Zhou, Q.; Nielsen, Søren R.K.; Qu, W.L.
2007-01-01
The paper deals with the control of sub- and superharmonic resonances by means of magnetorheological (MR) dampers of an inclined shallow cable caused by parametric excitation from harmonically varying support points. A mechanical model based on the Dahl hysteretic model is used to describe the dy...
Nonlinear dynamic response of stay cables under axial harmonic excitation
Xu XIE; He ZHAN; Zhi-cheng ZHANG
2008-01-01
This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation.The effects of important parameters related to parametric vibration of cables,I.e., characteristics of structure,excitation frequency,excitation amplitude,damping effect of the air and the viscous damping coefficient of the cables,were investigated by using the proposed method for the cables with significant length difference as examples.The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables,the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties,the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.
Wang, Yi-Ze; Li, Feng-Ming
2016-08-01
Structures under parametric load can be induced to the parametric instability in which the excitation frequency is located the instability region. In the present work, the parametric instability of double-walled carbon nanotubes is studied. The axial harmonic excitation is considered and the nonlocal continuum theory is applied. The critical equation is derived as the Mathieu form by the Galerkin's theory and the instability condition is presented with the Bolotin's method. Numerical calculations are performed and it can be seen that the van der Waals interaction can enhance the stability of double-walled nanotubes under the parametric excitation. The parametric instability becomes more obvious with the matrix stiffness decreasing and small scale coefficient increasing. The parametric instability is going to be more significant for higher mode numbers. For the nanosystem with the soft matrix and higher mode number, the small scale coefficient and the ratio of the length to the diameter have obvious influences on the starting point of the instability region.
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
The Linear Stability of the Responses of Axially Moving Beams Supported by an Intermediate Spring
Kostekci F.
2016-01-01
Full Text Available In the present paper, the stability investigation of the linear responses of axially travelling beams supported by an intermediate linear spring is performed numerically by means of searching linear complex eigenvalues. The boundary conditions and the dynamic equation of motion are obtained by means of the Extended Principle of Hamilton for the two-span Euler-Bernoulli beam. Assuming the harmonic solution of the governing differential equations of motion, the dispersion relation is derived. To have a nontrivial solution in conjunction with the dispersion relation, the frequency equation is obtained by letting the determinant of the matrix representing the coefficients of the equations of the boundary conditions be equal to zero. The aim of this contribution is to compute the complex values of the natural frequencies from the nonlinear frequency equation by means of numerical methods for the beam supported by an intermediate spring. The real and imaginary parts of the complex eigenvalues versus the constant axial transport speed curves are depicted in order to show the linear instability. Depending on the signs of the real and imaginary parts of the complex eigenvalues, the boundaries of the instability regions were observed.
THE STABILITY OF AN AXIALLY ACCELERATING BEAM ON SIMPLE SUPPORTS WITH TORSION SPRINGS
Yang Xiaodong; Chen Liqun
2005-01-01
The axially moving beams on simple supports with torsion springs are studied. The general modal functions of the axially moving beam with constant speed have been obtained from the supporting conditions. The contribution of the spring stiffness to the natural frequencies has been numerically investigated. Transverse stability is also studied for axially moving beams on simple supports with torsion springs. The method of multiple scales is applied to the partialdifferential equation governing the transverse parametric vibration. The stability boundary is derived from the solvability condition. Instability occurs if the axial speed fluctuation frequency is close to the sum of any two natural frequencies or is two fold natural frequency of the unperturbed system. It can be concluded that the spring stiffness makes both the natural frequencies and the instability regions smaller in the axial speed fluctuation frequency-amplitude plane for given mean axial speed and bending stiffness of the beam.
Daaf Sandkuijl
Full Text Available A new nonlinear microscopy technique based on interference of backward-reflected third harmonic generation (I-THG from multiple interfaces is presented. The technique is used to measure height variations or changes of a layer thickness with an accuracy of up to 5 nm. Height variations of a patterned glass surface and thickness variations of fibroblasts are visualized with the interferometric epi-THG microscope with an accuracy at least two orders of magnitude better than diffraction limit. The microscopy technique can be broadly applied for measuring distance variations between membranes or multilayer structures inside biological tissue and for surface height variation imaging.
Kheiralla, Lamia Sayed; Younis, Jihan Farouk
2014-02-01
This study compared the biomechanical responses of 3 single crowns supported by 3 different implants under axial and off-axial loading. A standard implant (3.75 mm diameter, 13 mm length), a mini implant (3 mm diameter, 13 mm length), and a short-wide implant (5.7 mm diameter, 8 mm length) were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported a full metal crown made of Ni-Cr alloy with standardized dimensions. Strain gauges and finite element analysis (FEA) were used to measure the strain induced under axial and off-axial functional loads of 300 N. Results showed that mini implants recorded the highest microstrains, under both axial and off-axial loading. All implants showed a considerable increase in strain values under off-axial loading. Standard and short-wide implants proved to be preferable in supporting crowns, as the standard implant showed the lowest strains under axial and off-axial loading using FEA simulation, while the short-wide implant showed the lowest strains under nonaxial loading using strain gauge analysis.
Harmonizing Settlement, Infrastructure, and Population Data to Support Sustainable Development
Chen, R. S.; de Sherbinin, A. M.; Yetman, G.
2016-12-01
The geospatial data community has been developing global-scale georeferenced population, human settlements, and infrastructure data for more than two decades, pushing available technologies to process ever growing amounts of data and increase the resolution of the outputs. These population, settlement, and infrastructure data products have seen wide use in varied aspects of sustainable development, including agriculture, energy, water, health, land use, transportation, risk management, and climate impact assessment. However, in most cases, data development has been driven by the availability of specific data sources (e.g., census data, night-time lights, radar data, or moderate- to high-resolution imagery), rather than by an integrated view of how best to characterize human settlement patterns over time and space on multiple dimensions using diverse data sources. Such an integrated view would enhance our ability to observe, model, and predict where on the planet people live and work—in the past, present, and future—and under what conditions, i.e., in relationship not only to environmental systems, resources, extremes, and changes, but also to the human settlements and built infrastructure that mediate impacts on both people and the environment. We report here on a new international effort to improve understanding of the strengths and weaknesses of existing and planned georeferenced data products, and to create a collaborative community across the natural, social, health, engineering, and data sciences and the public and private sectors supporting data integration and coordination to meet sustainable development data needs. Opportunities exist to share data and expertise, coordinate activities, pool computing resources, reduce duplication, improve data quality and harmonization, and facilitate effective data use for sustainable development monitoring and decision making, especially with respect to the 17 Sustainable Development Goals adopted by the international
2016-05-01
facility. The static pressure pipe was modelled as a slender propped cantilever beam (fixed at one end and roller-supported at the other) that is...Technology Group Transonic Wind Tunnel test facility. The static pressure pipe analysed herein was modelled as a slender propped cantilever beam...25 APPENDIX B: VBA FUNCTIONS FOR STATIC SOLUTION OF PROPPED CANTILEVER BEAM SUBJECTED TO COMBINED TRANSVERSE AND AXIAL LOADING
王念同; 魏雪亮
2001-01-01
Harmonic current in windings of traction rectifier transformer with axial split structure is analyzed and conditions for restraining the remaining component of uncharacteristic harmonic produced by unbalanced load are presented. The harmonic current in the windings on the line side under practical running condition is analyzed. The indispensable technical requirements for restraining it in traction rectifier transformer are introduced.
Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian
2015-08-01
The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P centrifugal CM device showed significantly lower activation of coagulation and inflammation than that of the HM II axial flow pump. Both HM II and CM have demonstrated an acceptable hemocompatibility profile in patients. However, there is a great opportunity to gain a clinical benefit by developing techniques to lower the blood surface interaction within both pump technologies and a magnetically levitated centrifugal pump design might be superior.
Response Analysis of Frame Supporting Structure of Slope under Harmonic Vibration
Jian Duan
2014-01-01
Full Text Available Based on certain assumptions, the dynamic mechanical model for frame supporting structure of slope is established, the dynamic equilibrium governing equation for vertical beam under forced vibration is derived, and hence its analytical solutions to harmonic forced vibration are obtained. What is more, the finite difference format and corresponding calculation procedure for vertical beam under forced vibration are given and programmed by using MATLAB language. In the case studies, comparative analyses have been performed to the response of vertical beam under horizontal harmonic forced vibration by using different calculating methods and with anchoring system damping effect neglected or considered. As a result, the feasibility, correctness, and characteristics of different methods can be revealed and the horizontal forced vibration law of vertical beam can be unveiled as well.
A closed-form solution to a viscoelastically supported Timoshenko beam under harmonic line load
Luo, W. L.; Xia, Y.; Zhou, X. Q.
2016-05-01
This study aims to formulate a closed-form solution to a viscoelastically supported Timoshenko beam under a harmonic line load. The differential governing equations of motion are converted into algebraic equations by assuming the deflection and rotation of the beam in harmonic forms with respect to time and space. The characteristic equation is biquadratic and thus contains 14 explicit roots. These roots are then substituted into Cauchy's residue theorem; consequently, five forms of the closed-form solution are generated. The present solution is consistent with that of an Euler-Bernoulli beam on a Winkler foundation, which is a special case of the present problem. The current solution is also verified through numerical examples.
Stochastic optimal control of cable vibration in plane by using axial support motion
Ming Zhao; Wei-Qiu Zhu
2011-01-01
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed. The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged 10 equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems. The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation. A bilinear controller by using the direct method of Lyapunov is introduced. The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.
Zhang, Yongfang; Hei, Di; Lü, Yanjun; Wang, Quandai; Müller, Norbert
2014-03-01
Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson- θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.
2007-11-02
in axial turbomachines and use the data to address turbulence and flow modeling issues that are specific to such complex environments. The motivation...stress modeling for LES. The report describes in detail our unique two-stage axial- turbomachine flow visualization facility, specifying the instruments
Ni, Qiao; Luo, Yangyang; Li, Mingwu; Yan, Hao
2017-09-01
Structural model for a slender and uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an incompressible fluid, is formulated. Free vibration and stability of the system are studied through numerical calculation. First, the equations of motion of the system are derived in an absolute coordinate system. An "axial added mass coefficient" is adopted to amend the forces caused by the external fluid. Boundary conditions are fixed by using coordinated conversion. Then, numerical results of the natural frequency are obtained via the Galerkin method, both for pinned-pinned and clamped-clamped supports. The critical speeds of supports and several instability types are discussed. Last, the effects of the system parameters on the dynamics and instability of the system are investigated.
Vortical light bullets in second-harmonic-generating media supported by a trapping potential
Sakaguchi, Hidetsugu
2013-01-01
We introduce a three-dimensional (3D) model of optical media with the quadratic ($\\chi ^{(2)}$) nonlinearity and an effective 2D isotropic harmonic-oscillator (HO) potential. While it is well known that 3D \\chi^2 solitons with embedded vorticity ("vortical light bullets") are unstable in the free space, we demonstrate that they have a broad stability region in the present model, being supported by the HO potential against the splitting instability. The shape of the vortical solitons may be accurately predicted by the variational approximation (VA). They exist above a threshold value of the total energy (norm) and below another critical value, which determines a stability boundary. The existence threshold vanishes is a part of the parameter space, depending on the mismatch parameter, which is explained by means of the comparison with the 2D counterpart of the system. Above the stability boundary, the vortex features shape oscillations, periodically breaking its axisymmetric form and restoring it. Collisions be...
Lohar, Hareram; Mitra, Anirban; Sahoo, Sarmila
2016-09-01
In the present study non-linear free vibration analysis is performed on a tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with different boundary conditions. Firstly the static problem is carried out through an iterative scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigen value problem. Minimum potential energy principle is used for the formulation of the static problem whereas for the dynamic problem Hamilton's principle is utilized. The free vibrational frequencies are tabulated for different taper profile, taper parameter and foundation stiffness. The dynamic behaviour of the system is presented in the form of backbone curves in dimensionless frequency-amplitude plane.
On the influence of lateral vibrations of supports for an axially moving string
van Horssen, W.T.
2002-01-01
In this paper the transverse oscillations in travelling strings due to arbitrary lateral vibrations of the supports will be studied. Using the method of Laplace transforms (exact) solutions will be constructed for the initial-boundary value problems which describe these transverse oscillations.
Vibrations of axially moving strings with in-plane oscillating supports
Fuglede, Niels; Thomsen, Jon Juel
a uniform, heavy string moving at subcritical speed with prescribed endpoint motion, and ignoring longitudinal inertia, one obtains a continuous, nonlinear, gyroscopic, parametrically and externally excited system. By employing a single-mode approximation, using velocity dependent mode shapes, the system...... response is approximated using the method of multiple scales. Vibrations from support oscillations characteristic of roller chain drives are investigated. Conclusions about critical values for chain drive parameters such as pretension and meshing frequency are sought and identified....
Dynamic stability of simply supported composite cylindrical shells under partial axial loading
Dey, Tanish; Ramachandra, L. S.
2015-09-01
The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.
Harmonic Generation in a Traveling-Wave Tube
Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad
2016-10-01
Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.
Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.
2013-06-01
We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions
Ganeev, Rashid A
2014-01-01
Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o
Witting, Nanna; Andersen, Linda K; Vissing, John
2016-01-01
musculature involvement in the majority of myopathies in which paraspinal musculature was examined. Even in diseases named after a certain pattern of non-axial muscle affection, such as facioscapulohumeral and limb girdle muscular dystrophies, affection of the axial musculature was often severe and early...
S. V. Gautier
2013-01-01
Full Text Available The paper describes the first clinical experience in RF of successful application of domestic circulatory support device based on implantable axial pump for two stage heart transplantation. This case demonstrate the effec- tiveness and safety of our device (АВК-Н for a longtime (270 days left ventricular bypass and the ability to perform a successful transplantation of donor,s heart after application of this system.
S. V. Gautier; G. P. Itkin; S. Yu. Shemakin; R. Sh. Saitgareev; V. N. Poptsov; V. M. Zakharevich; G. A. Akopov; A. Ya. Kormer; T. A. Khalilulin; O. P. Shevchenko; А. М. Nevzorov; I. А. Filatov; S. V. Selishev
2013-01-01
The paper describes the first clinical experience in RF of successful application of domestic circulatory support device based on implantable axial pump for two stage heart transplantation. This case demonstrate the effec- tiveness and safety of our device (АВК-Н) for a longtime (270 days) left ventricular bypass and the ability to perform a successful transplantation of donor,s heart after application of this system.
Luiz Fernando KUBRUSLY
2000-06-01
Full Text Available É apresentado estudo in vitro de um dispositivo de assistência circulatória totalmente implantável no ventrículo esquerdo, de fluxo axial e de tamanho pequeno (30 cc - 7 cm comprimento. Apesar dessas características foi capaz de gerar fluxos entre 5 - 8 l/min com motor, operando em 8 W, sem causar hemólise em período de até 12 horas. O custo de produção, excetuando-se o sistema de baterias, foi projetado entre 5 - 8 mil dólares, o que o torna viável para utilização clínica rotineira em nosso país.We are currently studying an intraventricular axial flow blood pump in vitro. It is designed for long term left ventricular support. The small (30 cc, 7 cm length was capable of producing flows of 5 - 8 l/min on a 8 W motor, with no device related hemolysis throughout the 12 h of the study. The cost of production, except for the batteries, has been estimated at between 5 - 8 thousand dollars, a reasonable amount for routine clinical use in Brazil.
Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.
2009-04-01
After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model
Chantarojsiri, Teera; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J
2015-06-15
We report the photochemical generation and study of a family of water-soluble iron(IV)-oxo complexes supported by pentapyridine PY5Me2-X ligands (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; X = CF3, H, Me, or NMe2), in which the oxidative reactivity of these ferryl species correlates with the electronic properties of the axial pyridine ligand. Synthesis of a systematic series of [Fe(II)(L)(PY5Me2-X)](2+) complexes, where L = CH3CN or H2O, and characterizations by several methods, including X-ray crystallography, cyclic voltammetry, and Mössbauer spectroscopy, show that increasing the electron-donating ability of the axial pyridine ligand tracks with less positive Fe(III)/Fe(II) reduction potentials and quadrupole splitting parameters. The Fe(II) precursors are readily oxidized to their Fe(IV)-oxo counterparts using either chemical outer-sphere oxidants such as CAN (ceric ammonium nitrate) or flash-quench photochemical oxidation with [Ru(bpy)3](2+) as a photosensitizer and K2S2O8 as a quencher. The Fe(IV)-oxo complexes are capable of oxidizing the C-H bonds of alkane (4-ethylbenzenesulfonate) and alcohol (benzyl alcohol) substrates via hydrogen atom transfer (HAT) and an olefin (4-styrenesulfonate) substrate by oxygen atom transfer (OAT). The [Fe(IV)(O)(PY5Me2-X)](2+) derivatives with electron-poor axial ligands show faster rates of HAT and OAT compared to their counterparts supported by electron-rich axial donors, but the magnitudes of these differences are relatively modest.
Dragon in Support Harmonizing European and Chinese Marine Monitoring for Environment and Security
Desnos, Yves-Louis; Zmuda, Andy; Li, Zengyuan; Gao, Zhihai
2008-04-01
ESA has been cooperating with National Remote Sensing Center of China (NRSCC), Ministry Of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications for the last 15 years. In 2004, this cooperation was reinforced with the creation of a dedicated three-year EO science and exploitation programme called "Dragon". The programme brings together joint Sino-European teams to address 16 identified priority themes investigating land, ocean and atmospheric applications using data from ESA's ERS and Envisat missions. Detailed coordination of all requested acquisitions over China has been performed since the programme started. Consequently a large amount of data has now been delivered.The results of the joint teams' research have been presented at annual Symposia and regular progress meeting with Chinese scientists in Beijing. The mid term results of the programme have been published as a joint ESA and NRSCC publication entitled "Proceedings of Dragon Programme Mid Term Results (SP-611)". Since then, notable results have been achieved in all the thematic areas under investigation exploiting both archive ERS and Envisat instrument data, for example: • Forest cover and forest biomass maps of NE China using ERS SAR tandem data from the 1990s and change detection using up-to-date forest maps based on ASAR AP data• Flood monitoring and mapping and NRT information provision to local and national authorities• Ship cruises for collection of validation data in support of ocean colour studies • Exploitation of the ASAR, RA, MERIS and AA TSR sensors for bio-physical parameter retrieval for China seas• Quantification and modelling of NO2, CO and CH4 levels and their increasing trend since the 1990s •Mixing and modelling and changes in NO2 distribution and concentration in the middle atmospheric layers • Rice mapping and methane modelling exploiting Envisat's optical, SAR and atmospheric sensors• Impact of the Olympic games on the
Zhang, Yan; Hu, Sheng-Shou; Zhou, Jian-Ye; Sun, Han-Song; Tang, Yue; Zhang, Hao; Zheng, Zhe; Li, Guo-Rong; Zhu, Xiao-Dong; Gui, Xin-Min
2009-01-01
A fully implantable, axial flow blood pump has been developed in Fu Wai Hospital aiming for clinical use. This ventricular assist device (VAD), which was developed after numerous CFD analyses for the flow characteristics of the pump, is 58.5-mm long, 30-mm wide (including DC motor), and weighs 240 g. The pump can deliver 5 L/min for pressures of 100 mm Hg over 8,000 rpm. In this study, short-term hemocompatibility effects of the axial left ventricular assist device (LVAD) (FW blood pump) were evaluated in four healthy sheep. The device was implanted into the left ventricular apex of beating hearts. The outflow graft of each device was anastomosed to the descending aorta. The hemolysis, which was evaluated in vivo by free hemoglobin value, was below 30 mg/dL. Evaluation of serum biochemical data showed that implantation of the FW blood pump in sheep with normal hearts did not impair end organ function. Gross and microscopic sections of kidney, liver, and lung revealed no evidence of microemboli. Performance of the pump in vivo was considered sufficient for a LVAD, although further design improvement is necessary in terms of hemolysis and antithrombosis to improve biocompatibility of the pump.
Harmonic tracking of acoustic radiation force-induced displacements.
Doherty, Joshua R; Dahl, Jeremy J; Trahey, Gregg E
2013-11-01
Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse-inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse-inversion techniques. The method is implemented with acoustic radiation force impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8-MHz harmonic images created using a band-pass filter approach and the fully sampled pulse-inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower- and higher-frequency methods suggests that any improvement resulting from the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse-inversion harmonic ARFI images. Within the lumen, the harmonic tracking
Harmonic Tracking of Acoustic Radiation Force Induced Displacements
Doherty, Joshua R.; Dahl, Jeremy J.; Trahey, Gregg E.
2014-01-01
Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse inversion techniques. The method is implemented with Acoustic Radiation Force Impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8 MHz harmonic images created using a bandpass filter approach and the fully sampled pulse inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower and higher frequency methods suggests that any improvement due to the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods
Cavalli, Nicolò; Taschieri, Silvio; Francetti, Luca
2015-01-01
Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months). Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants) while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants). Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol. PMID:26065029
Nicolò Cavalli
2015-01-01
Full Text Available Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months. Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants. Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol.
Eliazar, Iddo
2017-05-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.
Ogawa, Toru; Dhaliwal, Sandra; Naert, Ignance; Mine, Atsushi; Kronstrom, Mats; Sasaki, Keiichi; Duyck, Joke
2010-01-01
The aim of this study was to evaluate the axial forces (AFs) and bending moments (BMs) on implants supporting a fixed dental prosthesis (FDP) with a distal cantilever (10 mm) compared to an FDP supported by a tilted or short (7 mm instead of 13 mm) posterior implant by means of in vitro strain gauge measurements. Nine titanium Branemark implants were placed in an edentulous composite mandible. The mechanical loading conditions were evaluated for the following three situations: (1) short distal implants supporting a cantilever, (2) long tilted distal implants, and (3) no distal implants supporting a cantilever. A vertical load of 50 N was applied at the first molar position, and the resultant AFs and BMs were measured for the three different situations, three different numbers of supporting implants (three, four, or five), and three different prosthesis materials (titanium, acrylic, and fiber-reinforced acrylic). The mean BMs, as well as the maximum AFs and BMs, were significantly higher in the model with a cantilever compared to that having the tilted or short distal implants (P models with a distally tilted implant versus a short distal implant. The use of posterior implants reduced the AFs and BMs on implants supporting an FDP compared to that with a distal cantilever. No difference in mechanical loading was observed between short tilted distal implants.
Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow
del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.
2009-10-01
The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.
Licht, L.
1978-01-01
Flexible surface thrust and journal foil bearings were fabricated, and their performance was demonstrated, both individually and jointly as a unified rotor support system. Experimental results are documented with graphs and oscilloscopic data of trajectories, waveforms, and scans of amplitude response. At speeds of 40,000 to 45,000 rpm and a mean clearance of the order of 15 to 20 micrometers (600 to 800 micrometers, the resilient, air lubricated, spiral groove thrust bearings support a load of 127 N (29 lb; 13 kgf), equivalent to 3.0 N/sq cm (4.5 lb/sq in 0.31 kgf sq cm). Journal bearings with polygonal sections provided stable and highly damped supports at speeds up to 50,000 rpm.
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Towards automated biomedical ontology harmonization.
Uribe, Gustavo A; Lopez, Diego M; Blobel, Bernd
2014-01-01
The use of biomedical ontologies is increasing, especially in the context of health systems interoperability. Ontologies are key pieces to understand the semantics of information exchanged. However, given the diversity of biomedical ontologies, it is essential to develop tools that support harmonization processes amongst them. Several algorithms and tools are proposed by computer scientist for partially supporting ontology harmonization. However, these tools face several problems, especially in the biomedical domain where ontologies are large and complex. In the harmonization process, matching is a basic task. This paper explains the different ontology harmonization processes, analyzes existing matching tools, and proposes a prototype of an ontology harmonization service. The results demonstrate that there are many open issues in the field of biomedical ontology harmonization, such as: overcoming structural discrepancies between ontologies; the lack of semantic algorithms to automate the process; the low matching efficiency of existing algorithms; and the use of domain and top level ontologies in the matching process.
Zhen-zhen PENG; Xin-min CHEN; Jun WANG; Ai-jie LI; Zu-jie XU
2013-01-01
Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture (CFPD) under vertically concentrated loading with digital laser speckle (DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implantsupported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study.
Walt Wells
2008-01-01
Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Tunable axial potentials for atom chip waveguides
Stickney, James A; Imhof, Eric; Kroese, Bethany R; Crow, Jonathon A R; Olson, Spencer E; Squires, Matthew B
2014-01-01
We present a method for generating algebraically precise magnetic potentials along the axis of a cold atom waveguide near the surface of an atom chip. With a single chip design consisting of several wire pairs, various axial potentials can be created, including double wells, triple wells, and pure harmonic traps with suppression of higher order terms. We characterize the error along a harmonic trap between the expected algebraic form and magnetic field simulations and find excel- lent agreement, particularly at small displacements from the trap center. Finally, we demonstrate experimental control over the bottom fields of an asymmetric double well potential.
Chen, Kan; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Inspired by the abundant experimental observation of axial vector states, we study whether the observed axial vector states can be categorized into the conventional axial vector meson family. In this paper we carry out analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial vector mesons, which are valuable to further experimental exploration of the observed and predicted axial vector mesons.
Hu Ding; Li-Qun Chen
2011-01-01
Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation.It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same, but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.
Phononic High Harmonic Generation
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.
Principles of harmonic analysis
Deitmar, Anton
2014-01-01
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.
Yusuf Yesilce
2012-01-01
Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of
A general method of design of axial and radial shim coils for NMR and MRI magnets
Bobrov, E.S.; Punchard, W.F.B.
1988-01-01
The paper describes a general and efficient method of design of axial and radial shim coils to correct field impurities of various harmonic orders in regions of homogeneity of high resolution Nuclear Magnetic Resonance and Magnetic Resonance Imaging magnets.
A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu
2016-02-01
Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).
Schoels, M M; Braun, J; Dougados, M; Emery, P; Fitzgerald, O; Kavanaugh, A; Kvien, T K; Landewé, R; Luger, T; Mease, P; Olivieri, I; Reveille, J; Ritchlin, C; Rudwaleit, M; Sieper, J; Smolen, J S; de Wit, M; van der Heijde, D
2014-01-01
Background Current recommendations for the management of axial spondyloarthritis (SpA) and psoriatic arthritis are to monitor disease activity and adjust therapy accordingly. However, treatment targets and timeframes of change have not been defined. An international expert panel has been convened to develop ‘treat-to-target’ recommendations, based on published evidence and expert opinion. Objective To review evidence on targeted treatment for axial and peripheral SpA, as well as for psoriatic skin disease. Methods We performed a systematic literature search covering Medline, Embase and Cochrane, conference abstracts and studies in http://www.clinicaltrials.gov. Results Randomised comparisons of targeted versus routine treatment are lacking. Some studies implemented treatment targets before escalating therapy: in ankylosing spondylitis, most trials used a decrease in Bath Ankylosing Spondylitis Disease Activity Index; in psoriatic arthritis, protocols primarily considered a reduction in swollen and tender joints; in psoriasis, the Modified Psoriasis Severity Score and the Psoriasis Area and Severity Index were used. Complementary evidence correlating these factors with function and radiographic damage at follow-up is sparse and equivocal. Conclusions There is a need for randomised trials that investigate the value of treat-to-target recommendations in SpA and psoriasis. Several trials have used thresholds of disease activity measures to guide treatment decisions. However, evidence on the effect of these data on long-term outcome is scarce. The search data informed the expert committee regarding the formulation of recommendations and a research agenda. PMID:23740234
Glassman, R B
2000-02-01
bear harmony-like ratios and are confined within a single octave, then they have fast temporal properties, while avoiding spurious difference rhythms. Therefore, if the present hypothesis is valid, it implies a natural limit on parallel processing of separate items in organismic brains. 8. Similar logic of periodic signals may hold for slower ultradian rhythms, including hypothetical ones that contribute to time-tagging and fresh sense of familiarity of a day's event memories. Similar logic may also hold for spatial periodic functions across brain tissue that, hypothetically, represent cognitive information. Thus, harmonic transitions among temporal and spatial periodic functions are a possible vehicle for the cognitive dimensional elasticity that conserves WM capacity. 9. Supporting roles are proposed of (a) basal ganglia, as a high-capacity cache for traces of recent experience temporarily suspended from active task-relevant processing and (b) of hippocampus as a phase and interval comparator for oscillating signals, whose spatiotemporal dynamics are topologically equivalent to a toroidal grid.
Piotr FOLĘGA
2014-03-01
Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.
Shen, Che-Chou; Shi, Tai-Yu
2011-07-01
Ultrasound tissue harmonic signal generally provides superior image quality as compared to the linear signal. However, since the generation of the tissue harmonic signal is based on finite amplitude distortion of the propagating waveform, the penetration and the sensitivity in tissue harmonic imaging are markedly limited because of the low signal-to-noise ratio (SNR). The method of third harmonic (3f(0)) transmit phasing can improve the tissue harmonic SNR by transmitting at both the fundamental (2.25MHz) and the 3f(0) (6.75MHz) frequencies to achieve mutual enhancement between the frequency-sum and the frequency-difference components of the second harmonic signal. To further increase the SNR without excessive transmit pressure, coded excitation can be incorporated in 3f(0) transmit phasing to boost the tissue harmonic generation. Our analyses indicate that the phase-encoded Golay excitation is suitable in 3f(0) transmit phasing due to its superior transmit bandwidth efficiency. The resultant frequency-sum and frequency-difference components of tissue harmonic signal can be simultaneously Golay-encoded for SNR improvement. The increase of the main-lobe signal with the Golay excitation in 3f(0) transmit phasing are consistent between the tissue harmonic measurements and the simulations. B-mode images of the speckle generating phantom also demonstrate the increases of tissue harmonic SNR for about 11dB without noticeable compression artifacts. For tissue harmonic imaging in combination with the 3f(0) transmit phasing method, the Golay excitation can provide further SNR improvement. Meanwhile, the axial resolution can be effectively restored by pulse compression while the lateral resolution remains unchanged. Copyright © 2010 Elsevier B.V. All rights reserved.
J. Huffer
2004-09-28
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.
Cascaded third harmonic generation in hybrid graphene-semiconductor waveguides
Smirnova, Daria A
2015-01-01
We study cascaded harmonic generation of hybrid surface plasmons in integrated planar waveguides composed of a graphene layer and a doped-semiconductor slab. We derive a comprehensive model of cascaded third harmonic generation through phase-matched nonlinear interaction of fundamental, second harmonic and third harmonic plasmonic modes supported by the structure. We show that hybrid graphene-semiconductor waveguides can simultaneously phase-match these three interacting harmonics, increasing the total third-harmonic output by a factor of 5 compared to the non-cascaded regime.
[Management of axial spondyloarthritis].
Kiltz, U; Baraliakos, X; Braun, J
2016-11-01
The term spondyloarthritis (SpA) is now increasingly used to classify and diagnose patients who are characterized by inflammation in the axial skeleton and peripheral manifestations (arthritis and enthesitis). The management of SpA should be tailored according to the current manifestations of the disease, the disease activity and functional impairment. The current article focuses on diagnosis and therapy in patients with axial SpA. Diagnostic procedures are discussed in light of diagnostic utility and feasibility in daily routine care. Cornerstones of treatment in patients with axial SpA are a combination of regular exercise and pharmacological treatment options aiming at anti-inflammatory strategies.
General -Harmonic Blaschke Bodies
Yibin Feng; Weidong Wang
2014-02-01
Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties. In particular, we obtain the extreme values concerning the volume and the -dual geominimal surface area of this new notion.
Axial Halbach Magnetic Bearings
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
High-resolution second harmonic optical coherence tomography
Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping
2005-04-01
A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.
Axial Super-resolution Evanescent Wave Tomography
Pendharker, Sarang; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin
2016-01-01
Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axi...
Axler, Sheldon; Ramey, Wade
2013-01-01
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
High Orbital Angular Momentum Harmonic Generation
Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.
2016-12-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.
High orbital angular momentum harmonic generation
Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O
2016-01-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.
Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar
2013-01-01
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. ...
F. Aguilar Parés
1999-01-01
Full Text Available Durante el movimiento de un material en un transportador de sinfín surge una fuerza en dirección axial que influye en laselección de uno de los cojinetes de apoyo del equipo. En el artículo aparecen algunas soluciones constructivas que tienen encuentan la fuerza axial. Por otro lado se establece la relación entre la fuerza axial y el empuje axial y se precisa de quiendepende el sentido del empuje axial. Por último se propone un modelo matemático que relaciona la fuerza axial con la potenciarequerida por el equipo.Palabras claves: Transportador de sinf in, fuerza axial , empuje axial ._________________________________________________________________________AbstractDuring the movement of material in a screw conveyor surge a force in axial direction that influence in the selection of one ofthe equipment support bearings. Some constructive solutions appear in the article for considering the axial force. In the otherhand it is established the relation between axial force and axial thurst and it is precised whose direction thurst axial depend of.Finally it is proposed a mathematic model that relates the axial force with the power required by the equipment.Key words: Screw conveyor, axial force, axial thurst .
Wang, Jun; Peng, Zhenzhen; Li, Aijie; Xu, Zujie; Chen, Xinmin
2013-12-01
The purpose of this study was to investigate the effect of four kinds of different contact strength on the three-dimensional displacement of an implant-supported fixed bridge using digital laser speckle photography method. An in vitro model of beagle mandible with an implant-supported fixed bridge in its right premolar region was developed. The bridge was Au-Pt metal-ceramic. The contact was recovered to four different tightnesses, named 0, 1, 2, and 3. Different axial concentrated static load was applied to abutments and bridge respectively. The three-dimensional displacement of the implant-supported fixed bridge was measured using digital laser speckle photographic method. The results demonstrated that the influence of contact tightness was mainly on the mesio-distal and buccal lingual parts. When the contact tightness reached number 3, the regularity of displacement distribution was changed. The present study proved that digital laser speckle photography was an effective method of measuring the micro-displacement. One of the criterions of contact recovering decreased the implant displacement effectively without changing the regularity of displacement distribution.
Field dependence of second-harmonic amplitude of magnetoimpedance in FeCoSiB joule heated wires
Gomez-Polo, C. E-mail: gpolo@unavarra.es; Vazquez, M.; Knobel, M
2001-05-01
The existence of a second-harmonic component of the giant magnetoimpedance (GMI) voltage in an amorphous FeCoSiB Joule heated wire is analysed. The evolution of the first-harmonic component of the GMI voltage with the axial DC applied magnetic field can be suitably described in terms of the evolution of the circumferential magnetic permeability. With regard to the second-harmonic component, its amplitude sensitively evolves with the axial DC magnetic field and its appearance is associated to an asymmetry in the circular magnetization process. A simple rotational magnetization model is presented where the harmonic components of the GMI voltage are estimated through Fourier analysis.
Masi, Alfonse T.
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hype...
Masi, Alfonse T.
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hype...
Harmonic vibrations of multispan beams
Dyrbye, Claes
1996-01-01
Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....
Altered Axial Skeletal Development
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...
Dynamic Stability of Euler Beams under Axial Unsteady Wind Force
You-Qin Huang
2014-01-01
Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.
Covariant harmonic oscillators and coupled harmonic oscillators
Han, Daesoo; Kim, Young S.; Noz, Marilyn E.
1995-01-01
It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.
DFIG Harmonic Current Controlling with the Grid Low Harmonic Voltage
Huan Wang
2014-01-01
Full Text Available This study presents a vector control strategy based on stator harmonic current closed-loop, it adds individually the control loop about of each stator harmonic current to restrain the stator harmonic current, in order to meet the THD criteria. The control strategy of restraining the harmonic current presents the design of the stator harmonic current restrains the current controller. It influences the rotor voltage of the stator harmonic current restraining strategies.
Surface nanoscale axial photonics
Sumetsky, M
2011-01-01
Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. The extremely low loss of SNAP devices is achieved due to the fantastically low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration, prototyping basi...
Axial super-resolution evanescent wave tomography.
Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin
2016-12-01
Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.
Axial super-resolution evanescent wave tomography
Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin
2016-12-01
Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.
Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)
2016-07-01
Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.
Making space for harmonic oscillators
Michelotti, Leo; /Fermilab
2004-11-01
If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.
Optimal transmit phasing on tissue background suppression in contrast harmonic imaging.
Shen, Che-Chou; Hsieh, Yi-Chun
2008-11-01
Ultrasonic harmonic imaging provides superior image quality than linear imaging and has become an important diagnostic tool in many clinical applications. Nevertheless, the contrast-to-tissue ratio (CTR) in harmonic imaging is generally limited by tissue background signal comprising both the leakage harmonic signal and the tissue harmonic signal. Harmonic leakage generally occurs when a wideband transmit pulse is used for better axial resolution. In addition, generation of tissue harmonic signal during acoustic propagation also decreases the CTR. In this paper, suppression of tissue background signal in harmonic imaging is studied by selecting an optimal phase of the transmit signal to achieve destructive cancellation between the tissue harmonic signal and the leakage harmonic signal. With the optimal suppression phase, our results indicate that the tissue signal can be significantly reduced at second harmonic band, whereas the harmonic amplitude from contrast agents shows negligible change with the selection of transmit phase. Consequently, about 5-dB CTR improvement can be achieved from effective reduction of tissue background amplitude in optimal transmit phasing.
Imaging parameters on third harmonic transmit phasing for tissue harmonic generation.
Shen, Che-Chou; Wang, Yu-Chun; Yeh, Chih-Kuang
2008-06-01
In third harmonic (3f0) transmit phasing, transmit waveforms comprising fundamental (f0) signal and 3f0 signal are used to generate both frequency-sum and frequency-difference components for manipulation of tissue harmonic amplitude. Nevertheless, the acoustic propagation of 3f0 transmit signal suffers from more severe attenuation and phase aberration than the f0 signal and hence degrades the performance of 3f0 transmit phasing. Besides, 3f0 transmit parameters such as aperture size and signal bandwidth are also influential in 3f0 transmit phasing. In this study, extensive simulations were performed to investigate the effects of these imaging parameters. Results indicate that the harmonic enhancement and suppression in 3f0 transmit phasing are compromised when the magnitude of frequency-difference component decreases in the presence of tissue attenuation and phase aberration. To compensate for the reduced frequency-difference component, a higher 3f0 transmit amplitude can be used. When the transmit parameters are concerned, a smaller 3f0 transmit aperture can provide more axially uniform harmonic enhancement and more effective suppression of harmonic amplitude. In addition, the spectral leakage signal also interferes with tissue harmonics and degrades the efficacy of 3f0 transmit phasing. Our results suggest that, in the method of 3f0 transmit phasing, the transmit amplitude, phase and aperture size of 3f0 signal should remain adjustable for optimization of clinical performance. Besides, multipulse sequences such as pulse inversion are also favorable for leakage removal in 3f0 transmit phasing.
Singular harmonic maps into hyperbolic spaces and applications to general relativity
Nguyen, Luc L.
Harmonic maps with singular boundary behavior from a Euclidean domain into hyperbolic spaces arise naturally in the study of axially symmetric and stationary spacetimes in general relativity. In particular, the study of multi-black-hole configurations and the force between co-axially rotating black holes requires, as a first step, an analysis on the boundary regularity of the "next order term" of those harmonic maps. We carry out this analysis by considering those harmonic maps as solutions to some homogeneous divergence systems of partial differential equations with singular coefficients. We then apply our result to study the regularity of axially symmetric and stationary electrovac spacetimes, which extends previous works by Weinstein [22], [23] and by Li and Tian [10], [11], [12]. This dissertation is based on a preprint of the author [16].
Toward Rigorous Data Harmonization in Cancer Epidemiology Research: One Approach.
Rolland, Betsy; Reid, Suzanna; Stelling, Deanna; Warnick, Greg; Thornquist, Mark; Feng, Ziding; Potter, John D
2015-12-15
Cancer epidemiologists have a long history of combining data sets in pooled analyses, often harmonizing heterogeneous data from multiple studies into 1 large data set. Although there are useful websites on data harmonization with recommendations and support, there is little research on best practices in data harmonization; each project conducts harmonization according to its own internal standards. The field would be greatly served by charting the process of data harmonization to enhance the quality of the harmonized data. Here, we describe the data harmonization process utilized at the Fred Hutchinson Cancer Research Center (Seattle, Washington) by the coordinating centers of several research projects. We describe a 6-step harmonization process, including: 1) identification of questions the harmonized data set is required to answer; 2) identification of high-level data concepts to answer those questions; 3) assessment of data availability for data concepts; 4) development of common data elements for each data concept; 5) mapping and transformation of individual data points to common data elements; and 6) quality-control procedures. Our aim here is not to claim a "correct" way of doing data harmonization but to encourage others to describe their processes in order that we can begin to create rigorous approaches. We also propose a research agenda around this issue. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ZHANG Neng-hui; WANG Jian-jun; CHENG Chang-jun
2007-01-01
Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.
Piping inspection carriage having axially displaceable sensor
Zollinger, William T.; Treanor, Richard C.
1994-01-01
A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.
A REMARK ON THE QUASI-HARMONIC SPHERES
XuDeliang; ZhouChunqin
2002-01-01
Several theorems on the finiteness of energy for quasi-harmonic spheres are proved,some counter-examples which state that the energy of quasi-harmonic sphere may be infinite are given. The results support some conditions of a question posed by Lin Fanghua and Wang Changyou.
Second harmonic generation imaging
2013-01-01
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Li, Yuyin; Zhang, Yahui; Kennedy, David
2017-10-01
A random vibration analysis of an axially compressed cylindrical shell under a turbulent boundary layer (TBL) is presented in the symplectic duality system. By expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the axial and circumferential directions, the problem of structures excited by a random distributed pressure due to the TBL is reduced to solving the harmonic response function, which is the response of structures to a spatial and temporal harmonic pressure of unit magnitude. The governing differential equations of the axially compressed cylindrical shell are derived in the symplectic duality system, and then a symplectic eigenproblem is formed by using the method of separation of variables. Expanding the excitation vector and unknown state vector in symplectic space, decoupled governing equations are derived, and then the analytical solution can be obtained. In contrast to the modal decomposition method (MDM), the present method is formulated in the symplectic duality system and does not need modal truncation, and hence the computations are of high precision and efficiency. In numerical examples, harmonic response functions for the axially compressed cylindrical shell are studied, and a comparison is made with the MDM to verify the present method. Then, the random responses of the shell to the TBL are obtained by the present method, and the convergence problems induced by Fourier series expansion are discussed. Finally, influences of the axial compression on random responses are investigated.
Booster Double Harmonic Setup Notes
Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
Build Axial Gradient Field by Using Axial Magnetized Permanent Rings
无
2002-01-01
Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.
Libsharp - spherical harmonic transforms revisited
Reinecke, Martin
2013-01-01
We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library, addressing several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License.
Notari, Alessio
2016-01-01
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...
Harmonic Intravascular Ultrasound
M.E. Frijlink (Martijn)
2006-01-01
textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Harmonic Intravascular Ultrasound
M.E. Frijlink (Martijn)
2006-01-01
textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte
Harmonization versus Mutual Recognition
Jørgensen, Jan Guldager; Schröder, Philipp
with the opportunity to start export sales. In contrast, harmonization, in particular the prospect that one’s own national (but not the foreign) standard becomes the only globally accepted standard, opens the foreign market without balancing entry at home. We study these scenarios in a reduced form lobby game with two...
ZHAOZhen-gang
2005-01-01
We have constructed the positive definite metric matrixes for the bounded domains of Rn and proved an inequality which is about the Jacobi matrix of a harmonic mapping on a bounded domain of Rn and the metric matrix of the same bounded domain.
Masi, Alfonse T
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated
Harmonics in transmission power systems
Wiechowski, Wojciech Tomasz
to perform more detailed harmonic studies emerged. Since the transmission network has a complex structure and its impedance varies with frequency in a nonlinear fashion, such harmonic study would require a detailed computer model of the network. Consequently, a PhD project proposal titled "Harmonics....... It is concluded that since some background harmonic distortion is practically always present in the network, a method based on variation of harmonic values must be used. The incremental values of harmonic distortion will allow to verify the harmonic model, despite the existence of background harmonic distortion...... GPS-synchronized OMICRON CMC256 units. Two such units are installed at 400 kV substations at both ends of the disconnected line and a third unit is located at a substation in a distance of 80 km. Time domain "snap-shot" measurements of three-phase voltages and currents are synchronously taken for some...
Young children's harmonic perception.
Costa-Giomi, Eugenia
2003-11-01
Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.
Method to Measure Tone of Axial and Proximal Muscle
2011-01-01
The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the ...
Second harmonic optical coherence tomography
Jiang,Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping
2004-01-01
Second harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical response of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second harmonic generation on molecular ...
Study of axial magnetic effect
Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)
2016-01-22
The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.
Active axial spondyloarthritis: potential role of certolizumab pegol
Ranatunga S
2014-02-01
Full Text Available Sriya Ranatunga, Anne V Miller Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA Abstract: The axial spondyloarthropathies are a group of chronic inflammatory diseases that predominantly affect the axial joints. This group includes ankylosing spondylitis and nonradiographic axial spondyloarthropathy. While the pathogenesis of axial spondyloarthropathies is not clear, immunologically active tissues primarily include the entheses, ie, the areas where ligaments, tendons, and joint capsules attach to bone and to the annulus fibrosis at the vertebrae. One of the major mediators of the immune response in this group of diseases is tumor necrosis factor-alpha (TNFα. Blockade of TNFα results in reduced vascularity and inflammatory cell infiltration in the synovial tissues of affected joints. Certolizumab pegol (CZP is an Fc-free, PEGylated anti-TNFα monoclonal antibody. CZP has unique properties that differ from other available TNFα inhibitors by virtue of its lack of an Fc region, which minimizes potential Fc-mediated effects, and its PEGylation, which improves drug pharmacokinetics and bioavailability. It has been shown in clinical trials that CZP improves patient outcomes and reduces inflammation in the sacroiliac joints and spine in both ankylosing spondylitis and nonradiographic axial spondyloarthropathies. These data support CZP as a treatment option for axial spondyloarthropathies. Keywords: axial spondyloarthropathy, certolizumab pegol, anti-tumor necrosis factor-alpha, therapy
Notari, Alessio; Tywoniuk, Konrad
2016-12-01
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term phi/fγ F ~F, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρR, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff fγ, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if fγ is smaller than the field excursion phi0 by about a factor of at least Script O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4-5 efolds and an amplitude which is typically less than a few percent and decreases linearly with fγ. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρR rather than dot phi2/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/fγ to U(1) (photons) is much larger than the coupling 1/fG to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed phi0~ fG.
Harmonization versus Mutual Recognition
Jørgensen, Jan Guldager; Schröder, Philipp
The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired......, harmonized standards may fail to harvest the full pro-competitive effects from trade liberalization compared to mutual recognition; moreover, the issue is most pronounced in markets featuring price competition....
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Enhanced Second Harmonic Generation from Coupled Asymmetric Plasmonic Metal Nanostructures
Yildiz, Bilge Can; Abak, Musa Kurtulus; Coskun, Sahin; Unalan, Husnu Emrah; Bek, Alpan
2014-01-01
We show that second harmonic generation can be enhanced by Fano resonant coupling of asymmetric plasmonic metal nanostructures. We develop a theoretical model examining the effects of electromagnetic interaction between two metal nanostructures on the second harmonic generation. We compare the second harmonic generation efficiency of a single plasmonic metal nanostructure with that of two coupled ones. We show that second harmonic generation from a single metal nanostructure can be enhanced about 30 times by attaching a second metal nanostructure with a 10 times higher quality factor than that of the first one. The origin of this enhancement is Fano resonant coupling of the two metal nanostructures. We support our findings on Fano enhancement of second harmonic generation by an experimental study of a coupled plasmonic system composed of a silver nanoparticle and a silver nanowire on glass surface in which the ratio of the quality factors are also estimated to be around 10 times.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is
Perfusion harmonic imaging of the human brain
Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til
2003-05-01
The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.
Harmonic space and quaternionic manifolds
Galperin, A; Ogievetsky, O V
1994-01-01
We find a principle of harmonic analyticity underlying the quaternionic (quaternion-K\\"ahler) geometry and solve the differential constraints which define this geometry. To this end the original $4n$-dimensional quaternionic manifold is extended to a bi-harmonic space. The latter includes additional harmonic coordinates associated with both the tangent local $Sp(1)$ group and an extra rigid $SU(2)$ group rotating the complex structures. Then the constraints can be rewritten as integrability conditions for the existence of an analytic subspace in the bi-harmonic space and solved in terms of two unconstrained potentials on the analytic subspace. Geometrically, the potentials have the meaning of vielbeins associated with the harmonic coordinates. We also establish a one-to-one correspondence between the quaternionic spaces and off-shell $N=2$ supersymmetric sigma-models coupled to $N=2$ supergravity. The general $N=2$ sigma-model Lagrangian when written in the harmonic superspace is composed of the quaternionic ...
Next generation data harmonization
Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg
2015-05-01
Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.
Second harmonic generation microscopy
Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens
2010-01-01
Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...
Computing with Harmonic Functions
Axler, Sheldon
2015-01-01
This document is the manual for a free Mathematica package for computing with harmonic functions. This package allows the user to make calculations that would take a prohibitive amount of time if done without a computer. For example, the Poisson integral of any polynomial can be computed exactly. This software can find exact solutions to Dirichlet, Neumann, and biDirichlet problems in R^n with polynomial data on balls, ellipsoids, and annular regions. It can also find bases for spaces of sphe...
M. A. Navascués
2013-01-01
Full Text Available This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.
Shen, Che-Chou; Wang, Hui-Ting
2013-03-01
The presence of tissue harmonic generation during acoustic propagation is one major limitation in nonlinear detection of microbubble contrast agents. However, conventional solutions for tissue harmonic suppression are not applicable in dual-frequency (DF) harmonic imaging. In DF harmonic imaging, the second harmonic signal at second harmonic (2f(0)) frequency and the inter-modulation harmonic signal at fundamental (f(0)) frequency are simultaneously generated for imaging and both need to be suppressed to improve contrast-to-tissue ratio (CTR). In this study, a novel phase-coded pulse sequence is developed to accomplish DF tissue harmonic suppression. Phase-coded pulse sequence utilizes multiple firings with equidistant transmit phase for harmonic cancellation in the sum of respective echoes. For the f(0) transmit component, the transmit phase comes from the equidistant set of {-2π/3, 0, 2π/3} to suppress the second harmonic signal at 2f(0) frequency. Moreover, in order to provide the inter-modulation harmonic suppression at f(0) frequency, the 2f(0) transmit phase has to be particularly manipulated for the corresponding f(0) transmit phase. The proposed three-pulse sequence can remove not only the second-order harmonic signal but also other higher-order counterparts at both f(0) and 2f(0) frequencies. Measurements were performed at f(0) equal to 2.25 MHz and using hydrophone in water and contrast agents in tissue phantom. Experimental results indicate that the sequence reduces the tissue harmonic magnitude by about 20 dB along the entire axial depths and the corresponding CTR improves at both frequencies. In DF harmonic imaging, the proposed phase-coded sequence can effectively remove the tissue harmonic background at both f(0) and 2f(0) frequencies for improvement of contrast detection. Copyright © 2012 Elsevier B.V. All rights reserved.
Higher-order harmonics of general limited diffraction Bessel beams
Ding, De-Sheng; Huang, Jin-Huang
2016-12-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).
Relativistic RPA in axial symmetry
Arteaga, D Pena; 10.1103/PhysRevC.77.034317
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Axial Current and Noether Charge
Mahato, Prasanta
2012-01-01
A decade ago, a Lagrangian density has been proposed by the author where only the local symmetries of the Lorentz subgroup of (A)ds group is retained. This formalism has been found to produce some results encompassing that of standard Einstein-Hilbert formalism. In the present article, the conserved axial vector matter currents, constructed in some earlier paper, have been found to be a result of Noether's theorem. PACS: 04.20.Fy, 04.20.Cv, 11.40.-q Keywords: Torsion, Axial Current, Noether's Theorem
Dynamics and statics of flexible axially symmetric shallow shells
2006-01-01
Full Text Available In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. The so-called charts of control parameters for a shell subjected to a transversal uniformly distributed and local harmonic loading force and resistance moment are constructed. The scenarios of the transition of vibration of shallow-type system into chaotic state are investigated with the use of the theory of differential equations and the theory of nonlinear dynamics. The method of the control of chaotic vibrations of flexible spherical shells subjected to a transversal harmonic load through a synchronized action of either harmonic resistance moment or force is proposed, illustrated, and discussed.
Yasuyuki Nishi
2016-01-01
Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.
Axially Symmetric, Spatially Homothetic Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2002-01-01
We show that the existence of appropriate spatial homothetic Killing vectors is directly related to the separability of the metric functions for axially symmetric spacetimes. The density profile for such spacetimes is (spatially) arbitrary and admits any equation of state for the matter in the spacetime. When used for studying axisymmetric gravitational collapse, such solutions do not result in a locally naked singularity.
Thermophoresis of Axially Symmetric Bodies
2007-11-02
Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached
Axial structure of the nucleon
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Phase Relation of Harmonics in Nonlinear Focused Ultrasound
Zhe-Fan Peng; Wei-Jun Lin; Shi-Lei Liu; Chang Su; Hai-Lan Zhang; Xiu-Ming Wang
2016-01-01
The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimentally.The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method.Experimental waveforms are measured by a robust needle hydrophone.Then the relative phase quantity is introduced and obtained by using the zero-phase filter.The results show that the nth harmonic relative phase quantity is approximately (n-1)π/3 at geometric center and increases along the axial direction.Moreover,the relative phase quantity decreases with the increase of source amplitude.This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.
Subcycle engineering of laser filamentation in gas by harmonic seeding
Béjot, P; Billard, F; Doussot, J; Hertz, E; Lavorel, B; Faucher, O
2014-01-01
Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of a plethora of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such an ideal control by manipulating the nonlinear optical properties of the gas medium at the quantum level. This is accomplished by engineering the intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (about 1%) third-harmonic radiation. The control results from quantum interferences between a single and a two-color (mixing the fundamental frequency with its 3rd harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially...
The axial ratio of hcp iron at the conditions of the Earth's inner core
Gannarelli, C M S; Gillian, M J
2004-01-01
We present ab initio calculations of the high-temperature axial c/a ratio of hexagonal-close-packed (hcp) iron at Earth's core pressures, in order to help interpret the observed seismic anisotropy of the inner core. The calculations are based on density functional theory, which is known to predict the properties of high-pressure iron with good accuracy. The temperature dependence of c/a is determined by minimising the Helmholtz free energy at fixed volume and temperature, with thermal contributions due to lattice vibrations calculated using harmonic theory. Anharmonic corrections to the harmonic predictions are estimated from calculations of the thermal average stress obtained from ab initio molecular dynamics simulations of hcp iron at the conditions of the inner core. We find a very gradual increase of axial ratio with temperature. This increase is much smaller than found in earlier calculations, but is in reasonable agreement with recent high-pressure, high-temperature diffraction measurements. This result...
Imaging collagen orientation using polarization-modulated second harmonic generation
Stoller, Patrick C.; Celliers, Peter M.; Reiser, Karen M.; Rubenchik, Alexander M.
2002-06-01
We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 micrometers and a transverse resolution of up to 1 micrometers . A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.
Imaging Collagen Orientation Using Polarization-Modulated Second Harmonic Generation
Stoller, P; Celliers, P M; Reiser, K M; Rubenchik, A M
2002-01-10
We use polarization-modulated second harmonic generation to image fiber orientation in collagen tissues, with an axial resolution of about 10 {micro}m and a transverse resolution of up to 1 {micro}m. A linearly polarized ultra-short pulse (200 fs) Ti:Sapphire laser beam is modulated using an electro-optic modulator and quarter-wave plate combination and focused onto a translation stage mounted sample using a microscope objective. The generated second harmonic light is collected using a photomultiplier tube and demodulated using phase sensitive detection to obtain signal intensity and fiber orientation information. In order to obtain second harmonic generation images of different types of collagen organization, we analyze several different tissues, including rat-tail tendon, mouse aorta, mouse fibrotic liver, and porcine skin. We can use our technique to image fibrotic tissue in histological sections of damaged liver and to identify burned tissue in porcine skin to a depth of a few hundred microns. Polarization-modulated second harmonic generation potentially could be a useful clinical technique for diagnosing collagen related disease or damage, especially in the skin.
On The Harmonic Oscillator Group
Lopez, Raquel M; Vega-Guzman, Jose M
2011-01-01
We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.
EXTENSIONS OF EULER HARMONIC SUMS
Djurdje Cvijović
2012-10-01
Full Text Available Three new closed-form summation formulae involving harmonic numbers are established using simple arguments and they are very general extensions of Euler’s famous harmonic sum identity. Some illustrative special cases as well as immediate consequences of the main results are also considered.
Harmonic Series Meets Fibonacci Sequence
Chen, Hongwei; Kennedy, Chris
2012-01-01
The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?
Method to measure tone of axial and proximal muscle.
Gurfinkel, Victor S; Cacciatore, Timothy W; Cordo, Paul J; Horak, Fay B
2011-12-14
The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention.
Tissue Harmonic Synthetic Aperture Imaging
Rasmussen, Joachim
The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...... harmonic techniques have been made, but none of these methods have so far been applicable for in-vivo imaging. The basis of this project is a synthetic aperture technique known as synthetic aperture sequential beamforming (SASB). The technique utilizes a two step beamforming approach to drastically reduce...
Super/subradiant second harmonic generation
Koganov, Gennady A.; Shuker, Reuben
2017-04-01
A scheme for active second harmonics generation is suggested. The system comprises N three-level atoms in ladder configuration, situated into a resonant cavity. The system generates the field whose frequency is twice the frequency of the pumping laser, and the field phase is locked to the phase of the pumping field. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms N. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion. For experimental realization of the super/subradiant second harmonics generation we propose semiconductor quantum well structures, superconducting quantum circuits, and evanescently coupled waveguides in which equally spaced levels relevant to this study exist.
Optimization of axial blowers. Optimierung von Axial-Ventilatoren
Bolte, W.
1992-08-01
For the optimum possible design of axial blowers, trials are evaluated in the article, which are based on the grid profile examined by N. Scholz. The computation for the pressure number and the primary degree of efficiency are shown as well as the evaluation of the effect of the Reynolds and mach number on the degree of efficiency and determination of the secondary losses. In a final example, the dimensions of a blower are computed from the data determined during the trials. (orig.).
View of the Axial Field Spectrometer
1980-01-01
The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.
[Axial spondyloarthritis and ankylosing spondylitis].
Nordström, Dan; Kauppi, Markku
2010-01-01
Current classification criteria for ankylosing spondylitis do not allow diagnosis before radiographic changes are visible in sacroiliacal joints. The the new axial spondyloarthropathy (SpA) criteria include axial SpA without radiographic changes as well as established ankylosing spondylitis, recognizing them as a continuum of the same disease. This is of major importance as the burden of early SpA is comparable to that of later stage disease. Diagnosis relies on inflammatory MRI findings which is the most significant change compared to earlier criteria. Emerging data on the efficacy of tumor necrosis factor (TNF) alpha blocking therapies already in early but also in established disease have given new promising alternatives for treatment of this often very cumbersome disease, that rarely responds to classic DMARDs.
Axial Spondyloarthritis: An Evolving Concept
Nelly Ziadé
2015-07-01
Full Text Available Axial spondyloarthritis (AxSpA is the prototype of a family of inter-related yet heterogeneous diseases sharing common clinical and genetic manifestations: the spondyloarthritides (SpAs. The condition mainly affects the sacroiliac joints and axial skeleton, and has a clear classification scheme, wider epidemiological data, and distinct therapeutic guidelines when compared with other SpAs. However, the concept of AxSpA has not been immutable over time and has evolved tremendously on many levels over the past decades. This review identifies the evolution of the AxSpA concept at two levels. First, at the level of classification, the old classifications and rationales leading to the current Assessment of SpondyloArthritis international Society (ASAS classification are reviewed, and the advantages and drawbacks are discussed. Second, at the therapeutic level, current and future treatments are described and treatment strategies are discussed.
Optimal Selective Harmonic Control for Power Harmonics Mitigation
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
the cost, the complexity and the performance: high accuracy, fast transient response, easy-implementation, cost-effective, and also easy-to-design. The analysis and synthesis of the optimal SHC system are addressed. The proposed SHC offers power convert-ers a tailor-made optimal control solution......This paper proposes an Internal Model Principle (IMP) based optimal Selective Harmonic Controller (SHC) for power converters to mitigate power harmonics. According to the harmonics distribution caused by power converters, a universal recursive SHC module is developed to deal with a featured group...... of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
FROM THE HARMONIZATION NEED TO THE SPONTANEOUS ACCOUNTING HARMONIZATION
2009-01-01
The issue of international accounting harmonization has achieved, mainly within the last decade, a significant dimension in the field of international accounting research. The main determinant factor for this state of the art is the process aiming at redu
A new approach for estimation of the axial velocity using ultrasound
Munk, Peter; Jensen, Jørgen Arendt
2000-01-01
for the data segment. The benefit of this method is an estimate of the mean axial velocity which is independent of the center frequency of the propagating ultrasound pulse. The estimate will only depend on fs and fprf. Results of the estimation method is presented based on both simple generated RF harmonic......, introducing a bias. A new velocity estimator for the mean axial velocity is presented. The estimation principle is based on the 2D Fourier transform and the Radon transform. The input data are a sequence of RF data forming a 2D data input, one column for each pulse emission. A 2D segment is selected...... for a specific depth. This data segment is first transformed by a 2D Fourier transform, and the result is then transformed by a Radon transform. The center of gravity for the angles of the lines intersecting the origin of the R-theta coordinate system in the Radon domain gives the mean axial velocity...
Power quality issues current harmonics
Mikkili, Suresh
2015-01-01
Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi
Third order harmonic imaging for biological tissues using three phase-coded pulses.
Ma, Qingyu; Gong, Xiufen; Zhang, Dong
2006-12-22
Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.
Development and Testing of an Axial Halbach Magnetic Bearing
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2006-01-01
The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.
Lattice harmonics expansion revisited
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Crane, Edward; Volkov, Stanislav; Wade, Andrew; Waters, Robert
2009-01-01
We study a generalized Polya urn model with two types of ball. If the drawn ball is red it is replaced together with a black ball, but if the drawn ball is black it is replaced and a red ball is thrown out of the urn. When only black balls remain, the roles of the colours are swapped and the process restarts. We prove that the resulting Markov chain is transient but that if we throw out a ball every time the colours swap, the process is positive-recurrent. We show that the embedded process obtained by observing the number of balls in the urn at the swapping times has a scaling limit that is essentially the square of a Bessel diffusion. We consider an oriented percolation model naturally associated with the urn process, and obtain detailed information about its structure, showing that the open subgraph is an infinite tree with a single end. We also study a natural continuous-time embedding of the urn process that demonstrates the relation to the simple harmonic oscillator; in this setting our transience result...
Newman, J.B.
1968-01-01
Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)
Golimumab for treatment of axial spondyloarthritis.
Rios Rodriguez, Valeria; Poddubnyy, Denis
2016-02-01
Axial spondyloarthritis comprises two forms: nonradiographic (nonradiographic axial spondyloarthritis) and radiographic (better known as ankylosing spondylitis), which are often considered as two stages of one disease. Historically, all currently available TNF-α inhibitors were first investigated in ankylosing spondylitis and later on in nonradiographic axial spondyloarthritis. This year, EMA has granted golimumab approval for the treatment of active nonradiographic axial spondyloarthritis based on the recently published data from the GO-AHEAD study. This article summarizes recent data on efficacy and safety of golimumab in the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.
Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd
2017-07-01
Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.
Mashkina, Elena; Bond, Alan M
2011-03-01
Sinusoidal large amplitude ac voltammetric techniques gene-rate very large data sets. When analyzed in the frequency domain, using a Fourier transform (FT)-band filtering- inverse FT sequence, the data may be resolved into the aperiodic dc, fundamental, second, and higher order ac harmonics. Each of these components exhibit a different level of sensitivity to electrode kinetics, uncompensated resistance and capacitance. Detailed simulations illustrate how the heuristic approach for evaluation of each data subset may be implemented and exploited in the assessment of the electrode kinetics for the fast Fc [symbol:see text] Fc(+) + e (Fc = ferrocene) oxidation process at a glassy carbon macrodisk electrode. The simulations presented in this study are based on the Butler-Volmer model and incorporate consideration of the uncompensated resistance (R(u)), double-layer capacitance (C(dl)), rate constant (k(0)), and charge transfer coefficient (α). Error analysis of the heuristically evaluated simulation-experiment comparison is used to assist in establishing the best fit of data for each harmonic. The result of the heuristic pattern recognition type approach for analysis of the oxidation of ferrocene (0.499, 0.999, and 5.00 mM) at a glassy carbon macrodisk electrode in acetonitrile (0.1 M Bu(4)NPF(6)) implies that k(0) ≥ 0.25 cm s(-1) on the basis of analysis of the first 4 harmonics and plausibly lies in the range of 0.25-0.5 cm s(-1) with α = 0.25-0.75 when analysis of the next four harmonics is undertaken. The k(0) value is significantly faster then indicated in most literature reports based on use of dc cyclic voltammetry under transient conditions at glassy carbon macrodisk electrode. The data analysis with a sinusoidal amplitude of 80 mV is conducted at very low frequency experiments of 9 Hz to minimize contribution from electrode heterogeneity, frequency dispersion, and adsorption, all of which can complicate the response for the oxidation of Fc in acetonitrile
Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures
Breinbjerg, O.
2012-01-01
Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....
Explaining the harmonic sequence paradox.
Schmidt, Ulrich; Zimper, Alexander
2012-05-01
According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced.
Introduction to abstract harmonic analysis
Loomis, Lynn H
2011-01-01
Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.
Pythagorean Triples from Harmonic Sequences.
DiDomenico, Angelo S.; Tanner, Randy J.
2001-01-01
Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)
Morrey spaces in harmonic analysis
David R. Adams; Xiao, Jie
2012-01-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Morrey spaces in harmonic analysis
Adams, David R.; Xiao, Jie
2012-10-01
Through a geometric capacitary analysis based on space dualities, this paper addresses several fundamental aspects of functional analysis and potential theory for the Morrey spaces in harmonic analysis over the Euclidean spaces.
Predicting the Coupling Properties of Axially-Textured Materials
María E. Fuentes-Montero
2013-10-01
Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Foliated stochastic calculus: Harmonic measures
Catuogno, Pedro J; Ruffino, Paulo R
2010-01-01
In this article we present an intrinsec construction of foliated Brownian motion via stochastic calculus adapted to foliation. The stochastic approach together with a proposed foliated vector calculus provide a natural method to work on harmonic measures. Other results include a decomposition of the Laplacian in terms of the foliated and basic Laplacians, a characterization of totally invariant measures and a differential equation for the density of harmonic measures.
Harmonic structures and intrinsic torsion
Conti, Diego; Madsen, Thomas Bruun
We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough inv...... investigation of the intrinsic torsion of such structures; in addition to the construction of harmonic structures, this analysis leads to explicit Lie group examples with invariant intrinsic torsion....
Harmonic Current Predictors for Wind Turbines
Shun-Yu Chan
2013-03-01
Full Text Available The harmonic impact caused by wind turbines should be carefully investigated before wind turbines are interconnected. However, the harmonic currents of wind turbines are not easily predicted due to the variations of wind speed. If the harmonic current outputs can be predicted accurately, the harmonic impact of wind turbines and wind farms for power grids can be analyzed efficiently. Therefore, this paper analyzes the harmonic current characteristics of wind turbines and investigates the feasibility of developing harmonic current predictors. Field measurement, data sorting, and analysis are conducted for wind turbines. Two harmonic current predictors are proposed based on the measured harmonic data. One is the Auto-Regressive and Moving Average (ARMA-based harmonic current predictor, which can be used for real-time prediction. The other is the stochastic harmonic current predictor considering the probability density distributions of harmonic currents. It uses the measured harmonic data to establish the probability density distributions of harmonic currents at different wind speeds, and then uses them to implement a long-term harmonic current prediction. Test results use the measured data to validate the forecast ability of these two harmonic current predictors. The ARMA-based predictor obtains poor performance on some harmonic orders due to the stochastic characteristics of harmonic current caused by the variations of wind speed. Relatively, the prediction results of stochastic harmonic current predictor show that the harmonic currents of a wind turbine in long-term operation can be effectively analyzed by the established probability density distributions. Therefore, the proposed stochastic harmonic current predictor is helpful in predicting and analyzing the possible harmonic problems during the operation of wind turbines and wind farms.
Spherical harmonics in texture analysis
Schaeben, Helmut; van den Boogaart, K. Gerald
2003-07-01
The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.
Prony Analysis for Power System Transient Harmonics
Qi Li
2007-01-01
Full Text Available Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Not required to have prior knowledge of existing harmonics, Prony analysis detects frequencies, magnitudes, phases, and especially damping factors of exponential decaying or growing transient harmonics. In this paper, Prony analysis is implemented to supervise power system transient harmonics, or time-varying harmonics. Further, to improve power quality when transient harmonics appear, the dominant harmonics identified from Prony analysis are used as the harmonic reference for harmonic selective active filters. Simulation results of two test systems during transformer energizing and induction motor starting confirm the effectiveness of the Prony analysis in supervising and canceling power system transient harmonics.
The axial topographic high at intermediate and fast spreading ridges
Carbotte, Suzanne M.; MacDonald, Ken C.
1994-12-01
An axial topographic high is commonly observed at both fast spreading ridges and some segments of intermediate spreading ridges. At fast rates the axial high is primarily created by the buoyancy of hot rock and magma beneath the rise. As newly formed crust is transported off axis, little vestige of an axial high is observed on the ridge flanks. In contrast, at intermediate rates, a significant component of the positive topography may be a volcanic construction, preserved on the ridge flanks as abyssal hills, which are slit axial volcanoes. We suggest this difference in the nature of the axial high reflects a lithosphere strong enough to support construction of a volcanic crestal ridge at intermediate spreading rates, but only rarely at fast rates. Relict overlap ridges, found within the discordant zones left by overlapping spreading centers, is one class of ridge-flank topography which appears to have a significant volcanic constructional component even at fast spreading ridges. Unlike topography away from these discontinuities, the relief and shape of overlapping spreading centers is preserved as relict ridge tips are rafted onto the ridge flanks. Reduced magma supply at these discontinuities may give rise to an axial lithosphere strong enough to support volcanic construction of overlap ridges. Low axial lithospheric strength may also account for the lack of normal faults within the innermost 1-2 km of fast, and some intermediate, spreading ridges. With a thin/weak brittle layer at the ridge crest, tensile failure will predominate and few normal faults will form. Depths to the axial magma chamber reflector observed in multi-channel seismic data limit the thickness of the brittel layer on axis to less than 1-2 km for much of the East Pacific Rise (EPR). This depth is comparable to depths over which tensile failure within the oceanic crust will predominate, estimated from the Griffith criteria for fracture initiation (approx. 0.5-1.5 km). As the brittle layer
Validation of phantom-based harmonization for patient harmonization.
Panetta, Joseph V; Daube-Witherspoon, Margaret E; Karp, Joel S
2017-07-01
To improve the precision of multicenter clinical trials, several efforts are underway to determine scanner-specific parameters for harmonization using standardized phantom measurements. The goal of this study was to test the correspondence between quantification in phantom and patient images and validate the use of phantoms for harmonization of patient images. The National Electrical Manufacturers' Association image quality phantom with hot spheres was scanned on two time-of-flight PET scanners. Whole-body [(18) F]-fluorodeoxyglucose (FDG)-PET scans were acquired of subjects on the same systems. List-mode events from spheres (diam.: 10-28 mm) measured in air on each scanner were embedded into the phantom and subject list-mode data from each scanner to create lesions with known uptake with respect to the local background in the phantom and each subject's liver and lung regions, as a proxy to characterize true lesion quantification. Images were analyzed using the contrast recovery coefficient (CRC) typically used in phantom studies and serving as a surrogate for the standardized uptake value used clinically. Postreconstruction filtering (resolution recovery and Gaussian smoothing) was applied to determine if the effect on the phantom images translates equivalently to subject images. Three postfiltering strategies were selected to harmonize the CRCmean or CRCmax values between the two scanners based on the phantom measurements and then applied to the subject images. Both the average CRCmean and CRCmax values for lesions embedded in the lung and liver in four subjects (BMI range 25-38) agreed to within 5% with the CRC values for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRCmean and CRCmax resulting from the application of the postfilters on the subject and phantom images were consistent within measurement uncertainty. Further, the root mean squared percent difference (RMSpd ) between CRC values on the two scanners
Reimond, Stefan
2016-01-01
Gravitational features are a fundamental source of information to learn more about the interior structure and composition of planets, moons, asteroids and comets. Gravitational field modeling typically approximates the target body with a sphere, leading to a representation in spherical harmonics. However, small celestial bodies are often irregular in shape, and hence poorly approximated by a sphere. A much better suited geometrical fit is achieved by a tri-axial ellipsoid. This is also mirrored in the fact that the associated harmonic expansion (ellipsoidal harmonics) shows a significantly better convergence behavior as opposed to spherical harmonics. Unfortunately, complex mathematics and numerical problems (arithmetic overflow) so far severely limited the applicability of ellipsoidal harmonics. In this paper, we present a method that allows expanding ellipsoidal harmonics to a considerably higher degree compared to existing techniques. We apply this novel approach to model the gravitational field of comet 6...
Axial Globe Length in Congenital Ptosis.
Takahashi, Yasuhiro; Kang, Hyera; Kakizaki, Hirohiko
2015-01-01
To compare axial globe length between affected and unaffected sides in patients with unilateral congenital ptosis. This prospective observational study included 37 patients (age range: 7 months to 58 years). The axial globe length, margin reflex distance-1 (MRD-1), and refractive power were measured. The axial globe length difference was calculated by subtracting the axial globe length on the unaffected side from that of the affected side. The relationships among axial globe length differences, MRD-1 on the affected sides, and patient ages were analyzed using multiple regression analysis. No significant differences were found in the axial globe length between sides (P = .677). The axial globe length difference was 0.17 ± 0.30 mm (mean ± standard deviation), and two patients (5.4%), aged 32 to 57 years, showed axial globe length more than 0.67 mm longer (corresponding to a refractive power of 2 diopters) on the affected side compared to the unaffected side. The multiple regression model between axial globe length difference, patient age, and MRD-1 on the affected sides was less appropriate (YAGL = 0.003XAGE-0.048XMRD-1 +0.112; r = 0.338; adjusted r2 = 0.062; P = .127). The cylindrical power was greater on the affected side (P = .046), although the spherical power was not different between sides (P = .657). No significant difference was identified in the axial globe length between sides, and only 5% of non-pediatric patients showed an axial globe length more than 0.67 mm longer on the affected side. Congenital ptosis may have little effect on axial globe length elongation, and the risk of axial myopia-induced anisometropic amblyopia may be low in patients with unilateral congenital ptosis. Copyright 2015, SLACK Incorporated.
The role of current loop in harmonic generation from magnetic metamaterials in two polarizations
Sajedian, Iman; Kim, Inki; Zakery, Abdolnasser; Rho, Junsuk
2017-10-01
In this paper, we investigate the role of current loop in the generation of second and third harmonic signals from magnetic metamaterials and we are clarifying why two polarized harmonics are generated from magnetic metamaterials. We show that the current loop formed in the magnetic resonant frequency acts as a source for nonlinear effects. The current loop that has a circular shape can be divided into two orthogonal parts, where each of these parts acts as a source for generating a harmonic signal parallel to itself. The type of harmonic signal is determined by the metamaterial's inversion symmetry in that direction. This claim is also supported by the experimental results of another group.
Numerical investigations on axial and radial blade rubs in turbo-machinery
Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.
2017-07-01
In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.
Harmonic morphisms and subharmonic functions
Gabjin Yun
2005-03-01
Full Text Available Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let ÃÂ•:MÃ¢Â†Â’N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and ÃÂ• has finite energy, then ÃÂ• is a constant map. Similarly, if f is a subharmonic function on N which is not harmonic and such that |df| is bounded, and if Ã¢ÂˆÂ«M|dÃÂ•|<Ã¢ÂˆÂž, then ÃÂ• is a constant map. We also show that if Nm(mÃ¢Â‰Â¥3 has at least two ends of infinite volume satisfying the Sobolev inequality or positivity of the first eigenvalue of the Laplacian, then there are no nonconstant surjective harmonic morphisms with finite energy. For p-harmonic morphisms, similar results hold.
TAX HARMONIZATION VERSUS FISCAL COMPETITION
Florin Alexandru MACSIM
2016-12-01
Full Text Available Recent years have brought into discussion once again subjects like tax harmonization and fiscal competition. Every time the European Union tends to take a step forward critics enter the scene and give contrary arguments to European integration. Through this article we have offered our readers a compelling view over the “battle” between tax harmonization and fiscal competition. While tax harmonization has key advantages as less costs regarding public revenues, leads to higher degree of integration and allows the usage of fiscal transfers between regions, fiscal competition is no less and presents key advantages as high reductions in tax rates and opens a large path for new investments, especially FDI. Choosing tax harmonization or fiscal competition depends on a multitude of variables, of circumstances, the decision of choosing one path or the other being ultimately influenced by the view of central and local authorities. Our analysis indicates that if we refer to a group of countries that are a part of a monetary union or that form a federation, tax harmonization seems to be the best path to choose. Moving the analysis to a group of regions that aren’t taking any kind of correlated actions or that have not signed any major treaties regarding monetary or fiscal policies, the optimal solution is fiscal competition.
Axial Vector $Z'$ and Anomaly Cancellation
Ismail, Ahmed; Tsao, Kuo-Hsing; Unwin, James
2016-01-01
Whilst the prospect of new $Z'$ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that the masses of these new states must generally be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.
Axial vector Z‧ and anomaly cancellation
Ismail, Ahmed; Keung, Wai-Yee; Tsao, Kuo-Hsing; Unwin, James
2017-05-01
Whilst the prospect of new Z‧ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that in a large class of models masses of these new states are expected to be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.
Diabetes mellitus and the eye: axial length
Huntjens, B.; O’Donnell, C.
2006-01-01
Background and aims: The refractive error of the eye is dependent on its axial length. Refractive error is known to fluctuate significantly in poorly controlled diabetic patients. Recently it has been reported that human eyes fluctuate in axial length during the day. However, this change is not detectable in all subjects, suggesting physiological influences such as diet. The purpose of this study was to investigate fluctuations in axial length and blood glucose levels (BGLs) in diabetic patie...
System Study for Axial Vane Engine Technology
Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.
2008-01-01
The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.
Harmonic structures and intrinsic torsion
Conti, Diego; Madsen, Thomas Bruun
We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough inv...... investigation of the intrinsic torsion of such structures; in addition to the construction of harmonic structures, this analysis leads to explicit Lie group examples with invariant intrinsic torsion.......We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough...
Unsteady Flows in Axial Turbomachines
Marble, F. E.; Rannie, W. D.
1957-01-01
Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
Peter Svenonius
2007-01-01
Full Text Available Many languages have specialized locative words or morphemes translating roughly into words like ‘front,’ ‘back,’ ‘top,’ ‘bottom,’ ‘side,’ and so on. Often, these words are used instead of more specialized adpositions to express spatial meanings corresponding to ‘behind,’ ‘above,’ and so on. I argue, on the basis of a cross-linguistic survey of such expressions, that in many cases they motivate a syntactic category which is distinct from both N and P, which I call AxPart for ‘Axial Part’; I show how the category relates to the words which instantiate it, and how the meaning of the construction is derived from the combination of P[lace] elements, AxParts, and the lexical material which expresses them.
Elements of abstract harmonic analysis
Bachman, George
2013-01-01
Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give
Harmonic functions with varying coefficients
Jacek Dziok
2016-05-01
Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.
Harmonic morphisms and bicomplex numbers
Baird, Paul
2009-01-01
We use functions of a bicomplex variable to unify the existing constructions of harmonic morphisms from a 3-dimensional Euclidean or pseudo-Euclidean space to a Riemannian or Lorentzian surface. This is done by using the notion of complex-harmonic morphism between complex Riemannian manifolds and showing how these are given by bicomplex-holomorphic functions when the codomain is one-bicomplex dimensional. Interesting compactifications involving bicomplex manifolds are given. By taking real slices, we recover well-known compactifications for the three possible real cases.
The Obstacle Problem for the -Harmonic Equation
Bao Gejun
2010-01-01
Full Text Available Firstly, we define an order for differential forms. Secondly, we also define the supersolution and subsolution of the -harmonic equation and the obstacle problems for differential forms which satisfy the -harmonic equation, and we obtain the relations between the solutions to -harmonic equation and the solution to the obstacle problem of the -harmonic equation. Finally, as an application of the obstacle problem, we prove the existence and uniqueness of the solution to the -harmonic equation on a bounded domain with a smooth boundary , where the -harmonic equation satisfies where is any given differential form which belongs to .
Third Harmonic Imaging using a Pulse Inversion
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd harmonic component for imaging on any ultrasound system capable of PI. PI was used to perform 3rd harmonic Bmode scans of a water-filled wire phantom on an experimental ultrasound system. The 3rd harmonic...
High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon
Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping
2005-03-01
A high-resolution second-harmonic optical coherence tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti :sapphire laser. An axial resolution of 4.2μm at the second-harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second-harmonic generation signals that strongly depend on the orientation, polarization, and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues of the rat-tail tendon. Highly organized collagen fibrils in the rat-tail tendon can be visualized in recorded images.
FROM THE HARMONIZATION NEED TO THE SPONTANEOUS ACCOUNTING HARMONIZATION
Matis Dumitru
2009-05-01
Full Text Available The issue of international accounting harmonization has achieved, mainly within the last decade, a significant dimension in the field of international accounting research. The main determinant factor for this state of the art is the process aiming at redu
Dynamic Behaviors of Axially Moving Viscoelastic Plate with Varying Thicknessn
ZHOU Yinfeng; WANG Zhongmin
2009-01-01
Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.
Axial dispersion in flowing red blood cell suspensions
Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou
2016-11-01
A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.
Awad, Mervat El-Sayed
1988-10-01
A special perturbation technique of Encke type associated with the Kustaanheimo-Stiefel (KS) regularized variables is developed for satellite motions in the earth's gravitational field with axial symmetry. Its computational algorithm is of recursive nature and could be applied to any perturbed conic motion, whatever the number of the zonal harmonic coefficients may be. Applications of the algorithm are also included.
杨骁; 刘鑫
2008-01-01
Based on the mathematical model of the bending of the incompressible saturated poroelastic beam with axialdiffusion, the quasi-static bendings of the simply supported poroelastic beam subjected to a suddenly applied constant loadwere investigated, and the analytical solutions were obtained for different diffusion conditions of the pore fluid at the beamends. The deflections, the bending moments of the solid skeleton and the equivalent couples of the pore pressures werepresented in figures. It is also shown that the behavior of the saturated poroelastic beams depends closely on the diffusionconditions at the beam ends, especially for the equivalent couples of the pore pressures. It is found that the Mandel-Cryereffect also exists in the bending of the saturated poroelastic beams under specific diffusion conditions at the beam ends.
Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field
胡宇达; 张金志
2013-01-01
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid-ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para-metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.
Health and imaging outcomes in axial spondyloarthritis
Machado, P.M.
2016-01-01
This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment
Image composition with color harmonization
Congde Wang; Rong Zhang; Fan Deng
2009-01-01
Image matting and color transfer are combined to achieve image composition.Firstly,digital matting is used to pull out the region of interest.Secondly,taking color harmonization into account,color transfer techniques are introduced in pasting the region onto the target image.Experimental results show that the proposed approach generates visually plea.sing composite images.
Odd Harmonics in Exoplanet Photometry: Weather or Artifact?
Chayes, Victoria; Cowan, Nicholas; Bouffard, Élie; Haggard, Hal
2017-01-01
In the Fourier decomposition of light curves of exoplanets observed by the Kepler mission, one expects to see power in the first mode, from the planet orbiting the star, and the second mode, from ellipsoidal variations. Observations of power in the third mode of planets such as HAT-P-7b and Kepler-13Ab are as of yet unexplained. Using a spherical harmonic basis we analyze planet maps to find their corresponding light curves and show that no planet observed edge-on can produce these third harmonics with either reflected light or thermal emissions. Further numerical and analytic calculations put upper bounds on the power in the third mode that can be produced by planets not transiting perfectly edge-on, or with time-variable maps. We find the expected order of magnitude of these contributions to be at most two orders of magnitude below the first harmonic. The North-South asymmetric features or time-variable maps that could produce such harmonics would suggest exoplanetary weather if observed. However, more careful analysis of tidal effects on the stars of HAT-P-7b and Kepler-13Ab suggest that these particular harmonics are stellar in origin. Élie Bouffard was supported by an iREx summer internship. We thank the International Space Science Institute in Bern, Switzerland, for hosting the Exo-Cartography workshop series.
Tides and tidal harmonics at Umbharat, Gujarat
Suryanarayana, A.; Swamy, G.N.
A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...
Universal Axial Fluctuations in Optical Tweezers
Ribezzi-Crivellari, Marco; Ritort, Felix
2015-01-01
Optical tweezers allow the measurement of fluctuations at the nano-scale, in particular fluctuations in the end-to-end distance in single molecules. Fluctuation spectra can yield valuable information, but they can easily be contaminated by instrumental effects. We identify axial fluctuations, i.e. fluctuations of the trapped beads in the direction of light propagation, as one of these instrumental effects. Remarkably, axial fluctuations occur on a characteristic timescale similar to that of conformational (folding) transitions, which may lead to misinterpretation of the experimental results. We show that a precise measurement of the effect of force on both axial and conformational fluctuations is crucial to disentangle them. Our results on axial fluctuations are captured by a simple and general formula valid for all optical tweezers setups and provide experimentalists with a general strategy to distinguish axial fluctuations from conformational transitions.
Graham, Peter W.; /Stanford U., ITP; Horn, Bart; Kachru, Shamit; /Stanford U., ITP /SLAC; Rajendran, Surjeet; /Johns Hopkins U. /Stanford U., ITP; Torroba, Gonzalo; /Stanford U., ITP /SLAC
2011-12-14
We explore simple but novel bouncing solutions of general relativity that avoid singularities. These solutions require curvature k = +1, and are supported by a negative cosmological term and matter with -1 < w < -1 = 3. In the case of moderate bounces (where the ratio of the maximal scale factor a{sub +} to the minimal scale factor a{sub -} is {Omicron}(1)), the solutions are shown to be classically stable and cycle through an infinite set of bounces. For more extreme cases with large a{sub +} = a{sub -}, the solutions can still oscillate many times before classical instabilities take them out of the regime of validity of our approximations. In this regime, quantum particle production also leads eventually to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular crunch. We briefly discuss possible applications of these models to realistic cosmology.
Novel Integration Radial and Axial Magnetic Bearing
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
Novel Integrated Radial and Axial Magnetic Bearing
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
Ebran, J-P [CEA/DAM/DIF, F-91297 Arpajon (France); Khan, E; Arteaga, D Pena [Institut de Physique Nucleaire, University Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Vretenar, D, E-mail: jean-paul.ebran@cea.fr [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)
2011-09-16
The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is presented. The model involves a phenomenological Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. The RHFBz equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Neon isotopes.
Third harmonic measurement in printed electronics
Samano, A; Xu, Y.; Harrison, D.; Hunt, C; Wickham, M; Thomas, O.
2014-01-01
The purpose of this research paper is to investigate the defects detecting technique in printed electronics by the third harmonic measurements. Various types of defects were introduced on the samples and the third harmonic signal was measured using a component linearity tester (Radiometer CLT1). The relationship between the defects in the printed samples and the third harmonic signal and the third harmonic ratio was identified.
Structural support bracket for gas flow path
None
2016-08-02
A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.
Third Harmonic Imaging using a Pulse Inversion
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Harmonic functions of superprocesses and conditioned superprocesses’
赵学雷
1996-01-01
The harmonic functions for superprocesses are defined by applying the martingale property. Under a general condition, a classification theorem of harmonic functions for homogeneous superprocesses is obtained in terms of the solutions to a measure functional equation. The conditioned superdiffusions in a regular domain by Doob’s harmonic transform are defined and investigated.
Harmonic oscillator: an analysis via Fourier series
de Castro, A S
2013-01-01
The Fourier series method is used to solve the homogeneous equation governing the motion of the harmonic oscillator. It is shown that the general solution to the problem can be found in a surprisingly simple way for the case of the simple harmonic oscillator. It is also shown that the damped harmonic oscillator is susceptible to the analysis.
Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model
Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei
2017-01-01
the shortcomings of the present harmonic analysis methods, such as the time-domain simulation, or the Fourier analysis, this paper proposes a Harmonic State Space model to study the harmonics performance for this type of drive. In this study, this model is utilized to describe the behavior of the harmonic...... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...
Second-Harmonic and Third-Harmonic Generations in the Thue-Morse Dielectric Superlattice
蔡祥宝
2002-01-01
Theoretical work on the optical properties of the one-dimensional dielectric superlattice is extended. 3Byv means of a transfer matrix method, the second-harmonic and third-harmonic generations in a one-dimensional tinite Thue Morse dielectric superlattice are analysed. The electric field amplitude variables of the second-harmonic and third-harmonic can be expressed by the formula of matrices. Taking advantage of numerical procedure, we discuss the dependence of the second-harmonic and third-harmonic on the fundamental wavelength and the field amplitude variables of the fundamental wave. High conversion efficiency of the third-harmonic can be obtained at some special fundamental wavelength.
Lorentz Harmonics, Squeeze Harmonics and Their Physical Applications
Marilyn E. Noz
2011-02-01
Full Text Available Among the symmetries in physics, the rotation symmetry is most familiar to us. It is known that the spherical harmonics serve useful purposes when the world is rotated. Squeeze transformations are also becoming more prominent in physics, particularly in optical sciences and in high-energy physics. As can be seen from Dirac’s light-cone coordinate system, Lorentz boosts are squeeze transformations. Thus the squeeze transformation is one of the fundamental transformations in Einstein’s Lorentz-covariant world. It is possible to define a complete set of orthonormal functions defined for one Lorentz frame. It is shown that the same set can be used for other Lorentz frames. Transformation properties are discussed. Physical applications are discussed in both optics and high-energy physics. It is shown that the Lorentz harmonics provide the mathematical basis for squeezed states of light. It is shown also that the same set of harmonics can be used for understanding Lorentz-boosted hadrons in high-energy physics. It is thus possible to transmit physics from one branch of physics to the other branch using the mathematical basis common to them.
Axial force measurement for esophageal function testing
Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes
2009-01-01
The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.
Axial force measurement for esophageal function testing.
Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr
2009-01-14
The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.
Axial Vibration Confinement in Nonhomogenous Rods
S. Choura
2005-01-01
Full Text Available A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties. Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion. In such a case, the vibration confinement requires that the eigenfunctions be exponentially decaying functions of space, where the notion of spatial domain stability is introduced as a concept dual to that of the time domain stability. It is also shown that vibration confinement can be produced if the rod density and/or stiffness are varied with respect to the space variable while the cross-section area is kept constant. Several case studies, supporting the developed conditions imposed on the spatially dependent functions for vibration confinement in vibrating rods, are discussed. Because variation in the geometric and material properties might decrease the critical buckling loads, we also discuss the buckling problem.
Electric Drive for an In-wheel Fractional-slot Axial Flux Machine
Luigi Alberti; Nicola Bian-chi
2008-01-01
This paper describes the electric drive for an in-wheel fractional-slot axial flux machine, designed for achievinga wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and additional coresenclosing end windings,the axial flux machine reaches a wide constant power speed range. The machine is designed forincreasing flux-weakening capability while obtaining low harmonic back-electromotive force and low cogging torque.A 10maximize the output torque in the flux-weakening region, is designed and implemented.The goodness of both design andcontrol algorithm is proved by experimental tests.However,such a fractional-slot machine has not only advantages.Rotorlosses are very high ,and they have to be properly considered during the design process.
Vibrational power flow of a finite cylindrical shell with discrete axial stiffeners
LIU Yanmei; HUANG Xieqing
2002-01-01
The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by using Flugge equation and Hamilton variational principle,and the responses of the shell are obtained. By use of the basic definition of the power flow, the characteristics of axial propagation of the power flow supplied by input structure and carried by different shell internal forces of a forced shell are investigated. The effects of parameters, such as relative location of driving force and stringer, driving force type and structural damping on the vibrational power flows in the shell, are discussed. These provide some theoretical bases for vibration control and noise reduction of this kind of structure.
McBee, Kerry D.
The emphasis on creating a more efficient distribution system has led many utility companies to employ dynamic voltage and VAr compensation (Volt/VAr) applications that reduce energy demand, generation, and losses associated with the transmission and distribution of energy. To achieve these benefits, Volt/VAr applications rely upon algorithms to control voltage support equipment, such as transformer load tap changers, voltage regulators, and capacitor banks. The majority of these algorithms utilize metaheuristic programming methods to determine the Volt/VAr scheme that produces the most energy efficient operating conditions. It has been well documented that the interaction between capacitor bank reactance and the inductive reactance of a distribution system can produce parallel harmonic resonance that can damage utility and customer equipment. The Volt/VAr controlling algorithms that account for harmonics do so in an indirect manner that can mask harmonic resonance conditions. Unlike previous research endeavors, the primary focus of the method described within this dissertation is to identify Volt/VAr schemes that prevent harmonic resonance due to capacitor bank operation. Instead of a metaheuristic approach, the harmonic resonance identification algorithm relies upon constrained mixed integer nonlinear programming (MINLP), which is more suited for analyzing impedance characteristics created by the energized states of a system of capacitor banks. Utilizing a numerical approach improves the accuracy of identifying harmonic resonance conditions, while also reducing the complexity of the process by exclusively relying upon the system's admittance characteristics. The novel harmonic resonance identification method is applicable to distribution systems that are dynamically reconfigured, which can result in a number of unknown harmonic resonance producing conditions, a feature unavailable with existing controlling algorithms. The ability to identify all harmonic
Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong
2007-04-07
Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log(10)N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images.
MA Qingyu; GONG Xiufen; ZHANG Dong; MA Yong
2006-01-01
In this paper, a phase-coded pulse technique is proposed to improve the signal-to-noise ratio (SNR) in the 3rd harmonic imaging in transmission mode, where three pulses with initial phases of 0°, 120° and 240° are transmitted and their corresponding received signals are linearly summed. By means of simulations and measurements, we show that the 3rd harmonic is enhanced by 9.5 dB, whereas the fundamental or the 2nd harmonic components are suppressed; the axial and lateral beam profiles of the processed 3rd harmonics are superior to those of the fundamental or 2nd harmonic components. In addition, this technique is applied to obtain the 3rd harmonic images for two normal and pathological biological tissues in transmission mode. This technique yields a dramatically cleaner and sharper contrast than the images obtained by the traditional fundamental imaging and the 2nd harmonic imaging, which helps distinguish the normal and pathological states of tissues.
Harmonic Detection at Initialization With Kalman Filter
Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa
2014-01-01
the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized......Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...
New Anomaly of the Axial-Vector Current
HE Han-Xin
2001-01-01
By computing the axial-vector current operator equation, we find the anomalous axial-vector curl equation besides the well-known anomalous axial-vector divergence equation (the Adler-Bell-Jackiw anomaly) and discuss its implication.``
Wavemoth-Fast Spherical Harmonic Transforms by Butterfly Matrix Compression
Seljebotn, D. S.
2012-03-01
We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L 2log2 L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L ~ 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.
Exact propagators in harmonic superspace
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
Exact propagators in harmonic superspace
Kuzenko, S M
2004-01-01
Within the background field formulation in harmonic superspace for quantum N = 2 super Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super Yang-Mills theory.
Detection of Harmonic Occurring using Kalman Filtering
Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed
2014-01-01
As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics......./current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...
Harmonic ratcheting for fast acceleration
Cook, N.; Brennan, J. M.; Peggs, S.
2014-04-01
A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.
Representation Discovery using Harmonic Analysis
Mahadevan, Sridhar
2008-01-01
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu
Harmonic Lattice Dynamics of Germanium
Nelin, G.
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Libpsht - algorithms for efficient spherical harmonic transforms
Reinecke, Martin
2010-01-01
Libpsht (or "library for Performant Spherical Harmonic Transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports transforms of scalars as well as spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP and ECP). It will take advantage of hardware features like multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General ...
Properties of Fermion Spherical Harmonics
Hunter, G; Hunter, Geoffrey; Emami-Razavi, Mohsen
2005-01-01
The Fermion Spherical harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer $\\ell$ and $m$ - presented in a previous paper] are shown to have the same eigenfunction properties as the well-known Boson Spherical Harmonics [$Y_\\ell^{m}(\\theta,\\phi)$ for integer $\\ell$ and $m$]. The Fermion functions are shown to differ from the Boson functions in so far as the ladder operators $M_+$ ($M_-$) that ascend (descend) the sequence of harmonics over the values of $m$ for a given value of $\\ell$, do not produce the expected result {\\em in just one case}: when the value of $m$ changes from $\\pm{1/2}$ to $\\mp{1/2}$; i.e. when $m$ changes sign; in all other cases the ladder operators produce the usually expected result including anihilation when a ladder operator attempts to take $m$ outside the range: $-\\ell\\le m\\le +\\ell$. The unexpected result in the one case does not invalidate this scalar coordinate representation of spin angular momentum, because the eigenfunction property is essential for a valid quantum mechani...
Molecular Simulations using Spherical Harmonics
CAI, Wen-Sheng; XU, Jia-Wei; SHAO, Xue-Guang; MAIGRET, Bernard
2003-01-01
Computer-aided drug design is to develop a chemical that binds to a target macromolecule known to play a key role in a disease state. In recognition of ligands by their protein receptors,molecular surfaces are often used because they represent the interacting part of molecules and they should reflex the complementarity between ligand and receptor. However, assessing the surface complementarity by searching all relative position of two surfaces is often computationally expensive. The complementarity of lobe-hole is very important in protein-ligand interactions. Spherical harmonic models based on expansions of spherical harmonic functions were used as a fingerprint to approximate the binding cavity and the ligand, respectively. This defines a new way to identify the complementarity between lobes and holes. The advantage of this method is that two spherical harmonic surfaces to be compared can be defined separately. This method can be used as a filter to eliminate candidates among a large number of conformations, and it will speed up the docking procedure. Therefore, it is possible to select complementary ligands or complementary conformations of a ligand and the macromoleeules, by comparing their fingerprints previously stored in a database.
Axial force measurement for esophageal function testing
Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans
2009-01-01
force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...
How to diagnose axial spondyloarthritis early
Rudwaleit, M.; van der Heijde, D.; Khan, M.; Braun, J.; Sieper, J.
2004-01-01
Background: Chronic low back pain (LBP), the leading symptom of ankylosing spondylitis (AS) and undifferentiated axial spondyloarthritis (SpA), precedes the development of radiographic sacroiliitis, sometimes by many years.
Axial thermal rotation of slender rods.
Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa
2011-05-06
Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain's axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.
Nonperturbative Aspects of Axial Vector Vertex
ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang
2002-01-01
It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.
Numerical simulation of axial flow compressors.
Jesuino Takachi Tomita
2002-01-01
This work deals with the numerical simulation of axial flow compressors, from design to performance prediction. The stage performance prediction uses the meanline flow properties. Stage-stacking is used to analyse a multi-stage compressor. A computer program, written in FORTRAN, was developed and is able to design an axial flow compressor given air mass flow, total pressure ratio, overall efficiency and design speed. All geometrical data relevant to the compressor performance prediction is ca...
Wave propagation in axially moving periodic strings
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-04-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.
An Unbroken Axial Vector Current Conservation Law
Sharafiddinov, Rasulkhozha S
2015-01-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space i...
Characteristics of tip-leakage flow in an axial fan
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol
2014-11-01
An axial fan with a shroud generates complicated vortical structures by the interaction of the axial flow with the fan blades and shroud near the blade tips. Large eddy simulation (LES) is performed for flow through a forward-swept axial fan, operating at the design condition of Re = 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model (Lee et al. 2010) is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame (Kim & Choi 2006) is adopted for the present simulation. It is found that two vortical structures are formed near the blade tip: the main tip leakage vortex (TLV) and the auxiliary TLV. The main TLV is initiated near the leading edge, develops downstream, and impinges on the pressure surface of the next blade, where the pressure fluctuations and turbulence intensity become high. On the other hand, the auxiliary TLV is initiated at the aft part of the blade but is relatively weak such that it merges with the main TLV. Supported by the KISTI Supercomputing Center (KSC-2014-C2-014).
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
Reddy, T. S. R.
2010-01-01
The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.
Dynamic response of axially moving Timoshenko beams：integral transform solution
安晨; 苏健
2014-01-01
The generalized integral transform technique (GITT) is used to find a semi-analytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The im-plementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numeri-cally solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflec-tion and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.
Measurement and Analysis Harmonics Using DSP
Lee, Sang Ik; Yoo, Jae Geun; Jeon, Jonog Chay [Korea Electrical Safety Corporation (Korea)
2002-07-01
Limitation countermeasure on harmonics occurred by power conversion installation. motor speed control equipment, and so on of power system is very important problem, and first of all, accuracy harmonics analysis in system is required for appropriate limitation counterplan. Analysis and judgement on power system harmonic by measurement are needed because analysis by mathematical model generally used for these harmonic analysis, if nonlinear ingredient is included in system, is not relatively correct. So, in this paper, system to measure and analyze harmonic by installing it in a power system, using DSP(Digital Signal Processor), is designed and developed, Also, it's performance is verified by installing it in the system that harmonics occurred. (author). 5 refs., 10 figs.
High-harmonic spectroscopy of aligned molecules
Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee
2017-01-01
High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.
Characterization of component interactions in two-stage axial turbine
Adel Ghenaiet
2016-08-01
Full Text Available This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic performances show noticeable differences when simulating the turbine stages simultaneously or separately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while downstream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevailing effect is rather linked to the blade tip flow structure.
Internal resonance of axially moving laminated circular cylindrical shells
Wang, Yan Qing; Liang, Li; Guo, Xing Hui
2013-11-01
The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.
Characterization of component interactions in two-stage axial turbine
Adel Ghenaiet; Kaddour Touil
2016-01-01
This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic perfor-mances show noticeable differences when simulating the turbine stages simultaneously or sepa-rately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD) produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while down-stream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevail-ing effect is rather linked to the blade tip flow structure.
Anomalous Dissipative Quantum Harmonic Oscillator
CHEN Dian-Yong; BAI Zhan-Wu; DONG Yu-Bing
2008-01-01
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as r-4and r-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
Excited Sessile Drops Perform Harmonically
Chang, Chun-Ti; Steen, Paul H
2013-01-01
In our fluid dynamics video, we demonstrate our method of visualizing and identifying various mode shapes of mechanically oscillated sessile drops. By placing metal mesh under an oscillating drop and projecting light from below, the drop's shape is visualized by the visually deformed mesh pattern seen in the top view. The observed modes are subsequently identified by their number of layers and sectors. An alternative identification associates them with spherical harmonics, as demonstrated in the tutorial. Clips of various observed modes are presented, followed by a 10-second quiz of mode identification.
Quantizing the damped harmonic oscillator
Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)
2005-03-04
We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.
Killing vector fields and harmonic superfield theories
Groeger, Josua, E-mail: groegerj@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin (Germany)
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Polarization-fan high-order harmonics
Fleischer, Avner; Bordo, Eliyahu; Kfir, Ofer; Sidorenko, Pavel; Cohen, Oren
2017-02-01
We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies with frequency continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics where each harmonic in the spectrum has the following property: it is nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Also, we show that polarization-fan high harmonics with modulated ellipticity are obtained when elliptical drivers are used. Polarization-fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles in a two-dimensional plane. The use of bichromatic drivers with close central frequencies largely preserves the single-cycle, single-atom and macroscopic physics of ‘ordinary’ high harmonic generation, where both the driver and high harmonics are linearly polarized. Thus, it should offer several attracting features, including (i) a direct route for extending the maximal photon energy of observed helical high harmonics to keV by using bichromatic drivers only in the mid-IR region and (ii) utilizing phase matching methods that were developed for ‘ordinary’ high harmonic generation driven by quasi-monochromatic pulses (e.g. pressure tuning phase matching). These polarization-fan harmonics may be utilized for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot.
Calvin, Matthew
A variety of magnetic gear topologies have been investigated in recent years as alternatives to traditional mechanical gearboxes. In general these magnetic gears offer advantages in the non-contact transmission of torque including inherent overload protection, reduced acoustic emissions, and a reduction in the number of contacting components subject to wear. The earliest magnetic gear designs however suffered from low volumetric torque densities, which limited their utility for industrial applications. Research into flux focusing magnetic gearbox topologies has resulted in increased volumetric torque densities by actively engaging all of the magnets in the transmission of torque throughout the process. This research compared the volumetric torque density of axial and radial flux focusing magnetic gearbox designs and prototypes to planetary, cycloidal, and harmonic mechanical gearboxes. The rare earth scaled up radial and axial flux focusing topologies were found to have consistently higher volumetric torque densities than planetary gearboxes of comparable diameter. The cycloidal and harmonic gearboxes had comparable volumetric torque densities, with greater volumetric torque densities for some models and lesser volumetric torque densities for others. The expectation is that further improvements in volumetric torque density are possible for flux focusing magnetic gears with additional refinement and optimization of the designs. The current study does show that flux focusing magnetic gear topologies are a plausible future alternative to mechanical gearboxes in applications where their unique torque transmission mechanism would be advantageous.
Till Heinemann
2017-08-01
Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
Harmonic functions on groups and Fourier algebras
Chu, Cho-Ho
2002-01-01
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Second-harmonic optical coherence tomography
Jiang, Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping
2004-05-01
Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.
Harmonic Retrieval in Colored ARMA Noise
无
2000-01-01
We propose a new approach to harmonic retrieval in colored ARMA noise. A suitable filter is first used to remove all the sharp power spectrum peaks of the noisy observed process, then some kinds of cross correlation is employed to identify the noise characteristics. After filtering the noisy observed process with the identified noise characteristics again, SVD-TLS method can be applied to retrieve the harmonics. The proposed approach can be used to retrieve real-valued harmonic signals in colored ARMA noise with no restrictions on the phase coupling of harmonics and the distribution of the noise. Simulation examples show its effectiveness.
Effects of harmonic roving on pitch discrimination
Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra
2015-01-01
Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...
Optimization of residual heat removal pump axial thrust and axial bearing
Schubert, F.
1996-12-01
The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.
Reducing axial mixing in flotation columns
Al Taweel, A.M.; Ramadan, A.M. [Technical Univ. of Nova Scotia, Halifax (Canada). Chemical Engineering Dept.; Moharam, M.R.; Hassan, T.A. [Al Azhar Univ., Cairo (Egypt); El Mofty, S.M. [Cairo Univ., Giza (Egypt)
1995-10-01
The axial mixing characteristics of a pilot-scale flotation column were investigated with the objective of identifying means to mitigate the extent of axial mixing that adversely affects its grade/recovery performance. A wide range of design and operating conditions wa investigated and the experimental results, obtained using the dynamic response method, were analyzed using three axial mixing models. The dynamic response of the column can best be described using the axial dispersion model. The results obtained suggest that the value of the axial dispersion coefficient, E{sub L}, can be significantly reduced by judicial selection of hydrodynamic conditions and/or the use of column inserts that suppress the onset of hydrodynamic instabilities inherent to the operation of conventional flotation columns. Up to 40% reduction in the value of E{sub L} was thus obtained by using spargers that produce more uniform bubble sizes, while up to 30% reductions were obtained by controlling the residual frother concentration. 33 refs., 7 figs.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
Al Jaafari, Khaled Ali
single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
Harmonization of European track quality
Popović Zdenka
2014-01-01
Full Text Available This paper deals with characterisation of track geometry, track measuring and recording system, as well as geometric quality levels. The legal framework and state of the art in the field of harmonization of track geometry technical regulation in the Republic of Serbia were presented. In particular, the paper discusses the European standard EN 13848 Series (Parts 1-6. Principal track geometric parameters were analyzed according to EN 13848-1. Track geometric quality levels were examined according to EN 13848-5. The evaluation of track geometry quality according to prEN 13848-6 was analyzed as well. The objective of creation of the European standard EN 13848 Series (Parts 1-6 was defining a unique approach for the evaluation of track geometry quality of various European railway infrastructures. The Institute for Standardization of Serbia has adopted and published five of six parts of this standard. This paper is a part of an effort to harmonize the Serbian railway technical regulations with those of the European Union. .
Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Zhong Yi; Zhang Yong; Wang Jiao; Zhao Hong
2013-01-01
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions.Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough.Because only the harmonic interactions are involved,the result confirms,without ambiguity,that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices.Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
Reduction of multiple harmonic sums and harmonic polylogarithms
Bluemlein, J. [DESY, Deutsches Elektronen Synchrotron, DESY, Platanenallee 6, D-15735 Zeuthen (Germany)]. E-mail: johannes.blumlein@desy.de
2004-11-21
The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index class rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be =<1/d, where d is the depth of the sums considered and is given by the 2nd Witt formula. It can be also determined by counting the Lyndon words of the respective index set. The relations derived can be used to simplify results of higher-order calculations in QED and QCD.
Reduction of multiple harmonic sums and harmonic polylogarithms
Blümlein, J.
2004-11-01
The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index class rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be ⩽1/d, where d is the depth of the sums considered and is given by the 2nd Witt formula. It can be also determined by counting the Lyndon words of the respective index set. The relations derived can be used to simplify results of higher-order calculations in QED and QCD.
Atlanto-axial infection after acupuncture.
Robinson, A; Lind, C R P; Smith, R J; Kodali, V
2015-12-11
A 67-year-old man presented with neck cellulitis following acupuncture for cervical spondylosis. Blood cultures were positive for methicillin-sensitive Staphylococcus aureus. Increased neck pain and bacteraemia prompted MRI, which showed atlanto-axial septic arthritis without signs of infection of the tissues between the superficial cellulitic area and the atlanto-axial joint, thus making direct extension of infection unlikely. It is more likely that haematogenous spread of infection resulted in seeding in the atlanto-axial joint, with the proximity of the arthritis and acupuncture site being coincidental. Acupuncture is a treatment option for some indolent pain conditions. As such, acupuncture services are likely to be more frequently utilised. A history of acupuncture is rarely requested by the admitting doctor and seldom offered voluntarily by the patient, especially where the site of infection due to haematogenous spread is distant from the needling location. Awareness of infectious complications following acupuncture can reduce morbidity through early intervention.
Axial symmetry and conformal Killing vectors
Mars, M; Mars, Marc; Senovilla, Jose M.M.
1993-01-01
Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.
Axial flow positive displacement worm gas generator
Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)
2010-01-01
An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.
Improving the lattice axial vector current
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics
2015-11-15
For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.
Organocatalytic atroposelective synthesis of axially chiral styrenes
Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin
2017-05-01
Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.
Improving the lattice axial vector current
Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M
2015-01-01
For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Axial loaded MRI of the lumbar spine
Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E
2003-09-01
Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.
Water Ingestion Into Axial Flow Compressors
1976-08-01
AFAPL-TR-76-77 WATER INGESTION INTO AXIAL FLOW COMPRESSORS PURDUE UNIVERSITY SCHOOL OF AERONAUTICS AND ASTRONA UTICS S WEST LAFAYETTE, INDIANA 47907...CIPIENT’S CATALOG NUMBER TITL _07" 0 EREO Final i-7 0 Water Ingestion Into Axial Flow Compressorse 1 Auq 75 -: 31 Au0 a6 114o’ H-WPAFB-T-76-l:P ."CO TACT...necessary and Idenify by block number) Water ingestion , turbomachinery, and jet engines. 20 ABSTRACT (Contlinue on tov.ras side Hi necessary and Identify
«FLARES» IN AXIAL SPONDYLOARTHRITIS
Sh. F. Erdes
2016-01-01
Full Text Available The clear definition of the concept of «flare in axial spondyloarthritis» is of paramount importance for clinical trials and routine practice in particular. It will be able to unify the characteristics of outcomes over a particular period of time on the one hand and to standardize therapeutic approaches on the other. On 4 February 2016, the journal Annals of Rheumatic Diseases published the on-line paper «Preliminary definitions of 'flare' in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: an ASAS initiative» by L. Gossec et al., which was devoted to this topic.
Optimization of Axial Intensity Point Spread Function
WANG Haifeng; GAN Fuxi; CHEN Zhongyu
2001-01-01
It is known that for the converged laser beam, the axial intensity distribution corresponds to a Gaussian curve, that is, the intensity on the focal plane is the peak intensity. When it defocuses, the intensity would decrease rapidly. In optical data storage, for instance, we expect the intensity within a certain distance to be almost equal. In this paper, we propose to use a pure phase superresolution apodizer to optimize the axial intensity distribution of the converged laser beam and at the same time improve the resolution. The intensity point spread function remains almost identical in a wide range within the focal depth.
Axial Nucleon form factors from lattice QCD
Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M
2010-01-01
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
Axial Vircator for Electronic Warfare Applications
L. Drazan
2009-12-01
Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.
Scalar Resonances in Axially Symmetric Spacetimes
Ranea-Sandoval, Ignacio F
2015-01-01
We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that non-axial resonant modes do not exist neither in the Lanczos dust cylinder, the $(2+1)$ extreme BTZ spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the $r^2 <0$ region of the extreme $(2+1)$ BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.
Harmonic imaging with fresnel beamforming in the presence of phase aberration.
Nguyen, Man Minh; Shin, Junseob; Yen, Jesse
2014-10-01
Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the
Yew, E. Y. S.; Sheppard, C. J. R.
2007-07-01
Second harmonic generation microscopy was conducted on rat-tail tendons with linearly and radially polarized beams. Transverse and axial field components were generated in the focal region through tight focusing of linearly and radially polarized. It was found that the generated SHG signals could not be qualitatively explained with a scalar approximation to the electric field at the focus. Only by accounting for the interactions of the axial and transverse components of the electric field interacting through the nonlinear susceptibility χ(2) tensor could the SHG images be explained. For the case of collagen we find that the SHG signal varies as a function of the analyzer angle with a cos2 or sin2 dependency for linearly polarized beams. For tightly focused radially polarized beams we find that the output SHG is radially polarized after collimation and is independent of the analyzer angle.
Investigation of near-axial interference effects in long-range acoustic propagation in the ocean
Grigorieva, Natalie S.; Fridman, Gregory M.
2002-05-01
The observed time-of-arrival patterns from a number of long-range ocean acoustic propagation experiments show early geometrical-like arrivals followed by a crescendo of energy that propagates along the sound-channel axis and is not resolved into individual arrivals. The two-dimensional reference point source problem for the parabolic index of refraction squared is investigated to describe in a simple model case the interference of near-axial waves which resulted in forming the so-called axial wave and propose a formula for the axial wave in more general cases. Using the method proposed by Buldyrev [V. Buldyrev, Tr. Mat. Inst. Steklov 115, 78-102 (1971)], the integral representation for the exact solution is transformed in such a way to extract ray summands corresponding to rays radiated from the source at angles less than a certain angle, the axial wave, and a term corresponding to the sum of all the rays having launch angles greater than the indicated angle. Numerical results for the axial wave and the last term are obtained for parameters corresponding to long-range ocean acoustic propagation experiments. The generalization of the obtained formula for the axial wave to the case of an arbitrary range-independent sound speed is given and discussed. [Work supported by VSP Grant No. N00014-01-4003.
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; De Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ∼5 × 10(-10) W(-1), enabling a second harmonic photon yield higher than 3 × 10(6) photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Polarization-dependent optical second-harmonic imaging of a rat-tail tendon.
Stoller, Patrick; Kim, Beop-Min; Rubenchik, Alexander M; Reiser, Karen M; Da Silva, Luiz B
2002-04-01
Using scanning confocal microscopy, we measure the backscattered second harmonic signal generated by a 100 fs laser in rat-tail tendon collagen. Damage to the sample is avoided by using a continuous scanning technique, rather than measuring the signal at discrete points. The second harmonic signal varies by about a factor of 2 across a single cross section of the rat-tail tendon fascicle. The signal intensity depends both on the collagen organization and the backscattering efficiency. This implies that we cannot use intensity measurements alone to characterize collagen structure. However, we can infer structural information from the polarization dependence of the second harmonic signal. Axial and transverse scans for different linear polarization angles of the input beam show that second harmonic generation (SHG) in the rat-tail tendon depends strongly on the polarization of the input laser beam. We develop an analytical model for the SHG as a function of the polarization angle in the rat-tail tendon. We apply this model in determining the orientation of collagen fibrils in the fascicle and the ratio gamma between the two independent elements of the second-order nonlinear susceptibility tensor. There is a good fit between our model and the measured data.
A negative-norm least-squares method for time-harmonic Maxwell equations
Copeland, Dylan M.
2012-04-01
This paper presents and analyzes a negative-norm least-squares finite element discretization method for the dimension-reduced time-harmonic Maxwell equations in the case of axial symmetry. The reduced equations are expressed in cylindrical coordinates, and the analysis consequently involves weighted Sobolev spaces based on the degenerate radial weighting. The main theoretical results established in this work include existence and uniqueness of the continuous and discrete formulations and error estimates for simple finite element functions. Numerical experiments confirm the error estimates and efficiency of the method for piecewise constant coefficients. © 2011 Elsevier Inc.
The harmonized INFOGEST in vitro digestion method
Egger, Lotti; Ménard, Olivia; Delgado-Andrade, Cristina; Alvito, Paula; Assunção, Ricardo; Balance, Simon; Barberá, Reyes; Brodkorb, Andre; Cattenoz, Thomas; Clemente, Alfonso; Comi, Irene; Dupont, Didier; Garcia-Llatas, Guadalupe; Lagarda, María Jesús; Feunteun, Le Steven; Janssen Duijghuijsen, Lonneke; Karakaya, Sibel; Lesmes, Uri; Mackie, Alan R.; Martins, Carla; Meynier, Anne; Miralles, Beatriz; Murray, B.S.; Pihlanto, Anne; Picariello, Gianluca; Santos, C.N.; Simsek, Sebnem; Recio, Isidra; Rigby, Neil; Rioux, Laurie Eve; Stoffers, Helena; Tavares, Ana; Tavares, Lucelia; Turgeon, Sylvie; Ulleberg, E.K.; Vegarud, G.E.; Vergères, Guy; Portmann, Reto
2016-01-01
Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary
Sunspots and Their Simple Harmonic Motion
Ribeiro, C. I.
2013-01-01
In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.
The Harmonic Organization of Auditory Cortex
Xiaoqin eWang
2013-12-01
Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.
Studies in Above- and Below-Threshold Harmonics in Argon with an Infrared Femtosecond Laser
Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Cunningham, Eric; Wu, Yi; Chang, Zenghu
2016-05-01
We investigate and compare the above- and below-threshold harmonics in Argon gas using our recently-developed 1 kHz, two-cycle (11.4 fs), 3mJ, and carrier-envelope-phase(CEP)-stable laser at 1.6 μm. Such ultraviolet pulses can serve as pump or probe for studying dynamics in atoms and molecules. Unlike high harmonics with photon energy well above the ionization potential, the mechanism for generating harmonics near the ionization threshold is still under intense investigation. Previous work by Chini et al. on below-threshold harmonics was done using a 0.8 μm few-cycle Ti:Sapphire spectrally-broadened source with energy up to 300 μJ. It has been predicted by theory that free-free transitions dominate the below threshold harmonic generation as the laser wavelength increase from near infrared to mid-infrared. We are therefore interested in investigating how using a longer wavelength laser might lead to changes to the behavior of below-threshold harmonics when we vary various parameters. We report the π-periodity CEP dependence and ellipticity dependence of the above- and below-threshold harmonics. This material was based on work supported by National Science Foundation (1068604), Army Research Office (W911NF-14-1-0383), Air Force Office of Scientific Research (FA9550-15-1-0037) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).
Modelling of the Noise Spectra of Axial Flow Fans in a Free Field
Wu, S. F.; Su, S. G.; Shah, H. S.
1997-03-01
This paper presents a semi-empirical formula for predicting the noise spectra of axial flow fans in a free field. The basic assumption made in deriving this formula is that sound radiation from an axial flow fan in a free field is primarily due to the fluctuating pressure exerted on the fan blade surface. This fluctuating pressure is correlated to the lift force per unit length acting on the fan blade, and is subsequently approximated by pressure pulses that decay both in space and time. Accordingly, the radiated acoustic pressure is expressed in terms of superposition of contributions from these pressure pulses, and the line spectrum is obtained by taking a Fourier series expansion. To simulate the narrow and broad band sound spectra, a normal distribution-like shape function is designed which divides the frequency into consecutive bands centered at the blade passage frequency and its harmonics. The amplitude of this shape function at the center frequency of each band is unity but decays exponentially. The decay rate decreases with an increase in the number of bands. Thus, at high frequencies the narrow bands merge to form broad band-like spectra. The noise spectra thus obtained are compared with the measured ones from four different types of axial flow fans running under various conditions, and a favorable agreement in each case is obtained.
Pairwise harmonics for shape analysis
Zheng, Youyi
2013-07-01
This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.
Harmonics Monitoring Survey on LED Lamps
Abdelrahman Ahmed Akila
2017-03-01
Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.
Power Factor Correction to Mitigate Harmonic Distortion
Kochetkov, Gary
Many direct current (DC) devices must receive their power from the alternating current (AC) grid. Rectifiers use diodes to create DC for these devices. Due to diodes' non-linear nature however, harmonics are created and these travel back into the grid. A significant presence of harmonics causes component heating and possible malfunction. A harmonic mitigation procedure is needed. With the correct usage of transistors, the current drawn by a rectifier can be manipulated to remove almost all harmonics. This process is called power factor correction (PFC), and formally acts to reduce the total harmonic distortion (THD) of the current. To investigate this, a three phase active rectifier was computer simulated and a controller was designed to provide switching signals for the transistors. Finally, the device was constructed in the laboratory to drive a DC motor, verifying its operating principle outside of the idealities of simulation.
Harmonics mitigation on industrial loads using series and parallel ...
This work compared the use of series and parallel resonant harmonic filters in suppressing harmonics using Simulink ... From the analysis, series resonant filter mitigated the total harmonic distortion from 30.080% to 3.460%. ... Article Metrics.
Hawking Temperature of a Static Black Hole in Harmonic Coordinates
He, Guan-Sheng; Lin, Wei-Bin
2015-12-01
Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole. Supported in part by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20110184110016, the National Basic Research Program of China (973 Program) Grant No. 2013CB328904, and the Fundamental Research Funds for the Central Universities under Grant No. 2682014ZT32
Enhanced Harmonic Generation via Breaking of Phase-Matching Symmetry
Sergan, Ekaterina; Gibson, George
2016-05-01
We discuss experimental results of third harmonic generation (THG) with a focused Gaussian beam in the semi-infinite limit, using two methods. The first method involves placing a metal septum at the waist such that the laser drills a small pinhole, which in turn disrupts the beam after the waist. The second method uses a very thin septum as a separator for two gasses: one with a large third order susceptibility (before the focus), and the other with a small susceptibility (after the focus). Both methods inhibit harmonic generation immediately after the beam waist, leading to increased conversion efficiency and better mode quality. Our work involves studies of conversion efficiency with varying septum thickness and gas pressure, and the results are compared to computer simulations. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.
Topology of Platonic Spherical Manifolds: From Homotopy to Harmonic Analysis
Kramer, Peter
2015-01-01
We carry out the harmonic analysis on four Platonic spherical three-manifolds with different topologies. Starting out from the homotopies (Everitt 2004), we convert them into deck operations, acting on the simply connected three-sphere as the cover, and obtain the corresponding variety of deck groups. For each topology, the three-sphere is tiled into copies of a fundamental domain under the corresponding deck group. We employ the point symmetry of each Platonic manifold to construct its fundamental domain as a spherical orbifold. While the three-sphere supports an~orthonormal complete basis for harmonic analysis formed by Wigner polynomials, a given spherical orbifold leads to a selection of a specific subbasis. The resulting selection rules find applications in cosmic topology, probed by the cosmic microwave background.
Vibration mechanism of fuel rod in axial flow
Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam
1998-08-01
This is a review on the previous researches for the vibration of fuel rod induced by axial flow. The analysis methods are classified into three categories accordingly as the researchers postulate the vibration to be self-excited, forced and parametric; the self-excited mechanism by Burgreen and Quinn, the forced one by Reavis, Gorman, kanazawa, and S. Chen, and the parametric one by Y. Chen. Quinn supposed that the centrifugal force by flow exaggerated the natural bow in the cylinder, and the flexural force by it diminished the bow by turns; this interactive motion leaded cylinder to vibration. The supporters to the forced mechanism considered the forces arising from pressure perturbation within the boundary layers as vibrating sources. Y. Chen insisted that the cylinder could only be excited to vibration in resonance by the small oscillation of mean flow velocity. The previous studies were based on the simple boundary conditions such as hinged-hinged or fixed-fixed single span. Therefore, for the moreaccurate prediction of the fuel rod vibration in reactor, the further studies need to reflect the actual boundary conditions of the fuel rod like axial force and continuous supports by grids. (author). 25 refs.
High order harmonic generation in rare gases
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Excitation modes in non-axial nuclei
Leviatan, A.; Ginnochio, J.N.
1990-01-01
Excitation modes of non-axial quadrupole shapes are investigated in the framework of interacting boson models. Both {gamma}-unstable and {gamma}-rigid nuclear shapes are considered for systems with one type of boson as well as with proton-neutron bosons. 6 refs.
Cystic lesions accompanying extra-axial tumours
Lohle, PNM; Wurzer, HAL; Seelen, PJ; Kingma, LM; Go, KG
1999-01-01
We examined the mechanism of cyst formation in extra-axial tumours in the central nervous system (CNS). Cyst fluid, cerebrospinal fluid (CSF) and blood plasma were analysed in eight patients with nine peritumoral cysts: four with meningiomas, two with intracranial and two spinal intradural schwannom
Knowledge Based Design of Axial Flow Compressor
Dinesh kumar.R
2015-05-01
Full Text Available In the aerospace industry with highly competitive market the time to design and delivery is shortening every day. Pressure on delivering robust product with cost economy is in demand in each development. Even though technology is older, it is new for each customer requirement and highly non-liner to fit one in another place. Gas turbine is considered one of a complex design in the aircraft system. It involves experts to be grouped with designers of various segments to arrive the best output. The time is crucial to achieve a best design and it needs knowledge automation incorporated with CAD/CAE tools. In the present work an innovative idea in the form of Knowledge Based Engineering for axial compressor is proposed, this includes the fundamental design of axial compressor integrated with artificial intelligence in the form of knowledge capturing and programmed with high level language (Visual Basis.Net and embedded into CATIA v5. This KBE frame work eases out the design and modeling of axial compressor design and produces 3D modeling for further flow simulation with fluid dynamic in Ansys-Fluent. Most of the aerospace components are developed through simulation driven product development and in this case it is established for axial compressor.
Active axial stress in mouse aorta.
Agianniotis, A; Rachev, A; Stergiopulos, N
2012-07-26
The study verifies the development of active axial stress in the wall of mouse aorta over a range of physiological loads when the smooth muscle cells are stimulated to contract. The results obtained show that the active axial stress is virtually independent of the magnitude of pressure, but depends predominately on the longitudinal stretch ratio. The dependence is non-monotonic and is similar to the active stress-stretch dependence in the circumferential direction reported in the literature. The expression for the active axial stress fitted to the experimental data shows that the maximum active stress is developed at longitudinal stretch ratio 1.81, and 1.56 is the longitudinal stretch ratio below which the stimulation does not generate active stress. The study shows that the magnitude of active axial stress is smaller than the active circumferential stress. There is need for more experimental investigations on the active response of different types of arteries from different species and pathological conditions. The results of these studies can promote building of refined constrictive models in vascular rheology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigations on Experimental Impellers for Axial Blowers
Encke, W.
1947-01-01
A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.
Wave propagation in axially moving periodic strings
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-01-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drive...
Pohl, Kilian M; Sullivan, Edith V; Rohlfing, Torsten; Chu, Weiwei; Kwon, Dongjin; Nichols, B Nolan; Zhang, Yong; Brown, Sandra A; Tapert, Susan F; Cummins, Kevin; Thompson, Wesley K; Brumback, Ty; Colrain, Ian M; Baker, Fiona C; Prouty, Devin; De Bellis, Michael D; Voyvodic, James T; Clark, Duncan B; Schirda, Claudiu; Nagel, Bonnie J; Pfefferbaum, Adolf
2016-04-15
Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development
Feng, Li-Qiang; Li, Wen-Liang; Liu, Hang
2017-01-01
Molecular harmonic spectra of {{{H}}}2+ driven by the linearly polarized laser pulses with different polarized angles have been theoretically investigated through solving the two-dimensional time-dependent Schrödinger equation. (i) Below-threshold harmonic spectra show a visible enhanced peak around the 7th harmonic (H7), which produces a red-shift phenomenon as the internuclear distance increased. Theoretical analyses show the red-shift enhanced peak is caused by the laser-induced electron transfer between the ground state and the 1st excited state of {{{H}}}2+. (ii) Due to the two-centre interference phenomenon, the above-threshold harmonic spectra exhibit many maxima and minima. (iii) With the introduction of the polarized angle, the anomalous elliptically polarized harmonics can be found. But, with the introduction of the spatial inhomogeneous effect, not only the ellipticities of the harmonics are equal to a stable value of \\varepsilon ∼ 0.1–0.3, but also the harmonic cutoffs are extended. As a result, four super-bandwidths of 407 eV, 310 eV, 389 eV, and 581 eV can be obtained. Time profiles of the harmonic generations have been shown to explain the harmonic characteristics. Finally, a series of elliptically polarized (\\varepsilon ∼ 0.1–0.3) attosecond X-ray pulses with durations from 18as to 25as can be directly produced through Fourier transformation of the spectral continuum. Supported by National Natural Science Foundation of China under Grant No. 11504151, Doctoral Scientific Research Foundation of Liaoning Province under Grant No. 201501123 and Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2014242
Commutation effect of Adjustable Speed Drives due to installation of active harmonic filters
Asiminoaei, Lucian; Kalaschnikow, Sergej; Hansen, Steffan;
2011-01-01
The success of designing an industrial installation with Active Filters depends on how precise the load profile of the application is known, because this determines the amount of harmonic currents to be compensated. However, once the Active Filter is added to the installation, the harmonic curren...... and sizing industrial Active Filter applications together with Adjustable Speed Drives. Examples of using the developed toolbox are given in the paper, supported with practical measurements....... the commutation behavior of Adjustable Speed Drives when their harmonic currents are compensated by a Shunt Active Filter. The method is formulated as an analytical computation algorithm verified by simulations. Further on the method is implemented in a Harmonic Calculation Toolbox which facilitates calculation...
A Rotating-Frame Perspective on High-Harmonic Generation of Circularly Polarized Light
Reich, Daniel M
2016-01-01
We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond cur...
Geometric reasoning about damped and forced harmonic motion in the complex plane
Close, Hunter G.
2015-09-01
Complex-valued functions are commonly used to solve differential equations for one-dimensional motion of a harmonic oscillator with linear damping, a sinusoidal driving force, or both. However, the usual approach treats complex functions as an algebraic shortcut, neglecting geometrical representations of those functions and discarding imaginary parts. This article emphasizes the benefit of using diagrams in the complex plane for such systems, in order to build intuition about harmonic motion and promote spatial reasoning and the use of varied representations. Examples include the analysis of exact time sequences of various kinematic events in damped harmonic motion, sense-making about the phase difference between a driving force and the resulting motion, and understanding the discrepancy between the resonant frequency and the natural undamped frequency for forced, damped harmonic motion. The approach is suitable for supporting instruction in undergraduate upper-division classical mechanics.
Field measurement and analysis of harmonic levels
Karunakara, K.; Muthu Kumar, E.; Rajesh Kumar, O.; Nambudiri, P.V.V.; Srinivasan, K.N. [Central Power Research Institute, Bangalore (India)
1999-07-01
The level of harmonics on the transmission and distribution network is rising over the years, due to the rapid development and usage of electronic and semiconductor devices in the industries, as these devices produce harmonic currents. As the harmonic currents produced by these devices are unproductive and affect the ideal sinusoidal waveshapes, these have to be limited to a tolerable limit at the Point of Common Coupling (PCC). Before setting a tolerable limit on harmonics it is necessary to know the level of harmonics already present in the system, so that the limits suggested are comprehensive and practicable. To have a fair idea about the current and voltage harmonics on the Indian system, Central Power Research Institute (CPRI) has carried out a lot of measurements both on the distribution network and transmission network over the past 13 years. This paper discusses the harmonic measurements carried out by CPRI on different loads and voltage levels on the Indian network. The methodology adopted for measurement and results are also discussed in this paper. (author)
Intravascular ultrasound tissue harmonic imaging in vivo.
Frijlink, Martijn E; Goertz, David E; van Damme, Luc C A; Krams, Rob; van der Steen, Antonius F W
2006-10-01
Tissue harmonic imaging (THI) has been shown to increase image quality of medical ultrasound in the frequency range from 2 to 10 MHz and might, therefore, also be used to improve image quality in intravascular ultrasound (IVUS). In this study we constructed a prototype IVUS system that could operate in both fundamental frequency and second harmonic imaging modes. This system uses a conventional, continuously rotating, single-element IVUS catheter and was operated in fundamental 20 MHz, fundamental 40 MHz, and harmonic 40 MHz modes (transmit 20 MHz, receive 40 MHz). Hydrophone beam characterization measurements demonstrated the build-up of a second harmonic signal as a function of increasing pressure. Imaging experiments were conducted in both a tissue-mimicking phantom and in an atherosclerotic animal model in vivo. Acquisitions of fundamental 20 and 40 MHz and second harmonic acquisitions resulted in cross sections of the phantom and a rabbit aorta. The harmonic results of the imaging experiments showed the feasibility of intravascular THI with a conventional IVUS catheter both in a phantom and in vivo. The harmonic acquisitions also showed the potential of THI to reduce image artifacts compared to fundamental imaging.
Schneidmiller, E A
2012-01-01
Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust...
The amplitude of fluid-induced vibration of cylinders in axial flow
Paidoussis, M.P.
1965-03-15
This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)
Dynamic buckling of elastic-plastic cylindrical shells and axial stress waves
徐新生; 苏先樾; 王仁
1995-01-01
The mechanism for bifurcation of elastic-plastic buckling of the semi-infinite cylindrical shell under impacting axial loads is proposed based on the theory of stress wave. Numerical results on three kinds of end supports and step and impulse loads are given.
Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...
Harmonic Aspects of Offshore Wind Farms
Kocewiak, Lukasz Hubert; Bak, Claus Leth; Hjerrild, Jesper
2010-01-01
This paper presents the aim, the work and the findings of a PhD project entitled "Harmonics in Large Offshore Wind Farms". It focuses on the importance of harmonic analysis in order to obtain a better performance of future wind farms. The topic is investigated by the PhD project at Aalborg...... of offshore wind farm (OWF) systems....... University (AAU) and DONG Energy. The objective of the project is to improve and understand the nature of harmonic emission and propagation in wind farms (WFs), based on available information, measurement data and simulation tools. The aim of the project is to obtain validated models and analysis methods...
Double Harmonic Transmission (D.H.T.
Sava Ianici
2006-10-01
Full Text Available The paper presents the construction and functioning of a new type of harmonic drive named double harmonic transmission (D.H.T.. In the second part of this paper is presented the dynamic analysis of the double harmonic transmission, which is based on the results of the experimental researches on the D.H.T. This study of the stress status and the forces distribution is necessary for to determine the durability on the portant elements of the D.H.T.
Selective harmonic control for power converters
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede;
2014-01-01
This paper proposes an Internal Model Principle (IMP) based Selective Harmonic Controller (SHC) for power converters. The proposed SHC offers an optimal control solution for power converters to mitigate power harmonics. It makes a good trade-off among cost, complexity and performance. It has high...... accuracy and fast transient response, and it is cost-effective, easy for real-time implementation, and compatible for design rules-of-thumb. An application on a three-phase PWM converter has confirmed the effectiveness of the proposed control scheme in terms of harmonic mitigation....
Harmonic Distortion in CMOS Current Mirrors
Bruun, Erik
1998-01-01
One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...... distortion is not achievable with CMOS current mirrors...
Asymptotic porosity of planar harmonic measure
Graczyk, Jacek; Świaţek, Grzegorz
2013-04-01
We study the distribution of harmonic measure on connected Julia sets of unicritical polynomials. Harmonic measure on a full compact set in ℂ is always concentrated on a set which is porous for a positive density of scales. We prove that there is a topologically generic set {A} in the boundary of the Mandelbrot set such that for every cin {A}, β>0, and λ∈(0,1), the corresponding Julia set is a full compact set with harmonic measure concentrated on a set which is not β-porous in scale λ n for n from a set with positive density amongst natural numbers.
Harmonic analysis of a cruise ship network
Guerin, P.; Miegeville, L. [GE44, France (France); Sahnouni, K. [Chantiers de l' Atlantique (France)
2000-07-01
The number and the power rating of equipment using power electronics have been increasing on board of the ships for many years. At present, the harmonic disturbance must be taken into account from the design stage in order to ensure the smooth running of the installation. This paper presents a harmonic analysis of the electrical distribution system of a cruise ship. The comparison between the evaluated and the real harmonic levels allows us to discuss about the interest and the limits of the estimates. (authors)
solution of free harmonic vibration equation of simply supported ...
user
The free vibration analysis of rectangular plates is significant for controlling ... vibrating plate, which values are used in the computation of dynamic ... and efficient computational method. (ii) the solution of complex plate problems is simplified.
Harmonic Oscillators and Elementary Particles
Sobouti, Y
2016-01-01
Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...
Harmonization of immunotoxicology study guidelines
NakaK
2002-01-01
Guidance for immunotoxicology studies has been intensively discussed.The European Medicnes Evaluation Agency published the draft guidance on immunotoxicity on December 16,1999 and finalized it on July 27,2000.In the meantime,the US Food and Drug Administration (FDA) published the draft guidance on May 11,2001.The Japanese Ministry of Health,Labor and Welfare and the Japan Pharmaceutical Manufactures Association submitted their interim draft guidance to the International Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use(ICH) for discussion of Decemeber 20,2001.The approaches are taken in these(draft) guidance documents.A major difference among the guidance of the three regions is that only the EU guidance requires some immune function tests for all new medicinal products.The informal expert working proup meeting held in the ICH on February 7,2002 resched the conchusion that the guidelines should be eventually hamonized after collecting more data.A scientific session on immunotoxicity testing will be included in the ICH6,Osake,November 2003.
High harmonic generation from impulsively aligned SO2
Devin, Julien; Wang, Song; Kaldun, Andreas; Bucksbaum, Phil
2016-05-01
Previous work in high harmonics generation (HHG) in aligned molecular gases has mainly focused on rotational dynamics in order to determine the contributions of different orbitals to the ionization step. In our experiment, we focus on the shorter timescale of vibrational dynamics. We generate high harmonics from impulsively aligned SO2 molecules in a gas jet and record the emitted attosecond pulse trains in a home-built high resolution vacuum ultra violet (VUV) spectrometer. Using the high temporal resolution of our setup, we are able to map out the effects of vibrational wavepackets with a sub-femtosecond resolution. The target molecule, SO2 gas, is impulsively aligned by a near-infrared laser pulse and has accessible vibrations on the timescale of the short laser pulse used. We present first experimental results for the response to this excitation in high-harmonics. We observe both fast oscillations in the time domain as well as shifts of the VUV photon energy outside of the pulse overlaps. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division and by the National Science Foundation Graduate Research Fellowship.
Observation of redshifting and harmonic radiation in inverse Compton scattering
Sakai, Y.; Pogorelsky, I.; Williams, O.; O'Shea, F.; Barber, S.; Gadjev, I.; Duris, J.; Musumeci, P.; Fedurin, M.; Korostyshevsky, A.; Malone, B.; Swinson, C.; Stenby, G.; Kusche, K.; Babzien, M.; Montemagno, M.; Jacob, P.; Zhong, Z.; Polyanskiy, M.; Yakimenko, V.; Rosenzweig, J.
2015-06-01
Inverse Compton scattering of laser photons by ultrarelativistic electron beam provides polarized x- to γ -ray pulses due to the Doppler blueshifting. Nonlinear electrodynamics in the relativistically intense linearly polarized laser field changes the radiation kinetics established during the Compton interaction. These are due to the induced figure-8 motion, which introduces an overall redshift in the radiation spectrum, with the concomitant emission of higher order harmonics. To experimentally analyze the strong field physics associated with the nonlinear electron-laser interaction, clear modifications to the angular and wavelength distributions of x rays are observed. The relativistic photon wave field is provided by the ps CO2 laser of peak normalized vector potential of 0.5 laser [M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006)]. The angular spectral characteristics are revealed using K -, L -edge, and high energy attenuation filters. The observation indicates existence of the electrons' longitudinal motion through frequency redshifting understood as the mass shift effect. Thus, the 3rd harmonic radiation has been observed containing on-axis x-ray component that is directly associated with the induced figure-8 motion. These are further supported by an initial evidence of off-axis 2nd harmonic radiation produced in a circularly polarized laser wave field. Total x-ray photon number per pulse, scattered by 65 MeV electron beam of 0.3 nC, at the interaction point is measured to be approximately 109 .
High-order harmonics with frequency-varying polarization within each harmonic
Fleischer, Avner; Sidorenko, Pavel; Cohen, Oren
2014-01-01
We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics which are nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Polarization fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles. The process can be phase-matched using standard methods (e.g. pressure tuning phase matching) and maintains the single-atom polarization property through propagation. These polarization-fan harmonics may be used for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot
Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...... in the predictions of bearing capacities calculated by means of the three methods for piles loaded in both tension and compression. This implies that further analysis of the bearing capacity of axially loaded piles in sand should be conducted....
Direct optical nanoscopy with axially localized detection
Bourg, N; Dupuis, G; Barroca, T; Bon, P; Lécart, S; Fort, E; Lévêque-Fort, S
2014-01-01
Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Herein we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called Supercritical Angle Fluorescence (SAF) can be captured using a hig-NA objective and used to determine the axial position of the fluorophore with nanometer precision. We introduce a new technique for 3D nanoscopy that combines direct STochastic Optical Reconstruction Microscopy (dSTORM) imaging with dedicated detection of SAF emission. We demonstrate that our approach of a Direct Optical Nanoscopy with Axially Localized Detection (DONALD) yields a typical isotropic 3D localization precision of 20 nm.
Axial flow positive displacement worm compressor
Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)
2010-01-01
An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.
Matrix calculus for axially symmetric polarized beam.
Matsuo, Shigeki
2011-06-20
The Jones calculus is a well known method for analyzing the polarization of a fully polarized beam. It deals with a beam having spatially homogeneous polarization. In recent years, axially symmetric polarized beams, where the polarization is not homogeneous in its cross section, have attracted great interest. In the present article, we show the formula for the rotation of beams and optical elements on the angularly variant term-added Jones calculus, which is required for analyzing axially symmetric beams. In addition, we introduce an extension of the Jones calculus: use of the polar coordinate basis. With this calculus, the representation of some angularly variant beams and optical elements are simplified and become intuitive. We show definitions, examples, and conversion formulas between different notations.
Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning
2017-04-01
Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.
Jelen, Karel; Klouckova, Katerina; Zeman, Josef; Kubovy, Petr; Fanta, Ondrej
2012-01-01
During a longer car drive there are changes in rheological properties of driver's or passenger's connective tissues taking place as a consequence of monotonous and vibration load. These changes show more among the pregnant drivers, whose motion system is under heavier demands due to pregnancy. To asses these changes we have used the TVS (transfer vibration through the spine) method. The TVS is based on application of γ excitation pulses with half-length 5 ms and then harmonic excitation continuously periodically changing from 5 Hz to 160 Hz on C7 and L5 vertebrae. This wave is transferred along the axial system and the acceleration of all the spinous tips of the vertebrae, along which the waves spread between C7 and S1, is detected by accelerometric sensors. The measurement was carried out on three drivers before and after a 4-hours driving. The same measurements of wave transfer along the spine with just one pregnant woman were carried out in th 16th, 26th and 32nd week of pregnancy. Consequently we constructed a simplified model of the spine in order to analyze gathered data by discovering elementary properties of the measured system. After both vibration and physical load there is a more significant dampening of the spinal tissues apparent, i.e. lower acceleration amplitude and the tissues resonance frequency also shifts towards the lower frequencies. On the other hand after long lasting relaxation on a bed an opposite tendency showed, the acceleration amplitude was higher, tissues were relaxed and dampening was lower. The same tendency manifested among the pregnant women. The influence of progressing pregnancy on the spinal segment transfer function showed through a shifting of peaks above 20Hz. Their size also changes monotonously. An absorption area moves towards higher frequencies, rigidity of axial system connections grows. The results say that drivers, including pregnant women, show changes in mechanical properties of examined tissues before and after
On two transverse nonlinear models of axially moving beams
无
2009-01-01
Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.
On two transverse nonlinear models of axially moving beams
DING Hu; CHEN LiQun
2009-01-01
Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit-ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av-eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif-ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte-gro-partial-differential equation gives better results for large amplitude vibration.
Consistent formulation of the spacelike axial gauge
Burnel, A.; Van der Rest-Jaspers, M.
1983-12-15
The usual formulation of the spacelike axial gauge is afflicted with the difficulty that the metric is indefinite while no ghost is involved. We solve this difficulty by introducing a ghost whose elimination is such that the metric becomes positive for physical states. The technique consists in the replacement of the gauge condition nxA = 0 by the weaker one partial/sub 0/nxAroughly-equal0.
Transonic Axial Splittered Rotor Tandem Stator Stage
2016-12-01
compressor rotor was designed incorporating a splitter vane between the principal blades . Historical experiments conducted by Dr. Arthur J...conventional rotor design . The stage is composed of the rotor and stator. The flow of the air passing through the rotor is turned, and the flow is required...derived results achieved the best blade geometry for design continuation. The best circumferential and axial placement for the splitter blade was
Multimode interaction in axially excited cylindrical shells
2014-01-01
Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural fr...
Axial flux permanent magnet brushless machines
Gieras, Jacek F; Kamper, Maarten J
2008-01-01
Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators
Cavity-Enhanced Third Harmonic Generation
YANG Xiao-Xue; WU Ying
2005-01-01
We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microcavities with any dimensions and arbitrary geometric shapes.
On conformal supergravity and harmonic superspace
Butter, Daniel
2015-01-01
This paper describes a fully covariant approach to harmonic superspace. It is based on the conformal superspace description of conformal supergravity and involves extending the supermanifold M^{4|8} by the tangent bundle of CP^1. The resulting superspace M^{4|8} x TCP^1 can be identified in a certain gauge with the conventional harmonic superspace M^{4|8} x S^2. This approach not only makes the connection to projective superspace transparent, but simplifies calculations in harmonic superspace significantly by eliminating the need to deal directly with supergravity prepotentials. As an application of the covariant approach, we derive from harmonic superspace the full component action for the sigma model of a hyperkahler cone coupled to conformal supergravity. Further applications are also sketched.
Developing Castable Metal Harmonic Drives Project
National Aeronautics and Space Administration — This effort utilizes the high elastic strain limit and net-shaped processing of metallic glasses to fabricate low-cost harmonic drives that outperform steel. ...
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
Reduction of Harmonics by 18-Pulse Rectifier
Stanislav Kocman
2008-01-01
Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.
Terahertz optics: Terahertz-driven harmonics
Kim, K. Y.; You, Y. S.
2014-02-01
Researchers have demonstrated high-harmonic generation using strong terahertz pulses in a bulk solid without damaging it. The mechanism underpinning such an extreme nonlinearity also generates coherent electromagnetic radiation covering the terahertz, infrared and optical regions.
Multiculturalism, Europhilia and harmonization: harmony or disharmony?
Ruth Sefton-Green
2010-11-01
Full Text Available This paper examines the difficulties of reconciling the values promoted by multiculturalism with the objectives of harmonization. In the event of conflict, examples from English and French law show that harmonization of private law rules does not always achieve its aim of approximating national laws but, on the contrary, often backfires. The question of whether and why these divergences produce Europhile or Eurosceptic positions amongst Member States is addressed. It appears that when maximum harmonisation clashes with multiculturalism this can lead to legal nationalism, whereas minimum harmonization has less negative effects and can stimulate legal experimentation. It is suggested that harmonization requires a mutual listening and learning process in order to accommodate the multiculturalism of Member States and enable Europhilia to flourish in the European Union.
Enhancement of Optical Coherence Tomography Axial Resolution by Spectral Shaping
孙汕; 郭继华; 高湔松; 薛平
2002-01-01
We propose a new method of changing the spectrum shape to improve the axial resolution of optical coherencetomography (OCT). Theoretical analysis shows that certain spectral shaping can shorten the coherence length.Comparisons of the simulation and experimental measurements of spectral shape and axial resolution of OCTare given, showing that the axial resolution of OCT is enhanced by a factor of 1.4.
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
Direct optical nanoscopy with axially localized detection
Bourg, N.; Mayet, C.; Dupuis, G.; Barroca, T.; Bon, P.; Lécart, S.; Fort, E.; Lévêque-Fort, S.
2015-09-01
Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Here, we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called supercritical-angle fluorescence can be captured using a high-numerical-aperture objective and used to determine the axial position of the fluorophore with nanometre precision. We introduce a new technique for three-dimensional nanoscopy that combines direct stochastic optical reconstruction microscopy (dSTORM) with dedicated detection of supercritical-angle fluorescence emission. We demonstrate that our approach of direct optical nanoscopy with axially localized detection (DONALD) typically yields an isotropic three-dimensional localization precision of 20 nm within an axial range of ∼150 nm above the coverslip.
Axial gravity, massless fermions and trace anomalies
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Pereira, A. Duarte; Giaccari, S.; Štemberga, T.
2017-08-01
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones.
Bessel beam CARS of axially structured samples
Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
2015-01-01
We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern. PMID:26046671
Golimumab for the treatment of axial spondyloarthritis.
Gelfer, Gita; Perry, Lisa; Deodhar, Atul
2016-01-01
Axial spondyloarthritis (axSpA) is a chronic, immune-mediated inflammatory disease of the axial skeleton that includes ankylosing spondylitis (AS) and non-radiographic axial spondyloarthritis (nr-axSpA). Patients with AS experience chronic pain due to sacroiliac joint and spinal inflammation, and may develop spinal ankylosing with syndesmophyte formation. Tumor necrosis factor α inhibitors (TNFi) have shown promise in the management of AS and axSpA by targeting the underlying inflammatory process, and providing symptomatic relief. Whether they alter the progression of the disease is uncertain. Golimumab is a fully human IgG1 monoclonal antibody that targets and downregulates the pro-inflammatory cytokine TNF-α. The use of golimumab has been shown to reduce the signs and symptoms of axSpA as well as improve patient function and quality reported outcomes. This review focuses on the biological rationale and the results of clinical trials with golimumab for the treatment of axSpA.
Dynamic control of knee axial deformities
E. E. Malyshev
2013-01-01
Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.
Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A; Baisden, Jamie L; Shender, Barry S; Paskoff, Glenn
2008-03-01
In contrast to clinical studies wherein loading magnitudes are indeterminate, experiments permit controlled and quantifiable moment applications, record kinematics in multiple planes, and allow derivation of moment-angulation corridors. Axial and coronal moment-angulation corridors were determined at every level of the subaxial cervical spine, expressed as logarithmic functions, and level-specificity of range of motion and neutral zones were evaluated. segmental primary axial and coupled coronal motions do not vary by level. Although it is known that cervical spine responses are coupled, segment-specific corridors of axial and coronal kinematics under axial twisting moments from healthy normal spines are not reported. Ten human cadaver columns (23-44 years, mean: 34 +/- 6.8) were fixed at the ends and targets were inserted to each vertebra to obtain kinematics in axial and coronal planes. The columns were subjected to pure axial twisting moments. Range of motion and neutral zone for primary-axial and coupled-coronal rotation components were determined at each spinal level. Data were analyzed using factorial analysis of variance. Moment-rotation angulations were expressed using logarithmic functions, and mean +/-1 standard deviation corridors were derived at each level for both components. Moment-angulations responses were nonlinear. Each segmental curve for both components was well represented by a logarithmic function (r2 > 0.95). Factorial analysis of variance indicated that the biomechanical metrics are spinal level-specific (P specific responses. The presentation of moment-angulation corridors for both metrics forms a dataset for the normal population. These segment-specific nonlinear corridors may help clinicians assess dysfunction or instability. These data will assist mathematical models of the spine in improved validation and lead to efficacious design of stabilizing systems.
Stable Stationary Harmonic Maps to Spheres
Fang Hua LIN; Chang You WANG
2006-01-01
For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere Sk. We show that the singular set of stable-stationary harmonic maps from B5 to S3 is the union of finitely many isolated singular points and finitely many Holder continuous curves. We also discuss the minimization problem among continuous maps from Bn to S2.
Harmonic distortion in microwave photonic filters.
Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José
2012-04-09
We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.
Structural relations between nested harmonic sums
Bluemlein, J.
2008-07-15
We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Fractal harmonic law and waterproof/dustproof
Kong Hai-Yan
2014-01-01
Full Text Available The fractal harmonic law admits that the friction between the pure water and the moving surface is the minimum when fractal dimensions of water in Angstrom scale are equal to fractal dimensions of the moving surface in micro scale. In the paper, the fractal harmonic law is applied to demonstrate the mechanism of waterproof/ dustproof. The waterproof phenomenon of goose feathers and lotus leaves is illustrated to verify our results and experimental results agree well with our theoretical analysis.
Harmonic moment dynamics in Laplacian growth.
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B; Swinney, Harry L
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
Ultra-intense high orbital angular momentum harmonic generation in plasmas
Vieira, Jorge; Trines, R.; Alves, E. P.; Mendonca, J. T.; Fonseca, R. A.; Norreys, P.; Bigham, R.; Silva, L. O.
2016-10-01
As an independent degree of freedom, it is in principle possible to manipulate the orbital angular momentum (OAM) independently of any other laser property. The OAM therefore stands in equal foot to any other fundamental property of light, such as its frequency. There are, however, many open questions regarding the ability to control the OAM as an independent degree of freedom. A striking example is high harmonic generation, for which there is no OAM counterpart. Here we investigate a high OAM harmonics technique to generate and amplify high OAM harmonics while preserving the laser frequency. The scheme, based on simulated Raman backscattering, employs a linearly polarised long pump containing more than one OAM level, and a counter-propagating linearly polarised signal beam. The high OAM harmonics result from angular momentum cascading from modes with lower OAM to the modes with higher OAM. The OAM harmonics spectrum can be tailored according to the OAM contents of the pump. We illustrate the scheme with the generation of prime OAM harmonics, an all-optical realisation of the Green-Tao theorem. We support our theoretical findings with 3D particle-in-cell (PIC) simulations using Osiris.
Hongwei MA; Baihe LI
2008-01-01
This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri-cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com-pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak-age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss.
Lee, Ryan K.L.; Griffith, James F.; Ng, Alex W.H.; Law, Eric K.C. [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince Of Wales Hospital, Hong Kong (China); Tse, W.L.; Wong, Clara W.Y.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince Of Wales Hospital, Hong Kong (China)
2017-03-15
To compare axial and oblique axial planes on MR arthrography (MRA) and multidetector CT arthrography (CTA) to evaluate dorsal and volar parts of scapholunate (SLIL) and lunotriquetral interosseous (LTIL) ligaments. Nine cadaveric wrists of five male subjects were studied. The visibility of dorsal and volar parts of the SLIL and LTIL was graded semi-quantitatively (good, intermediate, poor) on MRA and CTA. The presence of a ligament tear was determined on arthrosocopy and sensitivity, specificity and accuracy of tear detection were calculated. Oblique axial imaging was particularly useful for delineating dorsal and volar parts of the LTIL on MRA with overall 'good' visibility increased from 11 % to 78 %. The accuracy of MRA and CTA in revealing SLIL and LTIL tear was higher using the oblique axial plane. The overall accuracy for detecting SLIL tear on CTA improved from 94 % to 100 % and from 89 % to 94 % on MRA; the overall accuracy of detecting LTIL tear on CTA improved from 89 % to 100 % and from 72 % to 89 % on MRA Oblique axial imaging during CT and MR arthrography improves detection of tears in the dorsal and volar parts of both SLIL and LTIL. (orig.)
Perturbation and harmonic balance methods for nonlinear panel flutter.
Kuo, C.-C.; Morino, L.; Dugundji, J.
1972-01-01
A systematic way of applying both perturbation methods and harmonic balance methods to nonlinear panel flutter problems is developed here. Results obtained by both these methods for two-dimensional simply supported and three-dimensional clamped-clamped plates with six modes agree well with those obtained by the straightforward direct integration method, yet require less computer time and provide better insight into the solutions. Effects of viscoelastic structural damping on the flutter stability boundary are generally found to be destabilizing and the postflutter behavior becomes more explosive. The methods developed here may be of interest in related vibration problems.
Microscopic derivation of nuclear rotation-vibration model, axially symmetric case
Gulshani, Parviz
2015-01-01
We derive from first principles the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude, and provides microscopic expressions for the interaction operators among the rotation, vibration, and intrinsic motions, for the moment of inertia, vibration mass, and for the deformation variables. The method uses canonical transformations to collective co-ordinates, followed by a constrained variational method, with the associated constraints imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For deformed harmonic oscillator mean-field potentials, these equations are solved in closed forms for the energies, moments of inertia, quadrupole moments and transition...
STEADY-STATE RESPONSES AND THEIR STABILITY OF NONLINEAR VIBRATION OF AN AXIALLY ACCELERATING STRING
吴俊; 陈立群
2004-01-01
The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS
Yang Xiaodong; Chen Li-Qun
2006-01-01
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
FENG HE
2017-03-01
Full Text Available In this paper, an effective tool based on harmonic balance method to assess the forced response of these systems under parametric changes is developed. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated and modeled using finite element method. The forced response of this asymmetrically supported system is calculated using the harmonic balance method with a predictor-corrector procedure by changing unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. It is observed that under large unbalance forces, jump phenomenon occurs due to the nonlinear forces of SFD which indicates the presence of multiple harmonics within the response of the SFD operating at high eccentricity ratios and shows the insensitivity of the damper to surrounding gyroscopic variation.
Co-axial multicusp source for low axial energy spread ion beam production
Lee, Y; Leung, K N; Vujic, J L; Williams, M D; Zahir, N
1999-01-01
A co-axial multicusp ion source has been designed and tested. This source uses a new magnetic filter configuration. This magnetic filter is efficient in modifying the plasma potential distribution which can reduce the axial energy spread of the extracted ion beam. Energy spreads as low as 0.6 eV have been obtained. The electron temperature in this source has also been found to be about 0.1 eV. Furthermore, the new source configuration is capable of adjusting the radial plasma potential distribution which can improve the transverse ion energy, which results in a low beam emittance. The co-axial source can be used for a number of different applications such as ion projection lithography and radioactive ion beam projects.
Co-axial multicusp source for low axial energy spread ion beam production
Lee, Y. E-mail: yylee@lbl.gov; Gough, R.A.; Leung, K.N.; Vujic, J.; Williams, M.D.; Zahir, N
1999-09-01
A co-axial multicusp ion source has been designed and tested. This source uses a new magnetic filter configuration. This magnetic filter is efficient in modifying the plasma potential distribution which can reduce the axial energy spread of the extracted ion beam. Energy spreads as low as 0.6 eV have been obtained. The electron temperature in this source has also been found to be about 0.1 eV. Furthermore, the new source configuration is capable of adjusting the radial plasma potential distribution which can improve the transverse ion energy, which results in a low beam emittance. The co-axial source can be used for a number of different applications such as ion projection lithography and radioactive ion beam projects.
Co-axial multicusp source for low axial energy spread ion beam production
Lee, Y.; Gough, R. A.; Leung, K. N.; Vujic, J.; Williams, M. D.; Zahir, N.
1999-09-01
A co-axial multicusp ion source has been designed and tested. This source uses a new magnetic filter configuration. This magnetic filter is efficient in modifying the plasma potential distribution which can reduce the axial energy spread of the extracted ion beam. Energy spreads as low as 0.6 eV have been obtained. The electron temperature in this source has also been found to be about 0.1 eV. Furthermore, the new source configuration is capable of adjusting the radial plasma potential distribution which can improve the transverse ion energy, which results in a low beam emittance. The co-axial source can be used for a number of different applications such as ion projection lithography and radioactive ion beam projets.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
钟轶峰; 张亮亮
2011-01-01
The governing partial differential equations （PDEs） were deduced from the asymptotically correct geometrically nonlinear theory to research the buckling and mode jumping behavior of clamped supported composite laminates with antisymmetric angle- ply under bi - axial compressive load. The two coupled fourth - order partial differential equations （PDEs）, namely, the compatibility equation and the dynamic governing equation were transformed into a system of nonlinear ordinary differential equations （ODEs）. Then a relatively simpler solution method was developed. The generalized Galerkin method was used to solve boundary value problems corresponding to antisymmetric angle-ply composite plates. The post-buckling patterns with different complexity before and after mode jumping were analyzed. An numerical example of 4- layers clamped composite laminates shows that the numerical results in the primary post-buckling region from the present method agree well with the finite element analysis （FEA）. The FEA may lose its convergence when solution comes close the secondary point, while the analytic method can explore deeply into the post-buckling realm and accuratty capture the mode jumping phenomenon. Only the pure symmetric modes may be used to qualitatively predict the primary post- buckling branch, the secondary bifurcation load and the remote jumped branch of the composite laminates with antisymmetric angle-ply.%为有效分析双轴受压反对称角铺设复合材料层压板在固支边界下的后屈曲性能，由渐近修正几何非线性理论推导其双耦合四阶偏微分方程（即应变协调方程和稳定性控制方程），通过双Fourier级数将耦合非线性控制偏微分方程转换为系列非线性常微分方程，从而获得相对简单的求解方法。使用广义Galerkin方法求解与角交铺设复合层合板相关的边界值问题，研究了模态跃迁前后不同复杂程度的后屈曲模式。对四层固支边界
Stevenson, Lauren; Kelley, Marian; Gorovits, Boris; Kingsley, Clare; Myler, Heather; Osterlund, Karolina; Muruganandam, Arumugam; Minamide, Yoshiyuki; Dominguez, Mario
2014-01-01
The L2 Global Harmonization Team on large molecule specific assay operation for protein bioanalysis in support of pharmacokinetics focused on the following topics: setting up a balanced validation design, specificity testing, selectivity testing, dilutional linearity, hook effect, parallelism, and testing of robustness and ruggedness. The team additionally considered the impact of lipemia, hemolysis, and the presence of endogenous analyte on selectivity assessments as well as the occurrence of hook effect in study samples when no hook effect had been observed during pre-study validation.
Sub-harmonic broadband humps and tip noise in low-speed ring fans.
Moreau, Stéphane; Sanjose, Marlène
2016-01-01
A joint experimental and numerical study has been achieved on a low-speed axial ring fan in clean inflow. Experimental evidence shows large periodic broadband humps at lower frequencies than the blade passing frequencies and harmonics even at design conditions. These sub-harmonic humps are also found to be sensitive to the fan process and consequently to its tip geometry. Softer fans yield more intense humps more shifted to lower frequencies with respect to the fan harmonics. Unsteady turbulent flow simulations of this ring fan mounted on a test plenum have been achieved by four different methods that have been validated by comparing with overall performances and detailed hot-wire velocity measurements in the wake. Noise predictions are either obtained directly or are obtained through Ffowcs Williams and Hawkings' analogy, and compared with narrowband and third-octave power spectra. All unsteady simulations correctly capture the low flow rates, the coherent vortex dynamics in the tip clearance and consequently the noise radiation dominated by the tip noise in the low- to mid-frequency range. Yet, only the scale-adaptive simulation and the lattice Boltzmann method simulations which can describe most of the turbulent structures accurately provide the proper spectral shape and levels, and consequently the overall sound power level.
An Approach for harmonizing European Water Portals
Pesquer, Lluís; Stasch, Christoph; Masó, Joan; Jirka, Simon; Domingo, Xavier; Guitart, Francesc; Turner, Thomas; Hinderk Jürrens, Eike
2017-04-01
A number of European funded research projects is developing novel solutions for water monitoring, modeling and management. To generate innovations in the water sector, third parties from industry and the public sector need to take up the solutions and bring them into the market. A variety of portals exists to support this move into the market. Examples on the European level are the EIP Water Online Marketplace(1), the WaterInnEU Marketplace(2), the WISE RTD Water knowledge portal(3), the WIDEST- ICT for Water Observatory(4) or the SWITCH-ON Virtual Product Market and Virtual Water-Science Laboratory(5). Further innovation portals and initiatives exist on the national or regional level, for example, the Denmark knows water platform6 or the Dutch water alliance(7). However, the different portals often cover the same projects, the same products and the same services. Since they are technically separated and have their own data models and databases, people need to duplicate information and maintain it at several endpoints. This requires additional efforts and hinders the interoperable exchange between these portals and tools using the underlying data. In this work, we provide an overview on the existing portals and present an approach for harmonizing and integrating common information that is provided across different portals. The approach aims to integrate the common in formation in a common database utilizing existing vocabularies, where possible. An Application Programming Interface allows access the information in a machine-readable way and utilizing the information in other applications beyond description and discovery purposes. (1) http://www.eip-water.eu/my-market-place (2) https://marketplace.waterinneu.org (3) http://www.wise-rtd.info/ (4) http://iwo.widest.eu (5) http://www.switch-on-vwsl.eu/ (6) http://www.rethinkwater.dk/ (7) http://wateralliance.nl/
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Stoelinga, Christophe; Heo, Inseok; Long, Glenis; Lee, Jungmee; Lutfi, Robert; Chang, An-Chieh
2015-12-01
The human auditory system has a remarkable ability to "hear out" a wanted sound (target) in the background of unwanted sounds. One important property of sound which helps us hear-out the target is inharmonicity. When a single harmonic component of a harmonic complex is slightly mistuned, that component is heard to separate from the rest. At high harmonic numbers, where components are unresolved, the harmonic segregation effect is thought to result from detection of modulation of the time envelope (roughness cue) resulting from the mistuning. Neurophysiological research provides evidence that such envelope modulations are represented early in the auditory system, at the level of the auditory nerve. When the mistuned harmonic is a low harmonic, where components are resolved, the harmonic segregation is attributed to more centrally-located auditory processes, leading harmonic components to form a perceptual group heard separately from the mistuned component. Here we consider an alternative explanation that attributes the harmonic segregation to detection of modulation when both high and low harmonic numbers are mistuned. Specifically, we evaluate the possibility that distortion products in the cochlea generated by the mistuned component introduce detectable beating patterns for both high and low harmonic numbers. Distortion product otoacoustic emissions (DPOAEs) were measured using 3, 7, or 12-tone harmonic complexes with a fundamental frequency (F0) of 200 or 400 Hz. One of two harmonic components was mistuned at each F0: one when harmonics are expected to be resulted and the other from unresolved harmonics. Many non-harmonic DPOAEs are present whenever a harmonic component is mistuned. These non-harmonic DPOAEs are often separated by the amount of the mistuning (ΔF). This small frequency difference will generate a slow beating pattern at ΔF, because this beating is only present when a harmonic component is mistuned, it could provide a cue for behavioral detection
Branimir Pavić
2012-10-01
Full Text Available The design of intermediate shaft with axially movablesplined joint must be adapted to the variable position of theshaft axis, i.e. to the change of the joint angle during operation.This design is also used for the reduction of axial forces whichare caused by inaccuracy in the production and assembling ofC(ll·dan mechanisms. The axial force which is generated by frictionof contact swfaces in the splined joint is the function of themagnitude of the transfeJTed torsion moments, splined dimensions,lubrication conditions, and materials used for contactswfaces. It will cause additional bearing loads at cross journalsand in the shaft supports, as well as unallowed vibrations andnoise during operation, thus affecting the safety and lifetime ofthe Cardan mechanism. The theoretical and empirical analysisof Cm·dan mechanisms, which have been studied with andwithout axial forces in the splinedjoint and its effect on durabilityof mechanism elements have been presented.
王波; 薛纭
2012-01-01
The motion stability of axially moving viscoelastic beams subjected to the parametrically excited tension is presented. The parametric vibration of axially moving beams is studied in this paper. The axial tension is characterized as a simple harmonic variation about the initial tension. The material time derivative is used in the viscoelastic constitutive relation. Asymptotic analysis is proposed to investigate the governing equation of an axially accelerating viscoelastic beam via the method of multiple scales. Beams are always fastened up by elastic joints at both ends. The supporting conditions may be formulated as simple supports with torsion springs. If the axial speed variation frequency approaches the sum of arbitrary two natural frequencies or the twice arbitrary natural frequency, the combined resonance or principal parametric resonance may occur. Analytical expressions of the instability boundary are obtained for summation and principal parametric resonance. Numerical examples show the effects of the viscous damping: whenever the instability regions for either the combined or the principal parametric resonance occcur, they will both decras while the viscous damping is increasing.%研究了轴向匀速运动黏弹性梁的运动稳定性.考察轴向拉力在初始拉力的基础上做微小简谐变化的参激振动.建立了受轴向拉力参数激励时轴向运动梁的控制微分方程,黏弹性本构关系引入了物质时间导数.轴向运动梁两端的边界受由带有扭转弹簧的套筒铰支约束的混杂边界条件.应用多尺度法直接求解轴向运动梁参激振动的控制方程,并导出了当扰动拉力的频率接近未扰系统任意两个固有频率之和及任一固有频率2倍时所发生的组合共振和主共振的稳定边界方程.数值例子给出了黏弹阻尼对轴向运动黏弹性梁参激振动发生组合共振和主共振的影响,结果显示:不论组合共振还是主共振发生时,失稳区域均
Nonlinear harmonics in the high-gain harmonic generation (HGHG) experiment
Biedron, S G; Milton, S V; Yu, L H; Wang, X J
2001-01-01
We have previously performed rigorous analyses of the nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) using a 3D simulation code. To date, we have presented only preliminary results of these higher harmonics resulting in the high-gain harmonic generation (HGHG) process. A single-pass, high-gain FEL experiment based on the HGHG theory is underway at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Using the above experiment's design parameters, the specific case of the harmonic output from the HGHG experiment will be examined using a 3D simulation code. The sensitivity of nonlinear harmonic output for this HGHG experiment as functions of emittance, energy spread, and peak current in both cases, and for the dispersive section strength and input seed power in the HGHG case, will be presented.
Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average-model, are in...... behavior interaction and dynamic transfer procedure. Frequency domain as well as time domain simulation results are represented by means of HSS modeling to verify the theoretical analysis. Experimental results are also included to validate the method....... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...
Axial Tomography from Digitized Real Time Radiography
Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.
1985-01-18
Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.
Ankylosing Spondylitis versus Nonradiographic Axial Spondyloarthritis
Glintborg, Bente; Sørensen, Inge J; Østergaard, Mikkel
2017-01-01
OBJECTIVE: To compare baseline disease activity and treatment effectiveness in biologic-naive patients with nonradiographic axial spondyloarthritis (nr-axSpA) and ankylosing spondylitis (AS) who initiate tumor necrosis factor inhibitor (TNFi) treatment and to study the role of potential confounders....../disease duration/TNFi-type/smoking/baseline disease activity) on TNFi adherence and response [e.g., Bath Ankylosing Spondylitis Activity Index (BASDAI) 50%/20 mm]. RESULTS: The study included 1250 TNFi-naive patients with axSpA (29% nr-axSpA, 50% AS, 21% lacked radiographs of sacroiliac joints). Patients...
Composite Axial Flow Propulsor for Small Aircraft
2005-01-01
This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element Method....
Cervical Spine Axial Rotation Goniometer Design
Emin Ulaş Erdem
2012-06-01
Full Text Available To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera. With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measurement of "joint position sense" which is recently has rising interest in researches can be made practically with this goniometer.
Through-Flow Calculations in Axial Turbomachinery
1976-10-01
downstzega of the effective throat which is displaced upstream away from its kominal plano flow •_stion. Test data .-n nigh deflection blading tested in...AXIAL PIE ANGs-L;- VrELOC.I- T/Y SI~NG,’ c (,o nd) 2 .959 00 SO~ IS~N1RO iCoWLE tNJ\\\\ NJ\\v ON45l~5INi +U~SWC E.AAINZN5W~N3~6 8Lk5~ P-tO RM~ C -5A
Single Band Helical Antenna in Axial Mode
Parminder Singh
2012-11-01
Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan
2016-12-01
Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes, four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Finally, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.
关于拟调和映射的一些注记%A REMARK ON THE QUASI-HARMONIC SPHERES
许德良; 周春琴
2002-01-01
Several theorems on the finiteness of energy for quasi-harmonic spheres are proved, some counter-examples which state that the energy of quasi-harmonic sphere may be infinite are given. The results support some conditions of a question posed by Lin Fanghua and Wang Changyou.
High-harmonic spectroscopy of molecular isomers
Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Spanner, M.; Patchkovskii, S. [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 (Canada)
2011-11-15
We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).
Mass spectra of ground and excited states of scalar and axial vector charmonium and bottomonium
Bhatnagar, Shashank
2016-01-01
In this work we calculate the mass spectrum of ground ($1P$), and excited ($2P, 3P$) states of scalar $(0^{++})$ and axial vector $(1^{++})$ charmonium and bottomonium such as $\\chi_{c0}$, $\\chi_{b0}$ and $\\chi_{c1}$, $\\chi_{b1}$ in the framework of a QCD motivated Bethe-Salpeter Equation. Our results are in good agreement with data (where ever available) and other models. In this framework, from the beginning, we employ a $4\\times 4$ representation for two-body quark-anti quark BS amplitude for calculating the mass spectra. However, the price we have to pay in this approach is to solve a coupled set of Salpeter equations for scalar and axial vector quarkonia. We have explicitly shown that these equations get decoupled in the heavy-quark approximation leading to the mass spectral equations dependent on the principal quantum number, $N$ in an approximate harmonic oscillator basis, giving a much deeper insight into the problem. In the above treatment, while the confining part of the BSE kernel has been treated ...
Axial residual stresses in boron fibers
Behrendt, D. R.
1978-01-01
A method of measuring axial residual stresses in boron fibers is presented. With this method, the axial residual stress distribution as a function of radius is determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diam fibers are similar, being compressive at the surface and changing monotonically to a region of tensile stress within the boron. At approximately 25% of the original radius, the stress reaches a maximum tensile stress of about 860 MN sq m and then decreases to a compressive stress near the tungsten boride core. Data are presented for 203-micron diam B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102-micron diam B/W and boron on carbon (B/C) show that the residual stresses are similar in the outer regions of the fibers, but that large differences near and in the core are observed. Fracture of boron fibers is discussed.
Single Rod Vibration in Axial Flow
Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe
2013-11-01
Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.
Multi-frequency axial transmission bone ultrasonometer.
Tatarinov, Alexey; Egorov, Vladimir; Sarvazyan, Noune; Sarvazyan, Armen
2014-07-01
The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis.
Power lines harmonic radiation in circumterrestrial space
Pronenko, Vira; Korepanov, Valery; Dudkin, Denis
2014-05-01
line harmonic radiation (PLHR), which were detected by "Sich-1M", "Chibis-M" and "Demeter" satellites, have been presented and discussed. This study is partially supported by SSAU contract N 4-03/13.
Generation of high harmonics from silicon
Vampa, Giulio; Thiré, Nicolas; Schmidt, Bruno E; Légaré, Francois; Klug, Dennis D; Corkum, Paul B
2016-01-01
We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$\\mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.
Coded excitation for ultrasound tissue harmonic imaging.
Song, Jaehee; Kim, Sangwon; Sohn, Hak-Yeol; Song, Tai-Kyong; Yoo, Yang Mo
2010-05-01
Coded excitation can improve the signal-to-noise ratio (SNR) in ultrasound tissue harmonic imaging (THI). However, it could suffer from the increased sidelobe artifact caused by incomplete pulse compression due to the spectral overlap between the fundamental and harmonic components of ultrasound signal after nonlinear propagation in tissues. In this paper, three coded tissue harmonic imaging (CTHI) techniques based on bandpass filtering, power modulation and pulse inversion (i.e., CTHI-BF, CTHI-PM, and CTHI-PI) were evaluated by measuring the peak range sidelobe level (PRSL) with varying frequency bandwidths. From simulation and in vitro studies, the CTHI-PI outperforms the CTHI-BF and CTHI-PM methods in terms of the PRSL, e.g., -43.5dB vs. -24.8dB and -23.0dB, respectively. Copyright 2010 Elsevier B.V. All rights reserved.
The harmonic oscillator and nuclear physics
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Harmonic and complex analysis in several variables
Krantz, Steven G
2017-01-01
Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and...
High harmonic phase in molecular nitrogen
McFarland, Brian K.
2009-10-17
Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.
Microscopic optical buffering in a harmonic potential
Sumetsky, M
2015-01-01
In the early days of quantum mechanics, Schr\\"odinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices.
Robust Speech Recognition Using a Harmonic Model
许超; 曹志刚
2004-01-01
Automatic speech recognition under conditions of a noisy environment remains a challenging problem. Traditionally, methods focused on noise structure, such as spectral subtraction, have been employed to address this problem, and thus the performance of such methods depends on the accuracy in noise estimation. In this paper, an alternative method, using a harmonic-based spectral reconstruction algorithm, is proposed for the enhancement of robust automatic speech recognition. Neither noise estimation nor noise-model training are required in the proposed approach. A spectral subtraction integrated autocorrelation function is proposed to determine the pitch for the harmonic model. Recognition results show that the harmonic-based spectral reconstruction approach outperforms spectral subtraction in the middle- and low-signal noise ratio (SNR) ranges. The advantage of the proposed method is more manifest for non-stationary noise, as the algorithm does not require an assumption of stationary noise.
Spherical harmonics, invariant theory and Maxwell's poles
Dowker, J S
2008-01-01
I discuss the relation between harmonic polynomials and invariant theory and show that homogeneous, harmonic polynomials correspond to ternary forms that are apolar to a base conic (the absolute). The calculation of Schlesinger that replaces such a form by a polarised binary form is reviewed. It is suggested that Sylvester's theorem on the uniqueness of Maxwell's pole expression for harmonics is renamed the Clebsch-Sylvester theorem. The relation between certain constructs in invariant theory and angular momentum theory is enlarged upon and I resurrect the Joos--Weinberg matrices. Hilbert's projection operators are considered and their generalisations by Story and Elliott are related to similar, more recent constructions in group theory and quantum mechanics, the ternary case being equivalent to SU(3).
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Theory of harmonic dissipation in disordered solids
Damart, T.; Tanguy, A.; Rodney, D.
2017-02-01
Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically. This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an asymmetry vector field, which encodes the information about the structural origin of dissipation computed by mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
Does high harmonic generation conserve angular momentum?
Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren
2013-01-01
High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...
RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS
Tatiana Danescu
2016-12-01
Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.
Simulation of Second Harmonic Ultrasound Fields
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2010-01-01
A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second......, and the fundamental pressure is calculated by Field II. The second harmonic pressure in k-space along the propagating direction is calculated as an auto-convolution of the fundamental pressure multiplied by an exponential propagating coefficient. In this case, the second harmonic pressure can be calculated using ASA...
Ito diffusions, modified capacity and harmonic measure. Applications to Schrodinger operators
Denisov, S
2010-01-01
Using certain Ito's equation, we introduce the probability on the space of paths and show its relevance to the scattering properties of multidimensional Schrodinger operator. To relate the geometry of the support of potential to the spectral type we develop a special variant of Potential theory and prove some estimates on the modified Harmonic measure.
Tutor System as a Source of Harmonizing the Educational System with the Needs of Economics
Korsakova, Tatiana; Korsakov, Mikhail
2017-01-01
The purpose of this study is to identify the sources of harmonizing employers' orders in business and graduates of higher education. According to challenges posed by the economic environment the development of tutor-support system has the great potential to solve the problem. In the paper trends of modern specialists' educational preparation are…
Super and Combinatorial Harmonic Response of Flexible Elastic Cables with Small Sag
Nielsen, Søren R. K.; Kirkegaard, Poul Henning
2002-01-01
The paper deals with the analysis of cables in stayed bridges and TV-towers, where the excitation is caused by harmonically varying in-plane motions of the upper support point with the amplitude ;. Such cables are characterized by a sag-to-chord-length ratio below 0·02, which means that the lowes...
Harmonic analysis and the theory of probability
Bochner, Salomon
2005-01-01
Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic pro
Harmonic Cavity Performance for NSLS-II
Blednykh, Alexei; Podobedov, Boris; Rose, James; Towne, Nathan A; Wang, Jiunn-Ming
2005-01-01
NSLS-II is a 3 GeV ultra-high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. Ultra-low emittance bunch combined with a short bunch length results in the Touschek lifetime of only a few hours, which strongly advocates including harmonic RF in the baseline design of NSLS-II. This paper describes the required harmonic RF parameters, trade-offs between the possible choices and the expected system performance, including the implications on lifetime and instabilities.
Perturbative Semiclassical Trace Formulae for Harmonic Oscillators
Møller-Andersen, Jakob; Ögren, Magnus
2015-01-01
In this article we extend previous semiclassical studies by including more general perturbative potentials of the harmonic oscillator in arbitrary spatial dimensions. Our starting point is a radial harmonic potential with an arbitrary even monomial perturbation, which we use to study the resulting...... U(D) to O(D) symmetry breaking. We derive the gross structure of the semiclassical spectrum from periodic orbit theory, in the form of a perturbative (ħ → 0) trace formula. We then show how to apply the results to even-order polynomial potentials, possibly including mean-field terms. We have drawn...
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Harmonic Inverse FEL Interaction at 800nm
Sears, C M S; Siemann, R; Spencer, J E
2005-01-01
The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.
Reconstruction of harmonic signals based on bispectrum
FAN Yangyu; SUN Jincai; LI Pingan; XU Jiadong; SHANG Jiuhao
2000-01-01
A method for accurate reconstruction of the harmonic signals from bispectrum is presented. Based on the analysis of the measured harmonic signal, a sinusoid signal with 0phase, 1-amplitude and half of the fundamental frequency combines with the measured signal to form a combined signal, and then the bispectrum analysis is carried out to reconstruct the phase and the amplitude of the measured signal accurately. Without the zero-phase assumption of the fundamental component, using the new method eliminates the phase shifting between the calculated Fourier phase and the true Fourier phase in the existing signal retrieval methods based on bispectrum. The simulation results show the effectiveness of the new method.
Fast algorithms for spherical harmonic expansions, III
Tygert, Mark
2009-01-01
We accelerate the computation of spherical harmonic transforms, using what is known as the butterfly scheme. This provides a convenient alternative to the approach taken in the second paper from this series on "Fast algorithms for spherical harmonic expansions." The requisite precomputations become manageable when organized as a "depth-first traversal" of the program's control-flow graph, rather than as the perhaps more natural "breadth-first traversal" that processes one-by-one each level of the multilevel procedure. We illustrate the results via several numerical examples.
Music of the heavens Kepler's harmonic astronomy
Stephenson, Bruce
2014-01-01
Valued today for its development of the third law of planetary motion, Harmonice mundi (1619) was intended by Kepler to expand on ancient efforts to discern a Creator's plan for the planetary system--an arrangement thought to be based on harmonic relationships. Challenging critics who characterize Kepler's theories of harmonic astronomy as ""mystical,"" Bruce Stephenson offers the first thorough technical analysis of the music the astronomer thought the heavens made, and the logic that led him to find musical patterns in his data. In so doing, Stephenson illuminates crucial aspects of Kepler'
Artificial Neural Network in Harmonic Reduction of STATCOM
Li Hongmei; Li Zhenran; Zheng Peiying
2005-01-01
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
Single-element focused ultrasound transducer method for harmonic motion imaging.
Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa E
2006-07-01
The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model first indicated that, unlike in the two-beam configuration, the amplitude-modulated beam produced a stable focal zone for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were performed on gelatin phantoms and ex vivo tissues. The radiation force was generated by a 4.68 MHz focused ultrasound (FUS) transducer using a 50 Hz amplitude-modulated wave. A 7.5 MHz pulse-echo transducer was used to acquire rf echoes during the application of the harmonic radiation force. Consecutive rf echoes were acquired with a pulse repetition frequency (PRF) of 6.5 kHz and 1D cross-correlation was performed to estimate the resulting axial tissue displacement. The HMI technique was shown capable of estimating stiffness-dependent displacement amplitudes. Finally, taking advantage of the real-time capability of the HMI technique, temperature-dependent measurements enabled monitoring ofHIFU sonication in ex vivo tissues. The new HMI method may thus enable a highly-localized force and stiffness-dependent measurements as well as real-time and low-cost HIFU monitoring.
Study on the Axial Dispersion of Liquid in Column Flotation
周鵾; 曾爱武; 高长宝; 余国琮
2003-01-01
An experimental study on the axial dispersion of liquid was carried out in a 0.382-m-ID flotation column packed with different structured packings or free of packings. The correlations of axial Peclet numbers with the liquid and gas superficial Reynolds numbers were developed for various packings. Among the packings tested, it is found that in the column packed with 250Y or 350Y packings the axial dispersion is the lowest. The addition of frother can decrease the axial dispersion. By the simulation analysis of the one-dimension dispersion model of packed flotation column, it is found that small axial dispersion, high collection rate constant and low axial liquid velocity can increase the collection zone recovery.
Stall inception in a high-speed axial compressor
Cameron, Joshua David
A research program designed to provide understanding of the fluid dynamic mechanisms that lead to rotating stall in the Notre Dame Stage 01 high-speed axial compressor is described. The stalling behavior of this compressor was studied with unsteady casing pressure measurements from a circumferentially spaced array of sensors. In addition, over rotor casing surface streak measurements were performed to investigate the time-averaged end-wall flow near the rotor at operating points near stall. Several investigative tools were applied to the analysis and interpretation of the unsteady casing pressure data. Traditional methods such as visual inspection, spatial Fourier decomposition, traveling wave energy and wavelet analysis were shown to be insufficient to characterize the pre-stall and stall inception behavior of the compressor. A new technique based on a windowed two-point correlation between adjacent sensors was developed and demonstrated to provide spatial and temporal resolution of both pre-stall and stall inception behavior. The spatial correlation technique was then applied to the analysis of stall inception data from experiments with asymmetric tip clearance. The non-uniform tip clearance was produced using the magnetic bearings which levitate the rotor shaft of the Notre Dame Transonic Axial Compressor facility. Both steady rotor centerline offset and rotor whirl were investigated. The results of these experiments, along with the surface streak measurements, provide evidence in support of recent computational observations (found in the literature) that predict that short length scale stall inception is related to specific features of the rotor tip clearance flow.
Mind the gap - tip leakage vortex in axial turbines
Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.
2014-03-01
The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.
High order harmonic generation in noble gases using plasmonic field enhancement
Ciappina, M F; Lewenstein, M
2012-01-01
We present theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. We demonstrate that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. Our models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations.
Investigation of an Ultrafast Harmonic Resonant RF Kicker
Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)
2016-10-01
square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half
High-Frequency Axial Fatigue Test Procedures for Spectrum Loading
2016-07-20
REPORT NO: NAWCADPAX/TIM-2016/49 HIGH - FREQUENCY AXIAL FATIGUE TEST PROCEEDURES FOR SPECTRUM LOADING by David T. Rusk, AIR...OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TIM-2016/49 20 July 2016 HIGH - FREQUENCY AXIAL...Technical Information Memorandum 3. DATES COVERED 4. TITLE AND SUBTITLE High - Frequency Axial Fatigue Test Procedures for Spectrum Loading
A technique to determine a desired preparation axial inclination.
Parker, M Harry; Ivanhoe, John R; Blalock, John S; Frazier, Kevin B; Plummer, Kevin D
2003-10-01
The guidelines recommended in the literature for the convergence angle of a crown preparation vary from 3 to 24 degrees. There is a lack of guidelines on techniques to achieve a specific axial inclination. The purpose of this article was to present a practical technique, with a diamond rotary cutting instrument of known axial inclination, to determine the diamond rotary cutting instrument angulations required to achieve the desired axial inclination of a preparation.
Design and Test of a Transonic Axial Splittered Rotor
2015-06-15
AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the...TRANSONIC AXIAL SPLITTERED ROTOR Report Title A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and...that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial
Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting
Jinxiang Xi; Rhode, David L.
2006-01-01
Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in hi...
A Model for Semantic Equivalence Discovery for Harmonizing Master Data
Piprani, Baba
IT projects often face the challenge of harmonizing metadata and data so as to have a "single" version of the truth. Determining equivalency of multiple data instances against the given type, or set of types, is mandatory in establishing master data legitimacy in a data set that contains multiple incarnations of instances belonging to the same semantic data record . The results of a real-life application define how measuring criteria and equivalence path determination were established via a set of "probes" in conjunction with a score-card approach. There is a need for a suite of supporting models to help determine master data equivalency towards entity resolution—including mapping models, transform models, selection models, match models, an audit and control model, a scorecard model, a rating model. An ORM schema defines the set of supporting models along with their incarnation into an attribute based model as implemented in an RDBMS.
Modular functional organisation of the axial locomotor system in salamanders.
Cabelguen, Jean-Marie; Charrier, Vanessa; Mathou, Alexia
2014-02-01
Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.
Energy Dissipation in Sandwich Structures During Axial Compression
Urban, Jesper
2002-01-01
The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
The Mars Reconnaissance Orbiter (MRO) spacecraft has three two-axis gimbal assemblies that support and move the High Gain Antenna and two solar array wings. The gimbal assemblies are required to move almost continuously throughout the mission's seven-year lifetime, requiring a large number of output revolutions for each actuator in the gimbal assemblies. The actuator for each of the six axes consists of a two-phase brushless dc motor with a direct drive to the wave generator of a size-32 cup-type harmonic gear. During life testing of an actuator assembly, the harmonic gear teeth failed completely, leaving the size-32 harmonic gear with a maximum output torque capability less than 10% of its design capability. The investigation that followed the failure revealed limitations of the heritage material choices that were made for the harmonic gear components that had passed similar life requirements on several previous programs. Additionally, the methods used to increase the stiffness of a standard harmonic gear component set, while accepted practice for harmonic gears, is limited in its range. The stiffness of harmonic gear assemblies can be increased up to a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
Aerodynamic Modelling and Optimization of Axial Fans
Sørensen, Dan Nørtoft
A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...... for velocity, pressure andradial position are derived from the conservationlaws for mass, tangential momentum and energy.The resulting system of equations is non-linear and, dueto mass conservation and pressure equilibrium far downstream of the rotor,strongly coupled.The equations are solved using the Newton...... distributionsof pitch angle and chord length have been chosen as independent variablesin the optimizations.Besides restricting the geometry of the rotor,constraints have been added to ensure a required pressure rise as well asnon-stalled flow conditions.Optimizations have been performed tomaximize the mean value...
The Axial Part Phrase in Japanese
Kaori Takamine
2007-01-01
Full Text Available In this paper, I investigate the categorial status of spatial terms in locative/directional expressions in Japanese. I will show that a certain class of spatial terms have a distinct categorial status from both regular postpositions and nouns. On one hand, syntactic diagnostics such as doubling, coordination by to, and co-occurrence with demonstratives indicate that these spatial terms belong to a nominal category rather than to a postpositional category. On the other hand, the fact that these spatial terms are modified by range modifiers indicates that they are more similar to regular postpositions than to nouns. On the basis of these diagnostics, I will argue that spatial terms in Japanese need to be assigned a new category Axial Part Phrase which is proposed by Svenonius 2006.
Composite Axial Flow Propulsor for Small Aircraft
R. Poul
2005-01-01
Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail.
Aerodynamics of advanced axial-flow turbomachinery
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Casimir Energy in the Axial Gauge
Esposito, G; Kirsten, K; Esposito, Giampiero; Kamenshchik, Alexander Yu.; Kirsten, Klaus
2000-01-01
The zero-point energy of a conducting spherical shell is studied by imposing the axial gauge via path-integral methods, with boundary conditions on the electromagnetic potential and ghost fields. The coupled modes are then found to be the temporal and longitudinal modes for the Maxwell field. The resulting system can be decoupled by studying a fourth-order differential equation with boundary conditions on longitudinal modes and their second derivatives. The exact solution of such equation is found by using a Green-function method, and is obtained from Bessel functions and definite integrals involving Bessel functions. Complete agreement with a previous path-integral analysis in the Lorenz gauge, and with Boyer's value, is proved in detail.
Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension
Wang, Guo-Li; Zhou, Li-Hua; Zhao, Song-Feng; Zhou, Xiao-Xin
2016-05-01
Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation (HHG). For this purpose, the shaping of the waveform of driving pulse is an alternative approach. Here, we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects, by adopting a practical way to synthesize two-color fields with fixed energy. Our results, combined with the experimental techniques, show the great potential of HHG as a tabletop light source. Supported by the National Natural Science Foundation of China under Grant Nos. 11264036, 11164025, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province
Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer
2010-01-01
We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....
Aerodynamic modelling and optimization of axial fans
Noertoft Soerensen, Dan
1998-01-01
A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.
Challenges and Opportunities for Harmonizing Research Methodology
van Hees, V. T.; Thaler-Kall, K.; Wolf, K. H.
2016-01-01
Objectives: Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how ...
determination of determination of total harmonic distortion
eobe
Harmonic Distortion (THD) of the Distribution lines in the 33kV distri .... guidelines based on industrial distribution system design. IEEE 519-1992 defines ..... studies and also reviewed issues related to the concept. The results of power flow and ...
Sobolev Spaces Associated to the Harmonic Oscillator
B Bongioanni; J L Torrea
2006-08-01
We define the Hermite-Sobolev spaces naturally associated to the harmonic oscillator $H= - + |x|^2$. Structural properties, relations with the classical Sobolev spaces, boundedness of operators and almost everywhere convergence of solutions of the Schrödinger equation are also considered.
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
The Berry Phase for Simple Harmonic Oscillators
Suslov, Sergei K
2011-01-01
We evaluate the Berry phase for a "missing" family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables. It is obtained by the action of the maximal kinematical invariance group on the standard solutions. An explicit simple formula for the phase is found by integration with the help of a computer algebra system.
Collective excitations of harmonically trapped ideal gases
Van Schaeybroeck, B.; Lazarides, A.
2009-01-01
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show
Harmonic generation with multiple wiggler schemes
Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Regularity of harmonic maps with the potential
CHU; Yuming
2006-01-01
The aim of this work is to prove the partial regularity of the harmonic maps with potential. The main difficulty caused by the potential is how to find the equation satisfied by the scaling function. Under the assumption on the potential we can obtain the equation, however, for a general potential, even if it is smooth, the partial regularity is still open.
Parameter estimation of harmonic polluting industrial loads
Maza-Ortega, J.M.; Gomez-Exposito, A.; Trigo-Garcia, J.L.; Burgos-Payan, M. [University of Sevilla, Sevilla (Spain). Department of Electrical Engineering
2005-12-01
This paper develops a methodology for the estimation of relevant parameters characterizing harmonic polluting industrial loads through a set of measurements acquired at the point of common coupling. The proposed method is capable of obtaining an accurate load model in absence of detailed information about its internal structure and composition. (author)
Transducer for harmonic intravascular ultrasound imaging
Vos, Hendrik J.; Frijlink, Martijn E.; Droog, E.J.; Goertz, David E.; Blacquiere, Gerrit; Gisolf, Anton; de Jong, N.; van der Steen, Antonius F.W.
2005-01-01
A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer
Feasibility of 3D harmonic contrast imaging
Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; ten Cate, F.; de Jong, N.
2004-01-01
Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it
Toeplitz operators on harmonic Bergman spaces
Choe, Boo Rim; Lee, Young Joo; Na, Kyunguk
2004-01-01
We study Toeplitz operators on the harmonic Bergman spaces on bounded smooth domains. Two classes of symbols are considered; one is the class of positive symbols and the other is the class of uniformly continuous symbols. For positive symbols, boundedness, compactness, and membership in the Schatten classes are characterized. For uniformly continuous symbols, the essential spectra are described.
Local Dynamics in an Infinite Harmonic Chain
M. Howard Lee
2016-04-01
Full Text Available By the method of recurrence relations, the time evolution in a local variable in a harmonic chain is obtained. In particular, the autocorrelation function is obtained analytically. Using this result, a number of important dynamical quantities are obtained, including the memory function of the generalized Langevin equation. Also studied are the ergodicity and chaos in a local dynamical variable.
The Harmonic Oscillator–A Simplified Approach
L. R. Ganesan
2008-01-01
Full Text Available Among the early problems in quantum chemistry, the one dimensional harmonic oscillator problem is an important one, providing a valuable exercise in the study of quantum mechanical methods. There are several approaches to this problem, the time honoured infinite series method, the ladder operator method etc. A method which is much shorter, mathematically simpler is presented here.
Coherent control of High-harmonic generation
Barreaux, J.L.P.
2012-01-01
High-harmonic generation (HHG) is a non-linear optical process that can convert laser light with standard wavelengths, such as infrared light, into coherent radiation at much shorter wavelengths in the XUV (extreme ultraviolet) or soft X-ray regime. As opposed to low-order nonlinear frequency
ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING
Valentin Gabriel CRISTEA
2017-05-01
Full Text Available There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.
Psychoacoustic Approaches for Harmonic Music Mixing
Roman B. Gebhardt
2016-05-01
Full Text Available The practice of harmonic mixing is a technique used by DJs for the beat-synchronous and harmonic alignment of two or more pieces of music. In this paper, we present a new harmonic mixing method based on psychoacoustic principles. Unlike existing commercial DJ-mixing software, which determines compatible matches between songs via key estimation and harmonic relationships in the circle of fifths, our approach is built around the measurement of musical consonance. Given two tracks, we first extract a set of partials using a sinusoidal model and average this information over sixteenth note temporal frames. By scaling the partials of one track over ±6 semitones (in 1/8th semitone steps, we determine the pitch-shift that maximizes the consonance of the resulting mix. For this, we measure the consonance between all combinations of dyads within each frame according to psychoacoustic models of roughness and pitch commonality. To evaluate our method, we conducted a listening test where short musical excerpts were mixed together under different pitch shifts and rated according to consonance and pleasantness. Results demonstrate that sensory roughness computed from a small number of partials in each of the musical audio signals constitutes a reliable indicator to yield maximum perceptual consonance and pleasantness ratings by musically-trained listeners.
Large- quantum chromodynamics and harmonic sums
Eduardo De Rafael
2012-06-01
In the large- limit of QCD, two-point functions of local operators become harmonic sums. I review some properties which follow from this fact and which are relevant for phenomenological applications. This has led us to consider a class of analytic number theory functions as toy models of large- QCD which also is discussed.
Harmonic cascade FEL designs for LUX
Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.
2004-07-16
LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.
Spatial mode discrimination using second harmonic generation
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Virial expansion coefficients in the harmonic approximation
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated...
Optimization of multi-color laser waveform for high-order harmonic generation
Jin, Cheng; Lin, C. D.
2016-09-01
With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).
The harmonics detection method based on neural network applied ...
user
Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ... Recently, some methods based on artificial intelligence have been applied In order to improve ..... The effect is the reduction of.
Probabilistic Aspects of Harmonic Emission of Large Offshore Wind Farms
Jensen, Christian Flytkjær; Bak, Claus Leth; Kocewiak, Lukasz Hubert
2011-01-01
In this article, a new probabilistic method of as-sessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single...... turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues...... of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some diffi-culties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farm is connected must be included in the study. Furthermore, a very detailed...
Estimates on Bloch constants for planar harmonic mappings
无
2009-01-01
The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Grigoryan.
Harmonic Damping in DG-Penetrated Distribution Network
Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.
2016-01-01
Grid background harmonics may be amplified, propagate through a long distribution feeder and even lead to power system instability. In this paper, harmonic propagation issue is investigated and mitigation of the harmonics is analyzed by using transmission line theory which has already been applied...... in power systems. It is demonstrated that a specific harmonic will not be amplified if the feeder’s length is less than one quarter of the harmonic wavelength meanwhile the terminal impedance is less than characteristic impedance. Besides, three scenarios will be considered in accordance...... with the relationship between the feeder’s length and harmonic wavelength. Harmonic suppression control strategies will be respectively designed considering 5th and 7th harmonics coexisting in the distribution line. Finally, a simulation study has been performed to verify the theoretical analysis and demonstrate...
harmonics mitigation on industrial loads using series and parallel ...
user
This work compared the use of series and parallel resonant harmonic filters in suppressing harmonics ... industrial applications high technology devices related to communication .... magnification is large because of high circuit Q-factor or.
Product of Toeplitz Operators on the Harmonic Dirichlet Space
Lian Kuo ZHAO
2012-01-01
In this paper,we study Toeplitz operators with harmonic symbols on the harmonic Dirichlet space,and show that the product of two Toeplitz operators is another Toeplitz operator only if one factor is constant.
Strongly Dispersive Transient Bragg Grating for High Harmonics
Farrell, J.; Spector, L.S.; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Gaarde, M.B.; /SLAC, PULSE /Louisiana State U.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.
2010-06-04
We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.
Zhang, Yongqiang [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Pang, Miao, E-mail: ppmmzju@163.com [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Fan, Lifeng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China)
2016-07-01
The general governing equation for transverse vibration of an axially pretensioned viscoelastic nanobeam embedded in elastic substrate medium is formulated on the basis of the Bernoulli–Euler beam theory and the Kelvin model. The factors of structural damping, initial axial tension, surrounding medium, small size, surface elasticity and residual surface tension are incorporated in the formulation. The explicit expression is obtained for the vibrational frequency of a simply supported nanobeam. The impacts of these factors on the properties of transverse vibration of the nanobeam are discussed. It is demonstrated that the dependences of natural frequency on the structural damping, surrounding medium, small size, surface elasticity and residual surface tension are significant, whereas the effect of initial axial tension on the natural frequency is limited. In addition, it can be concluded that the energy dissipation of transverse vibration of the viscoelastic nanobeam is related to the small size effect and structural damping. - Highlights: • The properties of transverse vibration of a pretensioned embedded viscoelastic nanobeam is investigated. • The vibrational equation is formulated based on Bernoulli–Euler beam theory and Kelvin model. • Explicit expression for the complex vibrational frequency is obtained. • Small size and surface effects on vibrational frequency are discussed. • Influences of structural damping, initial axial tension and surrounding medium are analyzed.
Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
1995-12-31
Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.
Prediction of secular acceleration of axial rotation of Mars
Barkin, Yu. V.
2009-04-01
Secular motion of the Earth pole and non-tidal acceleration of its diurnal rotation have obtained rather precise explanation with the help of simple one-point model of the directed transport of fluid masses from a southern hemisphere in northern hemisphere with the general direction, given by geocentric axis OP directed to pole P with coordinates 700N, 10403 E[1]. The another generalized model represents a system of two material points with masses m2 and m1, located on surface of the Earth at poles of geocentric axis OP. Masses are linearly changed in the time with velocities [2]: á¹2 = 0.179 × 1015kg/yrand á¹1 = 0.043 × 1015kg/yr. A reduction of fluid masses of the appropriate thin spherical layer of the Earth correspond to secular increasing of masses of model points. The specified model has allowed to explain values of fundamental geodynamic parameters observably and determined during decades: a direction and velocity of drift of a pole of the Earth; value of non-tidal acceleration of axial rotation; to explain a secular variations of coefficients of the second, third, fourth, sixth and eighth zonal harmonics of a geopotential; coefficients of secular changes of a surface of ocean for the last approximately 150 years; a direction of secular drift of a geocenter and other planetary phenomena [3]. The role of the angular momentum of redistributed masses of the Earth in rotation of the Earth appeared not essential at the given stage of researches. On the essence the offered model has semi-empirical character as it bases on values of velocities of change of masses of points and the given position of axis OP. For their determination and estimations the part of the observant data was used, and other parameters were designed under analytical formulas. The obtained results have precisely confirmed competency and affectivity of geodynamic model [4] about existence of secular drift of a liquid core along radial direction OP with velocity about 2.6 cm/yr in the
Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A
2009-08-01
presented as a standard and a deviant in separate blocks. P1-N1-P2 was elicited before each oddball task by presenting each auditory stimulus alone in single blocks. All cortical auditory evoked potentials were recorded in a passive listening condition. Incidental findings revealed that musicians had longer P1 latencies for pure tones and smaller P1 amplitudes for harmonic tones than nonmusicians. There were no P1 group differences for speech stimuli. Musicians compared with nonmusicians had shorter MMN latencies for all deviances (harmonic tones, pure tones, and speech). Musicians had shorter P3a latencies to harmonic tones and speech but not to pure tones. MMN and P3a amplitude were modulated by deviant frequency but not by group membership. Formally trained musicians compared with nonmusicians showed more efficient neural detection of pure tones and harmonic tones; demonstrated superior auditory sensory-memory traces for acoustic features of pure tones, harmonic tones, and speech; and revealed enhanced sensitivity to acoustic changes of spectrally rich stimuli (i.e., harmonic tones and speech). Findings support a general influence of music training on central auditory function and illustrate experience-facilitated modulation of the auditory neural system.
Experimental - theoretical study of axially compressed cold formed steel profiles
Bešević Miroslav
2011-01-01
Full Text Available Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.
Off-pump replacement of the INCOR implantable axial-flow pump.
Nakashima, Kuniki; Kirsch, Matthias E W; Vermes, Emmanuelle; Rosanval, Odile; Loisance, Daniel
2009-02-01
Owing to the actual increase of mechanical circulatory support durations, total or partial replacement of ventricular assist devices (VADs) will most certainly have to be performed with increasing frequency. Herein we report the case of a patient in whom an INCOR (Berlin Heart AG, Berlin) implantable axial-flow pump was replaced without the use of cardiopulmonary bypass (CPB), underscoring some of the unique features provided by this system.
Zhulyov, A.; Martsinkovsky, V.; Kundera, C.
2016-08-01
In this paper, a model of a pump impeller with annular seals and a balancing device, used as a combined support-seal assembly, is considered. The forced coupled radial, angular and axial vibrations of the rotor are determined with consideration of linearized inertial, damping, gyroscopic, positional and circulating forces and moments acting on the impeller from the side of the fluid flow in annular seals. The theoretical analysis is supplemented with a numerical example, the amplitude frequency characteristics are shown.
Life cycle assessment in market, research, and policy: Harmonization beyond standardization.
Zamagni, Alessandra; Cutaia, Laura
2015-07-01
This article introduces the special series "LCA in Market Research and Policy: Harmonization beyond standardization," which was generated from the 19th SETAC Life Cycle Assessment (LCA) Case Study Symposium held November 2013, in Rome, Italy. This collection of invited articles reflects the purpose of symposium and focuses on how LCA can support the decision-making process at all levels (i.e., in industry and policy contexts) and how LCA results can be efficiently communicated and used to support market strategies.
Deterministic and Stochastic Study of Wind Farm Harmonic Currents
Sainz, Luis; Mesas, Juan Jose; Teodorescu, Remus;
2010-01-01
Wind farm harmonic emissions are a well-known power quality problem, but little data based on actual wind farm measurements are available in literature. In this paper, harmonic emissions of an 18 MW wind farm are investigated using extensive measurements, and the deterministic and stochastic...... characterization of wind farm harmonic currents is analyzed. Specific issues addressed in the paper include the harmonic variation with the wind farm operating point and the random characteristics of their magnitude and phase angle....
RHIC susceptibility to variations in systematic magnetic harmonic errors
Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.
1994-08-01
Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established.
The current issues of internal control and internal audit harmonization
Синюгіна, Наталія Вікторівна
2013-01-01
The relevance of topics related to a harmonization of internal control and internal audit system of internal financial control is being proved. It is high lightened the essence of harmonization period by reviewing existing thoughts on this object, a concept of 'harmonization of internal control and internal audit", and provided reasonably practical recommendations to ensure such harmonization in the modern world. The scientific impact of this research is to clarify the concept of "harmonizati...
Lipschitz spaces and bounded mean oscillation of harmonic mappings
Chen, Sh; Vuorinen, M; Wang, X
2012-01-01
In this paper, we first study the bounded mean oscillation of planar harmonic mappings, then a relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings is established. At last, we obtain sharp estimates on Lipschitz number of planar harmonic mappings in terms of bounded mean oscillation norm, which shows that the harmonic Bloch space is isomorphic to $BMO_{2}$ as a Banach space.
Second-Harmonic Generation of Bessel Beams in Lossy Media
丁德胜; 许坚毅; 王耀俊
2002-01-01
We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.
A Designated Harmonic Suppression Technology for Sampled SPWM
YANG Ping
2005-01-01
Sampled SPWM is an excellent VVVF method of motor speed control, meanwhile the harmonic components of the output wave impairs its applications in practice. A designated harmonic suppression technology is presented for sampled SPWM, which is an improved algorithm for the harmonic suppression in high voltage and high frequency spectrum. As the technology is applied in whole speed adjusting range, the voltage can be conveniently controlled and high frequency harmonic of SP WM is also improved.
A Look at Damped Harmonic Oscillators through the Phase Plane
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
Harmonic Mitigation Methods in Large Offshore Wind Power Plants
Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo
2013-01-01
Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive and remed......Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...... and remedial harmonic mitigation methods in terms of passive and active filtering are described. It is shown that WPP components such as long HVAC cables and park transformers can introduce significant low-frequency resonances which can affect wind turbine control system operation and overall WPP stability...... as well as amplification of harmonic distortion. It is underlined that there is a potential in terms of active filtering in modern grid-side converters in e.g. wind turbines, STATCOMs or HVDC stations utilized in modern large WPPs. It is also emphasized that the grid-side converter controller should...
Harmonic calculation software for industrial applications with ASDs
Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan
2007-01-01
This article describes the evaluation of new harmonic calculation software. By using a combination of a prestored database and new interpolation techniques the software can provide the harmonic data on real applications of a very fast speed. The harmonic results obtained with this software have a...
The harmonic force field and absolute infrared intensities of diacetylene
Koops, Th.; Visser, T.; Smit, W.M.A.
1984-01-01
The frequencies, harmonic force field and absolute IR intensities for C4H2 and C4D2 are reported. The experimental harmonized frequencies obey the Teller—Redlich product rule very well. An approximate harmonic force field was obtained from a refinement procedure in which the starting values are adj
Twenty-Four Tuba Harmonics Using a Single Pipe Length
Holmes, Bud; Ruiz, Michael J.
2017-01-01
Harmonics arise naturally from the resonances in strings and pipes. A video demonstration (Ruiz 2016 "YouTube: Tuba Harmonics" (https://youtu.be/souhEzOP9c4)) is provided where a tubist (coauthor Holmes) produces a phenomenal 24 harmonics using a single tuba pipe length by controlling the buzz of his lips. The frequencies of the…
Harmonic Calculation Software for Industrial Applications with Adjustable Speed Drives
Asiminoaei, Lucian; Hansen, S.; Blaabjerg, Frede
2005-01-01
This paper describes the evaluation of a new harmonic software. By using a combination of a pre-stored database and new interpolation techniques the software can very fast provide the harmonic data on real applications. The harmonic results obtained with this software have acceptable precision even...
Double-Undulator Fel for Governing by the Harmonics Generation
Tulupov, A. V.
1993-01-01
Generation of harmonics in the double-undulator FEL based on the additional cyclotron resonance is considered. It is shown that efficient control of harmonics generation is feasible. Only one selected harmonic is generated while the others are suppressed. This effect takes place under a small value