WorldWideScience

Sample records for hardenable plastic mold

  1. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  2. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  3. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  4. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  5. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  6. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  7. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  8. Fabrication of plastic objects by radiation-induced molding

    International Nuclear Information System (INIS)

    Leszyk, G.M.; Morrison, E.D.; Williams, R.F. Jr.

    1976-01-01

    A process is described for fabricating thin plastic objects. It comprises the following successive operations: a supporting tray is moved into a pouring area; a succession of components of viscous composition in the predetermined shape corresponding to the objects to be produced is poured on to this supporting tray, the viscosity of the composition being such that these distinct components retain their poured shape when they are no longer supported on the supporting tray; the supporting tray bearing the distinct viscous composition components is then moved into a hardening area; the distinct viscous composition components are then irradiated in this hardening area so as to transform them into solid plastic objects. The supporting tray carrying the separate plastic objects, now solid, is withdrawn from the hardening area [fr

  9. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  10. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  11. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  12. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...

  13. 3D printed metal molds for hot embossing plastic microfluidic devices.

    Science.gov (United States)

    Lin, Tung-Yi; Do, Truong; Kwon, Patrick; Lillehoj, Peter B

    2017-01-17

    Plastics are one of the most commonly used materials for fabricating microfluidic devices. While various methods exist for fabricating plastic microdevices, hot embossing offers several unique advantages including high throughput, excellent compatibility with most thermoplastics and low start-up costs. However, hot embossing requires metal or silicon molds that are fabricated using CNC milling or microfabrication techniques which are time consuming, expensive and required skilled technicians. Here, we demonstrate for the first time the fabrication of plastic microchannels using 3D printed metal molds. Through optimization of the powder composition and processing parameters, we were able to generate stainless steel molds with superior material properties (density and surface finish) than previously reported 3D printed metal parts. Molds were used to fabricate poly(methyl methacrylate) (PMMA) replicas which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as those fabricated from CNC milled molds. The speed and simplicity of this approach can greatly facilitate the development (i.e. prototyping) and manufacture of plastic microfluidic devices for research and commercial applications.

  14. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  15. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  16. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  17. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  18. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different ty...... pressure torsion, but also rationalizes the work-hardening behaviour at large plastic strains as well as a saturation of the flow stress....

  19. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  20. A general shakedown theorem for elastic/plastic bodies with work hardening

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1975-01-01

    In recent years the design of metallic structures under variable loading has been assisted by the application of Melan's lower bound theorem for the shakedown on an elastic/perfectly plastic structure. The design codes for both portal frames and pressure vessels have taken account of such calculations. The theory of shakedown suffers from two defects, geometry changes are ignored and the material behaviour is described by a perfectly plastic constitutive relationship which includes neither work hardening nor the Bauschinger effect. This paper is concerned with the latter problem. A very general lower bound shakedown theorem is derived for an arbitrary time-independent material in terms of functional properties of the constitutive relationship. The theorem is then applied to perfect, isotropic and kinematic hardening plasticity. (Auth.)

  1. Some aspects of plasticity in hardened face-centred cubic metals

    International Nuclear Information System (INIS)

    Jackson, P.J.; Nathanson, P.D.K.

    1978-01-01

    The plasticity of crystals of f.c.c. metals hardened by solute atoms, neutron irradiation, quenching and by dislocation distributions not characteristic of the active mode of testing is reviewed, with emphasis being placed on the simiularity of slip after various hardening treatments. Normal work hardening is not treated. The reasons for this exclusion are discussed. It is concluded that correlated slip is a normal aspect of deformation, and that diffuse uncorrelated slip occurs only when secondary dislocation multiplication is promoted, e.g. by obstacles introduced by prior slip, or by the presence of hard impenetrable obstacles of another material or phase [af

  2. Design and Checking Analysis of Injection Mold for a Plastic Cup

    Science.gov (United States)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  3. Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO KUO

    2015-06-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 µm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5864

  4. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    Science.gov (United States)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response

  5. Smart plastic functionalization by nanoimprint and injection molding

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian

    2015-01-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution...

  6. Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge

    International Nuclear Information System (INIS)

    Victoria Castro Riglos, M.; Taquire de la Cruz, M.; Tolley, Alfredo

    2011-01-01

    An extremely fast hardening response with no reduction in peak hardness was obtained in Al-Cu with minor additions of Si and Ge by 8% plastic deformation before artificial aging. The mechanism for the accelerated hardening was determined by detailed characterization with transmission electron microscopy. Plastic deformation was found to enhance the nucleation rate of Si-Ge precipitates, resulting in a higher volume density. Such precipitates catalyzed the formation of θ' precipitates that are responsible for hardening.

  7. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  8. A plastic damage model with stress triaxiality-dependent hardening

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)

  9. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  10. Simplified Theory of Plastic Zones for cyclic loading and multilinear hardening

    International Nuclear Information System (INIS)

    Hübel, Hartwig

    2015-01-01

    The Simplified Theory of Plastic Zones (STPZ) is a direct method based on Zarka's method, primarily developed to estimate post-shakedown quantities of structures under cyclic loading, avoiding incremental analyses through a load histogram. In a different paper the STPZ has previously been shown to provide excellent estimates of the elastic–plastic strain ranges in the state of plastic shakedown as required for fatigue analyses. In the present paper, it is described how the STPZ can be used to predict the strains accumulated through a number of loading cycles due to a ratcheting mechanism, until either elastic or plastic shakedown is achieved, so that strain limits can be satisfied. Thus, a consistent means of estimating both, strain ranges and accumulated strains is provided for structural integrity assessment as required by pressure vessel codes. The computational costs involved typically consist of few linear elastic analyses and some local calculations. Multilinear kinematic hardening and temperature dependent yield stresses are accounted for. The quality of the results and the computational burden involved are demonstrated through four examples. - Highlights: • A method is provided to estimate accumulated elastic–plastic strains. • A consistent method is provided to estimate elastic–plastic strain ranges. • Effect of multilinear kinematic hardening is captured. • Temperature dependent material properties are accounted for. • Few linear elastic analyses required

  11. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  12. Finite element implementation of strain-hardening Drucker–Prager plasticity model with application to tunnel excavation

    Directory of Open Access Journals (Sweden)

    K. Liu

    2017-09-01

    Full Text Available This paper presents a finite element implementation of a strain-hardening Drucker–Prager model and its application to tunnel excavation. The computational model was constructed based on the return mapping scheme, in which an elastic trial step was first executed, followed by plastic correction involving the Newton–Raphson method to return the predicted state of stresses to the supposed yield surface. By combining the plastic shear hardening rule and stress correction equations, the loading index for the strain-hardening Drucker–Prager model was solved. It is therefore possible to update the stresses, elastic and plastic strains, and slope of the yield locus at the end of each incremental step. As an illustrative example, an integration algorithm was incorporated into ABAQUS through the user subroutine UMAT to solve the tunnel excavation problem in strain-hardening Drucker–Prager rock formations. The obtained numerical results were found to be in excellent agreement with the available analytical solutions, thus indicating the validity and accuracy of the proposed UMAT code, as well as the finite element model.

  13. A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures

    International Nuclear Information System (INIS)

    Lee, L.H.N.; Horng, J.T.

    1975-01-01

    The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained

  14. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  15. Development of metallic molds for the large volume plastic scintillator fabrication

    International Nuclear Information System (INIS)

    Calvo, Wilson A.P.; Vieira, Jose M.; Rela, Paulo R.; Bruzinga, Wilson A.; Araujo, Eduardo P.; Costa Junior, Nelson P.; Hamada, Margarida M.

    1997-01-01

    The plastic scintillators are radiation detectors made of organic fluorescent compounds dissolved in a solidified polymer matrix. The manufacturing process of large volume detectors (55 liters) at low cost, by polymerization of the styrene monomer plus PPO and POPOP scintillators, was studied in this paper. Metallic molds of ASTM 1200 aluminum and AISI 304 stainless steel were produced by TIG welding process since the polymerization reaction is very exothermic. The measurements of transmittance, luminescence, X-ray fluorescence and light output were carried out in the plastic scintillators made using different metallic molds. The characterization results of the detectors produced in an open system using ASTM 1200 aluminum mold show that there is not quality change in the scintillator, even with aluminum being considered as unstable for styrene monomer. Therefore, the ASTM 1200 aluminum was found to be the best alternative to produce the detector by an open system polymerization. (author). 11 refs., 8 figs., 1 tab

  16. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  17. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses

    Science.gov (United States)

    Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying

    2010-07-01

    A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.

  18. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, F; Funatsu, A; Yazawa, H [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  19. The influence of maltodextrins on the structure and properties of compression-molded starch plastic sheets

    NARCIS (Netherlands)

    Soest, van J.J.G.; Kortleve, P.M.

    1999-01-01

    Starch plastic sheets were prepared by compression molding of starch-based plastic granulates. The granulates were prepared by extrusion processing of mixtures of granular potato starch and several maltodextrins (5% w/w) in the presence of glycerol and water as plasticizers and lecithin as melt flow

  20. Instability analysis of a fully plastic center-cracked strip of a power hardening material

    International Nuclear Information System (INIS)

    Zahoor, A.; Paris, P.C.

    1978-01-01

    An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)

  1. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  2. A general shakedown theorem for elastic/plastic bodies with work hardening

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1975-01-01

    In recent years the design of metallic structures under variable loading has been assisted by the application of Melan's lower bound theorem for the shakedown of an elastic/perfectly plastic structure. The design codes for both portal frames and pressure vessels have taken account of such calculations. The theory of shakedown suffers from two defects, geometry changes are ignored and the material behavior is described by a perfectly plastic constitutive relationship which includes neither work hardening nor the Bauschinger effect. This paper is concerned with the latter problem. A very general lower bound shakedown theorem for an arbitrary time-independent material in terms of functional properties of the constitutive relationship is derived. The theorem is then applied to perfect, isotropic and kinematic hardening plasticity. It is shown that the result for all three constitutive relationships may be related to each other through certain extremal stress histories. As well as providing a sufficient condition for shakedown, the theory also provides bounds of the deflection of the structure in the process of reaching the shakedown state. The bounds are discussed and derived for two simple beam problems. Both static and dynamic problems are considered. The theory derived in this paper demonstrates that shakedown analysis may be extended to a wide range of material behavior without increasing the complexity of the resulting calculation

  3. Intelligent methods for the process parameter determination of plastic injection molding

    Science.gov (United States)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  4. Research cooperation project on the development of easy injection molding control technology for engineering plastics; Engineering plastic no seikei joken kan`i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In order to enhance the industries which supply assembly parts to Japan`s assembly industries in Thailand, research cooperation project on the plastic parts production technology has started. For the research cooperation, the mold design is effectively conducted using simulation technique of CAE (computer aided engineering), and an international easy injection molding control system is made using the molding support software for injection molding machines. In FY 1996, actual situations of plastic parts and assembly industries in Thailand have been investigated through the cooperation with the counterpart of Thailand. Demand and supply of engineering plastics, receive and inspection of parts, and current circumstances of molding processing makers in Thailand have been grasped. Based on the results of this investigation, proposal of basic plan, time schedule, and delivery plan of molding machines and testing equipment have been discussed, to make the basic plan. 18 refs., 4 figs., 23 tabs.

  5. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  6. Latent hardening size effect in small-scale plasticity

    Science.gov (United States)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  7. Latent hardening size effect in small-scale plasticity

    International Nuclear Information System (INIS)

    Bardella, Lorenzo; Panteghini, Andrea; Segurado, Javier; Llorca, Javier

    2013-01-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view. (paper)

  8. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  9. Method for determining the work hardening function to describe plasticity of metals

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1978-01-01

    A method for obtaining a constitutive relation that relates the flow stress to the equivalent plastic strain is developed. The method uses simple tension test data to suggest a functional form. This form is then used as a constitutive model in a computer program that simulates the tension test. The calculated results are compared with the experimental results and the functional form is refined until agreement is obtained between calculations and experiments. The importance of knowing the relationship between the flow stress and the plastic strain is discussed. A work hardening function is calibrated for 6061 T6 aluminum

  10. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  11. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  12. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  13. Nonlinear analysis of rc members using hardening plasticity and arc-length method

    International Nuclear Information System (INIS)

    Memon, B.A.; Su, X.

    2005-01-01

    A general framework for three-dimensional nonlinear finite element analysis of reinforced concrete is done. To make computations robust, reliable and make analysis more realistic hardening plasticity with arc-length method as path following technique is used to model material-nonlinear behavior of reinforced concrete. Hardening plasticity has the advantage over other plasticity formulations that it allows extension of framework for the analysis of softening region. Concrete is treated as eight-node isoparametric element and reinforcement is modeled as line element embedded in the body of isoparametric concrete element. Different methods of stress-scaling back to yield surfaces are tested and their performance is compared. Severe convergence problems are encountered as solution process approaches singularity points; specially limit points; along load displacement curve in nonlinear analysis. To overcome the problem, cylindrical arc-length method is used. The use of the method not only tackles the issue of singularity points but also deals with load-step size problem. While marching along load-displacement path identification of singularity points is done by using singularity indicator, for the purpose various singularity test functions are implemented. Although most of the individual techniques are already well established, the framework is completely new one. A computer implementation of the proposed frame work is written in FORTRAN. Numerical examples are solved to illustrate the validity of proposed framework. Comparison of the outcome of proposed framework is made with experimental observations. two sets of the results are found in good agreement. (author)

  14. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  15. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  16. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  17. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  18. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  19. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  20. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  1. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional......, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of Cr...

  2. Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening

    International Nuclear Information System (INIS)

    Roche, R.

    1983-12-01

    A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr

  3. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  4. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  5. Toolpath Strategy and Optimum Combination of Machining Parameter during Pocket Mill Process of Plastic Mold Steels Material

    Science.gov (United States)

    Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.

    2018-02-01

    Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.

  6. RANCANG BANGUN MOLD UNTUK PROSES TERMOFORMING PROSTHETIC BELOW KNEE (B/K

    Directory of Open Access Journals (Sweden)

    Bambang Waluyo Febriantoko

    2017-10-01

    ABSTRACT   The growing of industry has the effect to the increase of plastic need.  However, the application of plastic forming process often experiences constraints. One of them is depreciation. Depreciation often occurs in the plastic forming process, especially forming with mechanical thermoforming system. So it is necessary to analyze the things that cause shrinkage on the product. Some of the things that are identified to influence the shrinkage are the molds, temperatures and types of used plastics. The used method is to make mechanical thermoforming test and make mold which will be used to analyze depreciation. There are 2 kinds of molds, namely upper foot sole mold and bottom foot sole mold. In addition to the variations of the mold, the analysis is also aimed at the temperature of polypropylene plastic (PP and PVC plastic which will be processed. The temperature variations are 1000C, 1200C and 140oC and the types of plastics that are tested is polypropylene plastic (PP and PVC plastic. The results show that on mechanical thermoforming process for polypropylene (PP plastic with 1.0 mm thickness, the percentage of shrinkage can not be analyzed because of the low viscous nature of plastic. PP type plastic can form a pattern, but not perfect. PP plastic material does not experience a good expansion after pressing process with 100ºC-120ºC plastic temperature. This is because the plastic is still elastic. At 140ºC, the plastic undergoes expansion, but when the plastic pressing process, it undergoes an imperfect pattern. The reason is the temperature is too high. Meanwhile for the PVC plastic, it was found that in the upper foot sole mold with height of 2 cm and 1.0 mm plastic thickness, the percentages of shrinkage average are 7.85% with temperature 100ºC, 9.80% with temperature 120ºC and 12.11% with temperature of 140ºC. In the bottom foot sole mold with 2 cm height and 1.0 mm plastic thickness, the percentages of shrinkage average are 10.01% with

  7. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  8. [Correlation between physical characteristics of sticks and quality of traditional Chinese medicine pills prepared by plastic molded method].

    Science.gov (United States)

    Wang, Ling; Xian, Jiechen; Hong, Yanlong; Lin, Xiao; Feng, Yi

    2012-05-01

    To quantify the physical characteristics of sticks of traditional Chinese medicine (TCM) honeyed pills prepared by the plastic molded method and the correlation of adhesiveness and plasticity-related parameters of sticks and quality of pills, in order to find major parameters and the appropriate range impacting pill quality. Sticks were detected by texture analyzer for their physical characteristic parameters such as hardness and compression action, and pills were observed by visual evaluation for their quality. The correlation of both data was determined by the stepwise discriminant analysis. Stick physical characteristic parameter l(CD) can exactly depict the adhesiveness, with the discriminant equation of Y0 - Y1 = 6.415 - 41.594l(CD). When Y0 Y1, pills were adhesive with each other. Pills' physical characteristic parameters l(CD) and l(AC), Ar, Tr can exactly depict smoothness of pills, with the discriminant equation of Z0 - Z1 = -195.318 + 78.79l(AC) - 3 258. 982Ar + 3437.935Tr. When Z0 Z1, pills were rough on surface. The stepwise discriminant analysis is made to show the obvious correlation between key physical characteristic parameters l(CD) and l(AC), Ar, Tr of sticks and appearance quality of pills, defining the molding process for preparing pills by the plastic molded and qualifying ranges of key physical characteristic parameters characterizing intermediate sticks, in order to provide theoretical basis for prescription screening and technical parameter adjustment for pills.

  9. A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation

    International Nuclear Information System (INIS)

    Wei, W.; Wei, K.X.; Fan, G.J.

    2008-01-01

    The stress-strain relationship for strain hardening and softening of high-purity aluminum and copper, which were deformed by equal channel angular pressing (ECAP) at ambient temperature, was analyzed by combining the Estrin and Mecking (EM) model and an Avrami-type equation with experimental data during severe plastic deformation. The initial strain hardening can be described by the EM model, while the flow stress arrives at the peak stress after it was saturated. However, strain softening similar to plastic deformation at high temperatures is observed after the peak stress. Moreover, the peak strain at the maximum flow stress is ∼4 for copper and ∼2 for aluminum. A new constitutive equation was developed to describe strain softening at high strain levels, which was supported well by tensile, compression and microhardness tests at room temperature and low strain rate. It was observed that dynamic recovery and recrystallization occurs in copper, and recrystallized grains and their growth in aluminum. The results indicate that dynamic recovery and recrystallization was the dominant softening mechanism, which was confirmed by scanning electron microscopy-electron channeling contrast observations and the abnormal relationship between the imposed strain during ECAP and subsequent recrystallization temperature after ECAP

  10. Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia.

    Science.gov (United States)

    Kouidhi, Wided; Thannimalay, Letchumi; Soon, Chen Sau; Ali Mohd, Mustafa

    2017-07-14

    The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis. Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  12. FY 2000 research cooperation project for the research cooperative follow-up on the technology to simply set molding conditions of engineering plastics; 2000 nendo kenkyu kyoryoku jigyo. Enjiniaringu plastic no seikei joken kan'i settei gijutsu ni kansuru kenkyu kyoryoku follow up

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of supporting improvement of the plastic molding industry which is the important industry supporting industries such as household electric appliances and automobiles, the joint research was made on the production of high quality/high precision engineering plastic formed products, and the FY 2000 results were reported. In this fiscal year, the domestic support committee, ' the engineering plastic molding technology research committee' was held twice, and the following were carried out: discussion about the research plan, study of a plan for Japanese researchers to be sent and the details of the joint research, comprehensive evaluation of the results of the joint research made on the site. In the joint research at Thailand's BSID (Bureau of Supporting Industries Development), 4 engineers of molding technology/testing technology were sent from Japan during the period from September 18, 2000 to January 24, 2001, and the following were carried out: theoretical study and practical guidance for comprehension of injection molding technology, establishment of optimum conditions for injection molding and practice of measures taken against bad molding, conduction of the round robin test/comparative study by both JCII (Japan Chemical Innovation Institute) and BSID, etc. (NEDO)

  13. INJECTION MOLDING AND STRUCTURAL ANALYSIS IN METAL TO PLASTIC CONVERSION OF BOLTED FLANGE JOINT BY CAE

    Directory of Open Access Journals (Sweden)

    Marian Blaško

    2014-12-01

    Full Text Available Many metal parts in various applications are being replaced by plastic parts. There are several reasons for that depending on actual application - minimize part cost, enhance corrosion resistance, integrating more components into one part etc. Most important steps of metal to plastic conversion are material selection and design of plastic part. Plastic part has to withstand the same load as metal part. To fulfill this requirement fiber reinforced engineering plastics are often used. Also it is convenient to substitute heavy wall sections with ribbed structure to increase load-carrying ability of part and decrease cycle time, eliminate voids, sink marks etc. Mechanical properties of such part could be highly affected by fiber orientation. Results of fiber orientation from injection molding filling analysis can be used in stress analysis for better prediction of part response to mechanical load. Such coupled analysis is performed here in this case study on bolted flange joint.

  14. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  15. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  16. Use of microscopy techniques in failure analysis of the plastic injection molded parts to prevent the risks of serial defects in the assembly processes

    Directory of Open Access Journals (Sweden)

    Braga Ion Cristian

    2017-01-01

    Full Text Available Nowadays, the plastic injected molded parts are components used in the automobile for both exterior and interior. A mechatronic device uses those molded parts for actuating in order to reach some effect; therefore they should be durable and aesthetically satisfying the customer requirements. The aim of this paper is to present the use of microscopy techniques in failure analysis of plastic molded parts as part of a mechatronic device in order to prevent the risks of cracking occurred in the serial assembly production. Due to the constraints, the thin walls are used in some small plastic parts and they can be broken in the next assembly steps, but the detection of the defects is not facile. At the validation of the batch, the sampling parts are tested to simulate the breakage and the tear zone is investigated using microscopy techniques. The information is used as a feedback to adjust the injection parameters, reference samples being created by experiments to support the team to reduce the time for adjusting the parameters.

  17. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... analysis, reflected light microscopy and microhardness indentation. The results demonstrate that a case of expanded austenite develops and that, in particular, the presence of strain-induced martensite in the initial (deformed) microstructure has a large influence on the nitrided zone....

  18. Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia

    OpenAIRE

    Wided Kouidhi; Letchumi Thannimalay; Chen Sau Soon; Mustafa Ali Mohd

    2017-01-01

    Objectives: The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Material and Methods: Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and u...

  19. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  20. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  1. Experimental Analysis for Factors Affecting the Repeatability of Plastics Injection Molding Tests on the Self-developed Apparatus

    Directory of Open Access Journals (Sweden)

    Yugang Huang

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 To improve the repeatability of the injection molding test result, the affecting factors were investigated by means of experiments. Besides the traditional processing parameter, the factors of test conditions were also considered. In order to focus on the molding process rather than the molded part, the curve measurement of the melt pressure at the entrance to the nozzle was used as the output characteristic. Experiments for polypropylene (PP showed that the injected volume was the key processing parameter. Within the test conditions, the injection number is the most important factor. According to the analysis the operating procedure was improved effectively. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.5.1.6-11 [How to cite this article: Huang, Y., Li, D., Liu, Y. (2013. Experimental Analysis for Factors Affecting the Repeatability of Plastics Injection Molding Tests on the Self-developed Apparatus. International Journal of Science and Engineering, 5(1,6-11. Doi: 10.12777/ijse.5.1.6-11]

  2. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  3. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...... figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  4. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  5. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  6. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  7. Color measurement of plastics - From compounding via pelletizing, up to injection molding and extrusion

    Science.gov (United States)

    Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.

    2014-05-01

    The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.

  8. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  9. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  10. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures...... and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain...... consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible...

  11. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  12. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit

    2010-01-01

    Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.

  13. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Ghoniem, N.M.; Trinkaus, H.

    2002-01-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved

  14. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Ghoniem, N.M.; Trinkaus, H

    2002-12-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved.

  15. Organizational Heritage and Entrepreneurship: Steven Klepper’s Theories Reflected in the Emergence and Growth of the Plastic Molds Industry in Portugal

    NARCIS (Netherlands)

    Costa, Carla

    2015-01-01

    This paper reviews the history of the emergence of the molds and plastics industries in Portugal, finding that this history fits nicely with the accounts—originally proposed in Steven Klepper’s various works—of new industries emerging from older, related industries, and regional clusters emerging

  16. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  17. Deep Drawing Simulation Of High And Ultrahigh Strength Steels Under Consideration Of Anisotropic Hardening

    International Nuclear Information System (INIS)

    Roll, Karl; Faust, Alexander; Kessler, Lutz

    2007-01-01

    In today's sheet metal forming simulation, most attention is paid to yield loci functions, which describe the anisotropy of the material in yielding. The coefficients, defining the shape of the yield locus in these functions are usually fitted at a certain level of plastic work and are then valid for the whole range of plastic deformation. Modern high and ultrahigh strength steels, especially those with induced plasticity, may often exhibit only a very small anisotropy in yielding, but a severe anisotropy in work hardening for different loading conditions. This behavior can not be described by fitting the yield locus at a specific value of plastic deformation. An approach to take into account the anisotropic hardening of sheet metals is to provide different yield curves for several loading conditions and expand the yield locus dependent on the current form of load. By doing this, one can use a comparatively simple yield locus, like that of Hill from 1948, because all anisotropy is given by the different hardening curves. For the commercial FEM code LS DYNA the material model MATFEM Generalized Yield is available as a user subroutine, which supports this approach. In this paper, forming simulation results of different yield loci are compared with experimental results. The simulations were carried out in LS-DYNA with the Barlat 89 and 2000 yield loci and isotropic hardening and with the GenYld model combining a Hill 48 yield locus and anisotropic hardening. The deep drawing experiments were conducted on a hydraulic press, measuring binder and punch forces. The deformation of the sheet was measured by optical grid analysis. A comparison of the simulated and measured plastic strains shows that using a model including anisotropic hardening can produce better results than the usage of a complex yield locus but isotropic hardening for the examined materials. This might be interesting for e.g. spring back simulations. By combining a simple yield locus with anisotropic

  18. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  19. Fiscal 1997 report on the results of the cooperative research project under consignment from NEDO on technology for simply setting-up of the molding conditions of engineering plastics; 1997 nendo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku (Engineering plastic no seikei joken kan`i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A cooperative research project was carried out between Japan and Thailand with the aim of developing a system which can simply set up molding conditions using as elements the technology on mold design and injection molding in plastic parts production and the experiment/evaluation technology for making sure of the quality of molded products. In fiscal 1997, based on the basic plan worked out in the previous fiscal year, molding equipment, auxiliary equipment, mold, experimental equipment, injection molding CEA system, etc. were installed at Thailand`s BSID (Bureau of Supporting Industries Development). Supported by equipment manufacturers, the technical guidance was given for operation/maintenance/control of all equipment. At the same time, researchers were sent from Japan, and the joint research was started. Japan received three researchers from BSID for training of molding technology, injection molding CEA program use technology, and experimental evaluation technology. The engineering plastics used for study are polyacetal, polyamide and polycarbonate. 17 refs., 68 figs., 14 tabs.

  20. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  1. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  2. Mechanical properties of metastable austenitic steels, strengthened by hydroextruction and structural hardening

    International Nuclear Information System (INIS)

    Beresnev, B.I.; Georgieva, I.Ya.; Eshchenko, R.N.; Teplov, V.A.

    1981-01-01

    Different regimes of complex strengthening of steels of Fe-Ni-Mo-C system by phase hardening and plastic deformation by hydroextrusion are investigated. It is stated that the degree of strengthening depends on consequence of strengthening operations. Plastic deformation by hydroextrusion of steels stre--ngthened by phase hardening ensures increase of strength (Δσsub(0.2)=500 MPa) at high plasticity (delta=25%). Maximal values of strength properties can be achieved if hydroextrusion is conducted before and after thansverse α→γ-transformation [ru

  3. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    Science.gov (United States)

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  4. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    Directory of Open Access Journals (Sweden)

    Hanghang Liu

    2018-04-01

    Full Text Available The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and electron back-scattered diffraction (EBSD. The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT steel. In addition, the test steel after austempering-tempering (A-T demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17% compared with the samples after N-QT (14.5% treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels.

  5. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  6. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  7. The microstructural origin of work hardening stages

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, N.

    2018-01-01

    The strain evolution of the flow stress and work hardening rate in stages III and IV is explored by utilizing a fully described deformation microstructure. Extensive measurements by transmission electron microscopy reveal a hierarchical subdivision of grains by low angle incidental dislocation...... addition of the classical Taylor and Hall-Petch formulations. Model predictions agree closely with experimental values of flow stress and work hardening rate in stages III and IV. Strong connections between the evolutionary stages of the deformation microstructure and work hardening rates create a new...... (modern) basis for the classic problem of work hardening in metals and alloys. These connections lead the way for the future development of ultra high strength ductile metals produced via plastic deformation.(c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  8. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  9. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  10. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  11. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  12. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  13. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  14. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  15. Environmental Sustainability and Mold Hygiene in Buildings.

    Science.gov (United States)

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  16. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  17. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  18. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  19. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  20. Digital Twin concept for smart injection molding

    Science.gov (United States)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  1. Coefficient of work-hardening in stage-IV

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1994-04-15

    Full Text Available The theory of work hardening in stage IV depends on the relation between the relative misorientation Psi of neighbouring subgrains and the plastic strain gamma (Psi = B gamma exp). The value of the constant B is suggested to be better related...

  2. Evaluation of combined hardening parameters for type 304LN stainless steel under strain-controlled cyclic loading

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Vishnuvardhan, S.; Raghava, G.

    2016-01-01

    Low cycle fatigue (LCF) is the primary degradation mechanism affecting coolant piping of pressurized water reactor (PWR) caused by combination of pressure and transient mechanical or thermal loads. In the case of LCF, stresses are high enough for plastic deformation to occur and the fatigue life is correlated with the cyclic plastic strain. Modelling cyclic plastic deformation of a material requires hardening parameters, which have to be obtained from LCF test results. It is customary in low cycle fatigue tests that the strain ranges are kept constant and the stresses are allowed to vary which typically leads to a hysteresis loop that consists of linear and nonlinear parts. In this paper, numerical studies on mechanical behaviour of Type 304LN stainless steel under fully reversed strain-controlled cyclic loading have been carried out. A linear combination of the two hardening types, isotropic and kinematic, governed by a scalar parameter, β (0 ≤β ≤ 1) is used. A value of β=1 indicates a pure isotropic hardening while a value of β=0 indicates pure kinematic hardening. The details of the combined isotropic-kinematic hardening model are also presented. Constitutive relations for the classical von Mises theory along with a bilinear hardening theory have been used. The model is implemented in finite element software ABAQUS using a user subroutine written in FORTRAN, UMAT. An iterative method is adopted to arrive at the model's hardening parameters and the value of β. (author)

  3. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  4. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  5. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III

    2009-01-01

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  6. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  7. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  8. Study of the evolution of the boundary of the elastic field with strain hardening, and elastic-plastic behaviour relationships of cubic metals

    International Nuclear Information System (INIS)

    Bui, Huy Duong

    1969-01-01

    In this research thesis on metal strain hardening, the author first discusses the issue of passing from microscopic values to corresponding macroscopic values. If there is generally a correspondence between them, it is not the case for plastic strain. Thus, the author studies the general properties of the boundary of the macroscopic plastic field with respect to single-crystal elastic boundaries. In the second part, the author reports an experimental study of the evolution of the elastic field boundary. In the third part, he develops elastic-plastic behaviour laws for an aggregate of cubic crystals. The objectives are to report experimental results in a more satisfying way than previous studies, and to obtain acceptable physical laws while keeping some properties of conventional laws in order to ensure the solution uniqueness, and to establish minimum principles similar to those of Nodge-Prager and of Greenberg. In order to do so, he introduces a new hypothesis: there is a statistic scattering in initial thresholds of crystals

  9. Study of a design criterion for 316L irradiated represented by a strain hardened material

    International Nuclear Information System (INIS)

    Gouin, H.

    1999-01-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  10. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  11. LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Ana Elduque

    2015-03-01

    Full Text Available During the last decades, society’s concern for the environment has increased. Specific tools like the Life Cycle Assessment (LCA, and software and databases to apply this method have been developed to calculate the environmental burden of products or processes. Calculating the environmental impact of plastic products is relevant as the global plastics production rose to 288 million tons in 2012. Among the different ways of processing plastics, the injection molding process is one of the most used in the industry worldwide. In this paper, a sensitivity analysis of the environmental impact of the injection molding process has been carried out. In order to perform this study, the EcoInvent database inventory for injection molding, and the data from which this database is created, have been studied. Generally, when an LCA of a product is carried out, databases such as EcoInvent, where materials, processes and transports are characterized providing average values, are used to quantify the environmental impact. This approach can be good enough in some cases but in order to assess a specific production process, like injection molding, a further level of detail is needed. This study shows how the final results of environmental impact differ for injection molding when using the PVC’s, PP’s or PET’s data. This aspect suggests the necessity of studying, in a more precise way, this process, to correctly evaluate its environmental burden. This also allows us to identify priority areas and thereby actions to develop a more sustainable way of manufacturing plastics.

  12. Bake hardening of nanograin AA7075 aluminum alloy

    International Nuclear Information System (INIS)

    Dehghani, Kamran

    2011-01-01

    Highlights: ► The bake hardening behavior of AA7075 was studied and compared with its coarse-grain counterpart. ► Nanograin AA7075 exhibited 88–100% increase in bake hardenability. ► Nanograin AA7075 exhibited 36–38% increase in final yield strength after baking. ► Maximum bake hardenability and final yield stress were about 185 MPa and 719 MPa. - Abstract: In the present work, the bake hardening of nanostructured AA7075 aluminum alloy was compared with that of its coarse-grain counterpart. Surface severe plastic deformation (SSPD) was used to produce nanograin layers on both surfaces of workpieces. The nanostructured layers were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The thickness of nanostructured layer, having the grains of 50–110 nm, was about 75 μm on each side of workpiece. The bake hardenability of nanograin and coarse-grain AA7075 was then compared by pre-straining to 2, 4 and 6% followed by baking at 100 °C and 200 °C for 20 min. Comparing to coarse-grain case, there was about 88–100% increase in bake hardenability and about 36–38% increase in yield strength after the bake hardening of present nanograin AA7075. Such an increase in bake hardenability and strength was achieved when the thickness of two nanograin layers was about only one-tenth of the whole thickness.

  13. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    Science.gov (United States)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  14. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  15. Development of a Preventive Maintenance Program for Tooling Used in Powder Slush Molding

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Curzio, Edgar [ORNL; Rios, Orlando [ORNL; Marquez Rossy, Andres E [ORNL

    2016-07-19

    ORNL collaborated with Faurecia Interior Systems to investigate the feasibility of developing a thermomagnetic preventive maintenance program for nickel tooling used in powder slush molding. It was found that thermal treatments at temperatures greater than 500°C can anneal strain hardening in nickel tooling and a range of temperatures and times for effective thermal annealing were identified. It was also observed that magnetic fields applied during thermal annealing do not alter the kinetics of strain hardening annealing. The results obtained in this investigation provide a foundation for establishing a preventive maintenance program for nickel tooling.

  16. Desain dan Optimasi Injection Mold Sistem Slider pada Produk Stick T15

    Directory of Open Access Journals (Sweden)

    Lutfi Khoirul Miftakhul Ni'am

    2017-12-01

    Full Text Available The design of injection molding is the initial process to produce a large-scale product of plastic material which heated and injected into the mold. Design of the preform mold using the plastic material polyethylene terephthalate with the construction of the slider, so that the products which was made have undercut and can’t be made in the core section and cavity. The purpose of this design is to design the slider on the product preform. The software which used for this design using CATIA V5R19 and simulation software production using Autodesk Moldflow Insight 2016. The step on designing a unit injection mold in the preform includes several steps. The first step is identify the product, the calculation of the cooling and input the data calculation result to an moldflow. The second step is design construction slider and determine the mold material as well as calculating the construction mold. The third step is pour the results of the design in figure 2D. Based on the analysis results from moldflow obtained cooling optimal.i.e. the type of cooling series type 2, and if can be concluded construction of the mold said to be safe if the stress, the style and the determination  of material which occurs under the stress and style of permit.

  17. Fully plastic solutions of semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.

    1990-01-01

    Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)

  18. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium

    DEFF Research Database (Denmark)

    Becker, Hanka; Pantleon, Wolfgang

    2013-01-01

    Commercially pure titanium was tensile tested at different strain rates between 2.2×10−4s−1 and 6.7×10−1s−1 to characterize the strain rate dependence of plastic deformation and the dominating deformation mechanisms. From true stress-true plastic strain curves, three distinct work-hardening stages...... are identified. The work-hardening rate decreases linearly with increasing flow stress for all three stages and the work-hardening rate is the controlling factor for the transition between the different stages and mechanisms. During the initial stage (at lowest stresses) plastic deformation is carried mainly...... by dislocation slip, in the following stage (for moderate stresses), an abundance of 64.6∘〈1¯010〉 twin boundaries form indicating the dominance of {112¯2}〈1¯1¯23〉 compression twinning. During the last stage before the onset of necking, additional 84.8∘〈112¯0〉 twin boundaries are detected caused by {101...

  19. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  20. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  1. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  2. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  3. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  4. Analysis of thermal ratchetting of a cylinder subjected to axially moving temperature front. Effect of kinematic hardening rule

    International Nuclear Information System (INIS)

    Ohno, Nobutada; Yari, Takashi; Kobayashi, Mineo

    1995-01-01

    When a cylinder is subjected to a temperature front moving cyclically in the axial direction, the circumferential plastic strain may accumulate with the increase of the number of cycles. This is a thermal ratchetting problem induced by a liquid surface moving in a cylinder, and it is important especially in designing fast breeder reactors. In the present paper, the effect of kinematic hardening rule on the thermal ratchetting analysis is discussed by implementing the following four kinds of kinematic hardening rules in a finite element analysis; the perfectly plastic model (PP), the linear kinematic hardening rule (LKH), the classical nonlinear kinematic hardening rule of Armstrong and Frederick (AF), and the rule proposed recently by Ohno and Wang (OW). It is shown that disregard of transient hardening after yielding leads to overestimating the thermal ratchetting, that a rule predicting larger mechanical ratchetting under uniaxial cyclic loading makes the thermal ratchetting more serious, and that the Ohno and Wang rule can render the analysis most realistic among them. (author)

  5. Injection molding of bushes made of tribological PEEK composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  6. Microinjection molding of microsystem components: new aspects in improving performance

    International Nuclear Information System (INIS)

    Yang, Can; Yin, Xiao-Hong; Cheng, Guang-Ming

    2013-01-01

    Microinjection molding (µIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for µIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (topical review)

  7. Investigation on the micro injection molding process of an overmolded multi-material micro component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    and difficult assembly steps, being the plastic molded directly on a metal substrate. In this scenario, an investigation on the fully automated micro overmolding manufacturing technology of a three-material micro component for acoustic applications has been carried out. Preliminary experiments allowed......Micro injection molding (μIM) is one of the few technologies capable of meeting the increasing demand of complex shaped micro plastic parts. This process, combined with the overmolding technique, allows a fast and cost-efficient production of multi-material micro components, saving numerous...

  8. New constitutive equations to describe infinitesimal elastic-plastic deformations

    International Nuclear Information System (INIS)

    Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.

    1983-01-01

    A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)

  9. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate

    International Nuclear Information System (INIS)

    Bovero, E; Menon, C

    2014-01-01

    The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation. (paper)

  10. Tool application CAD / CAM for design and construction of a prototype of plastic injection mold

    Directory of Open Access Journals (Sweden)

    Albert Miyer Suárez Castrillón

    2015-11-01

    Full Text Available The study, development and production of injection molds comes with the implementation of CAD and CAM tools available on the market; using these tools, a prototype injection mold for thermoplastic materials was designed and built, based on a mold is injection in the laboratory of the University of Pamplona, in which a couple of modifications were made in order to experiment with its design. The prototype was manufactured through a 3D scan of the original mold to provide the CAD / CAM files with the simulated 3D printing technique for performing an experimental study with the prototype for adjusting temperature and pressure sensors and for coatings metallic materials for use in the injection molding process.

  11. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Balasubramanian; Castagne, Sylvie [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Zhongke; Zheng, H.Y. [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Singapore Institute of Manufacturing Technology, Machining Technology Group, Singapore (Singapore)

    2015-11-15

    Flexible pad laser shock forming (FPLSF) is a new mold-free microforming process that induces high-strain-rate plastic deformation in thin metallic foils using laser-induced shock pressure and a hyperelastic flexible pad. This paper studies the plastic deformation behavior of copper foils formed through FPLSF by investigating surface hardness and microstructure. The microstructure of the foil surface before and after FPLSF is analyzed by electron backscatter diffraction technique using grain size distribution and grain boundary misorientation angle as analysis parameters. The surface hardness of the craters experienced a significant improvement after FPLSF; the top crater surface being harder than the bottom surface. The microstructure of the copper foil surface after FPLSF was found to be dominated by grain elongation, along with minor occurrences of subgrain formation, grain refinement, and high dislocation density regions. The results indicate that the prominent plastic deformation mechanism in FPLSF is strain hardening behavior rather than the typical adiabatic softening effect known to be occurring at high-strain-rates for processes such as electromagnetic forming, explosive forming, and laser shock forming. This significant difference in FPLSF is attributed to the concurrent reduction in plastic strain, strain rate, and the inertia effects, resulting from the FPLSF process configuration. Correspondingly, different deformation behaviors are experienced at top and bottom surfaces of the deformation craters, inducing the change in surface hardness and microstructure profiles. (orig.)

  12. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...

  13. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  14. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  15. Molding 4.0 - The Economics of an Injection Molding As-a-Service Business Model

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Tonetti, Marco Alessandro; Tosello, Guido

    involved contributes to a hazy definition of the phenomenon. In this work, Industry 4.0 is analyzed by analyzing into its influence on the plastics industry, with a focus on the injection molding technology. A new business model for the plastic industry is proposed, which fosters closer cooperation......During the last few years, the term Industry 4.0 or The Fourth Industrial Revolution, made its appearance and spread across industries. While it is accepted that the term broadly refers to a set of recent innovations with potential to disrupt value and process chains, the heterogeneity of actors...... the paradigm of Industry 4.0 is able to disrupt the industry by decreasing machine downtime and offering remarkable improvements in machine up-time. The present research aims to highlighting some of the opportunities for the plastic industry enabled by the implementation of an Internet of Things architecture....

  16. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  17. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  18. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  19. Continuous monitoring of setting and hardening of mortar using FBG sensors

    Science.gov (United States)

    Lima, H.; Ribeiro, R.; Nogueira, R.; Silva, L.; Abe, I.; Pinto, J. L.

    2007-05-01

    The use of fibre Bragg grating sensors to study mortars' dimensional variations during the setting process is reported. When determining a mortar's potential to fissure, it's important to know its total retraction. This means it is necessary to know not only the mortar's retraction after hardened, but also to know how much it retracts during the plastic phase. This work presents a technique which allows to measure dimensional variations, either expansion or retraction, during the whole setting process. Temperature and strain evolution during both plastic and hardened phase of the mortar were obtained, allowing the determination of dimensional variations and setting times. Due to its high-speed, ease of implementation and low operation costs, this technique will allow to get a deeper knowledge of the effects of several additives on the mortar's behaviour, allowing to improve its mechanical properties through the determination of the proper chemical composition.

  20. The influence of microwave heating and water glass kind on the properties of molding sands

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-03-01

    Full Text Available This work presents rcsults of research on thc influcncc of microwave heating time on the process of hardening of warcr glass moldingsands. Essential influence of this drying process on basic properties such as: cornprcssion, bcnding mind tcnsitc strcng~h as well aspcrrneabili~y and war resistance, has bccn found. It has bccn proved, that at1 thc investigated sorts of sodium water glass could be uscd asbinding material of molding sands intended for curing with the microwave process healing. It has bccn found, while analyzing the rcsultsof property studics or microwavc heated molding sands with 2.5% addition of water glass, that aIl available on the markct kinds of thisbinding agent (inctuding the most frequently uscd in foundry 145 and 149 kinds after microwave heating guarantee very goodcompression, bending and tensile strength as well as permeability and wcar resistance. Moroovcr, it has bccn dctcrmined that the optimalcuring powcr of molding sands containing various kinds of water gIass is 560 W. AII values exceeding this rcsult in stabilization of basicpropcrtics of molding sands. The use of microwave curing of water glass molding sands results in a significant decrease of hardeningprocess time. full stabilization of molding sands as well as much lower energy consumption.

  1. Ultraviolet rays hardening type material which can do the repair of FRP it is easy; Kantan ni FRP no hoshu ga dekiru shigaisen kokagata zairyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-15

    The seat-shaped ultraviolet rays (UV) hardening type material which the reinforcement of the fiber strengthening plastic (FRP) and the repair and the corrosion partial repair of the steel rice are made easily in is developed, is sold in late April. The same product is the seat, which made soak an UV hardening type plastic in the fiberglass. Though a un-saturation polyester plastic was adopted, as for many FRP repair materials, a tolerance to the medicine, shock, heat rose by adopting plastic, and the adhesion power became strong, too. And, because it is a seat-shaped, a hand lei rise which takes a plastic and hardening medicine in its hand and to mix is compared with the way of repairing it, and the strength of the repair point becomes uniform with constructing it easily in a short time, too. The car and the port business world are wide except for the construction, and the same company plans sales promotion. (translated by NEDO)

  2. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  3. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  4. Manufacture of plastic parts by radiation molding

    International Nuclear Information System (INIS)

    Leszyk, G.M.; Morrison, E.D.; Williams, R.F. Jr.

    1977-01-01

    Thin plastic parts which can have precise tolerances and can be of complex shape are prepared by casting a viscous radiation-curable composition onto a support, such as a moving web of polymeric material, in the shape of the desired part and then irradiating, for example with ultraviolet radiation or high energy electrons, to cause curing of the composition to a solid plastic. The radiation-curable composition is formulated with viscosity and flow characteristics it to be cast in the exact shape of the part desired yet retain this shape during curing while supported only by the surface on which it has been cast. Plastic parts made by this method can be formed entirely of the radiation-curable composition by casting onto a web having a release surface from which the part can be stripped subsequent to curing or can be formed partially from a web material and partially from the radiation-curable composition by casting onto a web to which the composition will bond and subsequently cutting the web into discrete portions which include the cured composition

  5. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Science.gov (United States)

    2010-07-01

    .../ton.4 Use the appropriate open molding emission limit.5 9. pultrusion 6 N/A reduce total organic HAP... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites...: If your operation type is . . . And you use . . . 1 Your organic HAP emissions limit is . . . 1. open...

  6. Free-form nanostructured tools for plastic injection moulding

    DEFF Research Database (Denmark)

    Kafka, Jan; Sonne, Mads Rostgaard; Lam, Yee Cheong

    realized and successfully transferred to plastic parts during injection moulding.As an example, we present theory and results regarding the imprint of pillar nanostructures on a semi-spherical mold surface, followed by injection molding of the same. The deformation of the flexible stamp is characterized...... by measurement of inter-pillar distance on various points on the sphere, and compared to predictions provided by a geometrical model. Moulded plastic parts show good replication of the pillar structure.There are various practical advantages to the new process: the application of the coating is possible on both...

  7. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Science.gov (United States)

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  8. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  9. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  10. On the formulation of higher gradient single and polycrystal plasticity

    International Nuclear Information System (INIS)

    Menzel, A.; Steinmann, P.

    1998-01-01

    This contribution aims in a geometrically linear formulation of higher gradient plasticity of single and polycrystalline material based on the continuum theory of dislocations and incompatibilities. Thereby, general continuum dislocation densities and incompatibilities are introduced from the viewpoint of continuum mechanics by considering the spatial closure failure of arbitrary line integrals of the displacement differential. Then these findings are translated to the plastic parts of the displacement gradient, the so called plastic distortion, and the plastic strain, respectively, within an elasto-plastic solid thus defining tensor fields of plastic dislocation densities and plastic incompatibilities. Next, in the case of single crystalline material the plastic dislocation density and in the case of polycrystalline material the plastic incompatibility are considered within the exploitation of the thermodynamical principle of positive dissipation. As a result, a phenomenological but physically motivated description of hardening is obtained, which incorporates for single crystals second spatial derivatives of the plastic deformation gradient and for polycrystals fourth spatial derivatives of the plastic strains into the yield condition. Moreover, these modifications mimic the characteristic structure of kinematic hardening, whereby the backstress obeys a nonlocal evolution law. (orig.)

  11. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  12. Observation of a New Mechanism Balancing Hardening and Softening in Metals

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2014-01-01

    Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After large strain, the microstructure typically shows a lamellar morphology, with finely spaced lamellar boundaries...... connected by triple junctions. Here, we report that mechanically assisted triple junction motion is an important contributor to dynamic recovery, leading to an almost steady state. Triple junction motion replaces two boundaries by one, while maintaining the structural morphology. The observation...... rationalizes both a decreasing work hardening rate and the approach to a dynamic equilibrium of structural refinement at large strains....

  13. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  14. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    Science.gov (United States)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  15. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  16. Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening larw including stage IV

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    The strain hardening and damage behaviour of isothermally heat treated 6005A aluminium is investigated in order to link the thermal treatment conditions, microstructure and fracture strain. The need for a plastic flow rule involving a stage IV hardening at large strain was found essential to gene...

  17. Applications of thin carbon coatings and films in injection molding

    Science.gov (United States)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness

  18. Chapter 4. Fundamental mechanisms of the low temperature plastic deformation of metals

    International Nuclear Information System (INIS)

    Fouquet, J. de

    1976-01-01

    The influence of microstructure, grain boundaries, and strain hardening, on the low temperature plasticity of polycristals is studied. The experimental data on flow stress, work hardening, temperature and strain rate effects, alloying elements and grain size effect are firstly considered, on a macroscopic scale. The mechanisms of the low temperature plastic deformation, and the strain-stress relations are then described in terms of slip modes, mobility, configuration and distributions and interactions of dislocations [fr

  19. Numerical implementation of a model with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Marek, René; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír; Feigenbaum, H. P.; Dafalias, Y.F.

    2015-01-01

    Roč. 141, č. 12 (2015), 04015048-04015048 ISSN 0733-9399 R&D Projects: GA MŠk LH14018; GA ČR(CZ) GA15-20666S Institutional support: RVO:61388998 Keywords : plasticity * directional distortional hardening * finite-element procedures Subject RIV: JG - Metallurgy Impact factor: 1.346, year: 2015 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000954

  20. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules

    Czech Academy of Sciences Publication Activity Database

    Feigenbaum, H. P.; Dugdale, J.; Dafalias, Y.F.; Kourousis, K. I.; Plešek, Jiří

    2012-01-01

    Roč. 49, č. 22 (2012), s. 3063-3076 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) ME10024 Institutional research plan: CEZ:AV0Z20760514 Keywords : plasticity * directional distortional hardening * thermodynamics Subject RIV: JJ - Other Materials Impact factor: 1.871, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020768312002612

  1. Injection molded polymer optics in the 21st Century

    Science.gov (United States)

    Beich, William S.

    2005-08-01

    Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.

  2. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D. Third year report. R and D of high grade/low cost mold for rubber/plastic; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu. Gomu plastic yo kohin'i tei cost kanagata no kenkyu kaihatsu (dai 3 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The development was proceeded with of technology to reform the surface of rubber/plastic use mold by ion engineering technology so that the product can be easily taken out without being stained by the material. Concretely, PBII (plasma-based ion implantation) device with high ion implantation efficiency was developed, and surface reforming conditions were studied. Then, from the test using the actual device, the surface reforming technology optimum to mold releasing and mold staining resistance as rubber molding was established. Studies were made of the following: 1) establishment of the optimum mold surface reforming technology; 2) establishment of the mold surface treatment technology using PBII device; 3) improvement of PBII device and optimization of implantation method. In 2), by the surface treatment by implanting nitrogen and fluorine ions into hard chromium plating and aluminum alloys using PBII device, treatment effects were recognized in implantation ability into 3D shape, mold staining resistance and mold releasing in the hard chromium plating treated mold. (NEDO)

  3. Cyclic loading of thick vessels based on the Prager and Armstrong-Frederick kinematic hardening models

    International Nuclear Information System (INIS)

    Mahbadi, H.; Eslami, M.R.

    2006-01-01

    The aim of this paper is to relate the type of stress category in cyclic loading to ratcheting or shakedown behaviour of the structure. The kinematic hardening theory of plasticity based on the Prager and Armstrong-Frederick models is used to evaluate the cyclic loading behaviour of thick spherical and cylindrical vessels under load and deformation controlled stresses. It is concluded that kinematic hardening based on the Prager model under load and deformation controlled conditions, excluding creep, results in shakedown or reversed plasticity for spherical and cylindrical vessels with the isotropy assumption of the tension/compression curve. Under an anisotropy assumption of the tension/compression curve, this model predicts ratcheting. On the other hand, the Armstrong-Frederick model predicts ratcheting under load controlled cyclic loading and reversed plasticity for deformation controlled stress. The interesting conclusion is that the Armstrong-Frederick model is well capable to predict the experimental data under the assumed type of stresses, wherever experimental data are available

  4. Validation of precision powder injection molding process simulations using a spiral test geometry

    DEFF Research Database (Denmark)

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant ....... The necessary data and the implementation procedure of the new material models are outlined. In order to validate the simulation studies and evaluate their accuracy, the simulation results are compared with experiments performed using a spiral test geometry...... for powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software...

  5. Micropropagation of Dioscorea alata L. through nodal segments

    African Journals Online (AJOL)

    SUPRIYA

    2013-11-20

    Nov 20, 2013 ... Regenerated plants were transplanted in hardening medium containing Brick bats + Charcoal. + Dried moss + Leaf molds + Soil in 1: 1: 1:1:1 proportion. .... Then the plantlets were transferred to sterile small plastic cups containing vermiculite. (a sterile inert medium for planting transferred plants) and kept.

  6. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  7. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  8. Efficient simulation of press hardening process through integrated structural and CFD analyses

    International Nuclear Information System (INIS)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-01-01

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies

  9. Adaptive temporal refinement in injection molding

    Science.gov (United States)

    Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek

    2018-05-01

    Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.

  10. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  11. Accurate Hardening Modeling As Basis For The Realistic Simulation Of Sheet Forming Processes With Complex Strain-Path Changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  12. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Hatscher, A; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2014-01-01

    In this article, a constitutive model for quench-hardenable boron steel is presented. Three sets of boron steel blanks are heat treated such that their as-treated microstructures are close to fully martensitic, bainitic and ferritic/pearlitic, respectively. Hardness measurements show that the

  13. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  14. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  15. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  16. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  17. Effects of microstructures on low cycle fatigue behavior in Al-Si-Mg cast alloys

    International Nuclear Information System (INIS)

    Han, Sang Won; Kim, Sug Won

    2002-01-01

    Low cycle fatigue tests were carried out using four kinds of Al-7%Si-0.4Mg cast alloys, i.e., two kinds of sand mold casts, permanent mold cast and semi-solid die cast. They were heat-treated in the condition of under aging and over aging to investigate effects of precipitates on fatigue. All tests were conducted under axial plastic strain amplitude control. Stress level of cyclic hardening curves increased sensitively with needle like eutectic Si particle, refine grain size and dendrite arm spacing (DAS). In particular, the refined grain structure of under aged matrix was more effective encourager for cyclic hardening compared with DAS and eutectic Si particle size. After rapid increase in cyclic hardening during several number of cycles, the stress amplitude kept increasing steadily until fracture in under aged alloys strengthened by shearable G.P. zone. On the other hand, over aged alloys strengthened by non-shearable β ' precipitates generated more drastic initial hardening and the stress amplitude reached the saturation state in quite early stage of the fatigue

  18. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  19. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  20. Work-hardening of dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Florian

    2016-07-01

    Exhibiting good mechanical properties for cold-sheet forming, low-alloyed dual-phase (DP) steels are nowadays widely used for automotive applications. The composite-like microstructure of DP steels is composed of a low-carbon ductile ferrite-matrix and 10 - 60 vol.% hard martensitic inclusions. A nonlinear mean-field model and full-field finite-element simulations are applied to investigate three major topics: the influence of grain-size distribution, grain-level plasticity and derivation of an original material-model. The plastic behavior of polycrystals is assumed to be grain-size dependent in this work. The distribution of grain-sizes is taken to be lognormal. It is found that grain-size dispersion leads to a decrease of the material strength, in particular for small mean diameters around one micron. The numerical results from the mean-field model are confirmed notably well by means of a simple analytical expression. The micromechanical behavior of DP steels is investigated by full-field RVE simulations with a crystal-plasticity based ferrite-matrix and von Mises-type martensite inclusions. To examine the martensite influence, full-field simulation results of DP steels have been compared to an RVE in which martensite is substituted by ferrite. After quenching, a higher grain-boundary area covered by martensite facilitates an increased average dislocation-density. For uniaxial deformations above ∝10%, however, the grain-size dependent relation reverses. With more surrounding martensite, the local crystal-plasticity material-model exhibits hardening at a slower rate. A nonlinear mean-field model of Hashin-Shtrikman type is employed as framework for the original material-model for DP steels. The model incorporates the interaction of ferrite and martensite via incompatibility-induced long-range stresses in an averaged sense. The proposed model combines works of Ashby (1970) and Brown and Stobbs (1971a) to simulate the ferrite behavior. Based on the composite model

  1. Application of the Single Hardening Model in the Finite Element Program ABAQUS

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b) is implemented as a user defined material module, UMAT, in the commercial finite element program, ABAQUS. The advantages of the Single Hardening Model Iie in its ability to predict elastic and plastic displacements...

  2. Thermoforming plastic in lead shield construction

    International Nuclear Information System (INIS)

    Abrahams, M.E.; Chow, C.H.; Loyd, M.D.

    1989-01-01

    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when set or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist

  3. Dynamic elastic-plastic response of a 2-DOF mass-spring system.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibit elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.

  4. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    International Nuclear Information System (INIS)

    Das, S.; Timokhina, I.; Singh, S.B.; Pereloma, E.; Mohanty, O.N.

    2012-01-01

    Highlights: ► Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. ► No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. ► Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  5. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  6. The influence of limited kinematic hardening in shakedown analysis

    International Nuclear Information System (INIS)

    Nery, Domingos E.S.; Jospin, Reinaldo R.; Zouain, Nestor

    2009-01-01

    The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypothesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis. (author)

  7. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  8. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  9. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  10. Fiscal 1998 result report on research and development project of regional consortiums (the first year). Research and development of regional consortium energy / Report on development of high-grade and low-cost molds for rubber and plastics; 1998 nendo chiiki consortium energy kenkyu kaihatsu (dai 1 nendo). Gomu plastic yo kohin'i tei cost kanagata no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Discussions were given on quality improvement and cost reduction of heating and forming molds for household rubber, plastics and electronic device parts. This paper summarizes the achievements in fiscal 1998. Verification was made on chromium plated steel and stainless steel molds as to improvement in water repellency of the mold surface by injecting N and F ions, improvement in surface hardness by making the surface into CrN and CrF, and improvement in wear resistance. In order to inject the ions uniformly into the mold surface having irregularities, a high-frequency and high-energy power supply was developed. Development was made on a negative voltage induction pulse power supply taking synchronism with the above pulse power supply and a 50-kV field through device. The design and fabrication thereof have been completed and the trial operation has begun. In order to evaluate mold releasing performance and pollution effect on molds under the same conditions for all makes, a unified evaluation criterion was established. With regard to nitriding and chromation by means of nitrogen ion injection into chromium plated steels under the unified rubber composition, the mold releasing performance and pollution effect were evaluated in terms of economics. Residue of rubber material in a mold has decreased, and metal polluting effect has been improved. Quantitative evaluation was performed successfully by the CCD taken image processing of surface images. (NEDO)

  11. Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Welling, CH.A.; Marek, René; Feigenbaum, H. P.; Dafalias, Y.F.; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír

    2017-01-01

    Roč. 126, November (2017), s. 105-121 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA MŠk LH14018 Keywords : plastic ity * yield * ratcheting * yield surface distortion * directional distortional hardening Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.760, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020768317303499

  12. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  13. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  14. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  15. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

    Directory of Open Access Journals (Sweden)

    Manuel Felix

    Full Text Available Abstract Soy Protein Isolate (SPI has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.

  16. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  17. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  18. Account of low temperature hardening in calculation of permissible stresses

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ul'yanenko, A.P.; Gorodyskij, N.I.

    1980-01-01

    Suggested is a calculation scheme of permissible stresses with the account of temperature hardening for steels and alloys, the dependences of strength, plasticity and rupture work of which on cooling temperature do not have threshold changes in a wide range of low temperatures (from 300 to 4.2 K). Application of the suggested scheme is considered on the example of 12Kh18N10T austenitic chromium-nickel steel

  19. Evaluation by nanoindentation of technological products manufactured by pulse injection molding process

    Directory of Open Access Journals (Sweden)

    Natova Margarita

    2018-01-01

    Full Text Available During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.

  20. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Das, S., E-mail: sourav.das@tatasteel.com [Research and Development, Tata Steel Limited, Jamshedpur (India); Timokhina, I. [Centre for Material and Fibre Innovation/Science and Technology, Deakin University (Australia); Singh, S.B. [Metallurgical and Materials Engineering, IIT Kharagpur (India); Pereloma, E. [BlueScope Steel Metallurgy Centre, University of Wollongong (Australia); Mohanty, O.N. [RSB Metaltech, RSB Group, Jamshedpur (India)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. Black-Right-Pointing-Pointer No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. Black-Right-Pointing-Pointer Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  1. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    International Nuclear Information System (INIS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-01-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material

  2. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  3. Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Nellemann, C.; Niordson, C. F.; Nielsen, K.L.

    2018-01-01

    Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat...... related,model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs...... the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip...

  4. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  5. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  6. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  7. Achievement report for fiscal 1998 on the research cooperation project for a technology to facilitate setting forming conditions for engineering plastics; 1998 nendo engineering plastic no seikei joken kan'i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is intended to support plastics manufacturing being the important supporting industry in Thailand for manufacture of household electric appliances and automobiles, particularly the manufacture of engineering plastics having excellent heat and impact resistance. In order to achieve the target, a supporting system is being developed to allow injection molding of engineering plastics to be performed easily. The project aims particularly at developing a system that suits climate conditions in Thailand, properties of plastic materials procurable in Thailand, and skills of Thai engineers. The current fiscal year has carried out the following activities: evaluating materials required for the research and development, deciding the specifications for and ordering product evaluating and testing facilities, molds and mold cooling and heating adjustment devices, and an injection molding CAE system; these items were introduced and installed in Thailand; engineers were sent from Japan to perform technical guidance on operation, maintenance and management of the material and product evaluating and testing facilities, as well as joint researches; and Thai researchers were received to execute training on product evaluating and testing technologies, forming and processing technologies, and CAE utilizing technologies. (NEDO)

  8. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  9. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  10. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  11. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.

    2014-06-05

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity versions with deformation-dependent characteristic length scales. Wire torsion test is taken as an example to assess existing and newly built constitutive equations. For torsion tests, with increasing plastic strain, a constant intrinsic length predicts too high a torque, while a decreasing intrinsic length scale can produce better predictions instead of the increasing one, different from some published observations. If the Taylor dislocation rule is written in the Nix-Gao form, the derived constitutive equations become singular when the hardening exponent gets close to zero, which seems questionable and calls for further experimental clarifications on the exact coupling of hardening due to statistically stored dislocations and geometrically necessary dislocations. Particularly, when comparing the present model with the mechanism-based strain gradient plasticity, the present model satisfies the reciprocity relation naturally and gives different predictions even under the same parameter setting. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Hot Runner Mold Design of Fan Diverter Parts

    Science.gov (United States)

    Juan, D. J.; Cheng, Y. L.

    2017-09-01

    In this study, we discuss the case of plastic parts for the production of fan steering gear shaft parts injection molding, and use POM plastic steel to produce plastic parts from traditional cold runners. Because of the parts have a hole, which need side slide. The runner produce more waste after plastic parts injection make the runner waste account for the cost is relatively high, the cost of stock preparation is relatively increased when the product quantity demanded is great. After the crushing treatment of the waste, the backfill will affect the quality, and in the crushing process, the volume generated will make the operator to withstand up to 130 dB of noise. The actual test results show that the production cycle reduce 6.25%, while the production yield increase by about 5% and material costs reduced by 2% . It can be recovered within a year, not to mention the increase of the quality and reduction the noise on the staff of the benefit is impossible to estimate.

  13. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  14. A New Approach for Heating the Plastics Injection Units

    Directory of Open Access Journals (Sweden)

    Virgilius Vasilache

    2010-06-01

    Full Text Available The plastics injection molding machines are one of the most eager consumers of energy. The plasticizing unit itself is the most important energetic consumer among the subassemblies of these machines; that is why this subassembly is the target of most actions of consumption decreasing on such machines. Our concerns on this direction got the shape of developing a new heating system for the plasticizing unit, which system was already patented [1].

  15. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    International Nuclear Information System (INIS)

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-01

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni 3 Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni 3 Al precipitates and ellipsoidal M 23 C 6 carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni 3 Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni 3 Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage

  16. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Ho, E-mail: jongho.shin@doosan.com [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Jeong, JaeSuk [Materials and Manufacturing Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Lee, Jong-Wook [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of)

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  17. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  18. Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel

    International Nuclear Information System (INIS)

    Sainath, G.; Choudhary, B.K.; Christopher, J.; Isaac Samuel, E.; Mathew, M.D.

    2015-01-01

    Detailed analysis of true stress (σ)-true plastic strain (ε) data indicated that tensile flow behaviour of P92 ferritic steel can be adequately described by Voce equation at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range 300–923 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) with stress. At all the strain rates, the variations in σ-ε, θ-σ and work hardening parameters associated with Voce equation with temperature exhibited three distinct temperature regimes. At intermediate temperatures, the variations in σ-ε, θ-σ and work hardening parameters with temperature and strain rate exhibited anomalous behaviour due to the occurrence of dynamic strain ageing in the steel. The shift in θ-σ towards low stresses, and rapid decrease in flow stress and work hardening parameters with increasing temperature and decreasing strain rate suggested dominance of dynamic recovery at high temperatures. - Highlights: • Tensile flow and work hardening behaviour of P92 steel has been examined. • Applicability of Voce equation to P92 steel is demonstrated. • Three temperature regimes in flow and work hardening has been observed. • Good match between predicted and the experimental tensile properties has been shown

  19. Experimental study on kinematic hardening of 1Cr18Ni9Ti stainless steel under low cycle fatigue

    International Nuclear Information System (INIS)

    Shao Er; Yang Xianjie; Mao Jianghui; Sun Yafang

    2006-01-01

    To study the effect of the monotonic loading on subsequent cyclic plastic hardening and flow properties of 1Cr18Ni9Ti steel, an experimental study of the low cycle fatigue tests with mean strains for 1Cr18Ni9Ti stainless steel was carried out. An analysis on the evolutions of the yield surface radius and the back stresses under symmetric and asymmetric cyclic strain loading with different strain amplitudes was made. The dependence of the evolutions of the material kinematic hardening and isotropic hardening on the strain amplitude and mean strain was observed. These results provide the experimental foundation for the constitutive model of the material under combined monotonic and cyclic complicated loads. (authors)

  20. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  1. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  2. Use of recycled plastic in concrete: A review

    International Nuclear Information System (INIS)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper

  3. Application of Soft Computing for the Prediction of Warpage of Plastic Injection

    Directory of Open Access Journals (Sweden)

    Vijaya Kumar Reddy

    2009-01-01

    Full Text Available This paper deals with the development of accurate warpage prediction model for plastic injection molded parts using softcomputing tools namely, artificial neural networks and support vector machines. For training, validating and testing of thewarpage model, a number of MoldFlow (FE analyses have been carried out using Taguchi’s orthogonal array in the designof experimental technique by considering the process parameters such as mold temperature, melt temperature, packing pressure,packing time and cooling time. The warpage values were found by analyses which were done by MoldFlow PlasticInsight (MPI 5.0 software. The artificial neural network model and support vector machine regression model have beendeveloped using conjugate gradient learning algorithm and ANOVA kernel function respectively. The adequacy of the developedmodels is verified by using coefficient of determination. To judge the ability and efficiency of the models to predictthe warpage values absolute relative error has been used. The finite element results show, artificial neural network modelpredicts with high accuracy compared with support vector machine model.

  4. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  5. Using magnetic levitation for non-destructive quality control of plastic parts.

    Science.gov (United States)

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  7. Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China); Terentyev, Dmitry [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Yu, Long [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Jin, Zhaohui [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China)

    2016-08-15

    The thermo-mechanical behavior of non-irradiated (at 223 K, 302 K and 573 K) and neutron irradiated (at 573 K) Fe-2.5Cr, Fe-5Cr and Fe-9Cr alloys is studied by a self-consistent plasticity theory, which consists of constitutive equations describing the contribution of radiation defects at grain level, and the elastic-viscoplastic self-consistent method to obtain polycrystalline behaviors. Attention is paid to two types of radiation-induced defects: interstitial dislocation loops and solute rich clusters, which are believed to be the main sources of hardening in Fe-Cr alloys at medium irradiation doses. Both the hardening mechanism and microstructural evolution are investigated by using available experimental data on microstructures, and implementing hardening rules derived from atomistic data. Good agreement with experimental data is achieved for both the yield stress and strain hardening of non-irradiated and irradiated Fe-Cr alloys by treating dislocation loops as strong thermally activated obstacles and solute rich clusters as weak shearable ones. - Highlights: • A self-consistent plasticity theory is proposed for irradiated Fe-Cr alloys. • Both the irradiation-induced hardening and plastic flow evolution are studied. • Dislocation loops and solute rich clusters are considered as the main defects. • Numerical results of the proposed model match with corresponding experimental data.

  8. Allergies, asthma, and molds

    Science.gov (United States)

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  9. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  10. CAE for Injection Molding — Past, Present and the Future

    Science.gov (United States)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  11. A study on the development of engineering plastic piston used in the shock absorber

    Science.gov (United States)

    Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo

    1998-08-01

    A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.

  12. Rational interpretation of the postulates in plasticity

    Directory of Open Access Journals (Sweden)

    Bohua Sun

    2014-01-01

    Full Text Available This article is mainly focussed on revisited of the two well-known postulates of plasticity, i.e., the Drucker and the Il’iushin postulate, and it describes their rational interpretation within the framework of irreversible thermodynamics and using exterior calculus. It shows that the Il’iushin and the Drucker postulate is the integral form and local form of the irreversible thermodynamics of plastic deformation, respectively. The Drucker and Il’iushin postulate is equivalent for both soft and hardening materials.

  13. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    Science.gov (United States)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  14. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  15. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster

    DEFF Research Database (Denmark)

    Bubliy, Oleg A; Kristensen, Torsten Nygård; Kellermann, Vanessa

    2012-01-01

    such as reduction of metabolic rate and accumulation of energy reserves might be involved. 6. The lack of cross-resistance induced by acclimation ⁄ hardening treatments suggests that in an environment with multiple stresses, evolution of shared protective systems associated with plastic responses may be constrained.......1. Acclimation or hardening to one stress in arthropods can lead to a plastic response, which confers increased resistance to other stresses. Such cross-resistance may indicate shared physiological resistance mechanisms and a possibility of joint evolution for resistance traits. 2. In this study...

  16. Hardening behavior and texture evolution of TWIP steel during strain path change

    International Nuclear Information System (INIS)

    Wen, W; Borodachenkova, M; Pereira, A; Barlat, F; Gracio, J

    2015-01-01

    Polycrystal materials exhibit large changes in the flow stress and hardening behavior during the strain path change. Such changes are related with the crystallographic texture anisotropy and the rearrangement of dislocation structure during the pre-loading. These effects have been captured by a dislocation hardening model embedded in the visco-plastic selfconsistent (VPSC) model. In this work, the texture evolution and mechanical behavior of TWIP steel during the strain path change are investigated. The experimental studies are carried out on rolled TWIP steel sheet. The mechanical responses are obtained under tensile tests along rolling direction, followed by tension along the directions with 0° and 90° from the pre-loading direction. The simulated results of strain-stress curves and the texture evolution are in good agreement with the experimental data. (paper)

  17. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  18. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  19. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  20. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  1. Propagation of the nonlinear plastic stress waves in semi-infinite bar

    Directory of Open Access Journals (Sweden)

    Edward Włodarczyk

    2017-03-01

    Full Text Available This paper presents the propagation longitudinal nonlinear plastic stress in thin semi-infinite rod or in wire. The rod is characterized by a nonlinear strain hardening model within the scope a plastic strain. The modulus of strain hardening is a decreasing function of the strain. The frontal bar end is suddenly launching to the velocity V, and subsequently moves with this one. General solution of this boundary value problem of the Lagrangian coordinate (material description and of the Eulerian one (spatial description has been presented. There has been carried out the physical interpretation of the obtained results by means of Lagrangian and Eulerian methods. The results of this paper may be utilized in scientific researches and in engineering practice.

  2. Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it

    2016-11-01

    Highlights: • Stress-strain amplitudes of cyclic stress strain curves defined by design codes are provided as reference data. • A macroinstruction simulating cyclic plasticity and producing hardening parameters of constitutive models is developed. • Hardening parameters of the nonlinear Chaboche model are provided for stainless steels 316l-N, 316L, 304L at different temperatures. • Ratcheting is simulated by using the produced hardening parameters. - Abstract: The integrity assessment of structures subjected to cyclic loading must be verified with regard to cyclic type damage including time-independent fatigue and progressive deformation or ratcheting. Cyclic damage is verified simulating the material elastic-plastic loop and looking at the accumulated net plastic strain during each cycle at all points of the structure subjected to the complete time history of loadings. This work deals with the development of a numerical model producing the Chaboche hardening parameters starting from stress-strain data produced by testing of materials. Then, the total plastic strain can be simulated using the Chaboche inelastic constitutive model requested for finite element analyses. This is particularly demanding for pressure vessels, pressurised piping, boilers, and mechanical components of nuclear installations made of stainless steels. A design optimisation by iterative analyses is developed to approach the stress-strain test data with the Chaboche model. The parameters treated as design variables are the Chaboche parameters and the objective function to be minimised is a combination of the deviations from test data. The optimiser calls a macroinstruction simulating cyclic loading of a sample for different material temperatures. The numerical model can be used to produce hardening parameters of materials for inelastic finite element verifications of structures with complex joints like elbows subjected to a combination of steady sustained and cyclic loads.

  3. On the ability of some cyclic plasticity models to predict the evolution of stored energy in a type 304L stainless steel submitted to high cycle fatigue

    International Nuclear Information System (INIS)

    Vincent, L.

    2008-01-01

    Fatigue analyses of materials are generally based on a so-called stabilized cycle, on which plastic strain amplitude, plastic energy, maximum shear stress and so on are determined. The part of plastic energy which is dissipated in heat cannot be used to accumulate damage and it should be worthwhile extracting only the part of plastic energy which is stored in material microstructure in order to build a consistent damage model. In this paper, some cyclic plasticity models including a polycrystalline model are reformulated in the thermodynamic framework in order to test their capacity to predict both the stress-strain behaviour and the partition of plastic energy for a high cycle fatigue test on a type 304L stainless steel. For an equivalent description of stress-strain loops, the number of kinematic hardening variables chosen in a model may qualitatively alter the prediction of plastic energy partition due to the modification of the isotropic hardening variable. Measurements of the specimen temperature increase due to plastic dissipation is therefore proposed as a convenient complementary experimental data to identify the constitutive equation of the isotropic hardening variable of a cyclic plasticity model. (author)

  4. Parameter Optimization Of Natural Hydroxyapatite/SS316l Via Metal Injection Molding (MIM)

    Science.gov (United States)

    Mustafa, N.; Ibrahim1, M. H. I.; Amin, A. M.; Asmawi, R.

    2017-01-01

    Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.

  5. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  6. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  7. Moore's law and mold making: staying in the megapixel race

    Science.gov (United States)

    Renkema, Kor

    2007-09-01

    In this presentation an impression is given of technical developments within Philips High Tech Plastics, a European supplier with a production facility in Suzhou, China. Philips HTP is making precision plastic and optical parts for the mass consumer electronics market; the largest part of its current business is camera objective lenses and actuators for mobile phone. A supplier in consumer electronics has to deal with Moore's law, being one of the most specific characteristics of this particular market. This law says that every 18 - 24 months the performance of computers will double, while the price at the same performance will be halved, at the same rate. So this law also applies to lenses that are mounted on a silicon chip; the product life cycle is short, typical 2-3 years, and the next generation needs to have an ever-higher performance. The pixels are getting smaller and smaller, so the resolution of the lenses has to follow. This means a continuous tightening of the tolerances in mold making, molding and assembly, and the improvements are needed at a high rate. In the presentation is described what challenges in ever increasing precision are encountered, developments that are carried out to meet those, and in what extent Philips HTP is successful reaching the required goals.

  8. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  9. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  10. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  11. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  12. Durability of wood-plastic composite lumber

    Science.gov (United States)

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  13. Precipitation hardening in dilute Al–Zr alloys

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Lamarão Souza

    2018-01-01

    Full Text Available The aim of this study was to investigate the effect of solute content (hipoperitectic Al–0.22 wt.%Zr and hiperperitectic Al–0.32 wt.%Zr on the precipitation hardening and microstructural evolution of dilute Al–Zr alloys isothermally aged. The materials were conventionally cast in a muffle furnace, solidified in a water-cooled Cu mold and subsequently heat-treated at the temperature of 650 K (377 °C for 4, 12, 24, 100 and 400 h. Mechanical characterization was performed at room temperature, using a microhardness tester and microstructural characterization was carried out on a Transmission Electron Microscope – TEM. The observed microhardness values increased during isothermal aging, due to the precipitation of nanometer-scale Al3Zr L12 particles. Peak strength was achieved within 100 h of aging. After aging for 400 h, microhardness values presented a slight decrease for both alloys, thus indicating overaging due to the coalescence of precipitates. Microhardness values increased with solute content, due to the precipitation of a higher number density of finer precipitates. After 400 h of heat-treating, coalescence was higher for the alloy with lower solute content and, also, the presence of antiphase boundaries – APBs, planar faults associated with the L12 to D023 structural transition, were observed. Comparing theoretical calculations of the increment in strength due to precipitation strengthening with experimental results, it was observed that their values are in reasonable agreement. The Orowan dislocation looping mechanism takes place during precipitation hardening for both alloys in the peak hardness condition.

  14. Cap plasticity models and compactive and dilatant pre-failure deformation

    International Nuclear Information System (INIS)

    Fossum, Arlo F.; Fredrich, Joanne T.

    2000-01-01

    At low mean stresses, porous geomaterials fail by shear localization, and at higher mean stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening elliptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deformation that occurs before the shear failure or limit-state shear stress is reached. In this work, a continuous surface cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading the stress point can pass freely through the critical state point separating compactive from dilatant deformation. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated flow rule. The new model is stable in that Drucker's stability postulates are satisfied. The study has applications to several geosystems of current engineering interest (oil and gas reservoirs, nuclear waste repositories, buried targets, and depleted reservoirs for possible use for subsurface sequestration of greenhouse gases)

  15. TEDEL programme, notice of the plasticity section

    International Nuclear Information System (INIS)

    Hoffmann, Alain.

    1975-05-01

    A plasticity model was introduced and is now operational in the TEDEL programme (piping and framework). At the moment it allows for either regular loading or cyclic loading under isotropic hardening conditions. The dynamic module allows the study of dynamic-plastic problems (such as accidents on a piping system). It can accept several types of material characterized by traction curves which may be of any form. Instructions are also given for the use of a new option (variable) by which the displacement values laid down for different load situations may be modified [fr

  16. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  17. Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye; Gunneskov, O.

    1985-01-01

    to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...

  18. Recovery of strain-hardening rate in Ni-Si alloys

    Science.gov (United States)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  19. Study of a design criterion for 316L irradiated represented by a strain hardened material; Etude d'un critere de dimensionnement d'un acier 316L irradie represente par un materiau ecroui

    Energy Technology Data Exchange (ETDEWEB)

    Gouin, H

    1999-07-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  20. Estimation of state and material properties during heat-curing molding of composite materials using data assimilation: A numerical study

    Directory of Open Access Journals (Sweden)

    Ryosuke Matsuzaki

    2018-03-01

    Full Text Available Accurate simulations of carbon fiber-reinforced plastic (CFRP molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult. Keywords: Engineering, Materials science, Applied mathematics

  1. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  2. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    International Nuclear Information System (INIS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-01-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754

  3. Effects of kinematic hardening rules on thermal ratchetting analysis of cylinders subjected to cyclically moving temperature distribution

    International Nuclear Information System (INIS)

    Ohno, N.; Kobayashi, M.

    1995-01-01

    In the present work, thermal ratchetting in a cylinder subjected to a cyclically moving temperature front (i.e. liquid surface induced thermal ratchetting) was analyzed by implementing in a finite element method the four kinds of plasticity models with different kinematic hardening rules. The following findings were thus obtained concerning effects of the kinematic hardening rules on the analysis. (1) If transition nonlinear hardening after yielding is disregarded, the thermal ratchetting becomes significant, as seen in the results of the PP and LKH models. Especially the PP model, which does not express any strain hardening, predicts steady development of the thermal ratchetting. (2) If significant mechanical ratchetting is allowed in the modeling of kinematic hardening, the thermal ratchetting becomes marked, as seen in the results of the AF model. (3) Model dependence of the thermal ratchetting is more noticeable when the difference of temperature at the temperature front, ΔT, is smaller. (4) The OW model makes the thermal ratchetting stop at a smaller number of cycles when ΔT is smaller. On the other hand, the LKH and AF models allow that the thermal ratchetting to develop more constantly when ΔT is smaller. As seen from the above findings, the analysis of liquid surface induced thermal ratchetting has great dependence on the kinematic hardening rules employed. Especially the PP model, which has been used often to analyze the thermal ratchetting so far, gives too large development of the thermal ratchetting. Thus we may say that in order to improve the analysis it is necessary to use an appropriate kinematic hardening model which is capable of expressing appropriately both mechanical ratchetting and transient nonlinear hardening after yielding. (author)

  4. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Science.gov (United States)

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  5. Effect of embedment on the plastic behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2015-01-01

    studies have indicated the possibility of defining foundation response using plasticity theory. Results of multiple loading tests addressing the effect of embedment on the strain-hardening behavior of shallow bucket foundations under combined loading are reported. The kinematic mechanisms accompanying pre......-failure are presented. It is argued that the drained capacity of offshore bucket foundations and the ratio of plastic increments are largely influenced by embedment depth and the preload ratio V/Vpeak....

  6. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  7. Chemorheology of in-mold coating for compression molded SMC applications

    Science.gov (United States)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  8. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  9. Plastic Behavior and Fracture of Aluminum and Copper in Torsion Tests

    International Nuclear Information System (INIS)

    Bressan, Jose Divo

    2007-01-01

    Present work investigates the plastic behavior, work hardening and the beginning of plastic instabilities, of cylindrical specimens deformed by high speed cold plastic torsion tests and at low speed tensile test. The tests were carried out in a laboratory torsion test equipment and an universal tensile test machine. The tensile tests were performed at room temperature in an universal testing machine at low strain rate of 0.034/s. Experimental torsion tests were carried out at constant angular speed that imposed a constant shear strain rate to the specimen. In the tests, the rotation speed were set to 62 rpm and 200 rpm which imposed high strain rates of about 2/s and 6.5/s respectively. The torsion tests performed at room temperature on annealed commercial pure copper and aluminum. Two types of torsion specimen for aluminum were used: solid and tubular. The solid aluminum specimen curves presented various points of maximum torque. The tubular copper specimens showed two points of maximum. Shear bands or shear strain localization at specimen were possibly the mechanism of maximum torque points formation. The work hardening coefficient n and the strain rate sensitivity parameter m were evaluated from the equivalent stress versus strain curve from tensile and torsion tests. The n-value remained constant whereas the m-value increased ten folds for aluminum specimens: from tensile test m= 0.027 and torsion test m= 0.27. However, the hardening curves were sigmoidal

  10. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  11. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  12. Characteristic structures and properties of nanostructured metals prepared by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2011-01-01

    This chapter focuses on describing the characteristic microstructures of nanostructured metals produced by plastic deformation to ultrahigh strains and their correlation with hardening by annealing and softening by deformation. The results suggest that optimising microstructure and the mechanical...

  13. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  14. Nonlocal constitutive equations of elasto-visco-plasticity coupled with damage and temperature

    Directory of Open Access Journals (Sweden)

    Liu Weijie

    2016-01-01

    Full Text Available In this paper, the nonlocal anisothermal elasto-visco-plastic constitutive equations strongly coupled with ductile isotropic damage, nonlinear isotropic hardening and kinematic hardening are developed to model the material behaviour under finite strain. The new micromorphic variable of damage is introduced into the principle of virtual power and new additional balance equations are obtained. Thermodynamically-consistent nonlocal constitutive equations are then deduced. The evolution equations are deduced from the generalized normality rule for the Norton-Hoff visco-plastic potential. This model is used to simulate various material responses under different velocities at high temperature. The micromorphic parameters of damage: micromorphic density and H moduli are studied to examine the effects of micromorphic damage. Biaxial tension is performed to make a comparison between the local damage model and the micromorphic damage model.

  15. Determining Machining Parameters of Corn Byproduct Filled Plastics

    Science.gov (United States)

    In a collaborative project between the USDA and Northern Illinois University, the use of corn ethanol processing byproducts (i.e., DDGS) as bio-filler materials in the compression molding of phenolic plastics has been studied. This paper reports on the results of a machinability study in the milling...

  16. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan

    2015-01-01

    of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical...

  17. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  18. Investigation of CFRP in aerospace field and improvement of the molding accuracy by using autoclave

    Science.gov (United States)

    Minamisawa, Takunori

    2017-07-01

    In recent years, CFRP (Carbon Fiber Reinforced Plastic) has come to be used in a wide range of industries such as sporting goods, fishing tackle and cars because it has a large number of advantages. In this situation, even the passenger aircraft industry also pays attention to the material. CFRP is an ideal material for airplanes because it has a lot of advantages such as light weight and strong, chemical resistance and corrosion resistance. Generally, autoclave is used for molding CFRP in the field of aerospace engineering. Autoclave is a machine that can mold a product by heating and pressurizing material in an evacuated bag. What is examined in this paper is an observation on handmade CFRP by a polarizing microscope. In addition, mechanical characteristics were investigated. Furthermore, an improvement of accuracy in CFRP molding using an autoclave is suggested from viewpoint of thermodynamics.

  19. Application of SolidWorks Plastic in the Training in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Maria Ivanova Bakalova

    2017-12-01

    Full Text Available Abstract. In this article is presented an example of the application of SolidWorks the training in mechanical engineering. The main features of the design of the parts intended for injection molding are mentioned. SolidWorks allows all these recommendations to be implemented when creating the details. The text explains the simulation settings that are made in SolidWorks Plastics when simulating injection molding. Through a specific example referred to how to make an analysis of the results obtained.

  20. A Study of Tensile Flow and Work-Hardening Behavior of Alloy 617

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Dasgupta, Arup; Sasikala, G.; Bhaduri, A. K.

    2018-04-01

    The simple power relationship σ = Κɛ p n satisfactorily expresses the tensile flow behavior of many metals and alloys in their uniform plastic strain regime. However, many FCC materials with low stacking fault energy have opposed such power law relationship. Alloy 617, an age-hardenable Ni-based superalloy is also observed not to obey the simple power law relationship neither in its solution-treated nor in its aged conditions. Various flow relationships were used to obtain the best fit for the tensile data, and different relationships were identified for the different aged conditions. The work-hardening rate (θ) demonstrates three distinct regions for all aged conditions, and there is an obvious change in the trend of θ versus σ. In the initial portion, θ decreases rapidly followed by a gradual increase in the second stage and again a decrease in its third stage is perceived in the Alloy 617. These three-stage characteristics are attributed to a commonly known precipitate, γ': Ni3(Ti, Al) which evolves during aging treatment and well recognized under transmission electron microscopy (TEM) observation. TEM results also reveal a slight degree of coarsening in γ' over aging. The tensile flow and the work-hardening behavior are well correlated with other microstructural evolution during the aging treatments.

  1. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  2. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...

  3. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  4. Interactive Mold House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  5. COMPARISON OF POLYJET PRINTING AND SILICON MOULDING AS RAPID PLASTIC MOULDING SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. Singh

    2012-12-01

    Full Text Available The aim of the present investigation is to compare two rapid molding (RM solutions, namely polyjet printing (PP and silicon molding (SM, for the manufacture of plastic components. The comparison has been made on the basis of dimensional accuracy (as per IT grades, mechanical properties (namely surface hardness, surface roughness and production cost. The comparison of the experimental results will serve as a yard stick for the further selection of processes for industrial applications.

  6. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    Science.gov (United States)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  7. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    Sibtain, S.N.

    2011-01-01

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  8. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  9. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  10. Mold heating and cooling microprocessor conversion

    Science.gov (United States)

    Hoffman, D. P.

    1995-07-01

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessor board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.

  11. Antifriction basalt-plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  12. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  13. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  14. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  15. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  16. Determination of Machining Parameters of Corn Byproduct Filled Plastics

    Science.gov (United States)

    In a collaborative project between the USDA and Northern Illinois University, the use of ethanol corn processing by-products as bio-filler materials in the compression molding of phenolic plastics has been studied. This paper reports on the results of a machinability study in the milling of various ...

  17. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  18. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    International Nuclear Information System (INIS)

    Hubert, Olivier; Lazreg, Said

    2017-01-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  19. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said

    2017-02-15

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  20. Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar

    International Nuclear Information System (INIS)

    Hortigóna, B.; Gallardo, J.M.; Nieto-García, E.J.; López, J.A.

    2017-01-01

    The elastoplastic behaviour of steel used for structural member fabrication has received attention to facilitate a mechanical-resistant design. New Zealand and South African standards have adopted various theoretical approaches to describe such behaviour in stainless steels. With respect to the building industry, describing the tensile behaviour of steel rebar used to produce reinforced concrete structures is of interest. Differences compared with the homogenous material described in the above mentioned standards and related literatures are discussed in this paper. Specifically, the presence of ribs and the TEMPCORE® technology used to produce carbon steel rebar may alter the elastoplastic model. Carbon steel rebar is shown to fit a Hollomon model giving hardening exponent values on the order of 0.17. Austenitic stainless steel rebar behaviour is better described using a modified Rasmussen model with a free fitted exponent of 6. Duplex stainless steel shows a poor fit to any previous model. [es

  1. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  2. Importance of thiol-functionalized molecules for the structure and properties of compression-molded glassy wheat gluten bioplastics.

    Science.gov (United States)

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-11-06

    High-temperature compression molding of wheat gluten at low water levels yields a rigid plastic-like material. We performed a systematic study to determine the effect of additives with multiple thiol (SH) groups on gluten network formation during processing and investigate the impact of the resulting gluten network on the mechanical properties of the glassy end product. To this end, a fraction of the hydroxyl groups of different polyols was converted into SH functionalities by esterifying with 3-mercaptopropionic acid (MPA). The monofunctional additive MPA was evaluated as well. During low-temperature mixing SH-containing additives decreased the gluten molecular weight, whereas protein cross-linking occurred during high-temperature compression molding. The extent of both processes depended on the molecular architecture of the additives and their concentration. After molding, the material strength and failure strain increased without affecting the modulus, provided the additive concentration was low. The strength decreased again at too high concentrations for polyols with low SH functionalization. Attributing these effects solely to the interplay of plasticization and the SH-facilitated introduction of cross-links is inadequate, since an improvement in both strength and failure strain was also observed in the presence of high levels of MPA. It is hypothesized that, regardless of the molecular structure of the additive, the presence of SH-containing groups induces conformational changes which contribute to the mechanical properties of glassy gluten materials.

  3. Direct diamond turning of steel molds for optical replication

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Bulla, Benjamin; Heselhaus, Michael

    2009-05-01

    In this paper the most recent investigations in ultrasonic assisted diamond machining of hardened steel at the Fraunhofer IPT is presented. The goal of this technology is to unify the outrageous specifications of diamond machining process with steel material. The focus lies on the kinematic influence of the discrete frequencies 40 kHz and 60 kHz. Special interest is given to the reachable surface roughness depending on process parameters. The machined steel (1.2083, X40Cr14, STAVAX ESU) is a common mold die material for optical replication processes.Results of the accomplished investigations show the potential of the ultrasonic assisted process and recent developments. By increasing the frequency from 40 kHz to 60 kHz the overall process stability is increased. This makes the process less vulnerable towards feed rate variation or towards the variation of machined material hardness. Furthermore no tool wear is detected at high material removal rates or high cutting distances during component machining.

  4. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads

  5. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    Science.gov (United States)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  6. Elasto-plastic model for transversely isotropic Tournemire shale based on microstructure approach

    International Nuclear Information System (INIS)

    Abdi, H.; Evgin, E.; Fall, M.; Nguyen, T.S.; Labrie, D.; Barnichon, J.D.; Su, G.; Simon, R.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations being considered as potential host rocks for the geological disposal of nuclear wastes are usually characterized by the presence of bedding planes, resulting in anisotropy of their strength and deformation properties. A laboratory program of uniaxial tests, triaxial tests, cyclic tests, and Brazilian tests with concurrent monitoring of acoustic emission was performed in order to determine the above properties. The experimental results and their interpretation are presented in detail in a companion paper (Abdi et al., 2012, in these proceedings). Typical results from triaxial tests indicate the following behaviour: 1. There is a strong dependence of the stress-strain behaviour with the loading orientation with respect to the bedding planes. 2. There are four distinct zones of the stress strain curve: a crack and/or bedding closure zone; an elastic zone, a plastic zone with strain hardening, and a collapse zone after the peak that leads abruptly to a residual strength value. 3. There is damage, especially after the peak, resulting in the degradation of the stiffness as shown by unloading-reloading cycles. In order to reproduce the above behaviour, we adopted a classical elasto-plastic framework. In the elastic range, the transversely isotropic nature of the material is taken into account by the adoption of an elastic stiffness matrix that requires five independent elastic constants. These elastic constants show degradation with the accumulated damage. Using the deviatoric plastic strain as a measure of damage, we expressed functional relationships for these constants, using the results of cyclic triaxial tests. For the plastic behaviour, we used a Mohr-Coulomb yield criterion which takes into account the relative orientation of the applied stress and the bedding planes, and also strain hardening and softening. In this work we used the deviatoric plastic strain as the hardening parameter in

  7. Thermo-curable epoxy systems for nanoimprint lithography

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung

    2010-01-01

    In this work, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL

  8. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  9. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  10. High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions

    Directory of Open Access Journals (Sweden)

    Antoine Rouilly

    2013-05-01

    Full Text Available Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.

  11. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  12. Effect of explosion hardening on the properties of the near-surface layer of glow-discharged nitrided 33H3MF steel

    International Nuclear Information System (INIS)

    Rudnicki, J.; Fleszar, A.; Wierzchon, T.; Maranda, A.; Nowaczewski, J.

    1999-01-01

    The study was concerned with the effect of explosion hardening of 33H3MF steel, realized by the impact of the detonation products of a metallic plate driven by the detonation of an explosive plastic material, upon the microhardness and thickness of the nitrided layers forming during the glow discharge assisted nitridation process. Nitrided layers containing a compound zone, diffusion layers and layers with braunite content were formed on explosion-hardened steel surfaces. The corrosion resistance of the nitrided layers thus obtained was compared with that of the layers formed on non-hardened surfaces and on non-hardened and nitrided surfaces. The layers examined have a higher corrosion resistance than the starting material, but lower than the nitrided layers formed without the explosive load. The impact strength of the steel samples was examined before and after the explosion hardening and also after glow discharge assisted nitriding. It has been found that the explosion hardening followed by nitriding increases the impact strength, which is an advantageous effect. This also gives evidence that the changes in the hardness and structure of the samples examined, which are only observed in the layers whose thickness falls between 0.1 and 1.5 mm do not affect the notch present on the sample surface and thus have no influence upon the character of the sample fracture. (author)

  13. Working hardening modelization in zirconium alloys

    International Nuclear Information System (INIS)

    Sanchez, P.; Pochettino, Alberto A.

    1999-01-01

    Working hardening effects on mechanical properties and crystallographic textures formation in Zr-based alloys are studied. The hardening mechanisms for different grain deformations and topological conditions of simple crystal yield are considered. Results obtained show that the differences in the cold rolling textures (L and T textures) can be related with hardening microstructural parameters. (author)

  14. Practical aspects of systems hardening

    International Nuclear Information System (INIS)

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system

  15. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  16. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  17. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  18. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  19. PREDIKSI SHRINKAGE UNTUK MENGHINDARI CACAT PRODUK PADA PLASTIC INJECTION

    Directory of Open Access Journals (Sweden)

    Agus Dwi Anggono

    2015-05-01

    Full Text Available Plastic injection merupakan proses manufactur untuk membuat produk dengan bahan dasar plastic atau dalam kesempatan ini polypropylene. Pada proses tersebut seringkali terjadi cacat produk seperti pengerutan, retak, dimensi tidak sesuai dan kerusakan saat produk keluar dari mould, sehingga banyak material yang terbuang percuma. Meskipun cacat produk tersebut dipengaruhi banyak factor, tetapi yang paling utama adalah masalah shrinkage, atau penyusutan material setelah terjadi pendinginan. Sangat penting untuk melakukan prediksi lebih awal terjadinya penyusutan setelah pendinginan untuk menghindari cacat produk. Dalam penelitian ini akan dilakukan prediksi shrinkage yang akan digunakan untuk material polypropylene dengan cara perhitungan standar. Pembuatan modeling dalam bentuk 3D (tiga dimensi injection molding baik cavity maupun corenya dengan menggunakan CATIA, kemudian dilakukan analisis dengan software MoldFlow untuk pembuatan mesh dan memberikan batasan panas pada komponen sehingga dapat diketahui mode penyusutannya. Analisis ini akan memberikan gambaran tentang distribusi panas pada mould dan memberikan tentang gambaran aliran fluida. Pada analisis tersebut dapat dilihat gejala terjadinya cacat produk, jika hal itu terjadi maka perlu dilakukan perubahan shrinkage, sampai diperoleh hasil analisis yang baik.

  20. Low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    Oktar, O.; Ari, G.; Guenduez, O.; Demirel, H.; Demirbas, A.

    2009-01-01

    Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matri10. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared by an extruder in SANAEM. Molds suitable for extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and pressure were obtained. Plastic blocks prepared were optically and mechanically tested and its response against various radioactive sources was measured.This study has shown that plastic scintillators imported can be produced in SANAEM domestically and be used for detection of radioactive materials within the country or border gates.

  1. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    Science.gov (United States)

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  2. Modification of plastic by ionizing radiation

    International Nuclear Information System (INIS)

    Dalager, P.

    1974-01-01

    Very few of the modifications of plastic materials have got industrial status. Nearly all of the succesful industrial irradiations processes are performed with polyethylene. Irradiated polyethylene has been used in industries and products such as wire, cables, foams and heat shrinkable products, i.e. films, tubings and molded parts. Also the irradiation of finished products, i.e. improvement on a thermoplastic material into thermosetting material, has been developed in this field. (M.S.)

  3. EVALUATION OF POLLUTION PREVENTION OPTIONS TO REDUCE STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTIC OPEN MOLDING PROCESSES

    Science.gov (United States)

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials, and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To me...

  4. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  5. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  6. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  7. Plastic deformation of aluminium under continuous electron irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Dovbnya, A.N.; Kushnir, V.A.; Khodak, I.V.; Mitrochenko, V.V.; Lebedev, V.P.; Krylovskij, V.S.; Lebedev, S.V.; Klepikov, V.F.

    2010-01-01

    Plastic deformation of polycrystalline aluminum (99.5%) was investigated in the absence and presence of a high-energy electron beam (E = 0.5 MeV, φ = (0.5...5)·10 13 cm -2 ·c -1 ). Reduction of the yield stress and hardening coefficient was determined as a function of deformation, the sample thickness and the beam density. The increase of plasticity of the metal due to the impact of the electron beam has been established. The temperature in the deformation process was measured, which allowed separating the contribution of radiation-induced effects on the mechanical characteristics of aluminum. Possible mechanisms of the phenomenon are discussed.

  8. Computer-aided injection molding system

    Science.gov (United States)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  9. Analytical modeling of tube-to-tubesheet joints subjected to plasticity and creep

    International Nuclear Information System (INIS)

    Bouzid, A.-H.; Laghzale, N-E.

    2009-01-01

    The mechanism of failure of heat exchanger and steam generator tube-to-tubesheet joints is related to the level of residual stresses produced in the tube expansion and transition zones during the expansion process and their variation during operation. The accurate prediction of these stresses based of the plastic and creep properties of the joint materials involved can help to design for better leak tightness and strength. Existing design calculations are based on an elastic perfectly plastic behavior of the expansion joint materials and do not account for creep. The proposed model is based on a linear strain hardening material behavior and considers the joint contact pressure relaxation with time. The interaction of the tube and the tubesheet is simulated during the process of the application of the expansion pressure and operation. The effects of the gap, material strain hardening and creep properties are to be emphasized. The developed model results are validated and confronted against the more accurate numerical FEA models. (author)

  10. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  11. Solution hardening and strain hardening at elevated temperatures

    International Nuclear Information System (INIS)

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures

  12. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    Science.gov (United States)

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  13. Development of production methods of volume source by the resinous solution which has hardening

    CERN Document Server

    Motoki, R

    2002-01-01

    Volume sources is used for standard sources by radioactive measurement using Ge semiconductor detector of environmental sample, e.g. water, soil and etc. that require large volume. The commercial volume source used in measurement of the water sample is made of agar-agar, and that used in measurement of the soil sample is made of alumina powder. When the plastic receptacles of this two kinds of volume sources were damaged, the leakage contents cause contamination. Moreover, if hermetically sealing performance of volume source made of agar-agar fell, volume decrease due to an evaporation off moisture gives an error to radioactive measurement. Therefore, we developed the two type methods using unsaturated polyester resin, vinilester resin, their hardening agent and acrylicresin. The first type is due to dispersing the hydrochloric acid solution included the radioisotopes uniformly in each resin and hardening the resin. The second is due to dispersing the alumina powder absorbed the radioisotopes in each resin an...

  14. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  15. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  16. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj

    2015-01-01

    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  17. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1978-01-01

    The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)

  18. Failure analysis of leakage current in plastic encapsulated packages

    International Nuclear Information System (INIS)

    Hu, S.J.; Cheang, F.T.

    1989-12-01

    Plastic encapsulated packages exhibit high leakage current after a few hundred hours steam pressure pot test. The present study investigates two possible sources of leakage current, the mold compound and the lead frame tape used for taping the lead frame fingers. The results of the study indicate that the leakage current is independent of the frame and is not caused by the mold compound. The data further indicates that it is the ionic contents and acrylic-based adhesive layer of the lead frame tapes which cause the leakage current. To eliminate the leakage current, lead frame tape with low ionic contents and non acrylic-based adhesive should be used. (author). 1 fig., 2 tabs, 3 graphs

  19. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    Science.gov (United States)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  20. Recovering convexity in non-associated plasticity

    Science.gov (United States)

    Francfort, Gilles A.

    2018-03-01

    We quickly review two main non-associated plasticity models, the Armstrong-Frederick model of nonlinear kinematic hardening and the Drucker-Prager cap model. Non-associativity is commonly thought to preclude any kind of variational formulation, be it in a Hencky-type (static) setting, or when considering a quasi-static evolution because non-associativity destroys convexity. We demonstrate that such an opinion is misguided: associativity (and convexity) can be restored at the expense of the introduction of state variable-dependent dissipation potentials.

  1. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    DEFF Research Database (Denmark)

    Peltola, Heidi; Madsen, Bo; Joffe, Roberts

    2011-01-01

    Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens...... was noticed. A reduction of fiber length along the increasing fiber content and the decreasing plasticizer content was also detected. This reduction originated from the increasing shear forces during compounding, which again depended on the increased viscosity of the material. Hemp fibers were shown to remain...... longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in the matrix...

  2. A 3D elasto-plastic soil model for lateral buckling analysis

    DEFF Research Database (Denmark)

    Hededal, Ole; Strandgaard, Torsten

    2008-01-01

    Modeling the lay-down of pipelines and subsequently the in- service conditions for a pipeline involves definition of a pipe-soil interaction model. A generalized true 3D elasto-plastic spring element based on an anisotropic hardening/degradation model for sliding is presented. The basis...... for the model is the elasto-plastic framework. A generic format is selected, allowing different yield criteria and flow rules to be implemented in a simple way. The model complies to a finite element format allowing it to be directly implemented into a standard finite element code. Examples demonstrating...

  3. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  4. Elastic-plastic creep response of structures under composite time history

    Energy Technology Data Exchange (ETDEWEB)

    Zudans, Z [Franklin Inst. Research Labs., Philadelphia, Pa. (USA)

    1975-12-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems.

  5. Elastic-plastic creep response of structures under composite time history

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)

  6. On higher-order boundary conditions at elastic-plastic boundaries in strain-gradient plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    are suppressed by using a very high artificial hardening modulus. Through numerical studies of pure bending under plane strain conditions, it is shown that this method predicts the build-up of higher order stresses in the pseudo-elastic regime. This has the effect of delaying the onset of incipient yield......, as well as extending the plastic zone further toward the neutral axis of the beam, when compared to conventional models. Arguments supporting the present method are presented that rest on both mathematical and physical grounds. The results obtained are compared with other methods for dealing with higher...

  7. Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis

    Science.gov (United States)

    Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas

    2017-09-01

    A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.

  8. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic-instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. In the case of thin-wall tubes under internal pressure (with or without imposed axial loading), plastic instability prevails if the percentage rate of increase of the diameter (or equivalently decrease of wall thickness) in the (potential) ballooning region is greater than that in the bulk of the tube. An instability criterion in terms of the axial strain rate and the axial derivatives of the hoop strain and hoop strain rate was first deduced. Then the loading characteristics, the constitutive equation, the thin-wall approximation, and the Prandtl-Reuss flow rules were taken into consideration. This resulted in a further statement of the criterion in terms of the state of strain, the material properties, and a ratio of the imposed axial stress to the circumferential stress. As in the case of necking of bars, the role of the hardening parameter is clear: i.e., a larger hardening parameter implies a more stable material and vice versa

  9. Comparing suppository mold variability which can lead to dosage errors for suppositories prepared with the same or different molds.

    Science.gov (United States)

    Alexander, Kenneth S; Baki, Gabriella; Hart, Christine; Hejduk, Courtney; Chillas, Stephanie

    2013-01-01

    Suppository molds must be properly calibrated to ensure accurate dosing. There are often slight differences between molds and even in the cavities within a mold. A method is presented for the calibration of standard aluminum 6-, 12-, 50-, or 100-well suppository molds. Ten different molds were tested using water for volume calibration, and cocoa butter for standardization involving establishing the density factor. This method is shown to be straightforward and appropriate for calibrating suppository molds.

  10. idRHa+ProMod - Rail Hardening Control System

    International Nuclear Information System (INIS)

    Ferro, L

    2016-01-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl (paper)

  11. idRHa+ProMod - Rail Hardening Control System

    Science.gov (United States)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  12. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  13. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. It was found that the uniform elongation decreases with increasing strainrate sensitivity, a conclusion which is in agreement with experimental measurements and some previous investigations. Finally, the relationship between the high strainrate sensitivity and the superplastic ductility of a material was explained without invoking any non-hardening arguments. (Auth.)

  14. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  15. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A stochastic model for the interaction of plasticity and creep in metals

    International Nuclear Information System (INIS)

    Steck, E.

    1987-01-01

    Describing the basic mechanisms for plastic deformations in crystalline materials by transition probabilities of a stochastic matrix over the state space of the internal barriers, results in a stochastic model which has the properties of a Markov-chain. It is possible to include in this model properties of the internal structure of the material and their changes during macroscopic deformation processes, such as hardening and recovery, or the influence of temperature on thermal activation. This description can be based on findings from metal physics and metallurgy, so that the stochastic model can be used as an intermediate model between the microscopic and the macroscopic description of the processes during plastic deformations. Inelastic deformations of crystalline materials (plasticity, creep, relaxation) are caused by slip processes in the crystal-lattice which are supported by movements of dislocations. The dislocation movements are opposed by internal barriers which have to be overcome by activation of the dislocations. This activation can be performed by stresses, which are in equilibrium with external forces, or by thermal energy. With the movements of dislocations and the connected slip processes, production of new dislocations occurs. The dislocations interact. This can result either in a reduction of their mobility or in annihilation. These processes are partially responsible for hardening or recovery. (orig./GL)

  17. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  18. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  19. The premature necking of twinning-induced plasticity steels

    International Nuclear Information System (INIS)

    Yang, C.L.; Zhang, Z.J.; Zhang, P.; Zhang, Z.F.

    2017-01-01

    An unusual necking behavior was found in twinning-induced plasticity (TWIP) steels during tensile tests, which is quite different from that observed on most ductile metals. A sharp drop of the strain-hardening rate (Θ) arises before necking initiation, rather than after it, leading to the premature necking of TWIP steels. Through carefully examining the evolution of macroscopic defects at various tensile strains using three-dimensional X-ray tomography (3D-XRT), this premature necking behavior was attributed to the multiplication of macroscopic voids during plastic deformation. Combining with the previous theories and present characterizations on the evolution of macroscopic voids, the mechanism of the unusual necking behavior in TWIP steels was quantificationally revealed.

  20. Fiscal 2000 survey report. Basic research on hot molding of amorphous ceramics; 2000 nendo amorphous netsukan ceramics seikeiho ni kansuru kiso kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on the plasticity processing of heat resistant ceramics making use of the viscous deformation of amorphous ceramics in the supercooled liquid temperature domain. Concerning the preparation of powder of amorphous ceramics, the plasma rotating electrode method of Institute for Materials Research, Tohoku University, was employed, and a bamboo leaf shaped amorphous flake was successfully fabricated by increasing the arc discharge current. In a search of texture easy to turn amorphous, it was observed that Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} had a supercooled liquid domain of as large as 70K, and this enabled a conclusion that it was a promising candidate for hot molding in a supercooled liquid domain. In an experiment of molding in a supercooled liquid domain, Al{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} was used in a press molding process. As the result, a compact bulk mold was obtained in a temperature domain far lower than in the case of conventional sintering. Crystallization had already advanced in all the molds experimentally fabricated by press molding, and this disabled a study of characteristics to be exhibited by an amorphous mold, but it was found that they had a compressive strength of approximately 1,800MPa. (NEDO)

  1. Challenges in hardening technologies using shallow-trench isolation

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide

  2. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  3. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Ghatei Kalashami, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A., E-mail: ahmad_k@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ghassemali, E. [Jönköping University, School of Engineering, Department of Materials and Manufacturing, P.O. Box 1026, SE-551 11 Jönköping (Sweden); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mazaheri, Y. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of)

    2016-12-15

    Ultrafine-grained dual phase (DP) steels with different Nb contents (0.00, 0.06 and 0.12 wt%) were produced by cold-rolling followed by intercritical annealing of ferrite/martensite starting microstructure at 770 °C for different holding times. Scanning electron microscopy, equipped with electron backscattered diffraction (EBSD) detector, nanoindentation and tensile testing were used to characterize microstructural evolutions and their correlations to the strain hardening and fracture behavior. EBSD results confirmed the retardation effect of Nb on recrystallization. It was found that the strains stored in the grains and density of geometrically necessary dislocations (GNDs) were increased with the addition of Nb. Strain hardening analysis showed that plastic deformation of the DP steels occurred in three distinct stages, which based on the EBSD results, nanoindentation and fracture analysis, were controlled by microstructural features such martensite volume fraction and size, density of GNDs and individual ferrite and martensite tensile properties.

  4. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  5. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    Science.gov (United States)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  6. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded aselectrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule effect...

  7. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  8. Wavefront measurement of plastic lenses for mobile-phone applications

    Science.gov (United States)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  9. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  10. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  11. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion

    Science.gov (United States)

    Zhao, Yue; Marian, Jaime

    2018-06-01

    Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.

  12. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  13. Non normal and non quadratic anisotropic plasticity coupled with ductile damage in sheet metal forming: Application to the hydro bulging test

    International Nuclear Information System (INIS)

    Badreddine, Houssem; Saanouni, Khemaies; Dogui, Abdelwaheb

    2007-01-01

    In this work an improved material model is proposed that shows good agreement with experimental data for both hardening curves and plastic strain ratios in uniaxial and equibiaxial proportional loading paths for steel metal until the final fracture. This model is based on non associative and non normal flow rule using two different orthotropic equivalent stresses in both yield criterion and plastic potential functions. For the plastic potential the classical Hill 1948 quadratic equivalent stress is considered while for the yield criterion the Karafillis and Boyce 1993 non quadratic equivalent stress is used taking into account the non linear mixed (kinematic and isotropic) hardening. Applications are made to hydro bulging tests using both circular and elliptical dies. The results obtained with different particular cases of the model such as the normal quadratic and the non normal non quadratic cases are compared and discussed with respect to the experimental results

  14. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    Science.gov (United States)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  15. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  16. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage

    International Nuclear Information System (INIS)

    Jamekhorshid, A.; Sadrameli, S.M.; Barzin, R.; Farid, M.M.

    2017-01-01

    Highlights: • A composite of wood–plastic-MEPCM has been produced. • Compression molding has been used for the composite preparation. • Thermal and properties were investigated using DSC analysis and cycling test. • Leakage test has been performed for the encapsulated PCM. • The composites can be used as a building material for thermal energy management. - Abstract: Application of phase change materials (PCMs) in lightweight building is growing due to the high latent heat of fusion of PCMs and their ability to control temperature by absorbing and releasing heat efficiently. Wood-plastic composites (WPC) are materials used in the interior parts of buildings that have improved properties compared to conventional materials. However, these materials have low energy storage capacity, which can be improved by incorporating PCM in them. Leakage of PCM is a major obstacle to the industrial applications, which can be solved through the use of microencapsulated PCM (MEPCM). This paper presents the performance tests conducted for a composite of wood-plastic-MEPCM for using in buildings for thermal storage. The wood-plastic-MEPCM composites were produced in this project using compression molding and their thermal and mechanical properties were investigated using DSC analysis, cycling test, leakage test, and three point bending analysis. The results showed that there is no leakage of PCM during phase change. The results also indicated that the composite has reasonable thermal properties, but its mechanical properties need to be improved by increasing the pressure during the molding process or by using extrusion method. The produced composites can be used as a building material for thermal energy management of building.

  17. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  18. Mold

    Science.gov (United States)

    ... has developed a device known as an acoustical generator that can create and disperse molds for rodent ... Sciences) . 2004. Damp Indoor Spaces and Health. Washington, DC: The National Academies Press. 3 WHO ( World Health ...

  19. Microstructural effects on the yield strength and its temperature dependence in a bainitic precipitation hardened Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kotilainen, H.; Nenonen, P.

    1980-03-01

    The plastic deformation behaviour of a precipitation hardened bainitic Cr-Mo-V steel is analyzed at ambient and low temperatures. The temperature dependent component of the yield strength is composed of the Peierls-Nabarro force and also partly of the strengthening contribution of the lath- and cell boundaries or the solid solution hardening. The temperature dependence below 230 K is in accordance with the models presented by Yanoshevich and Ryvkina as well as Dorn and Rajnak. The temperature independent component can be calculated merely from the dislocation density, which is stabilized by the vanadium-rich carbides. The linear additivity cannot be used for the superposition of the strengthening effects of various strengthening parameters, By using the phenomenological approach starting from the dislocation movement mechanisms upon yielding the laws for the superposition are discussed. (author)

  20. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  1. Physical fundamentals of mesomechanics of plastic deformation and fracture of solids

    International Nuclear Information System (INIS)

    Panin, V.E.

    2001-01-01

    The conventional description of the relationships governing the plastic deformation and fracture of solids is carried out using two approaches: 1) Continuum mechanics 2) Dislocation theory. The continuum mechanics describes the behaviour of material under load using integral characteristics of the medium. In this approach, the internal structure of the material is not taken into account, stress and strain tensors are symmetric and plastic deformation is carried out only by the translational movement of defects under the effect of stresses. The plastic yielding curve is described by calculating strain hardening above the yield point of the material. The phenomenological approach of the continuum mechanics is physically and mathematically completely correct, but it may be used only for describing the integral properties of a macrohomogeneous medium

  2. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  3. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  4. Processing and characterization of biodegradable soy plastics: Effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Doeveren, van P.F.N.M.; Yilmaz, G.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2005-01-01

    Processing and modification routes to produce and to improve properties of biodegradable plastics from soy isolate were studied. Soy isolate, acid-treated and crosslinked soy were subsequently compounded, extruded, and injection molded. Acetic acid and glyoxal were examined concerning their

  5. Elastic-plastic code in the static regime for two-dimensional structures

    International Nuclear Information System (INIS)

    Giuliani, S.

    1976-07-01

    The finite-element computer code STEP-2D, which was conceived as a numerical tool for basic research in fracture mechanics presently under way in the Materials Division of JRC Ispra is described. The code employs 8-node isoparametric elements for calculating elastic-plastic stress and strain distributions in 2-D geometries. The von Mises yield criterion is used. Material strain hardening is described by means of either the isotropic or the so-called 'overlay' model. An incremental solution is employed in the plastic range. The program has been written in Fortran IV and compiled on an IBM 370-165

  6. Mold After a Disaster

    Science.gov (United States)

    ... should clean up the mold and fix any water problem, such as leaks in roofs, walls, or plumbing. Controlling moisture in your home is the most critical factor for preventing mold growth. To ... use commercial products, soap and water, or a bleach solution of no more than ...

  7. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Singh, B.N. [Materials Research Department, Risoe National Laboratory, DK-4000 Roskilde (Denmark); Foreman, A.J.E. [Materials Performance Department, Harwell Laboratory, Oxfordshire OX11 0RA (United Kingdom)

    1997-11-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop `cloud` are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.). 55 refs.

  8. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    International Nuclear Information System (INIS)

    Trinkaus, H.; Foreman, A.J.E.

    1997-01-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop 'cloud' are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.)

  9. Adaptive plasticity model for bucket foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim A.

    2014-01-01

    Based on experimental investigations, the literature proposes different methods for modeling the behavior and capacity of foundations subjected to combined loading. Generally, two methods are used to predict the behavior of foundations: traditional approaches and hardening plasticity solutions......, potential, and failure surfaces are found to be dependent on the embedment ratio (i.e., ratio of skirt length to the diameter) and load path. For the models tested, associated flow is observed to be plausible in the radial planes, whereas nonassociated flow is observed in the planes along the V-axis....

  10. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  11. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China); Jing, Peng; Shan, Debin; Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China)

    2017-01-15

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (< 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  12. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    Science.gov (United States)

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  13. Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications

    Science.gov (United States)

    Najafi Chaloupli, Naqi

    Plastic materials are extensively used in automotive structures since they make cars more energy efficient. Recently, the automotive industry is searching for bio-based and renewable alternatives to petroleum-based plastics to reduce the dependence on fossil fuels. Among polymers originating from renewable sources, polylactide (PLA) has attracted significant interest. The use of this polymer in durable industries is promising. Fuel-efficient automobiles are nowadays demanded due to the increasing concerns about environmental and fuel issues. The automobile fuel efficiency can be improved by using a lightweight material and, thereby, reducing the automobile weight. A potential method to achieve this objective is the use of the foaming technology. Foam is a material where a gas phase is encapsulated by a solid phase. Foaming technology helps to manufacture lightweight parts with superior properties in comparison with their solid counterparts. The basic mechanisms of foaming process normally consists of gas implementation, formation of uniform polymer-gas solution, cell nucleation, cell growth and, finally, cell stabilization. PLA foaming has, however, proved to be difficult mainly due to poor rheological properties, small processing window, and slow crystallization kinetics. The ultimate purpose of this work is to reduce by 30 % the weight of polylactide (PLA)-clay based nanocomposites by manufacturing injection-molded foamed parts. To use standard processing equipment, a chemical blowing agent (CBA) was employed. The injection molding technique was utilized in this project because it is the most widely used fabrication process in industry that can produce complex shaped articles. This process, however, is more challenging than other foaming processes since it deals with many additional controlling parameters. In the first part of this project, we illustrated how long chain branching (LCB) and molecular structure impact the melt rheology, crystallization and batch

  14. Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate

    International Nuclear Information System (INIS)

    Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R.

    2010-01-01

    Research highlights: → Laser cladding of P20 tool steel. → Residual stress analysis of laser clad P20 tool steel. → Microstructure of laser clad P20 tool steel. → Tooling Repair using laser cladding. → Stress reliving treatment of laser clad P20 tool steel. - Abstract: Laser cladding is to deposit desired material onto the surface of a base material (or substrate) with a relatively low heat input to form a metallurgically sound and dense clad. This process has been successfully applied for repairing damaged high-value tooling to reduce their through-life cost. However, laser cladding, which needs to melt a small amount of a substrate along with cladding material, inevitably introduces residual stresses in both clad and substrate. The tensile residual stresses in the clad could adversely affect mechanical performance of the substrate being deposited. This paper presents an experimental study on process-induced residual stresses in laser clad AISI P20 tool steel onto pre-hardened wrought P20 base material and the correlation with microstructures using hole-drilling and neutron diffraction methods. Combined with X-ray diffraction and scanning electron microscopic analyses, the roles of solid-state phase transformations in the clad and heat-affected zone (HAZ) of the substrate during cladding and post-cladding heat treatments on the development and controllability of residual stresses in the P20 clad have been investigated, and the results could be beneficial to more effective repair of damaged plastic injection molds made by P20 tool steel.

  15. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  16. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  17. Application of a modified semismooth Newton method to some elasto-plastic problems

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav

    2012-01-01

    Roč. 82, č. 10 (2012), s. 2004-2021 ISSN 0378-4754 R&D Projects: GA ČR GA105/09/1830 Institutional support: RVO:68145535 Keywords : elasto-plasticity * hardening * Incremental finite element method * Semismooth Newton method * damping Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2012 http://www.sciencedirect.com/science/article/pii/S0378475412001292

  18. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  19. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  20. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  1. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  2. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    International Nuclear Information System (INIS)

    Giboz, Julien; Mélé, Patrice; Copponnex, Thierry

    2009-01-01

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  3. Multiobjective Design of Turbo Injection Mode for Axial Flux Motor in Plastic Injection Molding Machine by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Long Kuo

    2015-01-01

    Full Text Available This paper proposes a turbo injection mode (TIM for an axial flux motor to apply onto injection molding machine. Since the injection molding machine requires different speed and force parameters setting when finishing a complete injection process. The interleaved winding structure in the motor provides two different injection levels to provide enough injection forces. Two wye-wye windings are designed to switch two control modes conveniently. Wye-wye configuration is used to switch two force levels for the motor. When only one set of wye-winding is energized, field weakening function is achieved. Both of the torque and speed increase under field weakening operation. To achieve two control objectives for torque and speed of the motor, fuzzy based multiple performance characteristics index (MPCI with particle swarm optimization (PSO is used to find out the multiobjective optimal design solution. Both of the torque and speed are expected to be maximal at the same time. Three control factors are selected as studied factors: winding diameter, winding type, and air-gap. Experimental results show that both of the torque and speed increase under the optimal condition. This will provide enough large torque and speed to perform the turbo injection mode in injection process for the injection molding machine.

  4. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  5. Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves

    Science.gov (United States)

    Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian

    2017-10-01

    The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.

  6. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  7. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  8. Comparative tensile flow and work hardening behaviour of thin section and forged thick section 9Cr–1Mo ferritic steel in the framework of Voce equation and Kocks–Mecking approach

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Rao Palaparti, D.P.

    2012-01-01

    Detailed analysis indicated that true stress (σ)-true plastic strain (ε) and work hardening behaviour of 9Cr–1Mo steel in two different forms, i.e. 20 mm plate and thick section tubeplate forging can be adequately described by Voce equation and Kocks–Mecking approach in the temperature range 300–873 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress. The variations in σ–ε, work hardening parameters, θ–σ and θσ–σ with temperature exhibited three distinct temperature regimes. Good correlations between the predicted tensile properties using Voce equation and the respective experimental values along with analogy between Voce equation and Kocks–Mecking approach have been demonstrated for the steel. The differences in σ–ε, work hardening parameters, θ–σ and θσ–σ observed between plate and tubeplate forging have been ascribed to the effects associated with initial microstructures for the two product forms of the steel.

  9. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  10. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  11. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  12. Mold inhibition on unseasoned southern pine

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  13. Medical diagnostics for indoor mold exposure.

    Science.gov (United States)

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and

  14. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  15. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    Science.gov (United States)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  16. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-01-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  17. Resistance to small plastic strains during martensite tempering under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zabil' skij, V.V.; Sarrak, V.I. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1982-11-01

    The mechanism of plastic deformation of martensite of a series of hardened steels (N18, 20KhG, 50KhFA and others) during tempering under tension and the role of residual internal microstresses and phase transformations are studied. It is shown that martensite low resistance to small plastic deformations during tempering under tension which is usually associated with phase transformations depends as well on the level of residual internal microstresses in the martensite structure. The decrease of resistance to deformation in the course of the decomposition of a solid solution is due to weakening of martensitic matrix because of carbon departure from the solid solution and carbide coarsening. An assumption is made that martensite plastic deformation during tempering under tension is realized at the expense of the directed microplastic deformation in the regions of higher concentration of internal stresses.

  18. Thermo-mechanical simulation of liquid-supported stretch blow molding

    International Nuclear Information System (INIS)

    Zimmer, J.; Stommel, M.

    2015-01-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera

  19. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  20. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  1. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  2. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  3. Strength of cellulosic fiber/starch acetate composites with variable fiber and plasticizer content

    DEFF Research Database (Denmark)

    Joffe, Roberts; Madsen, Bo; Nättinen, Kalle

    2015-01-01

    In this experimental study, the performance of injection-molded short flax and hemp fibers in plasticized starch acetate were analyzed in terms of strength. Parameters involved in the analysis are a variable fiber and plasticizer content. The measured strength of the composites varies in the range...... of 12–51 MPa for flax fibers and 11–42 MPa for hemp fibers, which is significantly higher than the properties of the unreinforced starch acetate matrix. The micro-structural parameters used in modeling of composite strength were obtained from optical observations and indirect measurements. Some...

  4. Strain path and work-hardening behavior of brass

    International Nuclear Information System (INIS)

    Sakharova, N.A.; Fernandes, J.V.; Vieira, M.F.

    2009-01-01

    Plastic straining in metal forming usually includes changes of strain path, which are frequently not taken into account in the analysis of forming processes. Moreover, strain path change can significantly affect the mechanical behavior and microstructural evolution of the material. For this reason, a combination of several simple loading test sequences is an effective way to investigate the dislocation microstructure of sheet metals under such forming conditions. Pure tension and rolling strain paths and rolling-tension strain path sequences were performed on brass sheets. A study of mechanical behavior and microstructural evolution during the simple and the complex strain paths was carried out, within a wide range of strain values. The appearance and development of deformation twinning was evident. It was shown that strain path change promotes the onset of premature twinning. The work-hardening behavior is discussed in terms of the twinning and dislocation microstructure evolution, as revealed by transmission electron microscopy

  5. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  6. Effect of Slag Content and Hardening Accelerator Dosage on the Physico Mechanical Properties of Cement and Concrete

    International Nuclear Information System (INIS)

    Derabla, R.; Mokrani, I.; Benmalek, M.L.

    2011-01-01

    Our contribution consists at the study of the effect of (0 %, 0.2 % and 0.34 %) dosage of an hardening accelerating plasticizer (Plastocrete 160, produced by Sika Aldjazair) on the properties of normal mortar and concretes prepared with portland cement artificial of Hadjar Soud cement factory (Skikda - Algeria) with addition of (10 % and 20 %) of granulated blast furnace slag finely crushed of the El Hadjar blast furnace (Annaba - Algeria). The tests are focused to the physical and mechanical characteristics of elaborated materials to knowing: setting time, porosity, water absorption capacity and the test of compressive strength at 2, 7 and 28 days. The results obtained show clearly the reliability of the additive used to accelerate the hardening and to obtain high strengths at early age, which increase by increasing of the additive dosage. For the slag, its low hydraulic capacity does not make it profitable than at the long term (beyond 28 days). (author)

  7. The influence of calcium nitrate on setting and hardening rate of Portland cement concrete at different temperatures

    Science.gov (United States)

    Kičaitė, A.; Pundienė, I.; Skripkiūnas, G.

    2017-10-01

    Calcium nitrate in mortars and concrete is used as a multifunctional additive: as set accelerator, plasticizer, long term strength enhancer and as antifreeze admixture. Used binding material and the amount of calcium nitrate, affect the characteristics of the concrete mixture and strength of hardened concrete. The setting time of the initial and the final binding at different temperatures of hardening (+ 20 °C and + 5 °C) of the pastes made of different cements (Portland cement CEM I 42.5 R and Portland limestone cement CEM II/A-LL 42.5 R) and various amounts of calcium nitrate from 1 % until 3 % were investigated. The effect of calcium nitrate on technological characteristics of concrete mixture (the consistency of the mixture, the density, and the amount of air in the mixture), on early concrete strength after 2 and 7 days, as well as on standard concrete strength after 28 days at different temperatures (at + 20 °C and + 5 °C) were analysed.

  8. An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals

    International Nuclear Information System (INIS)

    Zecevic, Milovan; Knezevic, Marko; Beyerlein, Irene J.; Tomé, Carlos N.

    2015-01-01

    In this work, we develop a polycrystal mean-field constitutive model based on an elastic–plastic self-consistent (EPSC) framework. In this model, we incorporate recently developed subgrain models for dislocation density evolution with thermally activated slip, twin activation via statistical stress fluctuations, reoriented twin domains within the grain and associated stress relaxation, twin boundary hardening, and de-twinning. The model is applied to a systematic set of strain path change tests on pure beryllium (Be). Under the applied deformation conditions, Be deforms by multiple slip modes and deformation twinning and thereby provides a challenging test for model validation. With a single set of material parameters, determined using the flow-stress vs. strain responses during monotonic testing, the model predicts well the evolution of texture, lattice strains, and twinning. With further analysis, we demonstrate the significant influence of internal residual stresses on (1) the flow stress drop when reloading from one path to another, (2) deformation twin activation, (3) de-twinning during a reversal strain path change, and (4) the formation of additional twin variants during a cross-loading sequence. The model presented here can, in principle, be applied to other metals, deforming by multiple slip and twinning modes under a wide range of temperature, strain rate, and strain path conditions

  9. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  10. Magnetic hardening of Fe{sub 50}Co{sub 50} by rotary swaging

    Energy Technology Data Exchange (ETDEWEB)

    Gröb, T., E-mail: t.groeb@phm.tu-darmstadt.de [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Wießner, L. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Bruder, E. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Faske, T.; Donner, W. [Divison Structure Research, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Groche, P. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Müller, C. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany)

    2017-04-15

    Fe{sub 50}Co{sub 50} was subjected to incremental forming by rotary swaging with the aim of tailoring the coercivity by changing the microstructure. The challenging part of a deformation of Fe{sub 50}Co{sub 50} is an ordering phase present at room temperature, leading to low formability. To increase the formability of the alloy the presence of the ordering phase was supressed by two different concepts. The first concept consists of a heat treatment above the phase transition followed by rapid cooling and deformation at room temperature. The second concept was rotary swaging at temperatures above the phase transition temperature. A comparison in terms of resulting microstructure and magnetic properties shows that both concepts have a potential for tailoring the coercivity of Fe{sub 50}Co{sub 50}. - Highlights: • Magnetic hardening of Fe{sub 50}Co{sub 50} was achieved by rotary swaging with two different concepts. • The influences of the microstructural changes during the rotary swaging process have been linked to magnetic hardening. • Increase in coercivity for Fe{sub 50}Co{sub 50} by rotary swaging at elevated temperature is limited by the dynamic restoration. • Coercivity of Fe{sub 50}Co{sub 50} can be tailored by the induced plastic strain.

  11. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded as electrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule...

  12. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  13. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  14. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  15. Elasto-plastic frame under horizontal and vertical Gaussian excitation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.

    1999-01-01

    Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...

  16. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  17. Plasma-nitriding assisted micro-texturing into stainless steel molds

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Micro-texturing has grown up to be one of the most promising procedures. This related application required for large-area, fine micro-texturing onto the stainless steel mold materials. A new method other than laser-machining, micro-milling or micro-EDM was awaited for further advancement of this micro-texturing. In the present paper, a plasma nitriding assisted micro-texturing was developed to make various kinds of micro-patterns onto the martensitic stainless steels. First, original patterns were printed onto the surface of substrate by using the ink-jet printer. Then, the masked substrate was subjected to high density plasma nitriding; the un-masked surfaces were nitrided to have higher hardness. This nitrided substrate was further treated by sand-blasting to selectively dig the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel substrate was fabricated as a mold to duplicate these micro-patterns onto the work materials. The spatial resolution and depth profile controllability of this plasma nitriding assisted micro-texturing was investigated for variety of initial micro-patterns. The original size and dimension of initial micro-patterns were precisely compared with the three dimensional geometry of micro-textures after blasting treatment. The plastic cover case for smart cellular phones was employed to demonstrate how useful this processing is in practice.

  18. Process for molding improved polyethylene

    International Nuclear Information System (INIS)

    Kanai, Masanori; Aine, Norio; Nakada, Shinsaku.

    1962-01-01

    Various configurations in size and shape of polyethylene are molded by: (a) irradiating powders of polyethylene with ionizing radiations in the presence of oxygen to the extent of producing substantially no cross-linking among the molecules of polyethylene, and thereafter (b) molding the thus irradiated powders of polyethylene at 100-250 0 C to cross-link the molding. In this process, a uniform and desirable degree of cross-linking and any desirable configuration are provided for the polyethylene molding. Any extruder and any molding machine producing heat can be employed in this process. In embodiments, the radiation dose units may preferably be 1x10 6 to 1.5x10 7 roentgen. The ionizing radiations may be X-rays, gamma-rays or electron beams, but preferably gamma-rays. The preheating prior to molding may be effected in vacuum, in inert gas, or in oxygen at 100-250 0 C, but preferably in oxygen at 100 0 C. In an example, a polyethylene powder of 100 mesh was irradiated with gamma-rays from a Co-60 source with a dose of 3.1x10 6 r at a dose rate of 5.5x10 4 r/hr in air, then preheated in air at 80 0 C for 1 hr, and finally extruded to form a rod of 5 mm phi at 200 0 C. max. The degree of product cross-linking was 0% after irradiation in step (a), and 38% after heating in step (b). (Iwakiri, K.)

  19. Development of extruded resistive plastic tubes for proportional chamber cathodes

    International Nuclear Information System (INIS)

    Kondo, K.

    1982-01-01

    Carbon mixed plastic tubes with resistivity of 10 3 approx. 10 4 Ωcm have been molded with an extrusion method and used for the d.c. cathode of a proportional counter and a multi-wire proportional chamber. The signal by gas multiplication was picked up from a strip r.f. cathode set outside the tube. The characteristics of the counter in the proportional and limited streamer modes have been studied

  20. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    Science.gov (United States)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  1. A review of the stages of work hardening

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, A.D.; Kocks, U.F.

    1993-07-01

    Stages of work hardening are reviewed with emphasis on links between each stage. Simple quantitative descriptions are given for each stage. Similarities between stage I, easy glide, and stage IV, large strain hardening, are pointed out both in terms of magnitude of the hardening rate and of the underlying mechanism of dislocation debris accumulation. Stage II is described as an athermal hardening stage that occurs when statistical variations in the dislocation ``forest`` lead to geometrical storage of dislocations. The steadily decreasing hardening rate observed in stage III is characterized by the increasing rate of loss of dislocation density due to dynamic recovery. Stage III appears to have an asymptote to a saturation stress which is determined by the characteristics of the dislocation tangles, or cell walls. The imperfect nature of the dynamic recovery process, however, leads to the accumulation of dislocation debris and this, by analogy with stage 1, causes the apparent saturation stress to rise, thus causing stage IV.

  2. Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations

    OpenAIRE

    Vargas, Carlos; Sierra, Juan; Posada, Juan; Botero-Cadavid, Juan F.

    2017-01-01

    ABSTRACT The injection molding process is the most widely used processing technique for polymers. The analysis of residual stresses generated during this process is crucial for the part quality assessment. The present study evaluates the residual stresses in a tensile strength specimen using the simulation software Moldex3D for two polymers, polypropylene and polycarbonate. The residual stresses obtained under a simulated design of experiment were modeled using a robust multivariable regressi...

  3. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  4. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  5. Solvent-assisted polymer micro-molding

    Institute of Scientific and Technical Information of China (English)

    HAN LuLu; ZHOU Jing; GONG Xiao; GAO ChangYou

    2009-01-01

    The micro-molding technology has played an important role in fabrication of polymer micro-patterns and development of functional devices.In such a process,suitable solvent can swell or dissolve the polymer films to decrease their glass transition temperature (Tg) and viscosity and thereby improve flowing ability.Consequently,it is easy to obtain the 2D and 3D patterns with high fidelity by the solvent-assisted micro-molding.Compared with the high temperature molding,this technology overcomes some shortcomings such as shrinking after cooling,degradation at high temperature,difficulty in processing some functional materials having high Tg,etc.It can be applied to making patterns not only on polymer monolayers but also on polyelectrolyte multilayers.Moreover,the compressioninduced patterns on the multilayers are chemically homogenous but physically heterogeneous.In this review,the controlling factors on the pattern quality are also discussed,including materials of the mold,solvent,pressure,temperature and pattern density.

  6. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fifty Years of Innovation in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Richard M Kwasnicki

    2016-03-01

    Full Text Available BackgroundInnovation has molded the current landscape of plastic surgery. However, documentation of this process only exists scattered throughout the literature as individual articles. The few attempts made to profile innovation in plastic surgery have been narrative, and therefore qualitative and inherently biased. Through the implementation of a novel innovation metric, this work aims to identify and characterise the most prevalent innovations in plastic surgery over the last 50 years.MethodsPatents and publications related to plastic surgery (1960 to 2010 were retrieved from patent and MEDLINE databases, respectively. The most active patent codes were identified and grouped into technology areas, which were subsequently plotted graphically against publication data. Expert-derived technologies outside of the top performing patents areas were additionally explored.ResultsBetween 1960 and 2010, 4,651 patents and 43,118 publications related to plastic surgery were identified. The most active patent codes were grouped under reconstructive prostheses, implants, instruments, non-invasive techniques, and tissue engineering. Of these areas and other expert-derived technologies, those currently undergoing growth include surgical instruments, implants, non-invasive practices, transplantation and breast surgery. Innovations related to microvascular surgery, liposuction, tissue engineering, lasers and prostheses have all plateaued.ConclusionsThe application of a novel metric for evaluating innovation quantitatively outlines the natural history of technologies fundamental to the evolution of plastic surgery. Analysis of current innovation trends provides some insight into which technology domains are the most active.

  8. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  9. Radiation-hardened bulk Si-gate CMOS microprocessor family

    International Nuclear Information System (INIS)

    Stricker, R.E.; Dingwall, A.G.F.; Cohen, S.; Adams, J.R.; Slemmer, W.C.

    1979-01-01

    RCA and Sandia Laboratories jointly developed a radiation-hardened bulk Si-gate CMOS technology which is used to fabricate the CDP-1800 series microprocessor family. Total dose hardness of 1 x 10 6 rads (Si) and transient upset hardness of 5 x 10 8 rads (Si)/sec with no latch up at any transient level was achieved. Radiation-hardened parts manufactured to date include the CDP-1802 microprocessor, the CDP-1834 ROM, the CDP-1852 8-bit I/O port, the CDP-1856 N-bit 1 of 8 decoder, and the TCC-244 256 x 4 Static RAM. The paper is divided into three parts. In the first section, the basic fundamentals of the non-hardened C 2 L technology used for the CDP-1800 series microprocessor parts is discussed along with the primary reasons for hardening this technology. The second section discusses the major changes in the fabrication sequence that are required to produce radiation-hardened devices. The final section details the electrical performance characteristics of the hardened devices as well as the effects of radiation on device performance. Also included in this section is a discussion of the TCC-244 256 x 4 Static RAM designed jointly by RCA and Sandia Laboratories for this application

  10. High performance milling techniques on molding dies. Development of new roughing techniques for large molding die; Plastic kanagata seisaku ni okeru kokoritsu kako gijutsu. Ogata plastic yo kanagata no keijo arakako gijutsu no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, H; Kohama, S; Yamakawa, M [Mazda Motor Corp., Hiroshima (Japan); Egusa, H [Mazda Tooling and Engineering Co. Inc., Hiroshima (Japan)

    1997-10-01

    It needs long time to carve a molding die of bumper, which has a large and deep cavity. To shorten the milling time, we must make the machining more performable and accurate, and develop the new technology of CAM. In the milling sequence, Primary Roughing, which cut out 90% of the stock, should be more and more performable. So we established Tilt-Plunging and Curve-Fit Spiral Cutting techniques. These techniques will reduce lateral force to the tool, and make remains more small. With the techniques, we reduced both machining and NCdata preparing time to one half. 1 ref., 14 figs.

  11. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    Science.gov (United States)

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Numerical Study of the Plasticity-Induced Stabilization Effect on Martensitic Transformations in Shape Memory Alloys

    Science.gov (United States)

    Junker, Philipp; Hempel, Philipp

    2017-12-01

    It is well known that plastic deformations in shape memory alloys stabilize the martensitic phase. Furthermore, the knowledge concerning the plastic state is crucial for a reliable sustainability analysis of construction parts. Numerical simulations serve as a tool for the realistic investigation of the complex interactions between phase transformations and plastic deformations. To account also for irreversible deformations, we expand an energy-based material model by including a non-linear isotropic hardening plasticity model. An implementation of this material model into commercial finite element programs, e.g., Abaqus, offers the opportunity to analyze entire structural components at low costs and fast computation times. Along with the theoretical derivation and expansion of the model, several simulation results for various boundary value problems are presented and interpreted for improved construction designing.

  13. Specific features of precipitation hardening of austenitic steels with various base. 2. Kinetics and mechanism of carbide precipitation

    International Nuclear Information System (INIS)

    Kositsyna, I.I.; Sagaradze, V.V.; Khakimova, O.N.

    1997-01-01

    Electron microscopic studies were carried out to determine the kinetics and mechanisms of precipitation hardening in Fe-Mn, Fe-Mn-Cr, Fe-Cr-Mn-N, Fe-Cr-Ni and Fe-Ni base stainless steels (45G20M2F2, 50Kh16G15N6M2F2, 45Kh18N10G10M2F2, 40Kh18Ni18M2F2, 45N26M2F2). The steels were heat treated under various conditions. It is revealed that in manganese steels the particles of vanadium carbide nucleate according to homogeneous mechanism at all aging temperatures (600-750 deg C). The presence of chromium in the matrix promotes the transition to heterogeneous mechanism of carbide nucleation and growth. With nickel content increasing the plasticity of precipitation hardened steels gets better due to more intense diffusion of atoms and vacancies to grain boundaries and, hence, the widening of near-boundary zones free of carbide particles

  14. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  15. Effect of Alumina Nanoparticles on the Rheological Behavior of Aluminum-Binder Mixtures for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Hassan Abdoos

    2014-10-01

    Full Text Available Preparation of appropriate powder-binder mixtures is the crucial step of powder injection molding process. Hence, the rheological properties of powder-binder mixture are important factors in production of sound parts using powder injection molding. Nowadays, the use of nanoparticles in powder injection molding is increasing due to the improved properties and dimensional precision of the final parts. On the other hand, nanoparticles can initiate problems such as agglomeration and loss of rheological properties and homogeneity. In the present study, the rheological behavior of aluminum mixtures containing nanoalumina particles was investigated. Two powder loadings of aluminum powder (54 vol% and 60 vol%, in which 0, 3, 6 and 9 wt% of aluminum was replaced with nanoalumina, were used. The powder systems were blended with the molten binder system in a banbury internal mixer and the rheological properties of the resulting mixtures were evaluated. All feedstocks showed pseudo-plastic behavior. The presence of nanoparticles increased the viscosity of feedstocks. Due to overwhelming particles cohesion by hydrodynamic forces, the viscosity of the mixtures decreased at high shear rates. Tap density results confirmed an improvement in packing compressibility of the mentioned powders. Shear rate sensitivity decreased with incorporation of nanoparticles into the mixtures. This phenomenon improved the injection capability through further reduction in viscosity.

  16. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  17. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  18. Nonlinear core deflection in injection molding

    Science.gov (United States)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  19. The Neuroscience of Storing and Molding Tool Action Concepts: how plastic is grounded cognition?

    Directory of Open Access Journals (Sweden)

    J.C. Mizelle

    2010-11-01

    Full Text Available Choosing how to use tools to accomplish a task is a natural and seemingly trivial aspect of our lives, yet engages complex neural mechanisms. Recently, work in healthy populations has led to the idea that tool knowledge is grounded to allow for appropriate recall based on some level of personal history. This grounding has presumed neural loci for tool use, centered on parieto-temporo-frontal areas to fuse perception and action representations into one dynamic system. A challenge for this idea is related to one of its great benefits. For such a system to exist, it must be very plastic, to allow for the introduction of novel tools or concepts of tool use and modification of existing ones. Thus, learning new tool usage (familiar tools in new situations and new tools in familiar situations must involve mapping into this grounded network while marinating existing rules for tool usage. This plasticity may present a challenging breadth of encoding that needs to be optimally stored and accessed. The aim of this work is to explore the challenges of plasticity related to changing or incorporating representations of tool action within the theory of grounded cognition and propose a modular model of tool-object goal related accomplishment. While considering the neuroscience evidence for this approach, we will focus on the requisite plasticity for this system. Further, we will highlight challenges for flexibility and organization of already grounded tool actions and provide thoughts on future research to better evaluate mechanisms of encoding in the theory of grounded cognition.

  20. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...... as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual...

  1. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    Girardin, G.

    2004-03-01

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  2. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Aubin, V.

    2001-11-01

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10 -5 ) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  3. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  4. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  5. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  6. Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.N. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Li, J.B.; Jang, J.S.C. [Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, ROC (China); Lin, C.H. [Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Nieh, T.G. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-03-25

    Highlights: • This paper addresses the effects of the CuZr B2 size and distribution on plasticity. • There is a critical size to induce the martensitic/twinning transformation. • An analytic model based on melt flow dynamics is settled. -- Abstract: To demonstrate the effect of processing on the microstructure and subsequent mechanical property of bulk metallic glasses, we prepared two alloys, Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} and Cu{sub 47.5}Zr{sub 48}Al{sub 4}Co{sub 0.5}, using two different designs of suction mold – one with a sharp inlet and one with a blunt inlet. The two alloys have been demonstrated previously to be ductile via phase transformation of the B2 phase and twin formation during plastic deformation. Microstructures of the as-cast as well plastically deformed samples, in particular, the size and distribution of the B2 phase, were examined using X-ray diffraction, scanning and transmission electron microscopy. Compressive tests were conducted on samples cast by different molds and their properties were found to closely correlate with the B2 morphology. Fluid dynamics during suction casting was also analyzed. Effects of Vena contracta, flow velocity, and Reynolds number were discussed and compared favorably with experimental observations.

  7. Radiation-hardened control system

    International Nuclear Information System (INIS)

    Vandermolen, R.I.; Smith, S.F.; Emery, M.S.

    1993-01-01

    A radiation-hardened bit-slice control system with associated input/output circuits was developed to prove that programmable circuits could be constructed to successfully implement intelligent functions in a highly radioactive environment. The goal for this effort was to design and test a programmable control system that could withstand a minimum total dose of 10 7 rads (gamma). The Radiation Hardened Control System (RHCS) was tested in operation at a dose rate that ranged up to 135 krad/h, with an average total dose of 10.75 Mrads. Further testing beyond the required 10 7 rads was also conducted. RHCS performed properly through the target dose of 10 7 rads, and sporadic intermittent failures in some programmable logic devices were noted after ∼ 13 Mrads

  8. UTILIZING WASTE PLASTIC POLYPROPYLENE AND POLYETHYLENE TEREPHTHALATE AS ALTERNATIVE AGGREGATES TO PRODUCE LIGHTWEIGHT CONCRETE: A REVIEW

    Directory of Open Access Journals (Sweden)

    IBRAHIM H. ALFAHDAWI

    2016-08-01

    Full Text Available In recent times, there is an increasing need for the fabrication of mortar and concrete that can be characterised as sustainable and environmentally friendly. Ideally, this concrete should be inexpensive, lightweight, and outstanding in terms of its physical and mechanical specifications. Plastic materials have increasingly been used in the fabrication of different types of concrete admixtures and mortar constituents. These plastic materials take the form of fillers or shredded fibres derived from polypropylene and polyethylene terephthalate. The use of plastic materials presents the following benefits: (i enhanced mixture quality and (ii a reduction in the amount of accumulated single-use plastic materials that negatively impact the environment. This work reviews several previous studies on the utilisation and preparations of plastic materials and their effects on the physical and mechanical properties of concrete. Other topics, including hardened concrete, fresh concrete, application, and thermo-physical characteristics, are also elaborated.

  9. Sub-micron indent induced plastic deformation in copper and irradiated steel; Deformation plastique induite par l'essai d'indentation submicronique, dans le cuivre et l'acier 316L irradie

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ch

    1999-07-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu (001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg. C - 600 deg. C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  10. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  11. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  12. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  13. Aspects related to fracture toughness of mismatch welds

    International Nuclear Information System (INIS)

    Kumar, Suranjit; Khan, I.A.; Bhasin, V.; Vaze, K.K.

    2011-01-01

    In this work effect of weld strength mismatch and weld slenderness on plastic η factor was systematically examined. Solutions presented here are based on extensive two-dimensional finite element analysis. Results of FE analysis has shown that for homogeneous specimens plastic η -factor does not vary significantly with material strain hardening index. Plastic η -factors for non-hardening material models were in better agreement with ASTM solutions than for hardening material models. For mismatch welded specimens analyses were performed on Compact tension (CT) and three points bend (TPB) specimens. Studies were performed for both hardening as well as elastic-perfectly plastic (non-hardening) material models. Results of finite element analysis have shown that unlike homogeneous specimens there is an influence of material strain hardening on plastic η -factor. For over match welds plastic η -factor evaluated for non-hardening material model are lower while for under match welds use of non-hardening material model gives higher value as compare to that of hardening material model. However, it was observed that for over match welds use of ASTM based plastic η -factors (valid for homogeneous specimens) gives the higher values than actual plastic η -factors (evaluated for both hardening as well as non-hardening material model) of mismatch welded specimens. This in turn would lead to un-conservative estimate of fracture toughness and vice versa is true for under-matched welds. (author)

  14. Study on mechanism of intergranular stress corrosion cracking and analysis of residual stress and work hardening in welds of low-carbon austenitic stainless steel with hard surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya

    2007-01-01

    In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  15. Method of plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Oikawa, Yasuo; Tokimitsu, Fujio.

    1986-01-01

    Purpose: To prevent occurrence of deleterious cracks to the inside and the surface of solidification products, as well as eliminate gaps between the products and the vessel inner wall upon plastic solidification processing for powdery or granular radioactive wastes. Method: An appropriate amount of thermoplastic resins such as styrenic polymer or vinyl acetate type polymer as a low shrinking agent is added and mixed with unsaturated polyester resins to be mixed with radioactive wastes so as to reduce the shrinkage-ratio to 0 % upon curing reaction. Thus, a great shrinkage upon hardening the mixture is suppressed to prevent the occurrence of cracks to the surface and the inside of the solidification products, as well as prevent the gaps between the inner walls of a drum can vessel and the products upon forming solidification products to the inside of the drum can. The resultant solidification products have a large compression strength and can sufficiently satisfy the evaluation standards as the plastic solidification products of radioactive wastes. (Horiuchi, T.)

  16. On unifying concepts in plasticity theory and related matters in numerical analysis

    International Nuclear Information System (INIS)

    Havner, K.S.

    1977-01-01

    This paper reviews a rate-independent theory (or class of theories) of multiple-mode plastic straining which unifies various constitutive equations of macroscopic solids and single crystals. Some consideration is given to the relationship between the multiple-mode theory and thermodynamic concepts; including physical aspects of finite distortion of metal crystals. Uniqueness criteria and related minimum principles in incremental (or 'rate-type') boundary value problems are presented for the general class at finite strain. Special circumstances (one being infinitesimal strain) are defined under which the uniqueness criteria assure convergence of a form of finite element approximation in the boundary value problem. Extensive reference is made to recently published work of Hill, Rice, Sewell and Havner. A symmetry postulate pertaining to the 'effective hardening moduli' plays a key role in the general theory. This postulate permits the adoption of Sewell's multiple-mode saddle function as a potential for stress and plastic mechanism rates and leads to the connection between uniqueness and (rate-type) minimum principles. The postulate has a remarkable consequence for application of a simple form of the theory to single crystals in the tensile test. At small strain this theory reduces to the classical Taylor hardening of crystals, which has had wide application in micromechanical calculations of crystalline aggregate models. At infinitesimal strain, and at finite strain when the two dominant principal stresses are everywhere tensile, additional minimum principles are given for the 'self-straining problem' which permit the independent variation of displacement and plastic mechanism rates

  17. Characteristics and infl uence factors of mold fi lling process in permanent mold with a slot gating system

    Directory of Open Access Journals (Sweden)

    Chen Changjun

    2009-11-01

    Full Text Available The main problems caused by improper gating are entrained aluminum oxide fi lms and entrapped gas. In this study, the slot gating system is employed to improve mold fi lling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum fl owing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the fl ow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many infl uencing factors on the mold fi lling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fi ll into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold fi lling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidifi cation.

  18. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers.

    Science.gov (United States)

    Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G

    2013-01-01

    Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  19. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers

    Directory of Open Access Journals (Sweden)

    Anjana Raut

    2013-01-01

    Full Text Available Statement of Problem: Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. Purpose: This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. Materials and Methods: The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate and Pyrax (compression molded, control group. Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Results: Flexural strength of Brecrystal (82.08 ± 1.27 MPa was significantly higher than Pyrax (72.76 ± 0.97 MPa. The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa. The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Conclusion: Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  20. Mechanisms of the plastic deformation of uranium alloys at low temperature

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1976-01-01

    The mechanical characteristics of the bcc binary alloys U-6Mo, U-8Mo, U-10Mo, U-12Mo and bcc ternary alloys U-8Mo-1Ti, U-10Mo-1Ti, U-10Mo-1Zr, stressed in compression, were determined between -196 deg C and + 450 deg C. The plastic flow shear stress in non-dependent on temperature above 300 deg C. At lower temperature shear stress is highly activated, except for the alloy U-6Mo and U-12Mo. Athermal shear stress above 300 deg C is due to the hardening of the solid solution described by Mott and Nabarro. In the thermal range, the recombination of the dissociated dislocations controls the plastic deformation [fr