present work deals mainly with the same demonstration for heavier elements such as ytterbium, gadolinium and barium. Recent results, as well as future prospects, are considered here. (authors)

  1. TFTR Ion Cyclotron Range of Frequencies (ICRF) experimental data analysis collaboration. Annual progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Sharer, J.E.; Bettenhausen, M.; Lam, N.; Sund, R.

    1994-08-01

    The research performed under this grant during the past year has concentrated on coupling, heating, and current drive issues for TFTR. The authors have developed a code and submitted for publication a open-quotes 3-Dclose quotes coupling analysis of the TFIR ICRF cavity-backed coil antennas to plasma edge profiles including the Faraday shield blade angle and fast wave coupling for heating and current drive. They have also carried out TFTR ICRF full-wave field solutions and heating analyses for the second harmonic tritium supershot, and the effects of fusion alpha particle and tritium ion tail populations on the ICRF absorption. They have also published a paper on the effects of alpha particle absorption on fundamental deuterium ion cyclotron absorption incorporating self-consistent deuterium tails and fusion reactivity. Research progress, publications, and conference presentations are summarized in this report

  2. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    Science.gov (United States)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  3. Experimental Study of an ion cyclon resonance accelerator presentation of his thesis

    CERN Document Server

    Ramsell, C T

    1999-01-01

    The Ion Cyclotron Resonance Accelerator (ICRA) uses the operating principles of cyclotrons and gyrotrons. The novel geometry of the ICRA allows an ion beam to drift axially while being accelerated in the azimuthal direction. Previous work on electron cyclotron resonance acceleration used waveguide modes to accelerate an electron beam [5]. This research extends cyclotron resonance acceleration to ions by using a high field superconducting magnet and an rf driven magnetron operating at a harmonic of the cyclotron frequency. The superconducting solenoid provides an axial magnetic field for radial confinement and an rf driven magnetron provides azimuthal electric fields for acceleration. The intent of the ICRA concept is to create an ion accelerator which is simple, compact, lightweight, and inexpensive. Furthermore, injection and extraction are inherently simple since the beam drifts through the acceleration region. However, use of this convenient geometry leads to an accelerated beam with a large energy spread....

  4. All-magnetic extraction for cyclotron beam reacceleration

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  5. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  6. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  7. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  8. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  9. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  10. Design options for an ITER ion cyclotron system

    International Nuclear Information System (INIS)

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-01-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented

  11. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T perpendicular ≠ T parallel and with appreciable drift velocity along the confining magnetic field. Single ''dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ''kinetic or causal instabilities'' and ''hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k parallel = 0 for k parallel ≠ 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ''inverted'' population of states

  12. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  13. Proposal for a heavy ion ECR-source at the PSI-Philips cyclotron

    International Nuclear Information System (INIS)

    Kern, J.

    1989-10-01

    It is proposed by a large community of PSI- and external scientists to install an electron cyclotron resonance (ECR) source for highly charged heavy ions at the PHILIPS (injector I) cyclotron. Such a facility would then allow to produce high intensity ion beams with energies up to 30 MeV/u. A workshop hold in June 1989 clearly showed that with such a machine a large variety of interesting heavy ion experiments could be performed. While at foreign heavy ion centres the main focus is given to basic research in the field of nuclear physics we propose to concentrate the scientific effort at a PSI heavy ion facility mainly onto applications in the fields of atomic physics, chemistry, accelerator mass spectrometry, radiation biology and solid state physics. This is adequate, in view of the broad infrastructure available at PSI together with the existing know-how in many different fields. The proposed machine will thus be of great potential use for a large community. (author) 19 figs., 3 tabs., 82 refs

  14. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  15. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-01-01

    The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  16. Simulation of collective ion acceleration in a slow cyclotron beam mode

    International Nuclear Information System (INIS)

    Faehl, R.J.; Shanahan, W.R.; Godfrey, B.B.

    1979-01-01

    The use of slow cyclotron beam waves is examined as a means of accelerating ions in intense relativistic electron beams. Field magnitudes of between 10 5 -and 10 6 V/cm seem achievable in the near term, and while these will never reach the levels of beam front mechanisms, such as virtual cathodes, they will easily exceed conventional ion acceleration sources

  17. Second-harmonic ion cyclotron resonance heating scenarios of ...

    Indian Academy of Sciences (India)

    description of the rf system and experimental conditions can be found in [3]. In all the cases, the ion temperature equal to half of the electron temperature as generally observed in ohmically heated Aditya plasma [8] is considered. The parameters of the representa- tive shot # 20685 taken for the numerical simulation of fast ...

  18. Acceleration of heavy-ion beams at the SF cyclotron

    International Nuclear Information System (INIS)

    Sakurada, Yuzo; Yamazaki, Tsutomu.

    1984-10-01

    With the development of the new arc-heated cathode PIG type source, heavy-ion acceleration in the SF cyclotron has been drastically augmented, which means that a stable routine operation is being realized as well as the number of ion species is increasing. Excellent performance is also being exhibited with the arc power supply and gas feeding system required for the operation of the heavy-ion source. At present, the gaseous ions which are being accelerated are as follows: He, B, C, N, O, F, Ne, S, Ar and Xe. In the meantime, the metallic ions which are being accelerated likewise are Li, Be, Na, Mg, Al, Si, Cl, Ca, Ti, Fe and Cu. In this paper, results of mainly the research of heavy-ion acceleration conducted during the period from 1983 to July 1984 are described. (author)

  19. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  20. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1993-05-01

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T i ∼ 1/40 eV. Taking advantage of the relatively high field and long device length of L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas

  1. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  2. Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U

    International Nuclear Information System (INIS)

    Spaleta, J.; Majeski, R.; Phillips, C.K.; Dumont, R.J.; Kaita, R.; Soukhanovskii, V.; Zakharov, L.

    2003-01-01

    Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* ∼ 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species

  3. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  4. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  5. Third harmonic X-mode electron cyclotron resonance heating on TCV using top launch

    International Nuclear Information System (INIS)

    Porte, L.; Alberti, S.; Arnoux, G.; Martin, Y.; Hogge, J.P.; Goodman, T.P.; Henderson, M.A.; Nelson-Melby, E.; Pochelon, A.; Tran, M.Q.

    2003-01-01

    A third harmonic electron cyclotron resonance heating system (X3) has been installed, commissioned and brought into service on the Tokamak a Configuration Variable (TCV). It comprises three 118 GHz, 0.5 MW gyrotrons designed to produce pulses up to 2 seconds long. In the present configuration, 1.0MW is launched vertically from the top of the vessel into the plasma and the remaining 0.5MW is launched horizontally from the low field side. X3 has been used to heat plasmas at density exceeding the 2 nd harmonic cut-off significantly extending the operational space of additionally heated TCV plasmas. Studies have been performed to determine the optimal plasma/launcher configuration for X3 absorption for various plasma conditions and to find methods for real time feedback control of the X3 launcher. First experiments have been performed aimed at heating H-mode plasmas on TCV. First results show that the ELMs in TCV ohmic H-mode plasmas exhibit all characteristics of Type III ELMs. If, at moderate X3 power ( 0.45MW) the Type III ELMs disappear and the H-mode discharge exhibits different MHD phenomena eventually disrupting. (author)

  6. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  7. Isotope separation in plasma by ion-cyclotron resonance method

    International Nuclear Information System (INIS)

    Dubinov, A.E.; Kornilova, I.Yu.; Selemir, V.D.

    2001-01-01

    Contemporary state of investigation on isotope separation in plasma using selective ion-cyclotron resonance (ICR) heating is considered. The main attention is paid to necessary conditions of heating selectivity, plasma creation methods in isotope ICR-separation facilities, selection of antenna systems for heating, and principles of more-heated component selection. Experimental results obtained at different isotope mixtures separation are presented [ru

  8. Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Hellsten, T.; Alava, M.J.

    1991-01-01

    For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab

  9. Ion-cyclotron modes in weakly relatavistic plasmas

    International Nuclear Information System (INIS)

    Venugopal, C.; Kurian, P.J.; Renuka, G.

    1994-01-01

    We derive a dispersion relation for the perpendicular propagation of ion-cyclotron waves around the ion gyrofrequency Ω + in a weakly relativistic, anisotropic Maxwellian plasma. Using an ordering parameter ε, we separated out two dispersion relations, one of which is independent of the relativistic terms, while the other depends sensitively on them. The solutions of the former dispersion relation yield two modes: a low-frequency (LF) mode with a frequency ω + and a high-frequency (HF) mode with ω > Ω + . The plasma is stable to the propagation of these modes. The latter dispersion relation yields a new LF mode in addition to the modes supported by the non-relativistic dispersion relation. The two LF modes can coalesce to make the plasma unstable. These results are also verified numerically using a standard root solver. (author)

  10. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    Science.gov (United States)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  11. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  12. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  13. A phase-imaging ion-cyclotron-resonance technique for mass measurements of short-lived nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, Sergey; Blaum, Klaus; Doerr, Andreas; Eronen, Tommi; Goncharov, Mikhail; Hoecker, Martin; Ketter, Jochen; Ramirez, Enrique Minaya; Simon, Vanessa [Max-Planck Institute for Nuclear Physics (Germany); Block, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Chenmarev, Stanislav; Filjanin, Pavel; Nesterenko, Dmitriy; Novikov, Yuri [Petersburg Nuclear Physics Institute (Russian Federation); Droese, Christian; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt-University (Germany)

    2014-07-01

    A novel approach to mass measurements on the sub-ppb level even for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position sensitive detector. Compared to the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. With the new technique low-lying isomeric states with excitation energy on the 10-keV level can be separated from the ground state. Moreover, the new technique possesses a substantially higher sensitivity since just two ions are sufficient to determine the ion cyclotron frequency. A measurement of the mass difference of singly charged ions of {sup 132}Xe and {sup 131}Xe with an uncertainty of 25 eV has demonstrated the great potential of the new approach.

  14. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Boldin, Ivan A; Nikolaev, Eugene N

    2009-10-01

    Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  16. Optimization of Ion Source Head Position in the Central Region of DECY-13 Cyclotron

    Directory of Open Access Journals (Sweden)

    S Silakhuddin

    2017-08-01

    Full Text Available Optimization of the ion source head position of the DECY-13 Cyclotron in the central region has been carried out based on simulation process using a particle tracking program written in Scilab 5.2.1. The simulated particle was the H- ion that was accelerated in DECY-13 Cyclotron. The input for the program were the magnetic field and the electric field in the central region that were calculated by Opera-3D software package and TOSCA module. The optimized position of ion source head position is in a radius of 2 cm relative to the zero point of the magnet and at a distance of 4 mm relative to the puller. This result can be useful for determining the configuration of the parts in the central region when it is tested for generating the first ion beam in the future.

  17. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    International Nuclear Information System (INIS)

    Krasilnikov, A V; Amosov, V N; Kaschuck, Yu A; Van Eester, D; Lerche, E; Ongena, J; Bonheure, G; Biewer, T; Crombe, K; Ericsson, G; Giacomelli, L; Hellesen, C; Hjalmarsson, A; Esposito, B; Marocco, D; Jachmich, S; Kiptily, V; Leggate, H; Mailloux, J; Kallne, J

    2009-01-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ∼25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T i ∼ 4.0 keV and T e ∼ 4.5 keV (NBI-only phase) to T i ∼ 5.5 keV and T e ∼ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and γ-ray spectroscopy.

  18. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  19. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  20. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  1. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  2. Electron cyclotron resonance (ECR) ion sources

    International Nuclear Information System (INIS)

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  3. Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide

    Science.gov (United States)

    Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.

    1976-01-01

    The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.

  4. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  5. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  6. Study of ion cyclotron fluctuations. Application to the measurement of the ion temperature

    International Nuclear Information System (INIS)

    Lehner, T.

    1982-02-01

    A diagnostic technique for measuring the ion temperature of tokamak-type plasmas was developed. A theoretical study was made of the form factor associated with the ion cyclotron waves; the influence of Te/Ti on the frequency of the extrema of the dispersion relations was demonstrated. The different effects able to modify the spectral density (in particular the drift velocity and the impurities) were investigated. The mechanisms of suprathermal excitation of cylotron waves in tokamaks were reviewed together with the various effects stabilizing the spectrum: collisions, shear of the magnetic field lines. The experimental realization of the diagnostic technique is based on Thomson scattering by the electron density fluctuations [fr

  7. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    Science.gov (United States)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  8. Pitch-angle diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves in planetary magnetospheres

    Directory of Open Access Journals (Sweden)

    A. K. Tripathi

    2011-02-01

    Full Text Available Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.

  9. Theoretical and experimental study of modes associated to ion cyclotron heating on TFR

    International Nuclear Information System (INIS)

    Pignol, L.

    1985-05-01

    In this work, the ion cyclotron wave evolution is followed thanks to a coherent scattering device using carbon dioxide laser radiation. A theoretical part presents the dispersion equation that obey the waves excited in the plasma by antenna emitting ion cyclotron frequency. Then measurements given by the diagnostic are given. Fast and slow waves evidenced theoretically, are experimentally observed. Two simple theoretical models allow to extract physical quantities characteristics of the two modes. These two modes are followed along the radial coordinate of the tore and their behavior through the hybrid curve is studied. measured spectra shape is shown to confirm the described numerical code validity. Time study of the slow wave shows of internal relaxation phenomenon of plasma [fr

  10. On Ion Cyclotron Current Drive for sawtooth control

    International Nuclear Information System (INIS)

    Eriksson, L.-G.; Johnson, T.; Hellsten, T.; Mayoral, M.-L.; McDonald, D.; Santala, M.; Vries, P. de; Coda, S.; Sauter, O.; Mueck, A.; Buttery, R.J.; Mantsinen, M.J.; Noterdaeme, J.-M.; Westerhof, E.

    2006-01-01

    Experiments using Ion Cyclotron Current Drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in [L.-G. Eriksson et al., Physical Review Letters 92, 235004 (2004)] by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase of the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations. (author)

  11. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    Science.gov (United States)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  12. Plasma waves produced by an ion beam: observations by the VLF experiment on Porcupine

    International Nuclear Information System (INIS)

    Jones, D.

    1980-01-01

    Results are presented from the VLF electric field experiments flown on Porcupine flights F3 and F4, which also had ejectable xenon ion sources. The xenon ion beam was found to produce plasma instabilities whose frequencies could be linked to the local proton gyrofrequency fsub(cH + ). The main energy in the instabilities lies at approximately 3kHz for events when the Xe + source is close to the rocket, and at approximately 7kHz when the source is farther away. Theory predicts that these frequencies should be the lower-hybrid-resonance and this implies that Xe + is the dominant ion in the first case and that it is the ambient plasma that dominates later. There is no discernable antenna spin-modulation during the Xe events which indicates that the wave k-vectors are not unidirectional. A theory is cited based on the 'setting up' of the proton cyclotron harmonic waves by the Xe + or O + cyclotron harmonic waves. The second Xe + event on both flights exhibited an, as yet, unexplained harmonic structure related to fsub(cH + )/2. (Auth.)

  13. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  14. Differential equation for Alfven ion cyclotron waves in finite-length plasma

    International Nuclear Information System (INIS)

    Watson, D.C.; Fateman, R.J.; Baldwin, D.E.

    1977-01-01

    One finds the fourth-order differential equation describing an Alfven-ion-cyclotron wave propagating along a magnetic field of varying intensity. The equation is self-adjoint and possesses non-trivial turning points. The final form of the equation is checked using MACSYMA, a system for performing algebra on a computer

  15. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  16. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.B.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this heating introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a boundary condition at the separatrix. Second, Monte Carlo calculations show that ion-cyclotron energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts that ion-cyclotron heating will cause a rotational shear layer to develop. The corresponding jump in plasma rotation ΔΩ is found to be negative outwards when the ion-cyclotron surface lies on the low-field side of the magnetic axis and positive outwards with the resonance on the high-field side. The magnitude of the jump ΔΩ=(4q max WJ 2 *) (eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where |J 2 *|≅2-4 is a nondimensional rotation frequency calculated by the Monte Carlo ORBIT code [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)]. For a no-slip boundary condition when the resonance lies on the low-field side of the magnetic axis, the sense of predicted axial rotation is co-current and overall agreement with experiment is good. When the resonance lies on the high-field side, the predicted rotation becomes countercurrent for a no-slip boundary while the observed rotation remains co-current. The rotational shear layer position is controllable and of sufficient magnitude to affect microinstabilities

  17. Observation of the backward electrostatic ion-cyclotron wave

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Wong, K.L.

    1985-01-01

    The backward branch of the electrostatic ion-cyclotron wave has been observed for the first time. The wave, which was driven by a phased antenna structure inserted in a neon plasma, exists in the parameter ranges 2T/sub i//m/sub i/ 2 or approx. =T/sub i/, and ω/sub p/i > Ω/sub i/. Double-tip probe interferometry data agree with the theoretical dispersion relation. The antenna couples into the wave more readily on the side of the antenna where it has its smallest wavenumber

  18. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  19. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  20. Electromagnetic ion cyclotron waves in the plasma depletion layer

    Science.gov (United States)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  1. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan); Muramatsu, M.; Kitagawa, A.; Drentje, A. G. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  2. High-power ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    1983-05-01

    Ion cyclotron resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two component ion energy distribution is produced (300 eV and 50 eV) with the application of 500 kW of rf power into a 5 x 10 12 cm -3 density plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun injected plasmas

  3. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim; Andersson, Jan T.; Mö ller, Isabelle; Amad, Maan H.; Witt, Matthí as; Sarathy, Mani

    2013-01-01

    oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same

  4. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    International Nuclear Information System (INIS)

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced

  5. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  6. A study of a superconducting heavy ion cyclotron as a post accelerator for the CRNL MP Tandem

    International Nuclear Information System (INIS)

    Fraser, J.S.; Tunnicliffe, P.R.

    1975-08-01

    A novel design for a heavy ion cyclotron is described utilizing superconducting coils. Acting as a post accelerator for the CRNL MP Tandem accelerator, the proposed cyclotron is capable of producing an output energy of 10 MeV/u and intensities up to approximately 10 10 particles/s for uranium. (E.C.B.)

  7. Design of DC-60 cyclotron with the fair ion energy variation for the Inter-disciplinary laboratory complex by L.N. Gumilev Eurasian State University

    International Nuclear Information System (INIS)

    Gukal, B.N.; Itkis, M.G.; Dmitriev, S.N.; Gul'bekyan, G.G.; Franko, J.; Kadyrzhanov, K.K.; Arzumanov, A.A.; Borisenko, A.N.; Lysukhin, S.N.

    2003-01-01

    The DC-60 heavy ions cyclotron pre-design project is implemented. The cyclotron is the key facility of the Inter-disciplinary laboratory complex by L.N. Gumilev Eurasian State University. In comparison with previous project in a new one the possibility for fair variation of the ions energies on 30 % at the expense of magnetic field level change is planed. The magnet structure of the cyclotron allowing to vary the magnet field from 1.25 to 1.65 T with use the low-power magnet coils system is found. The accelerator provides the opportunity for the ions acceleration from Li to Xe with energies from 0.4 to 1.6 MeV/nucleon. The exterior ion source of the ECR type will be planing to use on the cyclotrons and axial beam injection system development will be created. The extending voltage on the ion source is 10-25 kV. For experiments conducting on the cyclotron complex is expecting to create on channel for low energy beams - 10-25 kV per charge (ECR source beams) and three withdrawn channels for accelerated ion beams, one of those will be packaged with necessary equipment for the nuclear filters manufacture. The cyclotron complex will be used for both the fulfillment of a wide range of scientific and applied problems and a students training

  8. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    Science.gov (United States)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  9. Ion cyclotron wave excitation by double resonance coupling

    International Nuclear Information System (INIS)

    Fasoli, A.; Good, T.N.; Paris, P.J.; Skiff, F.; Tran, M.Q.

    1990-07-01

    A modulated high frequency wave is used to remotely excite low frequency oscillations in a linear, strongly magnetized plasma column. An electromagnetic wave is launched as an extraordinary mode across the plasma by an external waveguide in the Upper Hybrid frequency regime f=f UH =f ce =8 GHz, with P≤2 W. By frequency modulating (at f FM =1-60 kHz, with f ci ≅30 kHz) the pump wave, the resonant layer is swept radially across the profile and perpendicularly to the field lines at f=f FM . The resulting radial oscillation of the electron linear and non linear pressure can be considered to act as a source term for the ion wave. A localized virtual antenna is thereby created inside the plasma. Measurements of the ion dielectric response (interferograms and perturbed distribution functions) via laser induced fluorescence identify the two branches (forward, or ion-acoustic-like, and backward, or Bernstein, modes) of the electrostatic dispersion relation in the ion cyclotron frequency range. By changing the modulation bandwidth, and thus the spatial excursion of the oscillating resonant layer, a control on the perpendicular wavelength of the excited mode can be exerted. In particular, the possibility of selective excitation of the ion Bernstein wave is demonstrated experimentally. (author) 38 refs., 13 figs

  10. Numerical modeling of the EBT-S ion-cyclotron heating experiment

    International Nuclear Information System (INIS)

    Sperling, J.L.; Hamasaki, S.; Klein, H.H.; Krall, N.A.

    1980-01-01

    To determine the effect of ion-cyclotron heating on EBT-S plasma parameters, a one-dimensional, time dependent neoclassical model of plasma particle and energy transport was used. For EBT-S the code was run with the following parameters: B/sub O/ = 0.7 tesla (axial field at the midplane), B/sub O/ = 1.4 tesla (axial field at the throat), R/sub T/ = 150 cm (major radius), a = 15 cm

  11. Measurements of the fast ion distribution during neutral beam injection and ion cyclotron heating in ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Wade, M.R.; Kwon, M.; Thomas, C.E.; Colchin, R.J.; England, A.C.; Gossett, J.M.; Horton, L.D.; Isler, R.C.; Lyon, J.F.; Rasmussen, D.A.; Rayburn, T.M.; Shepard, T.D.; Bell, G.L.; Fowler, R.H.; Morris, R.N.

    1990-01-01

    A neutral particle analyzer (NPA) with horizontal and vertical scanning capability has been used to make initial measurements of the fast ion distribution during neutral beam injection (NBI) and ion cyclotron heating (ICH) on the Advanced Toroidal Facility (ATF). These measurements are presented and compared with the results of modeling codes that predict the analyzer signals during these heating processes. 6 refs., 5 figs

  12. Modelling ion cyclotron emission from KSTAR tokamak and LHD helical device plasmas

    Science.gov (United States)

    Dendy, Richard; Chapman, Ben; Reman, Bernard; Chapman, Sandra; Akiyama, Tsuyoshi; Yun, Gunsu

    2017-10-01

    New high quality measurements of ion cyclotron emission (ICE) from KSTAR and LHD greatly extend the scope and diversity of plasma conditions under which ICE is observed. Variables include the origin (fusion reactions or neutral beam injection) and energy (sub- or super-Alfvénic) of the minority energetic ions that drive ICE; the composition of the bulk plasma (hydrogen or deuterium) which supports the modes excited; plasma density in the emitting region, and the timescale on which it changes; and toroidal magnetic field geometry (tokamak or helical device). Future exploitation of ICE as a diagnostic for energetic ion populations in JET D-T plasmas and in ITER rests on quantitative understanding of the physics of the emission. This is tested and extended by current KSTAR and LHD measurements of ICE. We report progress on direct numerical simulation using full orbit ion kinetic codes that solve the Maxwell-Lorentz equations for hundreds of millions of particles. In the saturated regime, these simulations yield excited field spectra that correspond directly to the measured ICE spectra under diverse KSTAR and LHD regimes. At early times, comparison of simulation outputs with linear analytical theory confirms the magnetoacoustic cyclotron instability as the basic driver of ICE. Supported by RCUK Energy Programme Grant EP/P012450/1, NRF Korea Grant 2014M1A7A1A03029881, NIFS budget ULHH029 and Euratom.

  13. Influence of partially-stripped impurity ions on the cyclotron absorption of the fast magnetosonic wave in TFR plasmas

    International Nuclear Information System (INIS)

    1985-11-01

    Injection of vanadium ions by the laser blow-off technique has permitted to modify at will the impurity content in TFR plasmas prior to ion-cyclotron resonance (ICR) heating experiments in the mode conversion regime. The initial rate of increase of the central deuteron temperature has thus been enhanced. By solving the wave propagation equation in the WKB approximation, it has been possible to account for the enhanced dTsub(D)(O)/dt value by wave energy deposition on resonating V 21+ ions, provided a fraction (of the order of 1O%) of these ions has been accelerated to the tens of keV range. Previous experimental ICR heating results, in conditions such that the proton cyclotron layer is outside the limiter radius, can be explained by similar resonance processes on intrinsic metal impurity ions

  14. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    Czech Academy of Sciences Publication Activity Database

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, R.; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 8 (2016), s. 7514-7534 ISSN 2169-9380 Institutional support: RVO:67985815 Keywords : Io * ionization processes * ion cyclotron waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BN - Astronomy, Celestial Mechanics, Astrophysics (UFA-U) Impact factor: 2.733, year: 2016

  15. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Girardo, Jean-Baptiste [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Sharapov, Sergei; Fitzgerald, Michael; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boom, Jurrian [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Dumont, Rémi; Garbet, Xavier; Sarazin, Yanick; Schneider, Mireille [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, Jacob [Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala (Sweden); Mantsinen, Mervi [Catalan Institution for Research and Advanced Studies, 08010 Barcelona (Spain); Barcelona Supercomputing Center, 08034 Barcelona (Spain)

    2016-01-15

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called “tornado” modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  16. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  17. Electron cyclotron resonance (E.C.R.) multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1978-01-01

    High charge state ions can be produced by electron bombardment inside targets when the target electron density n (cm -3 ) multiplied by the ion transit time through the target tau (sec) is: n tau > 5.10 9 cm -3 sec. The relative velocity between electrons and ions determines the balance between stripping and capture i.e. the final ion charge state. (In a stripper foil fast ions interact with slow electrons involving typically n approximately 10 24 cm -3 , tau approximately 10 -14 sec). In the E.C.R. source a cold ion plasma created in a first stage diffuses slowly through a second stage containing a hot E.C.R. plasma with n > 3.10 11 cm -3 and tau > 10 -2 sec. Continuous beams of several μA of C 6+ N 7+ Ne 9+ A 11+ are extracted from the second stage with normalized emittances of approximately 0.5 π mm mrad. The absence of cathodes and plasma arcs makes the source very robust, reliable and well-fitted for cyclotron injection. A super conducting source is under development

  18. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  19. Improved confinement with ion cyclotron hydrogen minority heating on Tore Supra

    International Nuclear Information System (INIS)

    Hoang, G.T.; Monier-Garbet, P.; Aniel, T.; Bourdelle, C.; Eriksson, L.G.; Garbet, X.; Grisolia, C.; Platz, P.; Budny, R.V.

    1999-02-01

    Tore Supra experiments are presently devoted to study the high density and high radiation regimes with radio frequency heating. Recent results of ion cyclotron minority heating have been obtained with an improved L-mode confinement, close to ELMy H-mode, at relatively high density (up to 80% of Greenwald limit). Such a regime is very promising as possible scenario in a next step tokamak. (authors)

  20. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    Science.gov (United States)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  1. Compact superconducting cyclotron C400 for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Abs, M.; Blondin, A.; Kleeven, W.; Zaremba, S.; Vandeplassche, D. [IBA, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Aleksandrov, V.; Gursky, S.; Karamyshev, O. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Karamysheva, G., E-mail: gkaram@nu.jinr.r [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Kazarinov, N.; Kostromin, S.; Morozov, N.; Samsonov, E.; Shirkov, G.; Shevtsov, V.; Syresin, E.; Tuzikov, A. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation)

    2010-12-01

    The compact superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the Archade project (Caen, France). {sup 12}C{sup 6+} and {sup 4}He{sup 2+} ions will be accelerated to 400 MeV/uu energy and extracted by the electrostatic deflector, H{sub 2}{sup +} ions will be accelerated to the energy of 265 MeV/uu and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.

  2. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    International Nuclear Information System (INIS)

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-01-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data

  3. High frequency ion Bernstein wave heating experiment on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Seki, T.; Kumazawa, R.; Watari, T.

    1992-08-01

    An experiment in a new regime of ion Bernstein wave (IBW) heating has been carried out using 130 MHz high power transmitters in the JIPP T-IIU tokamak. The heating regime utilized the IBW branch between the 3rd and 4th harmonics of the hydrogen ion cyclotron frequencies. This harmonic number is the highest among those used in the IBW experiments ever conducted. The net radio-frequency (RF) power injected into the plasma is around 400 kW, limited by the transmitter output power. Core heating of ions and electrons was confirmed in the experiment and density profile peaking was found to feature the IBW heating (IBWH). The peaking of the density profile was also found when IBW was applied to the neutral beam injection heated discharges. An analysis by use of a transport code with these experimental data indicates that the particle confinement should be improved in the plasma core region on the application of IBWH. It is also found that the ion energy distribution function observed during IBWH has less high energy tail than those in conventional ion cyclotron range of frequency heating regimes. The observed IBWH-produced ion energy distribution function is in a reasonable agreement with the calculation based on the quasi-linear RF diffusion / Fokker-Planck model. (author)

  4. Self-consistent Study of Fast Particle Redistribution by Alfven Eigenmodes During Ion Cyclotron Resonance Heating

    International Nuclear Information System (INIS)

    Bergkvist, T.; Hellsten, T.; Johnson, T.

    2006-01-01

    Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)

  5. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    Czech Academy of Sciences Publication Activity Database

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, R. J.; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 8 (2016), s. 7514-7534 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : Io * ionization processes * ion cyclotron waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022477/abstract

  6. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  7. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  8. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  9. Cyclotron spectra from inhomogeneous accretion columns. II. Polarization

    International Nuclear Information System (INIS)

    Wu, K.; Chanmugam, G.

    1989-01-01

    Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs

  10. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  11. Loss-cone-driven ion cyclotron waves in the magnetosphere

    International Nuclear Information System (INIS)

    Denton, R.E.; Hudson, M.K.; Roth, I.

    1992-01-01

    The theoretical properties of linear ion cyclotron waves propagating in the magnetosphere at arbitrary angles to the background magnetic field are explored. It is found that in some cases the linear wave growth of modes with oblique propagation can dominate that of the parallel propagating electromagnetic ion cyclotron (EMIC) wave. In particular, when the hot ring current protons have a loss cone and their temperature anisotropy A ≡ T perpendicular /T parallel - 1 is reduced, the parallel propagating EMIC wave becomes stable, while the obliquely propagating loss-cone-driven mode persists. The growth rate of the loss-cone-driven model depends strongly on the depth of the loss cone. Unlike the parallel propagating EMIC wave, it can be unstable with A = 0. Other conditions that favor the loss-cone-driven mode in comparison to the parallel mode are stronger background magnetic field, lower density of cold hydrogen, and a lower temperature for the hot anisotropic component of hydrogen. A simple analytical theory is presented which explains the scaling of the growth rate of the oblique mode with respect to various parameters. The loss-cone-driven mode is an electromagnetic mode which is preferentially nearly linearly polarized. It is nearly electrostatic in the sense that the wave electric field is aligned with the perpendicular (to B 0 ) component of the wave vector k and k perpendicular > k parallel . Since the electric and magnetic wave fields are perpendicular to B 0 , they would be difficult to distinguish from those of a linearly polarized parallel propagating electromagnetic wave with the same k parallel

  12. Magnetic field structure of the U-120 cyclotron for heavy ions acceleration

    International Nuclear Information System (INIS)

    Schwabe, J.; Starzewski, J.

    1975-01-01

    The proposed magnetic structure makes possible the acceleration, in quasi-isochronous conditions, of ions having the ratio Z/A=0,665 - 0,1 on the U-120 cyclotron in Cracow. Simultaneously, significant improvement of the accelerated beam emittance, decrease in energy scattering down to a value of about 10 -3 , and an increase in the maximum accelerated beam energy may be obtained. (author)

  13. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.

    Science.gov (United States)

    Boedo, J A; Rudakov, D L

    2017-03-01

    We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

  14. Electron and ion cyclotron heating calculations in the tandem-mirror modeling code MERTH

    International Nuclear Information System (INIS)

    Smith, G.R.

    1985-01-01

    To better understand and predict tandem-mirror experiments, we are building a comprehensive Mirror Equilibrium Radial Transport and Heating (MERTH) code. In this paper we first describe our method for developing the code. Then we report our plans for the installation of physics packages for electron- and ion-cyclotron heating of the plasma

  15. Two-point theory of current-driven ion-cyclotron turbulence

    International Nuclear Information System (INIS)

    Chiueh, T.; Diamond, P.H.

    1985-02-01

    An analytical theory of current-driven ion-cyclotron turbulenc which treats incoherent phase space density granulations (clumps) is presented. In contrast to previous investigations, attention is focused on the physically relevant regime of weak collective dissipation, where waves and clumps coexist. The threshold current for nonlinear instability is calculated, and is found to deviate from the linear threshold. A necessary condition for the existence of stationary wave-clump turbulence is derived, and shown to be analogous to the test particle model fluctuation-dissipation theorem result. The structure of three dimensional magnetized clumps is characterized. It is proposed that instability is saturated by collective dissipation due to ion-wave scattering. For this wave-clump turbulence regime, it is found that the fluctuation level (e psi/T/sub e/)/sub rms/ less than or equal to 0.1, and that the modification of anomalous resistivity to levels predicted by conventional nonlinear wave theories is moderate. It is also shown that, in marked contrast to the quasilinear prediction, ion heating significantly exceeds electron heating

  16. Ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.; Sprott, J.C.; Strait, E.J.

    1983-06-01

    Ion-cyclotron-resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two-component ion energy distribution is produced (300 eV and 50 eV) with 500 kW of rf power coupled into a 5 x 10 12 cm -3 plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun-injected plasmas. Most of the theortical work presented deals with a calculation that predicts the plasma loading. A slab model is used, and the questions of accessibility, polarization, and damping of the radio-frequency electromagnetic fields are addressed. It is found that cold-plasma theory cannot account for the heating and, therefore, hot-plasma theory is invoked to explain the results. The loading measurements and theoretical predictions are found to be in reasonable agreement

  17. Ion beam trajectory simulation of carbon isotopes in cyclotron DECY-13

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2014-01-01

    A simulation on the ion beam trajectories of various carbon isotopes "1"2C, "1"3C, and "1"4C in DECY-13 cyclotron has been carried out using Scilab 5.4.1 software. Calculations in the simulation were carried out in 3 dimensions. The simulation shows trajectory separations, which provide possibility for "1"4C measurement such as in carbon dating at accelerating voltage frequency of about 72 MHz. (author)

  18. Ion cyclotron system design for KSTAR tokamak

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H.

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs

  19. Ion cyclotron system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs.

  20. Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1985-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)

  1. Geometric analysis of phase bunching in the central region of cyclotron

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Fukuda, Mitsuhiro; Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu; Arakawa, Kazuo; Kamiya, Tomihiro

    2013-01-01

    An optimum condition for realizing phase bunching in the central region of a cyclotron was quantitatively clarified by a simplified geometric trajectory analysis of charged particles from the first to the second acceleration gap. The phase bunching performance was evaluated for a general case of a cyclotron. The phase difference of incident particles at the second acceleration gap depends on the combination of four parameters: the acceleration harmonic number h, the span angle θ D of the dee electrode, the span angle θ F from the first to the second acceleration gap, the ratio R V of the peak acceleration voltage between the cyclotron and ion source. Optimum values of θ F for phase bunching were limited by the relationship between h and θ D , which is 90°/h+θ D /2≤θ F ≤180°/h+θ D /2, and sin θ F >0. The phase difference with respect to the reference particle at the second acceleration gap is minimized for voltage-ratios between two and four for an initial phase difference within 40 RF degrees. Although the slope of the first acceleration gap contributes to the RF phase at which the particles reach the second acceleration gap, phase bunching was not affected. An orbit simulation of the AVF cyclotron at the Japan Atomic Energy Agency verifies the evaluation based on geometric analysis

  2. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  3. Development of Medical Cyclotron in KIRAMS

    International Nuclear Information System (INIS)

    Chai, Jong Seo; Jung, In Su; An, Dong Hyun

    2005-01-01

    This paper is presented on the development and status of medical cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) at present. We have developed medical cyclotron which is KIRAMS-13. And the improvement of KIRAMS-13 is presented. Furthermore, the design of new cyclotrons, such as KIRAMS-5 and KIRAMS-30 cyclotron, are presented, and R and D studies for future plan of heavy ion accelerator are discussed

  4. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  5. Automatic control system for the pig ion source for the U-400 cyclotron

    International Nuclear Information System (INIS)

    Kutner, V.B.; Subbotin, V.G.; Sukhov, A.M.; Tret'yakov, Yu.P.; Fefilov, B.V.

    1989-01-01

    An automatic control system is described for the cyclotron U-400 multiply-charged ion source based on CAMAC apparatus and microprocesor controllers. The system allows the automatic tuning of the ion source to the necessary regime including the automatic start-up of discharge, the obtaining of the necessary parameters of sputtering, the automatic search for a maximum beam current within the given discharge parameters. The system performs tuning the ion source to the quasioptimal regime for 10-15 minutes with up to 5% deviation from the preset parameters. It is possible to stabilize the beam current within 3% using the automatic correction of the discharge regime. 6 refs.; 4 figs

  6. Automatic control system of the PIG ion source for the U-400 cyclotron

    International Nuclear Information System (INIS)

    Kutner, V.B.; Subbotin, V.G.; Sukhov, A.M.; Tretyakov, Y.P.; Fefilov, B.V.; Kasyanov, A.A.; Rybin, V.M.

    1990-01-01

    An automatic control system is described for the multiply charged ion source of the U-400 cyclotron based on CAMAC apparatus and microprocessor controllers. The system allows the automatic tuning of the ion source to the necessary regime, including the automatic start-up of discharge, determination of the necessary parameters of sputtering, and the automatic search for a maximum beam current for given discharge parameters. The system performs the tuning of the ion source to the quasioptimal regime in 10--15 min with up to 5% deviation from the preset parameters. It is possible to stabilize the beam current within 3% using the automatic correction of the discharge regime

  7. Low energy cyclotron for radiocarbon dating

    International Nuclear Information System (INIS)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14 C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14 C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14 C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  8. Fourier Transfrom Ion Cyclotron Resonance Mass Spectrometry at High Magnetic Field

    Science.gov (United States)

    Marshall, Alan G.

    1998-03-01

    At high magnetic field (9.4 tesla at NHMFL), Fourier transform ion cyclotron resonance mass spectrometry performance improves dramatically: mass resolving power, axialization efficiency, and scan speed (each proportional to B), maximum ion mass, dynamic range, ion trapping period, kinetic energy, and electron self-cooling rate for sympathetic cooling (each proportional to B^2), and ion coalescence tendency (proportional 1/B^2). These advantages may apply singly (e.g., unit mass resolution for proteins of >100,000 Da), or compound (e.g., 10-fold improvement in S/N ratio for 9.4 T vs. 6 T at the same resolving power). Examples range from direct determination of molecular formulas of diesel fuel components by accurate mass measurement (=B10.1 ppm) to protein structure and dynamics probed by H/D exchange. This work was supported by N.S.F. (CHE-93-22824; CHE-94-13008), N.I.H. (GM-31683), Florida State University, and the National High Magnetic Field Laboratory in Tallahassee, FL.

  9. Regulation of ion drifts and anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron waves in the fast solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Araneda, J. A. [Departamento de Física, Universidad de Concepción, 4070386 (Chile); Marsch, E., E-mail: yana.g.maneva@nasa.gov [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)

    2014-03-10

    We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.

  10. U-2g0 cyclotron operational experience and improvement

    International Nuclear Information System (INIS)

    Gigal, B.N.; Gul'bekyan, G.G.; Kozlov, S.I.; Oganesyan, R.Ts.

    1983-01-01

    Brief description of main syste's of the U-200 isochronous 2-m cyclotron put into opera ion in 1968 is given and its operational characteristics a e presented. The cyclotron is used for conducting inve tigations in the field of nuclear physics. Ions from d uterium to argon have been accelerated in the cyclotro'. Annual time of target irradiation constitutes 2000-4000. The specific features of the cyclotron are: high l vel of a magnetic field (of about 20 kOe), possibili y of acceleration of ions with different mass-to-charge ratio a low correcting winding power, simple and high-e fective beam extraction by the method of charge exchange on a thin target allowing to vary smoothly energy of extracted ons. An experience in the U-200 cyclotron development and o eration is used as the basis for designing and choosing basic parameters of the U-200P, U-250, U-400 heavy ion cyclotrons

  11. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  12. Study on characteristics of valves for pulsed gas feed into a cyclotron multicharged ion source

    International Nuclear Information System (INIS)

    Bogomolov, S.L.; Efremov, A.A.; Koval'chuk, I.M.; Kutner, V.B.; Pasyuk, A.S.

    1984-01-01

    Different valves (with rotating drum, piezoelectric and electromagnetic) for pulsed gas feed into cyclotron multicharged ion arc source are described. It is shown that piezoelectric and electromagnetic valves provide a possibility of regulating in a wide range the gas flow pulse parameters

  13. Startup work on Inshas cyclotron

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Strokach, A.P.; Shikhov, V.Ya.; Galchuk, A.V.; Soliman, A.N.; El-Abyad, M.; Comsan, M.N.H.; Saleh, Z.A.; Azzam, A.N.

    2001-01-01

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented [ru

  14. High-harmonic electron bunching in the field of a signal wave and the use of this effect in cyclotron masers with frequency multiplication

    Directory of Open Access Journals (Sweden)

    I. V. Bandurkin

    2005-01-01

    Full Text Available A method of organizing electron-wave interaction at the multiplied frequency of the signal wave is proposed. This type of electron-wave interaction provides multiplied-frequency electron bunching, which leads to formation of an intense harmonic of the electron current at a selected multiplied frequency of the signal wave. This effect is attractive for the use in klystron-type cyclotron masers with frequency multiplication as a way to increase the output frequency and improve the selectivity.

  15. Electron cyclotron resonance ion source for high currents of mono- and multicharged ion and general purpose unlimited lifetime application on implantation devices

    Science.gov (United States)

    Bieth, C.; Bouly, J. L.; Curdy, J. C.; Kantas, S.; Sortais, P.; Sole, P.; Vieux-Rochaz, J. L.

    2000-02-01

    The electron cyclotron resonance (ECR) ion sources were originally developed for high energy physic applications. They are used as injectors on linear accelerators and cyclotrons to further increase the particle energy via high charge state ions. This ECR technology is well suited for sources placed on a high voltage platform where ac power available is limited by insulated transformers. The PANTECHNIK family of ion source with its wide range of ion beam (various charge states with various beam currents) offers new possibilities and perspectives in the field of ion implantation. In addition to all these possibilities, the PANTECHNIK ion sources have many other advantages like: a very long lifetime without maintenance expense, good stability, efficiency of ionization close to 100% (this improves the lifetime of the pumping system and other equipment), the possibility of producing ion beams with different energies, and a very good reproducibility. The main characteristics of sources like Nanogan or SuperNanogan will be recalled. We will especially present the results obtained with the new Microgan 10 GHz source that can be optimized for the production of high currents of monocharged ion, including reactive gas like BF3 (2 mA e of B+) or medium currents of low charge state like 0.5 mA e of Ar4+. The latest results obtained with Microgan 10 GHz show that it is possible to drive the source up to 30 mA e of total current, with an emittance of 150 π mm mrad at 40 kV and also to maintain the production of multicharged ions like Ar8+.

  16. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  17. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e μA of 129 Xe 43+ , 22 e μA of 209 Bi 41+ , and 1.5 e μA of 209 Bi 50+ . To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e μA of 129 Xe 27+ and 152 e μA of 129 Xe 30+ , although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and 129 Xe 27+ , 78 Kr 19+ , 209 Bi 31+ , and 58 Ni 19+ beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development

  18. Development status of electron cyclotron resonance ion sources (ECRIS). Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zakhary, S G [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The present review provides a very brief introduction of the historical development of this recent trend type of ion sources. There are two main types of this source which use the microwave power (2.45 up to 20 GHz). ECR ion sources that can generate substantial currents of very high charge state ions ( for example ions of U with charge state +39, with intensities of a few hundred nano amperes for injection directly into cyclotrons or synchrotrons), and the microwave sources that can generate currents (100-500 mA) for ion implanters and accelerator injectors. In this work, the theory of the microwave discharge and influence of resonance on increasing the power density consumed by the discharge are studied. The power density consumed by the discharge is found to increase with increase of number of electrons in the discharge, and decreases with increase of discharge pressure. The description of the main components and factors affecting the design of the source are declared. Also the factors enhancing source performance such as: plasma cooling by the addition of light ions which absorb energy from the heavy ions thereby increasing the lifetime of the heavy ions, and increasing the extent of highly charged ions. Injection of electrons into the discharge increases the extracted ion current, and the decrease of the magnetic field in the extraction region decreases the beam emittance. 12 figs.

  19. Neutron skyshine measurement at a K1200 superconducting heavy ion cyclotron using bubble dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B. [Safety Div., Australian Nuclear Science and Technology Organisation, Menai (Australia); Ronningen, R.M. [Michigan State Univ., National Superconducting Cyclotron Lab., East Lansing, MI (United States); Rossi, P. [Michigan State Univ., Office of Radiation, Chemical and Biological Safety, East Lansing, MI (United States)

    1999-07-01

    Understanding the characteristics of the neutron skyshine radiation is necessary for an accurate assessment of the environmental dose in the vicinity of the containment of a high-energy particle accelerator. At the National Superconducting Cyclotron Laboratory (NSCL), neutron skyshine was measured, using beams of 140 MeV/nucleon {sup 4}He and 80 MeV/nucleon {sup 22}Ne ions from the K1200 superconducting cyclotron. After passing through a radioactive-beam production target, the ion beam stopped in a solid aluminium stopping bar inside of a dipole magnet, resulting in the production of high energy fragmentation as well as evaporation neutrons in the NSCL Analysis Hall. The neutron dose equivalent and energy spectrum at the 1.37 m thick concrete roof of the Analysis Hall, directly above the aluminium target bar (reference point), were estimated, using a spherical 'rem-counter' and a set of seven Bonner-spheres, respectively. The skyshine dose, from neutrons transmitted through 21.5-cm local iron 'shielding' of the dipole magnet and the concrete roof, were evaluated using superheated bubble dosimeters at 50 m, 75 m, 100 m and 115 m from the reference point. The neutron doses beyond the extremity of the NSCL facility were extrapolated from the results of this investigation and were used to predict the exposure to members of the public by considering the operation schedule of the K1200 cyclotron. (authors)

  20. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-01-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes

  1. Nonlinear collisionless electron cyclotron interaction in the pre-ionisation stage

    Science.gov (United States)

    Farina, D.

    2018-06-01

    Electron cyclotron (EC) wave-particle interaction is theoretically investigated in the pre-ionisation phase, much before collisions and other mechanisms can play a role. In the very first phase of a plasma discharge with EC-assisted breakdown, the motion of an electron at room temperature in a static magnetic field under the action of a localised microwave beam is nonlinear, and transition to states of larger energy can occur via wave trapping. Within a Hamiltonian adiabatic formalism, the conditions at which the particles gain energy in single beam crossing are derived in a rigorous way, and the energy variation is characterized quantitatively as a function of the wave frequency, harmonic number, polarisation and EC power and beam width. Estimates of interest for applications to tokamak start-up are obtained for the first, second and third cyclotron harmonic. The investigation confirms that electrons can easily gain energies well above the ionisation energy in most conditions at the first two harmonics, while not at the third harmonic, as observed in experiments.

  2. arXiv Cyclotrons: Magnetic Design and Beam Dynamics

    CERN Document Server

    Zaremba, Simon

    Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...

  3. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  4. Nonlinear electrostatic ion cyclotron waves in an rf-plugged inhomogeneous plasma slab

    International Nuclear Information System (INIS)

    Ikemura, Tsutomu.

    1977-01-01

    A theory based on the fluid and perturbation theories is developed to analytically study a nonlinear electrostatic ion cyclotron wave excited in an rf-plugged inhomogeneous plasma slab by applying a pair of external potentials phi sub(ext)(x,z) = +-PHI 0 cos ω 0 t.exp(-z 2 /2h 2 ) at its boundaries x = +-L. Here, B 0 is applied along the z-axis. The potential forms of the fundamental and the nonlinear second harmonic are found as functions of x, z and t provided the field-free densities vary as exp(-x 2 /2d 2 )(d 2 /h 2 0 ) created by the fundamental potential can approximately be regarded as a dipole field, provided that /1-μ/ 0 2 -ω sub(cl)sup(2))m sub(i)d 2 /(γ sub(i)T sub(i)+Z γ sub(e)T sub(e)). Under the stricter condition μ asymptotically equals 1, a dipole-like electric field can also be excited in the entire region for the case of high density and weak nonlinearity. It is shown that the assumption ω 0 -1 √ γ sub(e)T sub(e)/m sub(e) can lead to the Boltzmann relation for the electron fluid even in inhomogeneous plasmas. Moreover, the density depletion delta N sub(i) obtained here contains a new considerable term proportional to /phi/ 2 , in addition to the usual term proportional to -/delta phi/delta x/ 2 which originates from the ponderomotive force. (auth.)

  5. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  6. A small low energy cyclotron for radioisotope measurements

    International Nuclear Information System (INIS)

    Bertsche, K.J.

    1989-11-01

    Direct detection of 14 C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the ''cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of 14 C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring 14 C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting 14 C in some biomedical experiments by a factor of 10 4 . Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as 3 H, and 10 Be, and 26 Al, are discussed. 70 refs

  7. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  8. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  9. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  10. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  11. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  12. A gyrokinetic calculation of transmission and reflection of the fast wave in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Dendy, R.O.

    1993-01-01

    A full-wave equation has been obtained from the gyrokinetic theory for the fast wave traversing a minority cyclotron resonance [Phys. Fluids B 4, 493 (1992)] with the aid of the fast wave approximation [Phys. Fluids 31, 1614 (1988)]. This theory describes the transmission, reflection, and absorption of the fast wave for arbitrary values of the parallel wave number. For oblique propagation the absorption is due to both ion cyclotron damping by minority ions and mode conversion to the ion Bernstein wave. The results for a 3 He minority in a D plasma indicate that for perpendicular propagation and minority temperatures of a few keV the power lost by the fast wave is all mode converted whereas for minority temperatures ∼100 keV∼30% of the incident power is dissipated by the minority ions due to the gyrokinetic correction. The gyrokinetic correction also results in a significant reduction in the reflection coefficient for low field side incidence when k zLB approx-lt 1 and the minority and hybrid resonances overlap

  13. Dynamics of an ion chain in a harmonic potential

    International Nuclear Information System (INIS)

    Morigi, Giovanna; Fishman, Shmuel

    2004-01-01

    Cold ions in anisotropic harmonic potentials can form ion chains of various sizes. Here, the density of ions is not uniform, and thus the eigenmodes are not phononic-like waves. We study chains of N>>1 ions and evaluate analytically the long-wavelength modes and the density of states in the short-wavelength limit. These results reproduce with good approximation the dynamics of chains consisting of dozens of ions. Moreover, they allow one to determine the critical transverse frequency required for the stability of the linear structure, which is found to be in agreement with results obtained by different theoretical methods [D. H. E. Dubin, Phys. Rev. Lett. 71, 2753 (1993)] and by numerical simulations [J. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993)]. We introduce and explore the thermodynamic limit for the ion chain. The thermodynamic functions are found to exhibit deviations from extensivity

  14. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  15. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  16. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  17. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  18. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    International Nuclear Information System (INIS)

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.

    2012-01-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  19. The First Successful Compact Negative Heavy Ion Cyclotron

    International Nuclear Information System (INIS)

    Liu, Y.; Chen, M.; Li, D.; Lu, X.; Shen, L.; Xu, S.; Chen, G.

    1999-01-01

    A compact negative heavy ion minicyclotron has been set up in 1993 in Shanghai, China which is dedicated to the analysis of radioactive isotope 14 C. This is a new type of cyclotron with a series of gifted ideas, such as adopting triangular-wave Dee Voltage, configuring the asymmetric differential Dee electrodes with varying width and aperture, combining the yoke of the magnet with the vacuum chamber, designing a pair of the spherical electrostatic injection deflectors, adding auxiliary electrodes for extraction, alternately accelerating different particles and using Dynode-MCP detector for counting 14 C etc., all of which have aimed at increasing the transmission efficiency in the injection, acceleration and extraction region, eliminating various backgrounds and improving the precision of 14 C analysis. All of those will be introduced in this article. Finally, its operation performance and some difficulties will be discussed

  20. Study of axial injection of polarized protons into the grenoble cyclotron; Contribution a l'etude de l'injection axiale pour protons polarises sur le cyclotron de Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    Pabot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [French] L'injection axiale d'ions dans un cyclotron permet d'accelerer des particules (particules polarisees, ions lourds... ) difficiles a obtenir avec une source interne d'ions. Dans ce travail, apres avoir justifie le choix d'un dispositif d'injection axiale equipe d'un deflecteur 'pseudo-cylindrique' pour le cyclotron de Grenoble, nous avons etudie, du point de vue theorique, le principe d'un tel deflecteur, le choix de ses parametres, et l'incidence de ce choix sur les conditions d'acceleration du faisceau par le cyclotron. Du point de vue experimental, ce rapport decrit deux manipulations qui ont permis de verifier le bon fonctionnement du dispositif d'injection retenu, qualitativement d'abord (modele a electrons), quantitativement ensuite (maquette a protons). En conclusion, nous estimons que le cyclotron de Grenoble ainsi equipe, peut fournir un faisceau relativement intense de protons polarises. (auteur)

  1. Modified multipole structure for electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Suominen, P.

    2006-01-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)

  2. Modified multipole structure for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P.

    2006-07-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)

  3. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  4. First results with the yin-yang type electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Suominen, P.; Ropponen, T.; Koivisto, H.

    2007-01-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented

  5. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  6. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  7. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  8. 10 GHz ECRIS for Warsaw Cyclotron

    CERN Document Server

    Sudlitz, K

    1999-01-01

    Cusp type, 10 GHz ECRIS has been built and tested earlier. For obtaining intensive beams, more relevant for cyclotron, cusp geometry has been replaced by hexapole. Discharge chamber (stainless steel, 50 mm diameter, 250 mm long) is an extension of a coaxial line, feeding RF (9,6 GHz, up to 200 W) to the plasma. The NdFeB hexapole (0,52 T on the surface) has been used. The axial magnetic field is created by water cooled coils. The axial injection line dedicated to K160 isochronous heavy ion cyclotron has been constructed. The line consists of Glaser lenses, double focusing magnet, solenoid and mirror type inflector. The system provides sufficient transmission of the beam from ECR ion source to the firsts orbits of the cyclotron for m/q ranging from 7 to 2. After successful initial tests which were done in July 1997 the ECRIS serves as an external source for Warsaw Cyclotron.

  9. Enhanced confinement in electron cyclotron resonance ion source plasma.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  10. The technology of the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Barber, G.C.

    1988-01-01

    Plasma heating in the ion cyclotron range of frequencies (ICRF) is the least expensive means of accomplishing auxiliary heating in fusion experiments. RF systems comprise two major elements: the transmitter and the antenna. The state of the art for the transmitter is already at the megawatt level. The technology of the antenna is strongly coupled to the plasma character. Typically, these antennas are designed to operate at a high power density (1.2 kW/cm 2 ) with an efficiency of 96%. ICRF technology and options have improved over the past few years, owing to development and experiments; however, the optimal combination of options can be defined only when results from confinement experiments and test facilities are in hand. 19 refs., 5 figs., 1 tab

  11. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  12. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  13. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  14. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.

    1996-01-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. copyright 1996 American Institute of Physics

  15. Dynamic shear stabilization of hydromagnetic instabilities in low-beta plasma column by a frequency near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Minami, Kazuo; Sato, Kazunori.

    1978-09-01

    The dynamic shear stabilization of the hydromagnetic instability in low-beta plasmas by an axial RF current whose frequency is not much smaller than the ion cyclotron frequency ωsub(ci) is analyzed in some detail. We adopt the simple model of a uniform plasma column with infinite conductivity. Attention is limited to the case of the m = 1 kink mode with long wave lengths. The Mathieu equation, in which the effect of the ion cyclotron motion is taken into account, is derived. It is shown that the dynamic shear stabilization is still effective, even if the frequency of the applied RF current is of the order of ωsub(ci), which is considerably higher than the frequencies believed to be available in the previous analyses. (author)

  16. Health physics aspects of the 1.5M cyclotron

    International Nuclear Information System (INIS)

    Song, W.J.; Du, H.L.; Wei, Z.Q.; Xia, X.S.; Zheng, H.Z.; Jiang, G.F.; Liu, Y.Y.

    1987-01-01

    The 1.5m cyclotron in Institute of Modern Physics, Academia Sinica had operated for about 20 years until 1984 then converted to 1.7m sector focusing cyclotron. In this period it mainly used for fast neutron physics, light ion induced nucleus reactions, radioisotope production and heavy ion reactions. The health physics performed on this cyclotron including personnel dose monitoring, area monitoring (radiation field, radioactive aerosol, surface contamination and activated components etc.), maintenance inspection, environment survey and waste disposal is presented in this paper

  17. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  18. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  19. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  20. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing...

  1. Mass measurements with the CIME cyclotron at GANIL

    International Nuclear Information System (INIS)

    Hornillos, M B Gomez; Chartier, M; Mittig, W; Blank, B; Chautard, F; Demonchy, C E; Gillibert, A; Jacquot, B; Jurado, B; Lecesne, N; Lepine-Szily, A; Orr, N A; Roussel-Chomaz, P; Savajols, H; Villari, A C C

    2005-01-01

    A new direct technique using the CIME cyclotron as a high-resolution mass spectrometer is being developed in order to measure the masses of exotic nuclei. Tests have been performed to check the feasibility of the method with a mixed beam of stable ions extracted from the SPIRAL ion source and injected into the CIME cyclotron. Preliminary results obtained with this new technique are presented and discussed

  2. Recent ion cyclotron range of frequencies experiments in JT-60U

    International Nuclear Information System (INIS)

    Kimura, H.; Fujii, T.; Saigusa, M.; Moriyama, S.; Sato, M.; Nemoto, M.; Kondoh, T.; Hamamatsu, K.

    1995-01-01

    Recent results on the minority ion second harmonic heating on JT-60U are presented. Maximum coupled power reached 6.4MW. Good antenna-plasma coupling capability and a small fraction (less than 10%) of an incremental radiation loss to r.f. power are confirmed. Power absorption rate increases with increasing r.f. power and is saturated around unity at r.f. powers higher than 3MW. The sawtooth stabilization by minority ion second harmonic heating was realized over a wide parameter range, i.e. I P =0.9MA-4MA, q 95 =2.3-8.6, n e =(1.3-5)x10 19 m -3 and P IC ≥2.2MW. A figure of merit V P left angle n e right angle /P tot for efficiency of the sawtooth stabilization is about 50% higher than those in other devices where fundamental resonance minority ion heating is employed. The longest stable period reached 2.33s. Attainable sawtooth-free periods scale with the resistive diffusion time. It was found that the energy confinement is further improved by 25% during the reheating phase after the giant sawtooth crash. The electron temperature profile became more peaked at the improved confinement phase. Those phenomena were observed only in low q discharges (q 95 ≤2.9). ((orig.))

  3. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    Science.gov (United States)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  4. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  5. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  6. How cyclotrons work

    International Nuclear Information System (INIS)

    Nolan, D.

    1992-01-01

    The operating principles of a cyclic accelerator are presented based on the IBA Cyclone 30 negative ion cyclotron, selected for the Australia's first medical cyclotron. Its main features are: acceleration with variable energy of between 15-30 million electron volts, the capability of extracting two beams simultaneously, low power consumption, easy maintenance. Other aspects not directly related to the principle of operation discussed include the vacuum and the radio-frequency systems as well as the complex computerized control system used to automatically control start-up and shut-down operations. ills

  7. Future cyclotron systems : an industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  8. Future cyclotron systems: An industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  9. Ion cyclotron modes in a low density plasma cavity. Part I: Theory

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1990-12-01

    Ion cyclotron modes excited in a low density, cylindrical plasma cavity using an external inductive antenna are investigated theoretically. These modes, which have a long parallel wavelength, exhibit a strong electrostatic character and are only weakly coupled to the antenna fields. It is shown that, despite the low frequency considered, electron dynamics play a dominant role via the effects of both Landau damping and electron inertia. The characteristics of the wavefields associated with these modes, relevant to an experimental investigation, are described. (author) 8 figs., 1 tab., 10 refs

  10. Polarized electron cyclotron emission in the Tokapole II Tokamak

    International Nuclear Information System (INIS)

    Sengstacke, M.A.; Dexter, R.N.; Prager, S.C.

    1984-06-01

    To examine the effect of wall reflections we have measured the polarization of second harmonic cyclotron emission (at omega = 2 omega/sub ce/) in the Tokapole II tokamak both with and without a microwave absorber installed within the field of view of the receiving antenna. Indeed, the local elimination of wall reflections markedly enhances the polarization, as described in section II. Section III describes observations consistent with right-hand cutoff effects and an attempt to infer the electron temperature from cyclotron emission in an optically thin plasma

  11. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  12. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  13. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  14. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  15. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  16. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2017-01-01

    Full Text Available The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS plasma sustained in a mixture of Kr with O_{2}, N_{2}, Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (∼1  V compared to pure Kr plasma (∼0.01  V, with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  17. Application of the laser induced fluorescence to the investigation of highly magnetized plasmas, heated by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Pailloux, A.

    1997-01-01

    This work has been achieved in the frame of isotopic separation studies by in cyclotron resonance. For this purpose, in a highly magnetized (2 to 3 Tesla) and non-collisional (10 12 ions/cm 3 ) plasma, composed of metallic ions, a wave near the ion cyclotron frequency is thrown in order to heat selectively a given species. A laser induced fluorescence (LIP) has been developed on barium and gadolinium plasmas. The Larmor gyration of ions greatly modifies the interaction, which has been modelled through the time-dependent Schroedinger equation. The obtained excitation probably has been integrated over all the ions excited in the measurement volume in order to check that the LIF still leads to the distribution function of ion velocities. The influence of the Larmor motion of ions on the spectral distribution of LIF has been derived both theoretically and experimentally. The LIF diagnostics has been achieved with a dye O'ring laser. The barium ion has been excited on the transition 6142 angstrom, using rhodamine 6G dye, and the gadolinium ion on the pseudo-triplet 3861 angstrom, using exalite dye. Data treatment has been developed taking into account the Zeeman effect and the different heating of isotopes. The ionic temperature (from 1 eV to some hundreds eV) has been measured as a function of radiofrequency heating. Our experimental results are in good agreement with the selective heating theory. Also, the ion velocity distribution function has been found locally Maxwellian. And the behaviour of the plasma has been studied as a function of control parameters of the plasma source. (author)

  18. RF current generation near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Watkins, J.G.

    1982-01-01

    An experiment has been conducted to measure unipolar currents driven by directional radio frequency waves in a cylindrical plasma mirror machine near the ion cyclotron frequency. The directional waves were launched using a four phase helical coupler which allowed the selection of both azimuthal mode number (m = +1) and direction of wave propagation. Plasma diagnostics include electron density measurements (4 mm microwave interferometer), electron temperature measurements (floating double probe), wave amplitude and coupling measurements (magnetic probes). RF power measurements (RF voltage and current probes) and RF driven plasma current measurements (Rogowski loops and current transformers). End electrodes provided a necessary external return path and an alternate method for measuring the current. Theoretical work includes an analytic approximation to the nonlinear problem of a particle in a traveling wave and computer simulations that extend this result. Nonlinear particle drifts other than trapping were found both with and without the presence of particle collisions

  19. High current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Onai, M.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Kanagawa 223-8522 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Okumura, Y. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Aomori 039-3212 (Japan)

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  20. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  1. Electron cyclotron heating calculations for ATF

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.

    1986-03-01

    The RAYS geometrical optics code has been used to calculate electron cyclotron wave propagation and heating in the Advanced Toroidal Facility (ATF) device under construction at Oak Ridge National Laboratory (ORNL). The intent of this work is to predict the outcome of various heating scenarios and to give guidance in designing an optimum heating system. Particular attention is paid to the effects of wave polarization and antenna location. We investigate first and second harmonic cyclotron heating with the parameters predicted for steady-state ATF operation. We also simulate the effect of wall reflections by calculating a uniform, isotropic flux of power radiating from the wall. These results, combined with the first-pass calculations, give a qualitative picture of the heat deposition profiles. From these results we identify the compromises that represent the optimum heating strategies for the ATF model considered here. Our basic conclusions are that second harmonic heating with the extraordinary mode (X-mode) gives the best result, with fundamental ordinary mode (O-mode) heating being slightly less efficient. Assuming the antenna location is restricted to the low magnetic field side, the antenna should be placed at phi = 0 0 (the toroidal angle where the helical coils are at the sides) for fundamental heating and at phi = 15 0 (where the helical coils are at the top and bottom) for second harmonic heating. These recommendations come directly from the ray tracing results as well as from a theoretical identification of the relevant factors affecting the heating

  2. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  3. Design calculation for the central region of the NSCL 500 MeV superconducting cyclotron

    International Nuclear Information System (INIS)

    Marti, F.; Gordon, M.M.; Chen, M.B.; Salgado, C.; Antaya, T.; Liukkonen, E.

    1982-01-01

    The 500 MeV superconducting cyclotron has three 60 0 dees within the magnet valleys, and the design of the central region is complicated because it must accommodate the inner tips of these dees, the tips of the three intervening dummy dees, and the ion source, all within a very small space. In addition, this cyclotron is designed to operate on harmonics from h=1 to 7, with dee voltages up to 100 kV, and must accelerate a wide variety of heavy ions with turn numbers from n=100 to 600. To satisfy these diverse requirement, the overall plan for the central region calls for the construction and use of many different, but readily interchangeable sets of electrode structures with each set designed for a different range of operating conditions. The procedure for determining the optimum geometry for a set of electrodes involves a converging sequence of tentative designs each of which is tested and improved through a combination of electrolytic tank measurements and orbit computations. For this purpose, the speed and accuracy of the tank measurements have been improved, and the resultant potentials are used in our computer programs to determine whether the ion orbits clear the obstacles successfully, gain energy efficiently, receive adequate vertical focusing, and finally emerge from the central region properly centered. The vertical motion computations are by far the most difficult, and a special effort has been made to obtain satisfactory results

  4. Status of the Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Bigham, C.B.; Heighway, E.A.; Hoffmann, C.R.; Hulbert, J.A.; Schneider, H.R.

    1982-01-01

    The Chalk River four-sector K=520 superconducting cyclotron is designed to accelerate all ions from lithium (to 50 MeV/u) to uranium (to 10 MeV/u) using a 13 MV tandem Van de Graaff as injector. After an extended shutdown the magnet has been reassembled and field measurements resumed. During the shutdown a ground fault between the superconducting coil and its container was removed, the flutter poles were shimmed and the remaining trim rod holes were bored in them, the 104 trim rods with their holders were installed and the cryostat inner wall was modified to accept the radiofrequency accelerating structure. Experiments on the radiofrequency accelerating system, cryopumps, electrostatic deflector and superconducting windings for the magnetic channel are done in separate test chambers. Recent results and the status of all subsystems are given

  5. Electron-cyclotron-resonant-heated electron distribution functions

    International Nuclear Information System (INIS)

    Matsuda, Y.; Nevins, W.M.; Cohen, R.H.

    1981-01-01

    Recent studies at Lawrence Livermore National Laboratory (LLNL) with a bounce-averaged Fokker-Planck code indicate that the energetic electron tail formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is not Maxwellian. We present the results of our bounce-averaged Fokker-Planck code along with some simple analytic models of hot-electron distribution functions

  6. Measurements of energetic helium-3 minority distributions during ion cyclotron radiofrequency heating in the Princeton large torus

    International Nuclear Information System (INIS)

    Hammett, G.W.; Kaita, R.; Wilson, J.R.

    1988-01-01

    Ion cyclotron radiofrequency heating experiments were performed with a 3 He minority ion species in a 4 He majority plasma in the Princeton Large Torus. The energetic 3 He ion 'tail' was measured directly with a charge exchange neutral analyser for the first time. Comparisons with bounce averaged quasi-linear calculations suggest a modestly peaked radiofrequency power deposition profile. The double charge exchange process 3 He ++ + 4 He o -> 3 He o + 4 He ++ demonstrated in these measurements may be useful as part of an alpha particle diagnostic in a fusion reactor experiment. (author). 21 refs, 4 figs

  7. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  8. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Sehgal, Akansha

    2014-01-01

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  9. Tachyonic cyclotron radiation

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    2006-01-01

    We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The tachyonic line spectra of hydrogenic ions such as H, 56 Fe 25+ , and 238 U 91+ , as well as their muonic counterparts pμ - , 56 Fe 26+ μ - and 238 U 92+ μ - are calculated, in particular the tachyonic power transversally and longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylinder fields of γ -ray and millisecond pulsars, such as the Crab pulsar, PSR B1509-58, and PSR J0218 + 4232. The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic source particles are derived. We study the parameters determining the global shape of the transversal and longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that electrons and nuclei cycling in the surface fields can reach energies beyond the ''ankle'' of the cosmic ray spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays. (orig.)

  10. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    International Nuclear Information System (INIS)

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Aßmus, D.; Wauters, T.

    2014-01-01

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation

  11. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Aßmus, D. [Max Planck Institut für Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Wauters, T. [Association Euratom-Belgian State, LPP-ERM/KMS, 1000 Brussels (Belgium)

    2014-02-12

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

  12. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  13. Injection and central region studies for the VINCY Cyclotron

    International Nuclear Information System (INIS)

    Milinkovic, L.; Toprek, D.; Brajuskovic, B.

    1992-01-01

    The central region of the VINCY Cyclotron, the main part of the TESLA Accelerator Installation, is designed to operate with two external ion sources: an ECR ion source for heavy ions, and a multicusp ion source for H - and D - ions. A tilted spiral inflector with an electric bending radius of 25 mm is used to bend the beams into the median plane of the Cyclotron at the magnetic radius of 16 mm. The optical properties of the inflector were studied, and an effort to minimize the inflector fringe field, using the RELAX3D code, for the calculation of the electric potential distribution, was made. (author) 7 refs.; 4 figs

  14. Kinetic effects in Alfven and ion-cyclotron-wave propagation: Surface eigenmodes and impurity effects

    International Nuclear Information System (INIS)

    Li Wannquan.

    1989-01-01

    In a circular cylindrical geometry, the author solves a fourth-order set of differential equations numerically for the perturbed fields E τ and E perpendicular . The model takes into account the equilibrium current, magnetic shear, finite ω/ω c1 effect, mode conversion effects like finite ion gyroradius and electron inertia, and various dissipative mechanisms such as electron Landau and collisional damping, and minority fundamental and majority second harmonic cyclotron absorption. To illustrate the results, the author plots the perturbed electric fields and the energy absorbed by each species. He first examines cold plasma surface Alfven eigenmodes analytically and numerically in a pure plasma. The motivation for this work is to investigate how to avoid the undesirable edge absorption and introduce the methods for the study of impurity effects. In the two-species plasmas, he considers three special examples: (1) minority oxygen in hydrogen in PRETEXT, (2) minority T or H in deuterium in TFTR. He adopts two models: (i) a radially varying minority charge, or (ii) a radially varying magnetic field to investigate the minority gyroresonance heating. The model (ii) is used to examine these three examples. But the model (i) is only applied to the first one. In model (i), it is found that surface modes can induce the eigenmodes and dissipate substantial energy near the hybrid layer in the interior. Some cases analytically manageable are given an interpretation of why there is large or small energy deposition in this layer. It is shown that this strongly depends on poloidal mode numbers, minority concentrations, and minority charge profiles

  15. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  16. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  17. Applied research with cyclotrons

    International Nuclear Information System (INIS)

    Apel, P.; Dmitriev, S.; Gulbekian, G.; Gikal, B.; Ivanov, O.; Reutov, V.; Skuratov, V.

    2005-01-01

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86 Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136 Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  18. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  19. Majority ion heating near the ion-ion hybrid layer in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas

  20. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  1. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  2. Modern compact cyclotrons for nuclear medicine designed and manufactured in NIIEFA

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Vasilchenko, I.N.; Gavrish, Yu.N.; Galchuk, A.V.; Grigorenko, S.V.; Kuzhlev, A.N.; Menshov, Yu.D.; Mudroyubov, V.G.; Ponomarenko, V.I.; Strokach, A.P.

    2012-01-01

    A series of compact cyclotrons, the CC-12, CC-18/9 and MCC-30/15, intended for the production of radionuclides for diagnostics and therapy directly in medical institutions has been designed and manufactured in NIIEFA. These cyclotrons provide the acceleration of negative hydrogen and deuterium ions injected from external sources. Beams of accelerated particles are extracted by stripping negative ions to protons and deuterons by carbon foils. Shielding-type electromagnets with the vertically located median plane are applied in these cyclotrons.

  3. Fast wave heating of two-ion plasmas in the Princeton large torus through minority cyclotron resonance damping

    International Nuclear Information System (INIS)

    Hosea, J.; Bernabei, S.; Colestock, P.

    1979-07-01

    Strong minority proton heating is produced in PLT through ion cyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker--Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels

  4. Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-13

    We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.

  5. Study of axial injection of polarized protons into the grenoble cyclotron

    International Nuclear Information System (INIS)

    Pabot, J.

    1969-01-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [fr

  6. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  7. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    International Nuclear Information System (INIS)

    Girka, I. O.; Girka, V. O.; Sydora, R. D.; Thumm, M.

    2016-01-01

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1. An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.

  8. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    International Nuclear Information System (INIS)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-01

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He ++ - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating

  9. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  10. Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function - particle aspect analysis

    Directory of Open Access Journals (Sweden)

    G. Ahirwar

    2006-08-01

    Full Text Available The effect of parallel electric field on the growth rate, parallel and perpendicular resonant energy and marginal stability of the electromagnetic ion-cyclotron (EMIC wave with general loss-cone distribution function in a low β homogeneous plasma is investigated by particle aspect approach. The effect of the steepness of the loss-cone distribution is investigated on the electromagnetic ion-cyclotron wave. The whole plasma is considered to consist of resonant and non-resonant particles. It is assumed that resonant particles participate in the energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effect of the parallel electric field with the general distribution function is to control the growth rate of the EMIC waves, whereas the effect of steep loss-cone distribution is to enhance the growth rate and perpendicular heating of the ions. This study is relevant to the analysis of ion conics in the presence of an EMIC wave in the auroral acceleration region of the Earth's magnetoplasma.

  11. Sub-harmonic bunching with the AGOR cyclotron

    NARCIS (Netherlands)

    Brandenburg, S; Roobol, LP; Stokroos, M; Marti, F

    2001-01-01

    A quasi-single gap buncher with saw-tooth voltage has been designed and is currently being built at the KVI. It operates at a sub-harmonic of the RF frequency and has a duty cycle of 80% at 15 MHz. We report on the design of the new buncher, and on results of tests with our sinusoidal buncher to

  12. Small-sized cyclotron for studies of physical processes in accelerators

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Voronin, A.M.; Gerasimov, V.I.; Gor'kovets, M.S.; Gromov, D.D.; Zavezionov, V.P.; Kruglov, V.G.

    1979-01-01

    A description is given of a cyclotron intended for studying physical processes taking place in the accelerator central part, for investigating various ion sources and also for optimizing the elements and systems of the U-150M isochronous cyclotron. The accelerator uses a hot-cathode slit ion source. The resonance system constitutes a quarter-wave nonaxial resonator excited at a frequency of 11.2 MHz. Investigations of beam time characteristics showed that the beam axial size constituted 11 mm, its radial size 5 mm. Displacement of the beam with respect to the median plane does not exceed 2 mm. In the cyclotron H + ions have been accelerated to an energy of 1 MeV. The integrated beam current constituted 250 μA

  13. Status of the ITER Ion Cyclotron H and CD system

    Energy Technology Data Exchange (ETDEWEB)

    Lamalle, P., E-mail: philippe.lamalle@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Beaumont, B.; Kazarian, F.; Gassmann, T. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Agarici, G. [Fusion for Energy, Carrer Josep Pla 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain); Ajesh, P. [ITER India, Institute for Plasma Research, Bhat, Gandhinagar 382424, Gujarat (India); Alonzo, T. [Solution F, Allée du Verdon, 13770 Venelles (France); Arambhadiya, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Argouarch, A. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Bamber, R. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Berger-By, G.; Bernard, J.-M.; Brun, C. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Carpentier, S. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Clairet, F.; Colas, L.; Courtois, X. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Davis, A. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dechelle, C.; Doceul, L. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► We summarize the progress and outstanding issues in the development of the ITER Ion Cyclotron Heating and Current Drive (IC H and CD) system. ► The system is designed to robustly couple 20 MW in quasi-CW operation for a broad range of plasma scenarios, and is upgradeable to up to 40 MW. ► The design is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject. ► R and D is ongoing to validate key antenna components, and to qualify the radio-frequency (RF) sources and the transmission and matching components. ► Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. -- Abstract: The ongoing design of the ITER Ion Cyclotron Heating and Current Drive system (20 MW, 40–55 MHz) is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject, several of which are conflicting and/or still in a high state of flux. These requirements include operation over a broad range of plasma scenarios and magnetic fields (which prompts usage of wide-band phased antenna arrays), high radio-frequency (RF) power density at the first wall (and associated operation close to voltage and current limits), resilience to ELM-induced load variations, intense thermal and mechanical loads, long pulse operation, high system availability, efficient nuclear shielding, high density of antenna services, remote-handling ability, tight installation tolerances, and nuclear safety function as tritium confinement barrier. R and D activities are ongoing or in preparation to validate critical antenna components (plasma-facing Faraday screen, RF sliding contacts, RF vacuum windows), as well as to qualify the RF power sources and the transmission and matching components. Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. The paper

  14. Application of the laser induced fluorescence to the investigation of highly magnetized plasmas, heated by ion cyclotron resonance; Fluorescence induite par laser sur des plasmas fortement magnetises, chauffes par resonnance cyclotron ionique

    Energy Technology Data Exchange (ETDEWEB)

    Pailloux, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    1997-12-31

    This work has been achieved in the frame of isotopic separation studies by in cyclotron resonance. For this purpose, in a highly magnetized (2 to 3 Tesla) and non-collisional (10{sup 12} ions/cm{sup 3}) plasma, composed of metallic ions, a wave near the ion cyclotron frequency is thrown in order to heat selectively a given species. A laser induced fluorescence (LIP) has been developed on barium and gadolinium plasmas. The Larmor gyration of ions greatly modifies the interaction, which has been modelled through the time-dependent Schroedinger equation. The obtained excitation probably has been integrated over all the ions excited in the measurement volume in order to check that the LIF still leads to the distribution function of ion velocities. The influence of the Larmor motion of ions on the spectral distribution of LIF has been derived both theoretically and experimentally. The LIF diagnostics has been achieved with a dye O`ring laser. The barium ion has been excited on the transition 6142 angstrom, using rhodamine 6G dye, and the gadolinium ion on the pseudo-triplet 3861 angstrom, using exalite dye. Data treatment has been developed taking into account the Zeeman effect and the different heating of isotopes. The ionic temperature (from 1 eV to some hundreds eV) has been measured as a function of radiofrequency heating. Our experimental results are in good agreement with the selective heating theory. Also, the ion velocity distribution function has been found locally Maxwellian. And the behaviour of the plasma has been studied as a function of control parameters of the plasma source. (author) 62 refs.

  15. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    Science.gov (United States)

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  16. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  17. Electron cyclotron maser instability in the solar corona: The role of superthermal tails

    International Nuclear Information System (INIS)

    Vlahos, L.; Sharma, R.R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone--driven electron cyclotron maser instability is analyzed. We found that for a supertheral tail with temperature approx.10 keV (i) the first harmonic (X- and O-mode) is suppressed for n/sub t//n/sub r/roughly-equal1 (n/sub t/ and n/sub r/ are the densities of superthermal tail and loss-cone electrons) and (ii) the second harmonic (X- and O-modes) is suppressed for n/sub t//n/sub r/ -1 . We present a qualitative discussion on the formation of superthermal taisl and suggest that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona

  18. Electron cyclotron maser instability in the solar corona - The role of superthermal tails

    Science.gov (United States)

    Vlahos, L.; Sharma, R. R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.

  19. Initial operation of the cyclotron CYTRACK

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Dolya, S.N.; Kalinichenko, V.V.; Karamysheva, G.A.; Kostromin, S.A.; Fedorenko, S.B.

    2005-01-01

    The industrial cyclotron CYTRACK is dedicated to produce the track membranes. It is the basic instrument for the industry of membrane products to be consumed in medicine, biotechnology, pharmacology, microelectronics and many other industries. Cyclotron CYTRACK started working in August 2002. Argon ions were accelerated to the project energy - 2.4 MeV/nucleon, the extracted beam intensity was about 200 nA, the extraction efficiency totaled ∼50%

  20. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-01-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I FC by the mobile plate tuner. The I FC is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I FC and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I FC when we change the position of the mobile plate tuner.

  1. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  2. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  3. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  4. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  5. Parallel ion flow velocity measurement using laser induced fluorescence method in an electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Okamoto, Atsushi; Terasaka, Kenichiro; Ogiwara, Kohei; Tanaka, Masayoshi Y.; Aramaki, Mitsutoshi

    2010-01-01

    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model. (author)

  6. Measurements of Mode Converted Ion Cyclotron Wave with Phase Contrast Imaging in Alcator C-Mod and Comparisons with Synthetic PCI Simulations in TORIC

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Edlund, E. M.; Lin, L.; Lin, Y.; Wright, J. C.; Wukitch, S. J.

    2009-01-01

    Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D- 3 He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found to be in qualitative agreement with the measurements.

  7. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Science.gov (United States)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  8. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    Science.gov (United States)

    Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA

    2013-06-01

    13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion

  9. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  10. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  11. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  12. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  13. Football coil: a device to produce absolute minimum magnetic field and an isochronous cyclotron for heavy ions

    International Nuclear Information System (INIS)

    Szu, H.H.

    1977-01-01

    An electric solenoid is considered which consists of several discrete, circular and superconducting wires. The size of each loop varies from one to several meters in the radius. Furthermore, if such a solenoid is made into a football shape by squeezing the ends symmetrically, it is referred to here as a football coil. A discussion is given of the theory of synergic focusing; phase stability and universal orbit; application and computer simulation; and ion self-fields and self-focusing. An isochronous cyclotron was designed using the superconducted football coil and van resonators with flare height. It can accelerate various species of heavy ions; the heavier the rest mass of an ion, the better the present scheme will be

  14. The Quadrumafios electron cyclotron resonance ion source: presentation and analysis of the results

    International Nuclear Information System (INIS)

    Girard, A.; Briand, P.; Gaudart, G.; Klein, J.P.; Bourg, F.; Debernardi, J.; Mathonnet, J.M.; Melin, G.; Su, Y.

    1993-01-01

    The Quadrumafios electron cyclotron resonance ion source (ECRIS) has been especially designed to permit physical studies of the plasma; this paper describes the source itself (which has been operated at 10 GHz in a first step), its preliminary performances, and the different diagnostics involved, which mainly concern the electron population (ECE, X rays, diamagnetism, microwave interferometer, and electron analyser). The results are presented and discussed: there is of course a close relationship between the parameters of the plasma and the performances of the source; this point will be discussed in the article. (authors). 5 refs., 9 figs

  15. Development of a 20 mA negative hydrogen ion source for cyclotrons

    Science.gov (United States)

    Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.

    2017-08-01

    A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).

  16. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  17. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfven Wave (FW) Damping on Resonant Ions in Tokamaks

    International Nuclear Information System (INIS)

    Choi, M.; Chan, V.S.; Pinsker, R.I.; Tang, V.; Bonoli, P.; Wright, J.

    2005-01-01

    To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement

  18. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures

    International Nuclear Information System (INIS)

    Schachter, L.; Dobrescu, S.; Stiebing, K. E.

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut fuer Kernphysik der Universitaet Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the 'MD source' as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an ''all stainless steel'' ECRIS.

  19. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  20. Orsay cyclotron design with superconducting coils and the associated accelerating unit

    International Nuclear Information System (INIS)

    1983-06-01

    This report ends the theoretical and technical studies of the project of new accelerating unit proposed by IPN at Orsay. The isochronous cyclotron with superconducting coils is coupled to two different injections: an axial one with polarized or not ion sources for light ions or multicharged ion sources for heavy ions; a radial injection from the reviewed tandem MP13Met. The following points are underlined: 1) the specificity of the machine 2) the theoretical and technical feasibility of a compact high frequency accelerating system suited to this type of machine 3) the development of an extraction device of the beam 4) the feasibility of an axial injection along the optical axis coupled to a unique central region of the cyclotron 5) the criterions to define, the choices to make to get a radial injection of the beam coming from the tandem in the cyclotron [fr

  1. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  2. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  3. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    Science.gov (United States)

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  4. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Directory of Open Access Journals (Sweden)

    Ryo eNakabayashi

    2015-12-01

    Full Text Available In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis. To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs. The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  5. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Science.gov (United States)

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  6. The influence of ambipolarity on plasma confinement and on the performance of electron cyclotron resonance ion sources.

    Science.gov (United States)

    Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T

    2008-02-01

    Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.

  7. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  8. The development of technology for the improvement of cyclotron performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jong Seo; Kim, Y. S.; Ha, J. H.; Lee, M. Y.; Lee, H. S

    1999-05-01

    We show the first-order beam optics theory which is a simplified theory that can be used to carry out the initial design of a cyclotron. Based on this, a computer program has been developed to determine main cyclotron parameters such as number of magnet sectors, sector angle, hill and valley fields, and overall size of the cyclotron etc. We then show the result of two-dimensional magnetic field calculation using POISSON program. By using this program, one can determine magnet yoke geometry and the average magnetic fields etc. Finally, the three-dimensional computer program OPERA-3D had been invoked to determine magnet pole tips (i.e. sector). Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this report, we show the results of cyclotron magnet design. And we designed 72 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Our developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion.

  9. Matching of ion sources to cyclotron inflectors

    International Nuclear Information System (INIS)

    Baartman, R.

    1988-06-01

    In general, cyclotron inflectors strongly couple the two transverse subspaces. This leads to a growth in emittance projections for a beam with no initial correlation between the two transverse subspaces. Only in the case of the Mueller (hyperboloid) inflector is there no emittance growth. We have made calculations using an optimization routine to match a given beam through the axial injection system. We find that in the limit where all the emittance is due to a beam's axial angular momentum (for example, from an ECR source), matching with no emittance growth is possible even in the case of mirror or spiral inflectors. Moreover, any one of the two transverse emittances circulating in the cyclotron can be made smaller than the source emittance while maintaining the sum of the emittances constant. This is achieved by rotating the matching quadrupoles with respect to the inflector and retuning

  10. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    Science.gov (United States)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  11. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    International Nuclear Information System (INIS)

    Vlahos, L.; Sprangle, P.

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail. 31 references

  12. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    Science.gov (United States)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  13. RAYIC - a numerical code for the study of ion cyclotron heating of large Tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1984-02-01

    The code RAYIC models coupling, propagation and absorption of e.m. waves in large axisymmetric plasmas in the ion cyclotron frequency domain. It can be used both to investigate the waves behaviour, and as a source of the power deposition profiles for use in transport codes. The present user manual, after a brief summary of the physical model, presents the structure of RAYIC, the complete list of input-output variables (calling sequence), and some examples of the output which can be obtained from the code. (orig.)

  14. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  15. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M. [iThemba LABS, P.O Box 722, Somerset West 7130 (South Africa); Hitz, D. [CEA/DRFMC, 17 Av. Des Martyrs, 38054, Grenoble Cedex 9 (France); Kuechler, D. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2012-02-15

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  16. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    International Nuclear Information System (INIS)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M.; Hitz, D.; Kuechler, D.

    2012-01-01

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  17. Electron cyclotron emission from the PLT tokamak

    International Nuclear Information System (INIS)

    Hosea, J.; Arunasalam, V.; Cano, R.

    1977-07-01

    Experimental measurements of electron cyclotron emission from the PLT tokamak plasma reveal that black-body emission occurs at the fundamental frequency. Such emission, not possible by direct thermal excitation of electromagnetic waves, is herein attributed to thermal excitation of electrostatic (Bernstein) waves which then mode convert into electromagnetic waves. The local feature of the electrostatic wave generation permits spatially and time resolved measurements of electron temperature as for the second harmonic emission

  18. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Silze, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  19. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  20. Electron cyclotron resonance ion stream etching of tantalum for x-ray mask absorber

    International Nuclear Information System (INIS)

    Oda, Masatoshi; Ozawa, Akira; Yoshihara, Hideo

    1993-01-01

    Electron cyclotron resonance ion stream etching of Ta film was investigated for preparing x-ray mask absorber patterns. Ta is etched by the system at a high rate and with high selectivity. Using Cl 2 as etching gas, the etch rate decreases rapidly with decreasing pattern width below 0.5 μm and large undercutting is observed. The problems are reduced by adding Ar or O 2 gas to the Cl 2 . Etching with a mixture of Cl 2 and O 2 produces highly accurate Ta absorber patterns for x-ray masks. The pattern width dependence of the etch rate and the undercutting were simulated with a model that takes account of the angular distribution of active species incident on the sample. The experimental results agree well with those calculated assuming that the incidence angles are distributed between -36 degrees and 36 degrees. The addition of O 2 or Ar enhances ion assisted etching. 16 refs., 16 figs

  1. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University.

    Science.gov (United States)

    Ren, H T; Peng, S X; Xu, Y; Zhao, J; Lu, P N; Chen, J; Zhang, A L; Zhang, T; Guo, Z Y; Chen, J E

    2014-02-01

    At Peking University (PKU) we have developed several 2.45 GHz Permanent Magnet Electron Cyclotron Resonance ion sources for PKUNIFTY, SFRFQ, Coupled RFQ&SFRFQ, and Dielectric-Wall Accelerator (DWA) projects (respectively, 50 mA of D(+), 10 mA of O(+), 10 mA of He(+), and 50 mA of H(+)). In order to improve performance of these ion sources, it is necessary to better understand the principal factors that influence the plasma density and the atomic ion fraction. Theoretical analysis about microwave transmission and cut-off inside the discharge chamber were carried out to study the influence of the discharge chamber diameters. As a consequence, experimental studies on plasma density and ion fraction with different discharge chamber sizes have been carried out. Due to the difficulties in measuring plasma density inside the discharge chamber, the output beam current was measured to reflect the plasma density. Experimental results show that the plasma density increases to the maximum and then decreases significantly as the diameter changed from 64 mm to 30 mm, and the atomic ion fraction has the same tendency. The maximum beam intensity was obtained with the diameter of 35 mm, but the maximum atomic ion fraction with a diameter of 40 mm. The experimental results are basically accordant with the theoretical calculation. Details are presented in this paper.

  2. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Peng, S. X., E-mail: sxpeng@pku.edu.cn; Xu, Y.; Zhao, J.; Lu, P. N.; Chen, J.; Zhang, A. L.; Zhang, T.; Guo, Z. Y.; Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2014-02-15

    At Peking University (PKU) we have developed several 2.45 GHz Permanent Magnet Electron Cyclotron Resonance ion sources for PKUNIFTY, SFRFQ, Coupled RFQ and SFRFQ, and Dielectric-Wall Accelerator (DWA) projects (respectively, 50 mA of D{sup +}, 10 mA of O{sup +}, 10 mA of He{sup +}, and 50 mA of H{sup +}). In order to improve performance of these ion sources, it is necessary to better understand the principal factors that influence the plasma density and the atomic ion fraction. Theoretical analysis about microwave transmission and cut-off inside the discharge chamber were carried out to study the influence of the discharge chamber diameters. As a consequence, experimental studies on plasma density and ion fraction with different discharge chamber sizes have been carried out. Due to the difficulties in measuring plasma density inside the discharge chamber, the output beam current was measured to reflect the plasma density. Experimental results show that the plasma density increases to the maximum and then decreases significantly as the diameter changed from 64 mm to 30 mm, and the atomic ion fraction has the same tendency. The maximum beam intensity was obtained with the diameter of 35 mm, but the maximum atomic ion fraction with a diameter of 40 mm. The experimental results are basically accordant with the theoretical calculation. Details are presented in this paper.

  3. ROKCY-12 (KCCH PET-dedicated cyclotron): main features and improvements

    International Nuclear Information System (INIS)

    Chai, J. S.; Kim, Y. S.; Yang, Y. T.; Jung, I. S.; Hong, S. S.; Lee, M. Y.; Jang, H. S.; Kim, J. H.

    2002-01-01

    In this paper, we describe the development of 13 MeV cyclotron (ROKCY-12) that can be used for a Position Emission Tomography(PET) purpose. This cyclotron with a maximum beam energy of 13 MeV can produce radio isotopes especially 18 F which has a relatively short half lifetime of 110 minutes. First, we show the beam characteristics can be used to carry out the operation of ROCKY-12. Based on this, a computer program has been developed to determine main cyclotron parameters such as cyclotron magnet, RF system, ion source, vacuum system and other cyclotron operation parameters. And then we show the result of design and manufacturing feature of ROKCY-12. By using this design program, one can determines magnet yoke geometry and the average magnetic fields etc. And then the three-dimensional computer program OPERA-3D has been invoked to determine magnet pole tips. Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this paper, we show the results of cyclotron beam by ROCKY-12. We designed 77.3 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion. Cyclotron controller asks inputs of every sensor and output of every instrument for notifying current condition to operator. It has independent controllers, for example DC power supply, vacuum system, beam profile system, beam extraction system, RF system, ion source, cooling unit and so on. Basically, each control system uses RS-485 for communication to main control computer. Consumers reward products and services that feature quality, originality, a distinct personality and charm. The International Standardization Organization (ISO) requires, as its mission, that we achieve competitive superiority by

  4. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  5. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  6. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  7. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    Science.gov (United States)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  8. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    International Nuclear Information System (INIS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-01-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions

  9. Ion cyclotron radio frequency systems and performance on the tandem mirror experiment-upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Moore, T.L.; Molvik, A.W.; Cummins, W.F.; Pedrotti, L.R.; Henderson, A.L.; Karsner, P.G.; Scofield, D.W.; Brooksby, C.A.

    1983-01-01

    High power ion cyclotron radio frequency (ICRF) systems are now gaining greater attention than before as prime driver ion heating systems. Lawrence Livermore National Laboratory (LLNL) has installed a 200 kW high frequency (HF) transmitter system on its Tandem Mirror Experiment-Upgrade (TMX-U). This paper describes the system, antenna, controls, and monitoring apparatus. The transmitter operates into a high Q antenna installed in the central cell region of the experiment. It incorporates a dual-port feedback system to automatically adjust the transmitter's output power and allow the maximum consistent with the plasma loading of the antenna. Special techniques have been used to measure, in real-time, the dynamically changing loading values presented by the plasma. From the measurements, the antenna impedance can be optimized for specified plasma density

  10. Operation of the Karlsruhe Isochronous Cyclotron in 1975

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1976-06-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1975 is briefly surveyed. The main reasons for a very short period for maintenance, repair and installation, and several additional efforts to improve the reliability of the accelerator installation, are discussed. The status and the results of several technical developments for the cyclotron are described: 1) the axial injection system; 2) computer aided cyclotron operation; 3) ion source development; 4) capacitive current measurement at the external beam; 5) new correction coils for the cyclotron; 6) improvement of the neutron time-of-flight spectrometer. As there is an increasing interest in using this type of accelerator for research in fields other than nuclear physics, it was felt appropriate to present short surveys on investigations at our cyclotron in 1975 in the fields of: 1) solid state physics; 2) engineering; 3) materials research; 4) nuclear medicine; 5) nuclear chemistry. (orig.) [de

  11. Estimation of magnetic fields in cyclotron AIC-144

    International Nuclear Information System (INIS)

    Daniel, K.; Talach, M.

    2005-11-01

    The method of magnetic fields calculation, what is based on result of incomplete magnetic measurements, in the chamber of cyclotron is described. Special emphasis is given to precision of calculation, in particular concerning an impact of currents flowing in the concentric coils on harmonic components of magnetic induction on particular radiuses in the chamber. In the earlier calculation this impact was ignored or required time-consuming measurements. (author)

  12. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  13. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  14. First results of beam generation test for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Tachikawa, T.; Hayashi, Y.; Ishii, K.

    1992-01-01

    The performance of JAERI AVF cyclotron was investigated with several kinds of ions in the wide energy range. The 90 MeV protons of 10 μA intensity was successfully extracted for the first time by the model 930 cyclotron. The feature of beam chopping system is also presented. (author)

  15. Fast-wave ion cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-01-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the RF power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approximately 3eVx10 13 cm -3 .kW for H and approximately 6eVx10 13 cm -3 .kW for 3 He minorities. Neutron fluxes of approximately 3x10 11 s -1 corresponding to a Tsub(d) approximately 2keV (ΔTsub(d) approximately 1.2keV) have been produced with Psub(RF) approximately 620kW at anti nsub(e) approximately 2.9x10 13 cm -3 . Neutron energy spectra and mass-sensitive charge-exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates approximately >10 12 s -1 have been produced by the energetic 3 He ions. For the second-harmonic regime, initial heating results for an H plasma at Psub(RF) approximately 140kW are consistent with the Fokker-Planck theory, and the bulk heating rate is comparable with that of D-heating in the D-H minority regime. (author)

  16. Operational experience and recent developments at the National Medical Cyclotron, Sydney

    International Nuclear Information System (INIS)

    Conard, E.M.; Arnott, D.W.

    1996-01-01

    The National Medical Cyclotron, Sydney, Australia commenced operation in mid 1991, with a mission to provide PET and SPECT radionuclides throughout Australia. The realization of the present production capacity has been synonymous with the development of the facility's industrial cyclotron (IBA Cyclone 30). The choice of cyclotron was based on the Cyclone 30's virtues as a compact, user-friendly, energy efficient cyclotron, offering the beam quality characteristic of negative ion technology. Development of the cyclotron has improved reliability and increased beam capacity, while improvements to targetry have increased production reliability. More recently, the installation and commissioning of a new solid target irradiation facility has provided much needed redundancy. This paper describes the major cyclotron and targetry developments carried out to date. (orig.)

  17. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  18. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  19. Channel of Axial Injection of DC-60 Cyclotron

    CERN Document Server

    Gikal, B N; Bogomolov, S L; Borisenko, A N; Borisov, O N; Gulbekyan, G G; Ivanenko, I A; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Khabarov, M V; Lysukhin, S N; Melnikov, V N; Paschenko, S V; Tikhomirov, A V

    2006-01-01

    The design study and realization of the axial injection beam line of DC-60 cyclotron constructed at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research are given. The channel allows one to transport and to inject into the cyclotron ions with mass-to-charge ratio $A/Z$ being within interval A/Z=6-12 and kinetic energy up to 17 $Z/A$ keV/m.u.

  20. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  1. Introduction to ECR [electron cyclotron resonance] sources in electrostatic machines

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1989-01-01

    Electron Cyclotron Resonance (ECR) ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the possible use of ECR heavy-ion sources in the terminals of electrostatic machines is discussed. The basic concepts of ECR sources are reviewed in the next section using the ORNL source as a model. The possible advantages of ECR sources over conventional negative ion injection and foil stripping are discussed in Section III. The last section describes the possible installation of an ECR source in a large machine such as the HHIRF 25-MV Pelletron. 6 refs., 4 figs., 1 tab

  2. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  3. Cyclotron for industrial production of radioisotopes: relevants characteristics

    International Nuclear Information System (INIS)

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  4. Design study of the KIRAMS-430 superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-01-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the "1"2C"6"+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  5. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Wook; Kang, Joonsun, E-mail: genuinei@kirams.re.kr; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the {sup 12}C{sup 6+} ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  6. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  7. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...... temperature and plasma rotation velocity. This demonstrates that ECRH systems can be exploited for diagnostic purposes alongside their primary heating purpose in a reactor relevant scenario....

  8. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  9. Analysis Tools for the Ion Cyclotron Emission Diagnostic on DIII-D

    Science.gov (United States)

    Del Castillo, C. A.; Thome, K. E.; Pinsker, R. I.; Meneghini, O.; Pace, D. C.

    2017-10-01

    Ion cyclotron emission (ICE) waves are excited by suprathermal particles such as neutral beam particles and fusion products. An ICE diagnostic is in consideration for use at ITER, where it could provide important passive measurement of fast ions location and losses, which are otherwise difficult to determine. Simple ICE data analysis codes had previously been developed, but more sophisticated codes are required to facilitate data analysis. Several terabytes of ICE data were collected on DIII-D during the 2015-2017 campaign. The ICE diagnostic consists of antenna straps and dedicated magnetic probes that are both digitized at 200 MHz. A suite of Python spectral analysis tools within the OMFIT framework is under development to perform the memory-intensive analysis of this data. A fast and optimized analysis allows ready access to data visualizations as spectrograms and as plots of both frequency and time cuts of the data. A database of processed ICE data is being constructed to understand the relationship between the frequency and intensity of ICE and a variety of experimental parameters including neutral beam power and geometry, local and global plasma parameters, magnetic fields, and many others. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  10. Excitation and propagation of electromagnetic fluctuations with ion-cyclotron range of frequency in magnetic reconnection laboratory experiment

    International Nuclear Information System (INIS)

    Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi; Kuwahata, Akihiro

    2013-01-01

    Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection

  11. Amplification of electromagnetic ion cyclotron waves along a wave path in the Earth's multicomponent magnetosphere

    International Nuclear Information System (INIS)

    Hu, Y.D.; Fraser, B.J.; Olson, J.V.

    1990-01-01

    In this report, the authors consider the amplification of electromagnetic ion cyclotron waves along a geomagnetic field line in the multicomponent magnetosphere, assuming that the waves propagate parallel to the background magnetic field. The find it is possible for the ring-current protons (energy ∼ 10-100 keV), which supply the free energy to stimulate the waves, to resonate with the waves not only in the equatorial region but also off the equator. An instability, caused by a thermal anisotropy, may occur in separated regions on and/or off the equator. The positions of the source regions along the wave path depend on the concentration of cold heavy ion species. The significant off-equator source regions may be located at geomagnetic latitudes where the waves, with frequencies greater than the He + gyrofrequency on the equator, are in a local He + pass band

  12. Measurements on rotating ion cyclotron range of frequencies induced particle fluxes in axisymmetric mirror plasmas

    International Nuclear Information System (INIS)

    Hatakeyama, R.; Hershkowitz, N.; Majeski, R.; Wen, Y.J.; Brouchous, D.B.; Proberts, P.; Breun, R.A.; Roberts, D.; Vukovic, M.; Tanaka, T.

    1997-01-01

    A comparison of phenomenological features of plasmas is made with a special emphasis on radio-frequency induced transport, which are maintained when a set of two closely spaced dual half-turn antennas in a central cell of the Phaedrus-B axisymmetric tandem mirror [J. J. Browning et al., Phys. Fluids B 1, 1692 (1989)] is phased to excite electromagnetic fields in the ion cyclotron range of frequencies (ICRF) with m=-1 (rotating with ions) and m=+1 (rotating with electrons) azimuthal modes. Positive and negative electric currents are measured to flow axially to the end walls in the cases of m=-1 and m=+1 excitations, respectively. These parallel nonambipolar ion and electron fluxes are observed to be accompanied by azimuthal ion flows in the same directions as the antenna-excitation modes m. The phenomena are argued in terms of radial particle fluxes due to a nonambipolar transport mechanism [Hojo and Hatori, J. Phys. Soc. Jpn. 60, 2510 (1991); Hatakeyama et al., J. Phys. Soc. Jpn. 60, 2815 (1991), and Phys. Rev. E 52, 6664 (1995)], which are induced when azimuthally traveling ICRF waves are absorbed in the magnetized plasma column. copyright 1997 American Institute of Physics

  13. Measurements with vertically viewing charge exchange analyzers during ion cyclotron range of frequencies heating in TFTR

    International Nuclear Information System (INIS)

    Kaita, R.; Hammett, G.W.; Gammel, G.; Goldston, R.J.; Medley, S.S.; Scott, S.D.; Young, K.M.

    1988-01-01

    The utility of charge exchange neutral particle analyzers for studying energetic ion distributions in high-temperature plasmas has been demonstrated in a variety of tokamak experiments. Power deposition profiles have been estimated in the Princeton large torus (PLT) from particle measurements as a function of energy and angle during heating in the ion cyclotron range of frequencies (ICRF) and extensive studies of this heating mode are planned for the upcoming operational period in the tokamak fusion test reactor (TFTR). Unlike the horizontally scanning analyzer on PLT, the TFTR system consists of vertical sightlines intersecting a poloidal cross section of the plasma. A bounce-averaged Fokker--Planck program, which includes a quasilinear operator to calculate ICRF-generated energetic ions, is used to simulate the charge exchange flux expected during fundamental hydrogen heating. These sightlines also cross the trajectory of a diagnostic neutral beam (DNB), and it may be possible to observe the fast ion tail during 3 He minority heating, if the DNB is operated in helium for double charge exchange neutralization

  14. First plasma of the A-PHOENIX electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Thuillier, T.; Lamy, T.; Latrasse, L.; Angot, J.

    2008-01-01

    A-PHOENIX is a new compact hybrid electron cyclotron resonance ion source using a large permanent magnet hexapole (1.92 T at the magnet surface) and high temperature superconducting Solenoids (3 T) to make min-vertical bar B vertical bar structure suitable for 28 GHz cw operation. The final assembly of the source was achieved at the end of June 2007. The first plasma of A-PHOENIX at 18 GHz was done on the 16th of August, 2007. The technological specificities of A-PHOENIX are presented. The large hexapole built is presented and experimental magnetic measurements show that it is nominal with respect to simulation. A fake plasma chamber prototype including thin iron inserts showed that the predicted radial magnetic confinement can be fulfilled up to 2.15 T at the plasma chamber wall. Scheduled planning of experiments until the end of 2008 is presented

  15. Influence of RF heating and MHD instabilities on the fast-ion distribution in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Markus

    2016-06-07

    been redesigned to measure blue and red Doppler shifts simultaneously. These upgrades allow a tomographic reconstruction of the 2D fast-ion velocity distribution at several well-defined measurement positions. The tomography has been successfully tested analyzing different fast-ion populations in plasmas free of instabilities. These enhanced diagnostic capabilities are used to study fast-ion transport caused by plasma instabilities. In particular, the velocity-space dependence of the fast-ion redistribution during sawtooth crashes is investigated. It is found, that fast ions with high velocity components perpendicular to the magnetic field are less affected by sawtooth crashes than other fast ions, and theoretical explanations for these observations are discussed. In addition, radial redistribution by Alfven eigenmodes is analyzed. Significant radial fast-ion redistribution is found in the presence of a reversed-shear Alfven eigenmode cascade. Furthermore, the acceleration of fast deuterium beam ions by 2nd harmonic ion cyclotron heating is investigated. This is important, because future fusion devices are foreseen to use 2nd harmonic absorption as heating scheme, in contrast to 1st harmonic minority ICRH, which is used in most present-day devices. Hence, the physic principles of 2nd harmonic absorption must be investigated and well understood in order to ensure, that theoretical predictions for e.g. ITER are correct. In the tomographic reconstruction of FIDA signals, clear high energy tails due to 2nd harmonic ICRH are seen, and comparisons to theoretical codes are presented.

  16. Influence of RF heating and MHD instabilities on the fast-ion distribution in ASDEX upgrade

    International Nuclear Information System (INIS)

    Weiland, Markus

    2016-01-01

    been redesigned to measure blue and red Doppler shifts simultaneously. These upgrades allow a tomographic reconstruction of the 2D fast-ion velocity distribution at several well-defined measurement positions. The tomography has been successfully tested analyzing different fast-ion populations in plasmas free of instabilities. These enhanced diagnostic capabilities are used to study fast-ion transport caused by plasma instabilities. In particular, the velocity-space dependence of the fast-ion redistribution during sawtooth crashes is investigated. It is found, that fast ions with high velocity components perpendicular to the magnetic field are less affected by sawtooth crashes than other fast ions, and theoretical explanations for these observations are discussed. In addition, radial redistribution by Alfven eigenmodes is analyzed. Significant radial fast-ion redistribution is found in the presence of a reversed-shear Alfven eigenmode cascade. Furthermore, the acceleration of fast deuterium beam ions by 2nd harmonic ion cyclotron heating is investigated. This is important, because future fusion devices are foreseen to use 2nd harmonic absorption as heating scheme, in contrast to 1st harmonic minority ICRH, which is used in most present-day devices. Hence, the physic principles of 2nd harmonic absorption must be investigated and well understood in order to ensure, that theoretical predictions for e.g. ITER are correct. In the tomographic reconstruction of FIDA signals, clear high energy tails due to 2nd harmonic ICRH are seen, and comparisons to theoretical codes are presented.

  17. Third-harmonic generation by a Gaussian electromagnetic beam in a magnetoplasma

    International Nuclear Information System (INIS)

    Sodha, M.S.; Umesh, G.

    1978-01-01

    This paper presents an investigation of nonlinear third-harmonic generation in a weakly collisional magnetoplasma due to simultaneous propagation of both the right and left circularly polarized modes, having a Gaussian intensity distribution; self-focusing has been taken into account. At moderate powers, the self-focusing is seen to enhance the harmonic output by two orders of magnitude; at high powers, propagation occurs in an almost uniform waveguide devoid of plasma, and the harmonic output is, consequently, decreased. In the vicinity (ω/sub c//ω=0.7) of the electron cyclotron resonance, the harmonic output of the extraordinary mode is enhanced by an order of magnitude; the present theory is not applicable at resonance

  18. Experimental characteristics of ion Bernstein wave heating on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kawahata, K.; Ando, R.

    1986-03-01

    The directly launched Ion Bernstein Wave (IBW) heating experiments have been carried out on JIPP T-IIU tokamak for two experimental conditions; (a) the ''3rd-branch'' of the IBW between 3rd- and 4th-cyclotron harmonics of the deuterium, and (b) the ''2nd-branch'' of the IBW between 2nd- and 3rd-cyclotron harmonics. In the case (a), the direct hydrogen heating at ω = 1.5 Ω H has been found in previous experiments. Here we present additional data to support this subharmonics heating, i.e., the spectroscopic measurement of Fe XVIII lines and mass separated analysis of charge-exchange neutrals. While, in the case (b), the remarkable increase of the electron temperature has been observed, especially at the central region of the plasma, and it has been estimated from the global energy balance that almost all of IBW power is delivered to the electron. To investigate this difference of the heating mode, the power absorption has been calculated with the ray tracing code, taking into account of the effect of the plasma/antenna coupling. It is concluded from the consideration of the electron Landau damping that the transition from the ion heating mode to the electron one would be explained by the difference of the electron temperature at the ohmic phase; i.e., T e (0) = 0.7 keV for the case (a) and T e (0) = 1.3 keV for the case (b). (author)

  19. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-01-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm 2 (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 μA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 π mm mrad at 15 kV (1σ) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  20. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    Energy Technology Data Exchange (ETDEWEB)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie de Grenoble, UJF-CNRS/IN2P3 - INPG, 53, rue des Martyrs, 38026 Grenoble Cedex (France)

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  1. Electron-cyclotron maser emission during flares: emission in various modes and temporal variations

    International Nuclear Information System (INIS)

    Winglee, R.M.; Dulk, G.A.

    1986-01-01

    Absorption of radiation at the electron-cyclotron frequency, OMEGA sub e, generated by the electron-cyclotron maser instability was proposed as a possible mechanism for transporting energy and heating of the corona during flares. Radiation from the same instability but at harmonics of OMEGA sub e is believed to be the source of solar microwave spike bursts. The actual mode and frequency of the dominant emission from the maser instability is shown to be dependent on: (1) the plasma temperature, (2) the form of the energetic electron distribution, and (3) on the ratio of the plasma frequency omega sub p to OMEGA sub e. As a result, the emission along a flux tube can vary, with emission at harmonics being favored in regions where omega sub p/OMEGA sub e approx. equal to or greater than 1. Changes in the plasma density and temperature in the source region associated with the flare can also cause the characteristics of the emission to change in time

  2. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    International Nuclear Information System (INIS)

    McCarville, T.M.; Romesser, T.E.

    1985-01-01

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180 0 apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown

  3. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  4. Spectral features of lightning-induced ion cyclotron waves at low latitudes: DEMETER observations and simulation

    Czech Academy of Sciences Publication Activity Database

    Shklyar, D. R.; Storey, L. R. O.; Chum, Jaroslav; Jiříček, František; Němec, F.; Parrot, M.; Santolík, Ondřej; Titova, E. E.

    2012-01-01

    Roč. 117, A12 (2012), A12206/1-A12206/16 ISSN 0148-0227 R&D Projects: GA ČR GA205/09/1253; GA ČR GAP205/10/2279; GA MŠk ME09107 Grant - others:GA ČR(CZ) GPP209/12/P658 Program:GP Institutional support: RVO:68378289 Keywords : Plasma waves analysis * ion cyclotron waves * satellite observation and numerical simulation * geometrical optics * multi-component measurements * simulation * spectrogram * wave propagation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.174, year: 2012 http://onlinelibrary.wiley.com/doi/10.1029/2012JA018016/abstract

  5. The superconducting separated orbit cyclotron TRITRON

    International Nuclear Information System (INIS)

    Trinks, U.

    1984-01-01

    At the Munich 13 MV-Tandem Laboratory the TRITRON is under development, which will be the prototype of a superconducting separated orbit cyclotron for acceleration of heavy ions with 0.04 or approx.20) of the revolution frequency. Thus the frequency range for acceleration of ions with different revolution frequency can be kept small (+-3%). The magnets as well as the cavities are contained in the same cavity. (orig.)

  6. Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    Science.gov (United States)

    Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET

    2017-05-01

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  7. Ion cyclotron waves: Direct compariosn between ground-based measurements and observations in the source region

    International Nuclear Information System (INIS)

    Perraut, S.; Gendrin, R.; Roux, A.; de Villedary, C.

    1984-01-01

    Simultaneous measurements of ion cyclotron waves (ICW's) were performed on GEOS spacecraft and in the vicinity of their magnetic footprints with the French Mobile station. The detailed comparison between the two sets of data shown that while ICW's having F + gyrofrequency at the equator, generally propagate to the ground, only 50% of those generated above F/sub He/ can reach the ground station. It is shown that these results are in good agreement with the conclusions that Rauch and Roux [1982] drew on the basis of measurements reported by Young et al 1981]. In an He + -rich plasma, ICW's with F>F/sub He/ suffer a reflection where the frequency locally matches the local bi-ion hybrid frequency. We extend the calculations of Rauch and Roux and calculate, as a function of the He + concentration, the tunneling of ICW's through the stopband induced by the presence of minor He + ions. It is shown that the transmission coefficient strongly depends upon the wave frequency for a given He + abundance ratio. The results obtained are shown to be supported by existing observations

  8. Fast-wave ion-cyclotron heating in the Princeton Large Torus

    International Nuclear Information System (INIS)

    Hosea, J.; Boyd, D.; Bretz, N.

    1981-02-01

    Recent experimental results for ICRF heating in PLT are presented. For the two-ion regime in D-H or D- 3 He plasmas minority H and 3 He ions are found to absorb the rf power and transfer it to the deuterons and electrons in accordance with Fokker-Planck theory. The deuteron heating rate is approx. 3 eV x 10 13 cm -3 /kW for H and approx. 6 eV x 10 13 cm -3 /kW for 3 He minorities. Neutron fluxes of approx. 3 x 10 11 sec -1 corresponding to a T/sub d/ approx. 2 keV (ΔT/sub d/ approx. 1.2 keV) have been produced with P/sub rf/ approx. = 620 kW at anti n/sub e/ approx. = 2.9 x 10 13 cm -3 . Neutron energy spectra and mass sensitive charge exchange spectra indicate Maxwellian deuteron distributions. In addition, D- 3 He fusion reaction rates greater than or equal to 10 12 sec -1 have been produced by the energetic 3 He ions. For the second harmonic regime, initial heating results for an H plasma at P/sub rf/ approx. = 140 kW are consistent with the Fokker-Planck theory and the bulk heating rate is comparable to that of D heating in the D-H minority regime

  9. Medical cyclotron basic concepts and its applications

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Sonkawade, R.G.

    2012-01-01

    More than 3000 nuclides are known, of which approximately 2700 are radioactive, and rest are stable. The majority of radionuclides are artificially produced in the reactor and cyclotron. In a cyclotron, Charge particle such as proton, Deuteron, á (Alpha) particle, 3 He particles and so forth are accelerated in circular paths within the Dees under vacuum by means of an electromagnetic field. These accelerated particles can possess few KeV to several BeV of kinetic energy depending on the design of the cyclotron. At our setup we have an 11 MeV dual beam multi target cyclotron which is capable producing 11 C, 13 N, 15 O, 18 F and 2 F radioisotopes and all have been successfully produced and tested in our lab. Earlier cyclotrons were the best source of high-energy beams for nuclear physics experiments; several cyclotrons are still in use for this type of research. Cyclotrons can be used to treat cancer. Ion beams from cyclotrons can be used, as in proton therapy. The positron emitting isotopes are suitable for PET imaging. As discussed we are producing mainly Carbon-11, Nitrogen-13, Oxygen-15, and Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localizing epileptic focus, and in dementia, psychiatry and neuropharmacology studies. So these are having significant role in diagnosis of Oncological, Neurological and Cardiological disorder. More than ninety percent we are producing 18 F in FDG. 18 F in FDG (Flouro-Deoxy-glucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. Medical cyclotron is complex equipment requiring delicate handling by highly trained personnel. The aim of this article is to highlight few finer aspects of Medical cyclotron operation, including precautions for safety and smooth functioning of this sophisticated equipment. (author)

  10. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G.; Ragona, R. [Department of Physics, Università di Torino (Italy); Helou, W.; Goniche, M.; Hillaret, J. [CEA/DSM/IRFM F-13 108 St Paul Les Durance (France)

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  11. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  12. Slow cyclotron waves in a waveguide with a relativistic electron beam

    International Nuclear Information System (INIS)

    Korenev, I.L.; Yudin, L.A.; Mustafin, Kh.Kh.

    1979-01-01

    Using the analytical methods the problem about propagation of waves of a small amplitude in an electron beam (without ions), moving along the axis of a smooth waveguide in the longitudinal magnetic field is considered. The main attention is paid to dispersion.characteristics and the slow cyclotron waves intended for ion acceleration. The problems connected with utilization of these waves for ion acceleration are discussed. The estimation shows that when a system of excitation of an accelerating wave has a wide range, i.e. excited is a great set of slow cyclotron modes, the accelerating field structure significantly changes at a distance of several dozens beam radii, and synchronism supply between the wave and accelerating ions becomes an impracticable task. So it is necessary to have a narrow-band excitation system to excite only a single mode. It is noted that the model used of a uniform beam density along the cross section is an idealization permitting to simplify analytical consideration. The presence of the radial density change in an undisturbed beam will lead to some other cyclotron wave field structure. However, such a change will not give any qualitative differences in comparison with the results obtained

  13. Second harmonic generation in a bounded magnetoplasma

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1975-01-01

    An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma

  14. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  15. Calculations for the design and modification of the 2 cyclotrons of S.A.R.A

    International Nuclear Information System (INIS)

    Albrand, P.S.; Belmont, J.L.; Ripouteau, F.

    1983-09-01

    S.A.R.A. is a heavy ion accelerator constituted by 2 cyclotrons. The second cyclotron (post-accelerator) was entirely calculated at the I.S.N. The pole tips of the first cyclotron which is much older, have recently been modified. An almost identical procedure was used for the calculation of each element of the post-accelerator of S.A.R.A. and also for the modifications to the first cyclotron

  16. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  17. Direct measurement of density oscillation induced by a radio-frequency wave

    International Nuclear Information System (INIS)

    Yamada, T.; Ejiri, A.; Shimada, Y.; Oosako, T.; Tsujimura, J.; Takase, Y.; Kasahara, H.

    2007-01-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected

  18. Magnetic component of narrowband ion cyclotron waves in the auroral zone

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Pickett, J. S.; Gurnett, D. A.; Storey, L. R. O.

    2002-01-01

    Roč. 107, A12, 1444 (2002), s. SMP 17-1-17-14, doi: 10.1029/2001JA000146 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Grant - others:NASA(US) NAG5-7943 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : proton-cyclotron frequency * plasma wave instrument * cyclotron waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2002

  19. Pb-ions in harmonic number 4653 at SPS flat bottom

    CERN Document Server

    Bartosik, H; Huschauer, A

    2017-01-01

    Pb-ion beams suer from strong beam degradation suchas transverse emittance growth and losses on the long flatbottom of the SPS cycles used for LHC filling. A possiblecontribution to the losses could come from RF noise, espe-cially due to the frequency and amplitude modulation duringeach revolution period of the fixed frequency accelerationmode required for the acceleration of these beams. A ma-chine development session in 2016 was devoted to a directcomparison of a cycle with fixed harmonic number at flatbottom and a cycle with the usually used fixed frequencymode. The main results are reported here.

  20. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  1. Ion heating at the cyclotron resonance in plasmas magnetically confined in a toroidal octupole field

    International Nuclear Information System (INIS)

    Barter, J.D.

    1976-01-01

    Ion temperatures as high as 600 eV have been produced using rf wave heating at the ion cyclotron resonance frequency in a toroidal octupole magnetic field. Rf is coupled to the plasma with an externally driven ''fifth'' hoop which forms the inductive leg of an oscillator tank circuit. Power levels up to 1 MW at 1 to 3 MHz have been applied for periods up to 2 msec. Plasmas produced either by ECRH or by gun injection are simulated with a computer program in which known particle and energy production and loss mechanisms are used to predict the spatially averaged time behaviour of the plasma in the presence of the applied ion heating. The program can be used to calculate the consequences of the heating model in the presence of many cooling mechanisms which may each have a separate dependence on instantaneous plasma parameters. Experimental quantities compared to computer predictions include density, ion temperature, and loading of the hoop by the plasma, both resistive and reactive, and neutral reflux from the wall by electron and ion impact. Wave penetration to the resonance zone is good up to the highest densities available (6 x 10 12 cm -3 by gun injection) in good agreement with theory. Neutral reflux from the walls and the large charge exchange cooling which results is the dominant loss mechanism at the higher hoop voltages

  2. The production of He-3 and heavy ion enrichment in He-3-rich flares by electromagnetic hydrogen cyclotron waves

    Science.gov (United States)

    Temerin, M.; Roth, I.

    1992-01-01

    A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.

  3. Status report on RIKEN Ring Cyclotron

    International Nuclear Information System (INIS)

    Yano, Y.

    1988-01-01

    This paper gives a status report on RIKEN Ring Cyclotron (RRC), successfully commissioned on December 16, 1986. The routine operation of RRC began in April, 1987, and was made until March 1988. April and May were devoted to the machine studies, and beams were delivered to the experiments from the end of May. Seven kinds of ion species from carbon to copper were used for the nuclear physics and atomic physics experiments during these one-year runs. High quality beams with transverse emittances less than 10 mm mrad, energy spread of approximately 0.1% and pulse width less than 300 psec were extracted. Since the middle of March, 1988, RRC has been shut down for extending the beam transfer lines and installing the various experimental setups. Next experimental program will start in July, 1988. The initial operational status of RRC is described as well as the running construction program of the new injector, a K70 AVF cyclotron with an external ECR ion source

  4. Overview of the future upgrade of the INFN-LNS superconducting cyclotron

    Science.gov (United States)

    Calabretta, Luciano; Calanna, Alessandra; Cuttone, Giacomo; D'Agostino, Grazia; Rifuggiato, Danilo; Domenico Russo, Antonio

    2017-06-01

    The LNS Superconducting Cyclotron, named “Ciclotrone Superconduttore” (CS), has been in operation for more than 20 years. A wide range of ion species from hydrogen to lead, with energy in the range 10 to 80 AMeV, have been delivered to users. The maximum beam power is limited to 100 W due to the beam dissipation on the electrostatic deflectors. To fulfil the demand of users aiming at studying rare processes in nuclear physics, an upgrade of the cyclotron is necessarily intended to increase the intensity of ion beams with mass lower than 40 a.m.u. up to a power 10 kW. This will be achieved by means of extraction by stripping. This solution needs to replace the cryostat including the superconducting coils. The present capability of the cyclotron will be maintained, i.e. all the ion species allowed by the operating diagram will be available, being extracted by electrostatic extraction. In addition to the high power beams for nuclear physics, it will be possible to produce medical radioisotopes like 211At using an internal target.

  5. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  6. AGOR: A superconducting cyclotron for light and heavy ions plans for experimental facilities and physics program

    International Nuclear Information System (INIS)

    Gales, S.

    1991-01-01

    The construction of the K600 superconducting cyclotron AGOR, a joint undertaking of the KVI Groningen and the Institut de Physique Nucleaire at Orsay, has reached the stage where the assembly of major subsystems is underway. Field measurements are scheduled to start in the fall of this year, beam tests should start at Orsay by the end of 1992 before AGOR final installation at Groningen. The beam guiding system, the location and equipments of the main experimental areas are currently being designed. Taking advantage of the broad range of ions and energies that AGOR will made available (from 200 MeV protons to 100 MeV/A α down to 6 MeV/A Pb ions), the first ideas about the physics research to be done will be presented. (author) 28 refs., 15 figs., 2 tabs

  7. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  8. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  9. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  10. Radioisotope production with a medical cyclotron

    International Nuclear Information System (INIS)

    Silvester, D.J.

    1974-01-01

    The cyclotron of Hammersmith hospital in England was completed and started the operation in 1955. The feature is in its design operable at high beam current, reaching 500μA in internal beam and 300μA in external beam. In 1960's, twelve nuclides of radioactive pharmaceuticals were produced with the cyclotron. C-11, N-13 and O-15 have been used in the form of radioactive gases such as CO or H 2 O to test lung functions. F-18 has been used for bone scanning. K-43 is employed in the research of electrolyte balancing together with Na-24 and Br-77. Fe-52 is utilized in iron ion researches as a tracer. Cs-129 is highly evaluated as an isotope for imaging cardiac clogging part. Radioisotopes must be much more used in the examination of in vivo metabolic function. For this purpose, peculiarly labelled compounds should be further developed. It is welcome that the persons paying attention to the medical prospect of cyclotrons are increasing. The author hopes to continue his endeavour to find new products made with the cyclotron for human welfare. (Wakatsuki, Y.)

  11. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    International Nuclear Information System (INIS)

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for 14 C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV 14 C at 10 -2 counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10 -4 counts/sec and excellent background suppression. With the cyclotron tuned near the 13 CH background peak, to the frequency for 14 C, the detector suppresses the background to 6 x 10 -4 counts/sec. For each 14 C ion the detectors grazing-incidence Al 2 O 3 conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive 12 C, 23 Na, 39 K, 41 K, 85 Rb, 87 Rb, and 133 Cs at 5 to 40 keV, and with 36 keV negative 12 C and 13 CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10 -7 Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode

  12. Radar observations of ion cyclotron waves associated with two barium shaped-charge releases

    International Nuclear Information System (INIS)

    Providakes, J.; Swartz, W.E.; Kelley, M.C.; Djuth, F.T.; Noble, S.; Jost, R.J.

    1990-01-01

    A 50-MHz Doppler radar interferometer and a 138-MHz Doppler radar were operated from Kennedy Space Center to study 3-m and 1-m plasma waves associated with two shaped-charged barium releases from Wallops Island, Virginia, on May 13, 1986. During the first release, interferometer and Doppler power spectral studies showed the existence of short-lived ( + EIC waves were unstable for field-aligned electron drifts greater than 0.7υ the at the altitude of 510 km in a multispecies (O + , NO + , or similarly O 2 + ) ionospheric plasma. The authors interpret the 30-Hz waves seen by the two radars far above the release as strong electrostatic ion cyclotron waves generated by intense field-aligned currents associated with the barium stream acting like an MHD generator coupled to the ionospheres

  13. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  14. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  15. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  16. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    Science.gov (United States)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  17. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    Science.gov (United States)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  18. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  19. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas

    International Nuclear Information System (INIS)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes

  20. ICRF [ion cyclotron range of frequencies] coupling on DIII-D and the implications on ICRF technology development

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Mayberry, M.J.; Swain, D.W.

    1987-01-01

    Low-power coupling tests have been carried out with a prototype ion cyclotron range of frequencies (ICRF) compact loop antenna on the DIII-D tokamak. Plasma load resistance values higher than originally calculated are measured in ohmic and L-mode, beam-heated plasmas. Load resistance decreases by a factor of ∼2 in H-mode operation. When edge localized modes (ELMs) occur, the antenna loading increases transiently to several ohms. Results indicate that fast-wave ICRF antenna coupling characteristics are highly sensitive to changes in the edge plasma profiles associated with the H-mode regime