WorldWideScience

Sample records for hard-solid lubricant coating

  1. Effectiveness of solid lubricant coatings for friction in hard vacuum (10-9 tor)

    Science.gov (United States)

    Verkin, B. I.; Lyubraskiy, I. M.; Udovenko, V. F.; Sentyurikhina, L. N.

    1974-01-01

    A study was made of the efficiency of solid lubricating coatings, based on MoS2 with various binders, during friction and under highvacuum conditions. Mass spectrometry was used for an analysis of the composition of the gas evolved from the coatings in the friction process. It is shown that the vacuum level, loading, and sliding velocity influence coating effectiveness. In the friction process the solid lubricant coatings yield characteristic decay products associated with the chemical nature of the binders. The mechanism of coating breakdown during friction is associated with the binder breakdown mechanism.

  2. Tribological performance of Zinc soft metal coatings in solid lubrication

    Science.gov (United States)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  3. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  4. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2007-01-01

    An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

  5. Surface composition variation and high-vacuum performance of DLC/ILs solid-liquid lubricating coatings: Influence of space irradiation

    International Nuclear Information System (INIS)

    Liu Xiufang; Wang Liping; Pu Jibin; Xue Qunji

    2012-01-01

    In this paper, we fabricated a DLC/ionic liquid (DLC/ILs) solid-liquid lubricating coating and investigated the effect of atomic oxygen (AO), ultraviolet (UV), proton and electron irradiations on composition, structure, morphology and tribological properties of the DLC/ILs solid-liquid lubricating coatings. A ground-based simulation facility was employed to carry out the irradiation experiments. X-ray photoelectron spectroscope (XPS), Raman spectra, and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyzed the structure and composition changes of DLC film and IL lubricant before and after irradiations. The tribological behavior of the DLC/ILs solid-liquid lubricating coating before and after irradiations was investigated by a vacuum tribometer with the pressure of 10 -5 Pa. The experimental results revealed that irradiations induced the structural changes, including oxidation, bond break and crosslinking reactions of DLC film and IL lubricant. The damage of proton and AO irradiations to lubricating materials were the most serious, and UV irradiation was the slightest. After irradiations, the friction coefficient of the solid-liquid lubricating coatings decreased (except for AO irradiation), but the disc wear rate increased compared with non-irradiation coatings.

  6. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Donovan N [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  7. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  8. Application of hard coatings for blanking and piercing tools

    DEFF Research Database (Denmark)

    Podgornik, B.; Zajec, B.; Bay, Niels

    2011-01-01

    The aim of the present investigation was to examine the possibility of reducing lubrication and replacing expensive tungsten carbide material in blanking/piercing through introduction of hard tool coatings. Results show that hard PVD coatings can be successfully used in blanking/piercing...... critical value under dry friction conditions and leads to tool failure. Therefore, at present oxidation and temperature resistant hard coatings can give improved wear resistance of stamping tools, but elimination of lubricants in blanking and piercing processes is still not feasible....

  9. Tribological Properties of New Cu-Al/MoS2 Solid Lubricant Coatings Using Magnetron Sputter Deposition

    Directory of Open Access Journals (Sweden)

    Ming Cao

    2018-04-01

    Full Text Available The increasing demands of environmental protection have led to solid lubricant coatings becoming more and more important. A new type of MoS2-based coating co-doped with Cu and Al prepared by magnetron sputtering, including Cu/MoS2 and Cu-Al/MoS2 coatings, for lubrication applications is reported. To this end, the coatings were annealed in an argon atmosphere furnace. The microstructure and the tribological properties of the coatings prior to and following annealing were analyzed using scanning electron microscopy, energy dispersive spectrometry, X-ray diffractometry (XRD and with a multi-functional tester for material surface properties. The results demonstrated that the friction coefficient of the Cu/MoS2 coating was able to reach as low as 0.07, due to the synergistic lubrication effect of the soft metal Cu with MoS2. However, the wear resistance of the coating was not satisfied. Although the lowest friction coefficient of the Cu-Al/MoS2 coatings was 0.083, the wear resistance was enhanced, which was attributed to the improved the toughness of the coatings due to the introduction of aluminum. The XRD results revealed that the γ2-Cu9Al4 phase was formed in the specimen of Cu-Al/MoS2 coatings. The comprehensive performance of the Cu-Al/MoS2 coatings after annealing was improved in comparison to substrate heating, since the heat-treatment was beneficial for the strengthening of the solid solution of the coatings.

  10. Development of High Temperature Solid Lubricant Coatings

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  11. Tribological performance of hard carbon coatings on 440C bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F M; Misra, M S; Shepard, D F; Froechtenigt, J F [Martin Marietta Astronautics Group, Denver, CO (United States)

    1991-11-01

    Hard carbon coatings such as amorphous carbon, diamond and diamond-like carbon have received considerable attention for tribological applications owing to their high hardness, high modulus and desirable surface properties. Unfortunately, most of the deposition techniques induce high substrate temperatures that would temper traditional bearing steels and reduce the substrate load-carrying capability. Therefore, to effectively use these desirable coatings, a lower temperature deposition technique is required. Ion beam deposition can provide essentially ambient temperature conditions, accurate control of process parameters and good coating-substrate adhesion. To use these attributes, a test program was initiated to deposit mass-analyzed, high purity C{sup +} and CH{sub 4}{sup +} ions on molybdenum and 440C bearing steel for subsequent characterization by Raman spectroscopy and friction-wear tests. Results for a coating deposited from a carbon monoxide source showed an amorphous carbon-microcrystalline graphtie structure which exhibited very high microhardness and a three fold reduction in coefficient of friction for unlubricated tests compared to untreated 440C steel. In addition, incrementally increasing the applied load (by up to a factor of 5) resulted in progressively lower coefficients of friction, which conforms to solid lubrication theory. End-of-travel wear debris and some limited coating delamination were observed within thinner areas of the coating. Therefore an amorphous carbon-graphite coating applied to 440C steel at ambient temperature exhibits solid lubricating film characteristics with high load-carrying capability. (orig.).

  12. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    Science.gov (United States)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  13. The Tribological Performance of CrMoN/MoS2 Solid Lubrication Coating on a Piston Ring

    Directory of Open Access Journals (Sweden)

    Yuelan Di

    2017-05-01

    Full Text Available In order to improve the tribological properties of an engine piston ring and enhance its service life, magnetron sputtering technology and low temperature ion sulphurizing treatment technology were used to prepare CrMoN/MoS2 solid lubricant coating on the surface of an engine piston ring. The morphologies and compositions of the surface and cross-section of the sulfuration layer were analyzed by field emission scanning electron microscopy (FESEM, and wear property under high load, high speed and high temperature conditions were tested by a SRV®4 friction and wear testing machine. The results show that the CrMoN/MoS2 composite coatings appear as a dense grain structure, and the coating is an ideal solid lubrication layer that possesses an excellent high temperature wear resistance, reducing the engine operating temperature abrasion effectively and prolonging the service life of the engine.

  14. Functional regulation of Pb-Ti/MoS_2 composite coatings for environmentally adaptive solid lubrication

    International Nuclear Information System (INIS)

    Ren, Siming; Li, Hao; Cui, Mingjun; Wang, Liping; Pu, Jibin

    2017-01-01

    Highlights: • Co-doped Pb-Ti/MoS_2 composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS_2 composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS_2 composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS_2 are easily affected by water to form MoO_3 that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS_2 in high humidity condition, the co-doped Pb-Ti/MoS_2 composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS_2-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS_2 coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS_2 composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS_2 composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS_2 coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS_2 coatings as the environmentally adaptive lubricants.

  15. Reducing Friction and Wear of Tribological Systems through Hybrid Tribofilm Consisting of Coating and Lubricants

    Directory of Open Access Journals (Sweden)

    Shuichiro Yazawa

    2014-06-01

    Full Text Available The role of surface protective additives becomes vital when operating conditions become severe and moving components operate in a boundary lubrication regime. After protecting film is slowly removed by rubbing, it can regenerate through the tribochemical reaction of the additives at the contact. However, there are limitations about the regeneration of the protecting film when additives are totally consumed. On the other hand, there are a lot of hard coatings to protect the steel surface from wear. These can enable the functioning of tribological systems, even in adverse lubrication conditions. However, hard coatings usually make the friction coefficient higher, because of their high interfacial shear strength. Amongst hard coatings, diamond-like carbon (DLC is widely used, because of its relatively low friction and superior wear resistance. In practice, conventional lubricants that are essentially formulated for a steel/steel surface are still used for lubricating machine component surfaces provided with protective coatings, such as DLCs, despite the fact that the surface properties of coatings are quite different from those of steel. It is therefore important that the design of additive molecules and their interaction with coatings should be re-considered. The main aim of this paper is to discuss the DLC and the additive combination that enable tribofilm formation and effective lubrication of tribological systems.

  16. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  17. Improvement of Drill Performance in Metal Cutting Using MoST Solid Lubricant Coatings

    Institute of Scientific and Technical Information of China (English)

    N.R. Thomas; D.G. Teer; S. Yang; S. Hickman

    2004-01-01

    Coated tools are widely used in today's metal cutting industries and have significantly improved machining productivity through reducing operation costs and time. This paper presents the results of a systematic study of the performance of HSS drills coated with CrTiAlN and drills with a top solid lubricant coating of MoSTTM. The tests were performed on a Haas vertical machining centre under wet and dry cutting conditions to machine through holes in medium carbon steel workpieces. The feed force and torque were recorded throughout some of the tests using a force dynamometer,while the tool wear was monitored and measured. It was found that MoSTTM coatings even under accelerated conditions improve the tool life significantly based on their unique properties and very low friction.

  18. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  19. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    Science.gov (United States)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  20. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  1. Functional regulation of Pb-Ti/MoS{sub 2} composite coatings for environmentally adaptive solid lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Hao [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Pu, Jibin, E-mail: pujibin@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Highlights: • Co-doped Pb-Ti/MoS{sub 2} composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS{sub 2} composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS{sub 2} composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS{sub 2} are easily affected by water to form MoO{sub 3} that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS{sub 2} in high humidity condition, the co-doped Pb-Ti/MoS{sub 2} composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS{sub 2}-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS{sub 2} coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS{sub 2} composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS{sub 2} composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS{sub 2} coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS{sub 2} coatings as the environmentally adaptive

  2. Application of Hard Coatings for Improved Tribological Performance of Blanking and Piercing Tools

    DEFF Research Database (Denmark)

    Podgornik, B.; Zajec, B.; Bay, Niels

    2010-01-01

    The aim of the present investigation was to examine the possibility of reducing lubrication and replacing expensive tungsten carbide material in blanking/piercing through introduction of hard tool coatings. Results show that hard PVD coatings can be successfully used in blanking/piercing applicat...

  3. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding.

    Science.gov (United States)

    Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang

    2017-12-28

    The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS₂ and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr 23 C₆, and CoC x . Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS₂) were 587.3 HV 0.5 , 0.426, and 5.61 × 10 -5 mm³/N·m, respectively.

  4. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Liuyang Fang

    2017-12-01

    Full Text Available The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS2, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive spectrometer (EDS, as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS2 and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr23C6, and CoCx. Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS2 were 587.3 HV0.5, 0.426, and 5.61 × 10−5 mm3/N·m, respectively.

  5. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  6. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    Science.gov (United States)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  7. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  8. Solid lubricants in the power station

    International Nuclear Information System (INIS)

    Gaensheimer, J.

    1981-01-01

    Example application are first outlined, followed by descriptions of inorganic solid lubricants and plastics. Waxes, soaps and salts are discussed. Notes for usage are given. Solid lubricants in oils and greases are comprehensively described, followed by the sections entitled Solid lubricants for gearboxes . References to samples, tests, standards and bibliography make up the conclusion. (orig.) [de

  9. Improvement of wear-resistance of solid lubricants by ionic impact

    DEFF Research Database (Denmark)

    1993-01-01

    A solid lubricating material, preferentially as a coating, deposited on a substrate surface by conventional technique such as dipping in a suspension, painting, or spraying is bombarded with energetic ions fron an ion accelerator or in a plasma discharge. By such a treatment the wear resistance o...

  10. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  11. Performance test of diamond-like carbon films for lubricating ITER blanket maintenance equipment under GPa-level high contact stress

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2007-01-01

    Diamond-like carbon (DLC) coating was tested as a candidate solid lubricant for transmission gears of the maintenance equipment of the blanket of the ITER instead of an oil lubricant. The wear tests using the pin-on-disk method were performed on disks with SCM440 and SNCM420 as the base materials and coated with soft, layered, and hard DLCs. All cases satisfied the required allowable contact stress (2 GPa) and lifetime (10 4 cycles), and therefore the feasibility of the DLC coating was validated. Among the three types of DLCs, the soft DLC showed the best performance. (author)

  12. Investigation on Nano-Self-Lubricant Coating Synthesized by Laser Cladding and Ion Sulfurization

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    2015-01-01

    Full Text Available The composite processing between laser cladding and low temperature (300°C ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM, atomic force microscope (AFM, X-ray diffraction (XRD, X-ray photoelectron spectroscope (XPS, and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists of γ-(Fe, Ni, M23C6 carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.

  13. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  14. Effects of carbon content and argon flow rate on the triboperformance of self-lubricating WS2/a-C sputtered coating

    NARCIS (Netherlands)

    Cao, Huatang; De Hosson, J.T.M.; Pei, Yutao T.

    2017-01-01

    Layered transition metal dichalcogenides (TMD) such as WS2 are materials well-known for their solid lubrication properties [1]. However, the lubricating property degrades through oxidation or moisture and it is also limited by its low hardness and low load-bearing capacity. In contrast amorphous

  15. Study of solid lubrication with MoS2 coating in the presence of ...

    Indian Academy of Sciences (India)

    Molybdenum disulphide (MoS2) based solid lubricant mixtures con- taining zirconia and ... age during relative movement and to reduce friction and wear. ..... In this hexagonal structure the bonds between the carbon atoms in a layer are strong.

  16. Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings

    Science.gov (United States)

    Domínguez-Meister, Santiago; Rojas, Teresa Cristina; Brizuela, Marta; Sánchez-López, Juan Carlos

    2017-12-01

    Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30-40% relative humidity, RH) and dry nitrogen (RHgoverns the tribological behavior for each type of environment. This allowed conclusions to be made about the influence of the coating microstructure and composition on the tribological response. The best performance obtained with a WSex film (specific wear rate of 2 × 10-8 mm3 N-1m-1 and a friction coefficient of 0.03-0.05) was compared with that of the well-established MoS2 lubricant material.

  17. Friction and wear performance of low-friction carbon coatings under oil lubrication

    International Nuclear Information System (INIS)

    Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

    2001-01-01

    Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces

  18. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  19. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Fu, Zhi-qiang; Wang, Cheng-biao; Zhang, Wei; Wang, Wei; Yue, Wen; Yu, Xiang; Peng, Zhi-jian; Lin, Song-sheng; Dai, Ming-jiang

    2013-01-01

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp 3 -C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  20. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-01-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  1. Microindentation hardness testing of coatings: techniques and interpretation of data

    Science.gov (United States)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  2. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  3. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  4. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer.

    Science.gov (United States)

    Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.

  5. Tool Wear and Formation Mechanism of White Layer When Hard Milling H13 Steel under Different Cooling/Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Song Zhang

    2014-04-01

    Full Text Available The present work aims at revealing the formation mechanism of white layer and understanding the effects of tool wear and cooling/lubrication condition on white layer when hard milling H13 steel with coated cutting tools. Hard milling experiments were carried out, and tool wear and its effect on formation of white layer were investigated. Compared to dry cutting condition, CMQL (cryogenic minimum quantity lubrication technique can obviously reduce tool wear and prolong tool life owing to its good cooling and lubrication properties. The optical images of the subsurface materials indicate that the formation of white layer is related to tool wear; moreover, the thickness of white layer increases with the increase of tool wear. SEM (scanning electron microscope images and XRD (X-ray diffraction analysis confirm that the formation of white layer is mainly due to the mechanical effect rather than the thermal effect. It also proves that white layer is partly decreased or can be totally eliminated by optimizing process parameters under CMQL cutting condition. CMQL technique has the potential to be used for achieving prolonged tool life and enhanced surface integrity.

  6. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C

    Science.gov (United States)

    Dellacorte, C.; Edmonds, B. J.

    1995-01-01

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800 C. PS300 is a metal bonded chrome oxide coating with silver and BaF2/CaF2 eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating, which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650 C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  7. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. Preliminary evaluation of PS300: A new self-lubricating high temperature composite coating for use to 800{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    DellaCorte, C.; Edmonds, B.J.

    1996-12-31

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800{degrees}C. PS300 is a metal bonded chrome oxide coating with silver and BaF{sub 2}/CaF{sub 2} eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating; which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650{degrees}C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  9. Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication

    International Nuclear Information System (INIS)

    Feng Zhizhong; Xu Haiyan; Yan Fengyuan

    2008-01-01

    Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) coatings were prepared on AISI-1045 steel via flame spraying. The chemical changes of the FEP powder occurring during the spraying process were analyzed by means of Fourier transformation infrared spectroscopy. The flame spraying of the FEP powders under the chosen conditions did not lead to structural changes related to degradation and oxidation. The friction and wear behaviors of the FEP coatings sliding against AISI-52100 steel ball under dry- and water-lubricated conditions were investigated using a ball-on-disc test rig, and the worn surface morphologies of the coatings were also observed using the scanning electron microscope. The FEP coatings recorded smaller friction coefficients under water lubrication than under dry sliding. However, the wear rate of the coating under water lubrication was about two times of that under dry sliding. This indicated that water as a lubricant was able to effectively reduce the friction coefficient but it led to an increased wear rate of the FEP coatings/steel sliding pairs. X-ray photoelectron spectroscope (XPS) results illustrate that the transfer film did formed during the dry sliding but it is hindered under water lubrication, and it might be the major cause of the larger wear rate under the water lubrication.

  10. Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions

    International Nuclear Information System (INIS)

    Feng Xin; Xia Yanqiu

    2012-01-01

    In this paper, titanium doped diamond-like carbon (Ti-DLC) coatings were prepared onto AISI 52100 steel substrates using medium frequency magnetic sputtering process, and were analyzed using the Raman and transmission electron microscope (TEM). Two kinds of 1,3-dialkyl imidazolium ionic liquids (ILs) were synthesized and evaluated as lubricants for Ti-DLC/steel contacts at room temperature, and PFPE as comparison lubricant. The tribological properties of the ILs were investigated using a ball-on-disk type UMT reciprocating friction tester. The results indicated that the ILs have excellent friction-reducing properties, the friction coefficient kept at a relatively stable value of 0.07-0.06, which was reduced approximately by 47% compared with perfluoropolyether (PFPE). The worn surfaces of Ti-DLC coatings were observed and analyzed using a MICROXAM-3D non-contact surface profiler, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The Ti-DLC coatings using ionic liquids lubricating systems are considered as potential lubricating system in vacuum and space moving friction pairs.

  11. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  12. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    Science.gov (United States)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  13. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2018-05-01

    Full Text Available Osteoarthritis (OA is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrum, X-ray photoelectron spectrum, thermogravimetric analysis and dynamic light scattering techniques to confirm that the phospholipid layer was coated onto the surface of MSNs successfully. A series of tribological tests were performed under different experimental conditions, and the results showed that MSNs@lip with multi-layers of phospholipids greatly reduced the friction coefficient in comparison with MSNs. Additionally, MSNs@lip demonstrated sustained drug release behavior and were biocompatible based on CCK-8 assay using MC3T3-E1 cells. The MSNs@lip developed in the present study, acting as effective lubricating drug nanocarriers, may represent a promising strategy to treat early stage OA by lubrication enhancement and drug delivery therapy.

  14. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  15. TiN-Coating Effects on Stainless Steel Tribological Behavior Under Dry and Lubricated Conditions

    Science.gov (United States)

    Zhang, Liqiang; Yang, Huisheng; Pang, Xiaolu; Gao, Kewei; Tran, Hai T.; Volinsky, Alex A.

    2014-04-01

    The tribological properties of magnetron sputtered titanium nitride coating on 316L steel, sliding against Si3N4 ceramic ball under dry friction and synthetic perspiration lubrication, were investigated. The morphology of the worn surface and the elemental composition of the wear debris were examined by scanning electron microscopy and energy dispersive spectroscopy. TiN coatings and 316L stainless steel had better tribological properties under synthetic perspiration lubrication than under dry friction. Among the three tested materials (316L, 1.6 and 2.4 μm TiN coatings), 2.4 μm TiN coating exhibits the best wear resistance. The difference in wear damage of the three materials is essentially due to the wear mechanisms. For the TiN coating, the damage is attributed to abrasive wear under synthetic perspiration lubrication and the complex interactive mechanisms, including abrasive and adhesive wear, along with plastic deformation, under dry friction.

  16. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  17. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition

    Science.gov (United States)

    Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling

    2016-12-01

    The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.

  18. Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS

    International Nuclear Information System (INIS)

    Scharf, T.W.; Prasad, S.V.; Dugger, M.T.; Kotula, P.G.; Goeke, R.S.; Grubbs, R.K.

    2006-01-01

    This paper describes the synthesis, structure, and tribological behavior of nanocomposite tungsten disulphide (WS 2 ) solid lubricant films grown by atomic layer deposition. A new catalytic route, incorporating a diethyl zinc catalyst, was established to promote the adsorption and growth of WS 2 . The films were grown down to 8 nm in thickness by sequential exposures of WF 6 and H 2 S gases in a viscous flow reactor on Si, SiO 2 , stainless steel, and polycrystalline Si and electroplated Ni microelectromechanical systems structures. Films were studied by cross-sectional transmission electron microscopy (XTEM) with Automated eXpert Spectral Image Analysis (AXSIA) software for X-ray spectral images and X-ray diffraction to determine the coating conformality and crystallinity. The coatings exhibited a hexagonal layered structure with predominant preferentially orientated (0 0 2) basal planes. Regardless of orientation to the substrate surface, these basal planes when sheared imparted low friction with a steady-state friction coefficient as low as 0.008 to 50,000 cycles in a dry nitrogen environment. The formation of smooth transfer films during wear provided low interfacial shear stresses during sliding thus achieving low friction and wear. The XTEM combined with AXSIA of the wear tracks identified this mechanism and the effects of vapor phase reaction by-product etching on insulating and native polycrystalline Si and Ni surfaces

  19. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  20. Lubricant coating of dowel for the ITER vacuum vessel gravity support

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Ahn, H.J., E-mail: hjahn@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bak, J.S. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Choi, C.H.; Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Zauner, C. [KRP-Mechatec Engineering GbR, 85748 Garching b, Muenchen (Germany)

    2012-08-15

    The ITER vacuum vessel gravity supports located in the lower level shall sustain loads in radial, toroidal and vertical directions. The hinge type VVGS consists of two hinges, upper and lower blocks and dowels. In order to develop the design concept and verify the structural integrity of the hinge system, the design analysis has been performed in detail. Inclination of 15 Degree-Sign for the hinge based supporting system was introduced to provide centering force to make stable equilibrium state of the vacuum vessel. Due to this inclination the hinges are rotated by the radial expansion of the VV during operation and baking, respectively. If a dowel is seized in the hinge, the supporting system can be highly stressed due to the restrained displacement in the seized dowel. Therefore, solid lubricant coatings were suggested on dowels in order to avoid seizing in the sliding area. In this work, several sets of coupons were made with different coating materials to investigate the effect according to the selection of coating material. Also, a test facility was designed to cover the ITER relevant loading and boundary conditions, e.g. vacuum condition, temperature, contact pressure, cycles, etc. From those test results, the optimized coating method was found to avoid seizure of dowel in the ITER VVGS.

  1. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  2. Comparative of the Tribological Performance of Hydraulic Cylinders Coated by the Process of Thermal Spray HVOF and Hard Chrome Plating

    Directory of Open Access Journals (Sweden)

    R.M. Castro

    2014-03-01

    Full Text Available Due to the necessity of obtaining a surface that is resistant to wear and oxidation, hydraulic cylinders are typically coated with hard chrome through the process of electroplating process. However, this type of coating shows an increase of the area to support sealing elements, which interferes directly in the lubrication of the rod, causing damage to the seal components and bringing oil leakage. Another disadvantage in using the electroplated hard chromium process is the presence of high level hexavalent chromium Cr+6 which is not only carcinogenic, but also extremely contaminating to the environment. Currently, the alternative process of high-speed thermal spraying (HVOF - High Velocity Oxy-Fuel, uses composite materials (metal-ceramic possessing low wear rates. Research has shown that some mechanical properties are changed positively with the thermal spray process in industrial applications. It is evident that a coating based on WC has upper characteristics as: wear resistance, low friction coefficient, with respect to hard chrome coatings. These characteristics were analyzed by optical microscopy, roughness measurements and wear test.

  3. Atomistic study of ternary oxides as high-temperature solid lubricants

    Science.gov (United States)

    Gao, Hongyu

    Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the

  4. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  5. The interaction between diamond like carbon (DLC coatings and ionic liquids under boundary lubrication conditions

    Directory of Open Access Journals (Sweden)

    K. Milewski

    2017-01-01

    Full Text Available The aim of the study was to analyse antiwear DLC coatings produced by physical vapour deposition. The a-C:H coatings were deposited on steel elements designed to operate under friction conditions. The coating structure was studied by observing the surface topography with a scanning electron microscope (SEM and a profilometer. The friction and wear properties of the coatings were examined using a ball-on-disc tribotester. The lubricants tested were two types of ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate and trihexyltetradecylphosphonium bis(trifluoromethy-lsulphonyl amide. The experimental data was used to select ionic liquids with the best tribological properties to operate under lubricated friction conditions and interact with DLC coatings.

  6. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  7. Ultra Low Friction of DLC Coating with Lubricant

    International Nuclear Information System (INIS)

    Kano, M; Yoshida, K

    2010-01-01

    The objective of this study was to find a trigger to make clear a mechanism of the ultra low friction by evaluating the friction property of DLC-DLC combination under lubrication with the simple fluid. The Pin-on-disc reciprocating and rotating sliding tests were conducted to evaluate the friction property. The super low friction property of pure sliding with the ta-C(T) pair coated by the filtered arc deposition process under oleic acid lubrication was found at the mixed lubrication condition. It was thought that the low share strength tribofilm composed of water and acid seemed to be formed on ta-C sliding interface. Additionally, the smooth sliding surface formed on ta-C(T) was seemed to be required to keep this tribofilm. Then, the super low friction was thought to be obtained by this superlubrication condition. Although the accurate and direct experimental data must be required to make clear this super low friction mechanism, the advanced effect obtained by the simple material combination is expected to be applied on the large industrial fields in near future.

  8. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    Directory of Open Access Journals (Sweden)

    Duxin Li

    2013-01-01

    Full Text Available The effects of polytetrafluoroethylene (PTFE, graphite, ultrahigh molecular weight polyethylene (UHMWPE, and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  9. Tribological and mechanical behaviors of polyamide 6/glass fiber composite filled with various solid lubricants.

    Science.gov (United States)

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  10. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  11. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    International Nuclear Information System (INIS)

    CJ Larkin; JD Edington; BJ Close

    2006-01-01

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection

  12. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  13. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  14. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Science.gov (United States)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  15. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication

    International Nuclear Information System (INIS)

    Xu Haiyan; Feng Zhizhong; Chen Jianmin; Zhou Huidi

    2006-01-01

    Carbon fiber reinforced polyphenylene sulphide (PPS) composite coatings (the mass fraction of the carbon fiber varied from 1 to 5 wt%) were prepared by flame spraying. The microstructure and physical properties of the composite coating were studied. The friction and wear characteristics of the PPS coating and carbon fiber reinforced PPS composite coating under dry- and water-lubricated sliding against stainless steel were comparatively investigated using a block-ring tester. The composite coatings showed lower friction coefficient and higher wear rate than pure PPS coatings under dry sliding. Under water-lubricated condition, the composite coatings showed better wear resistance than under dry. Under water-lubricated condition the tribological behaviors of the 3 wt% carbon fiber reinforced composite coating also were investigated under different sliding speed and load. The result showed that the sliding speed had little effect on the tribological properties, but the load affected greatly on that of the composite coatings. The morphologies of the worn surfaces of the composite coatings and the counterpart steel were analyzed by means of scanning electron microscopy (SEM), coupled with an energy-dispersive X-ray spectrometer (EDS) for compositional analysis

  16. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  17. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  18. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  19. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  20. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    Science.gov (United States)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  1. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD-process is......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD...

  2. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  3. Development of seismic support snubber using solid lubricant

    International Nuclear Information System (INIS)

    Sunakoda, Katsuaki; Akimoto, Kohichi; Uchi, Toshiyasu

    1990-01-01

    Solid lubricant MoS 2 films deposited by radio-frequency sputtering and a new physical process were applied to bearings and ball screws used in seismic support mechanical snubbers. The lubricity of MoS 2 films was maintained throughout 720 hours of exposure at a temperature of 200 degC. The endurance life of MoS 2 films using both radio-frequency sputtering and a new physical process was investigated by subjecting the mechanical snubber to a drag force test. Cumulative drag length reached 100 meters and 400 meters, respectively, for the two methods. The dynamic characteristics and durability of mechanical snubbers in an abnormal environment were also investigated. (author)

  4. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Panjan, P., E-mail: peter.panjan@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Drnovšek, A.; Kovač, J.; Gselman, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2015-09-30

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V{sub 2}O{sub 5} phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  5. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Panjan, P.; Drnovšek, A.; Kovač, J.; Gselman, P.; Bončina, T.; Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M.

    2015-01-01

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V_2O_5 phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  6. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2

    International Nuclear Information System (INIS)

    Xiang, Zhan-Feng; Liu, Xiu-Bo; Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua

    2014-01-01

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF 2 were “in situ” synthesized in the coating. • The coating with the addition of CaF 2 possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF 2 coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF 2 coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF 2 particles. The wear rates of γ-NiCrAlTi/TiC/CaF 2 coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF 2 coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF 2 coating exhibited excellent friction-reducing and anti-wear properties at high temperature

  7. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  8. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  9. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  10. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  11. Tuning the Structure and Ionic Interactions in a Thermochemically Stable Hybrid Layered Titanate-Based Nanocomposite for High Temperature Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Lubbers, Roy; Veldhuis, Sjoerd; Narygina, Olga; Lette, Walter; Schipper, Dirk J.; ten Elshof, Johan E.

    2017-01-01

    Solid inorganic lubricants are thermally stable but they are often limited by their lack of deformability, while organic lubricants have limitations in terms of thermal stability. In this study, a novel solid organic–inorganic nanocomposite lubricant that synergistically combines the

  12. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    Science.gov (United States)

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-05-01

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Development, characterization and testing of tungsten doped DLC coatings for dry rotary swaging

    Directory of Open Access Journals (Sweden)

    Hasselbruch Henning

    2015-01-01

    Full Text Available The extensive use of lubricant during rotary swaging is particularly required for a good surface finish of the work piece and the reduction of tool wear. Abandonment of lubricant would improve the ecological process-balance and could also accelerate for further work piece refinements. Also cleaning of the manufactured components becomes obsolete. Thus, a dry machining is highly innovative, consequently new strategies to substitute the lubricant functions become necessary. To encounter the changed tribological conditions due to dry rotary swaging, low friction, tungsten doped, hard DLC coatings and structured surfaces are the most promising approaches. In this work the development of hard coating by means of reactive magnetron sputtering is presented, a promising layer variant is deposited on a set of tools and then tested and investigated in real use.

  14. Thermochemical Stability and Friction Properties of Soft Organosilica Networks for Solid Lubrication

    Directory of Open Access Journals (Sweden)

    Pablo Gonzalez Rodriguez

    2018-01-01

    Full Text Available In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilylbenzene and 4,4′-bis(triethoxysilyl-1,1′-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005, a common bench mark for solid lubricants.

  15. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  16. Lubricating coating prepared by PIIID on a forming tool

    International Nuclear Information System (INIS)

    Martinatti, J F; Durrant, S F; Cruz, N C; Rangel, E C; Santos, L V

    2012-01-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C 2 H 2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  17. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  18. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, Papken Eh., E-mail: p.hovsepian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Mandal, Paranjayee, E-mail: 200712mum@gmail.com [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Ehiasarian, Arutiun P., E-mail: a.ehiasarian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Sáfrán, G., E-mail: safran.gyorgy@ttk.mta.hu [Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thegeut 29-33 (Hungary); Tietema, R., E-mail: rtietema@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands); Doerwald, D., E-mail: ddoerwald@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands)

    2016-03-15

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS{sub 2} and MoS{sub 2}. • WS{sub 2} and MoS{sub 2} are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS{sub 2} and MoS{sub 2}, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  19. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    International Nuclear Information System (INIS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-01-01

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS 2 and MoS 2 . • WS 2 and MoS 2 are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS 2 and MoS 2 , where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  20. The Role of Solid Lubricants for Brake Friction Materials

    Directory of Open Access Journals (Sweden)

    Werner Österle

    2016-02-01

    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  1. Tribology and coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  2. Relationship Between Crystalline Structure and Hardness of Ti-Si-N-O Coatings Fabricated by dc Sputtering

    Science.gov (United States)

    García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.

    2008-08-01

    Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.

  3. Advanced `KS-6` dry type lubricant for aluminum sheet forming; Arumi ban seikeiyo koseino kokei junkatsuzai `KS-5`

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, K.; Sugita, T.; Imamura, Y. [Kobe Steel, Ltd., Kobe (Japan)

    1997-09-01

    The advanced `KS-5` dry film type lubricant was developed for press forming of aluminum sheets. KS-5 uses water- soluble resin poly-alkylene-oxide superior in formability, weldability and adhesivity, and contains higher fatty-acid soap as oil solvent to improve a formability. The verification test result of KS-5 is as follows. Both stretchability and drawability were confirmed through a ball head stretching test and a cylinder drawing test as formability test, respectively, and a forming height more than that of mild steel sheets was obtained by using the solid lubricant showing a high stretchability. The drawability of nearly 80% of that of mild steel sheets was also obtained showing a high formability. Since the amount of the solid lubricant has reciprocal effect on the formability and degreasing property, it is important to select the suitable amount of the solid lubricant according to use conditions. Lubricants generally deteriorate a spot weldability, however, this lubricant has no practical problems by coating rust preventive oil. 3 refs., 8 figs., 3 tabs.

  4. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  5. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  6. Fatty acid methyl esters, carbon nanotubes and carbon nanowalls coatings such as lubricity improvers of low sulfur diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cursaru, Diana Luciana; Tanasescu, Constantin [Petroleum-Gas Univ. of Ploiesti (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics (Romania)

    2013-06-01

    In this study the lubricity of diesel fuel was restored by different methods, firstly by classic addition of fatty acid methyl esters or by dispersing carbon nanotubes into diesel fuels and secondly, by protecting the metallic surfaces which are in the direct contact to the low sulfur diesel fuel, by application of solid carbon nanowalls coatings synthesized by radiofrequency plasma beam deposition. The fatty acid methyl esters were prepared by transesterification of the sun flower oil in the presence of methanol. The carbon nanotubes were synthesized by CO disproportionation method and were characterized by RAMAN spectroscopy and high resolution transmission electron microscopy (TEM). The CNWs layers, before the friction tests, were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, while the wear on the steel balls was investigated by optical microscopy of the HRRT apparatus and the wear track on the steel disk was investigated by SEM, AFM and profilometry. The lubricity was measured using the High Frequency Reciprocating Rig (HFRR) method. It has been found that CNWs layers exhibit a lubricating potential for the rubbed surfaces in the presence of low sulfur diesel fuels. Tribological analyses of various carbon materials revealed that the friction coefficient of carbon nanowalls is close to the values obtained for graphite. (orig.)

  7. Low Molecular Weight Z-Tetraol Boundary Lubricant Films in Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    R. J. Waltman

    2012-01-01

    Full Text Available Lower molecular weight Z-Tetraol films exhibit increased mechanical spacing in the slider-disk interface due to a lower z-profile. An increased resistance to lubricant disturbance on the disk surface (e.g., lube moguls with decreasing film thickness is attributed to an increasing contribution from the polar component of the disjoining pressure. Evaporative loss at temperatures typically encountered in a hard-disk drive also increases with decreasing molecular weight but is strongly dependent on the initial bonded fraction.

  8. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  9. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  10. Pulsed Plasma Lubrication Device and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Bickler, Donald B. (Inventor); D'Agostino, Saverio A. (Inventor)

    2016-01-01

    Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.

  11. Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings

    NARCIS (Netherlands)

    Martinez-Martinez, Diego; Lopez-Cartes, Carlos; Gago, Raul; Fernandez, Asuncion; Carlos Sanchez-Lopez, Juan

    2009-01-01

    Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800-900 degrees C), and/or

  12. Oxidation study of Cr-Ru hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Kuo, Yu-Chu; Chen, Sin-Min

    2012-01-01

    Cr-Ru alloy coatings with Cr content ranging from 47 to 83 at.% were deposited at 400 Degree-Sign C by direct current magnetron co-sputtering with a Ti interlayer on silicon substrates. With a total input power of 300 W, the Cr content in the Cr-Ru coatings increased linearly with the increasing input power of Cr. The intermetallic compound phase Cr{sub 2}Ru with columnar structure was identified for the as-deposited Cr{sub 56}Ru{sub 44} and Cr{sub 65}Ru{sub 35} coatings, resulting in an increase of hardness up to 15-16 GPa. To evaluate the performance of Cr-Ru coatings as a protective coating on glass molding dies, the annealing treatment was conducted at 600 Degree-Sign C in a 50 ppm O{sub 2}-N{sub 2} atmosphere. The outward diffusion and preferential oxidization of Cr in the Cr-Ru coatings resulted in the variations of the crystalline structure, chemical composition distribution, and surface hardness after annealing. X-ray diffraction and transmission electron microscopy (TEM) proved that an oxide scale consisting of Cr{sub 2}O{sub 3} formed on the free surface. Scanning electron microscopy and TEM observed the surface morphology and structural variation. The chemical composition depth profiles were analyzed by Auger electron microscopy, verifying the presence of a Cr-depleted zone beneath the oxide scale. The hardness of Cr{sub 56}Ru{sub 44} and Cr{sub 65}Ru{sub 35} coatings decreased to 11-12 GPa after annealing, accompanied by the replacement of the Cr{sub 2}Ru phase by the Ru phase. - Highlights: Black-Right-Pointing-Pointer We prepared crystalline Cr-Ru alloy coatings by direct current magnetron sputtering. Black-Right-Pointing-Pointer Cr-Ru coatings were annealed at 600 Degree-Sign C for 2 h in a 50 ppm O{sub 2}-N{sub 2} atmosphere. Black-Right-Pointing-Pointer Cr diffused outwardly and oxidized to form a stable and protective oxide scale. Black-Right-Pointing-Pointer The original columnar grains recrystallized to polycrystalline grains.

  13. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  14. Comparative metallurgical study of thick hard coatings without cobalt

    International Nuclear Information System (INIS)

    Clemendot, F.; Van Duysen, J.C.; Champredonde, J.

    1992-07-01

    Wear and corrosion of stellite type hard coatings for valves of the PWR primary system raise important problems of contamination. Substitution of these alloys by cobalt-free hard coatings (Colmonoy 4 and 4.26, Cenium 36) should allow to reduce this contamination. A comparative study (chemical, mechanical, thermal, metallurgical), as well as a corrosion study of these coatings were carried out. The results of this characterization show that none of the studied products has globally characteristics as good as those of grade 6 Stellite currently in service

  15. Evaluation report on the development of ultra-solid lubricant with cluster diamond; Cluster diamond wo riyoshita kotai junkatsu fukugo zairyo no kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The fiscal 1998-2000 results of efforts to develop cluster diamond (CD)-diffused solid lubricant composite materials expected to exhibit excellent lubrication are stated. Since friction greatly affects machine life and energy efficiency, friction reduction is an important task. Very hard and microscopic CD was utilized for the achievement of a friction coefficient of 0.08. A manufacturing technology for molds 10nm or smaller was developed, which enabled the development of a gear not larger than 8mm. The success will enable the operation of micromachines in the absence of lubrication which is impossible at present. A CD-aided functional layer creation technology was also developed. It is expected that the development and practical application of micromechanisms will make rapid progress in the 21st century. Much is expected from the creation, and goods with the achievement applied thereto, of advanced technologies whereinto non-lubrication, functional layer creation, and excellent heat conductivity are incorporated. It is quite significant that, since CD is available in any field as far as light-load low-speed sliding conditions are satisfied, sliding parts will be improved and service life will be prolonged. (NEDO)

  16. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  17. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    International Nuclear Information System (INIS)

    Shang, Jiwu; Zhang, Yihe; Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai; Chu, Paul K.; Ye, Zhengfang; Xing, Jing

    2011-01-01

    Highlights: ► The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2′-dithiodiethanol. ► The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. ► The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR). FTIR and GC–MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2′-dithiodiethanol which have potential applications in petroleum drilling because of their S–S and/or C–S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  18. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jiwu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China); Xing, Jing [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2 Prime -dithiodiethanol. Black-Right-Pointing-Pointer The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. Black-Right-Pointing-Pointer The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2 Prime -dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  19. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina

    2017-08-18

    Either hardness or toughness has been the core interest in scientific exploration and technological pursuit for a long time. However, it is still a big challenge to enhance the hardness and toughness at the same time, since the improvement of one side is always at the expense of the other one. Here, we have succeeded in dealing with this pair of conflict based on tungsten (W) coating by doping boron (B) via magnetron co-sputtering. The results reveal that the introduction of low concentrations of B (6.3 at. %), in the doping regime, leads to the formation of W(B) supersaturated solid solution with refined grains. Meanwhile, the doping-induced higher compressive stress, higher H/E* and denser microstructure result in a surprising combination of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results are applicable for industrial application because it can be realized by simple manufacturing approaches, e.g. magnetron sputtering technology.

  20. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  1. Fabrics coated with lubricated nanostructures display robust omniphobicity

    International Nuclear Information System (INIS)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings. (paper)

  2. Fabrics coated with lubricated nanostructures display robust omniphobicity

    Science.gov (United States)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak-Sing; Kim, Philseok; Aizenberg, Joanna

    2014-01-01

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  3. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    Science.gov (United States)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  4. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  5. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    Science.gov (United States)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  6. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    Science.gov (United States)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  7. Development of improved lacv-30 propeller blade coatings for protection against sand and rain erosion and marine environment corrosion. Final report 4 Jan 1982-4 Mar 1983

    Energy Technology Data Exchange (ETDEWEB)

    Malone, G.A.

    1983-05-10

    An investigation was conducted of candidate systems offering potential erosion and corrosion protection when applied as coatings to Aluminum 7075 alloy propeller blades used to propel air cushioned vehicles operating in severe environments. This work focused on (1) special hard anodized and (2) hard nickel electroplated coatings as candidate protective systems with sand/rain erosion testing to evaluate their merits. Attributes of the coating systems developed and studied included: For (1) Ways and means to produce and control deposit hardness for optimum erosion resistance, methods of bonding to blades for high integrity adhesion, and inclusion of sacrificial corrosion protection electroplates in the coating systems (zinc and zinc-nickel alloy). For (2) Incorporation of dry film lubricant systems on sealed hardcoats of various anodic coating thicknesses to enhance erosion performance. Study results indicated that anodized coatings did not provide suitable erosion protection to Aluminum 7075 in sand/rain environments, even with dry film lubricant supplemental films. Electroplated hard nickel coatings, Vickers hardnesses in the range of 380 to 440, appeared better for combined sand/rain erosion resistance based on comparisons with prior work. Dilute phosphoric anodizing the aluminum substrates led to excellent bonds and improved corrosion resistance when subsequently plated with ductile nickel from a low pH bath, followed by hard nickel electroplate.

  8. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  9. Wear resistant PVD-/CVD-dry lubricant coatings for the environmental and innovative production. Subproject 3: dry lubricant coatings - carbon coatings. Final report; Verschleissfeste PVD-/CVD-Trockenschmierstoffschichten fuer die umweltschonende und innovative Fertigung. Teilprojekt 3: Kohlenstoffbasierte Trockenschmierstoffschichten (TSS-C). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schattke, A.; Hockauf, W.

    2002-09-05

    The partners Bosch, Metaplas Ionon and Roth and Rau developed dry lubricant coatings on a carbon coating base. The cutting tools used for the testing were developed in former dry cutting projects especially for cutting with minimum quantity lubrication (MQL). The coatings were tested in cutting and metal forming. After tribological testing at the coating companies the deposited coatings were evaluated by machining tests in drilling, thread forming and metal forming at the universities of Darmstadt and Kassel. The best coatings were tested in production field tests (laboratory) or, if possible, in the production at company Bosch and at other end users of the joint project. It was possible to show that carbon coatings are very good at punching and sheet bending. Also at drilling and thread forming in cast iron and low alloyed steels the results are good enough for production. The results at drilling and thread forming in aluminium alloys and high alloyed steels (X90CrMoV18) were not good enough for production under dry conditions. But testing with a reduced amount of MQL (6ml/h) showed better cutting parameters than commercial coatings. Also cutting length and quality of the parts are better. Even with the best coatings it was not possible to make dry massive forming with reduced temperature. At these high temperatures and high surface pressures it was not possible to work without lubricants. (orig.) [German] Im Projekt wurden von den Partnern Bosch, Metaplas Ionon und Roth and Rau Trockenschmierstoffschichten auf Kohlenstoffbasis entwickelt. Diese wurden auf Werkzeuge abgeschieden, deren Geometrien in bereits abgeschlossenen Projekten fuer die Trockenzerspannung mit Minimalmengenschmierung optimiert wurden. Die Schichten sind fuer die Zerspannung und Umformtechnik vorgesehen. An tribologische Tests bei den Beschichtern schlossen sich Filtertests an den Hochschulen Darmstadt und Kassel an, bei denen die Schichten in Bohr-, Gewindeform- und Umformtests untersucht

  10. Study of the Thermal Decomposition of PFPEs Lubricants on a Thin DLC Film Using Finitely Extensible Nonlinear Elastic Potential Based Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Deb Nath, S.K.; Deb Nath, S.K.; Wong, C.H.; Deb Nath, S.K.

    2014-01-01

    Perfluoro polyethers (PFPEs) are widely used as hard disk lubricants for protecting carbon overcoat reducing friction between the hard disk interface and the head during the movement of head during reading and writing data in the hard disk. Due to temperature rise of PFPE Zdol lubricant molecules on a DLC surface, how polar end groups are detached from lubricant molecules during coating is described considering the effect of temperatures on the bond/break density of PFPE Zdol using the coarse-grained bead spring model based on finitely extensible nonlinear elastic potential. As PFPE Z contains no polar end groups, effects of temperature on the bond/break density (number of broken bonds/total number of bonds) are not so significant like PFPE Zdol. Effects of temperature on the bond/break density of PFPE Z on DLC surface are also discussed with the help of graphical results. How bond/break phenomenon affects the end bead density of PFPE Z and PFPE Zdol on DLC surface is discussed elaborately. How the overall bond length of PFPE Zdol increases with the increase of temperature which is responsible for its decomposition is discussed with the help of graphical results. At HAMR condition, as PFPE Z and PFPE Zdol are not suitable lubricant on a hard disk surface, it needs more investigations to obtain suitable lubricant. We study the effect of breaking of bonds of nonfunctional lubricant PFPE Z, functional lubricants such as PFPE Zdol and PFPE Ztetrao, and multi dented functional lubricants such as Ar-DS, ARJ-DD, and OHJ-DS on a DLC substrate with the increase of temperature when heating of all of the lubricants on a DLC substrate is carried out isothermally using the coarse-grained bead spring model by molecular dynamics simulations and suitable lubricant is selected which is suitable on a DLC substrate at high temperature.

  11. Study of the Thermal Decomposition of PFPEs Lubricants on a Thin DLC Film Using Finitely Extensible Nonlinear Elastic Potential Based Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2014-01-01

    Full Text Available Perfluoropolyethers (PFPEs are widely used as hard disk lubricants for protecting carbon overcoat reducing friction between the hard disk interface and the head during the movement of head during reading and writing data in the hard disk. Due to temperature rise of PFPE Zdol lubricant molecules on a DLC surface, how polar end groups are detached from lubricant molecules during coating is described considering the effect of temperatures on the bond/break density of PFPE Zdol using the coarse-grained bead spring model based on finitely extensible nonlinear elastic potential. As PFPE Z contains no polar end groups, effects of temperature on the bond/break density (number of broken bonds/total number of bonds are not so significant like PFPE Zdol. Effects of temperature on the bond/break density of PFPE Z on DLC surface are also discussed with the help of graphical results. How bond/break phenomenonaffects the end bead density of PFPE Z and PFPE Zdol on DLC surface is discussed elaborately. How the overall bond length of PFPE Zdol increases with the increase of temperature which is responsible for its decomposition is discussed with the help of graphical results. At HAMR condition, as PFPE Z and PFPE Zdol are not suitable lubricant on a hard disk surface, it needs more investigations to obtain suitable lubricant. We study the effect of breaking of bonds of nonfunctional lubricant PFPE Z, functional lubricants such as PFPE Zdol and PFPE Ztetrao, and multidented functional lubricants such as ARJ-DS, ARJ-DD, and OHJ-DS on a DLC substrate with the increase of temperature when heating of all of the lubricants on a DLC substrate is carried out isothermally using the coarse-grained bead spring model by molecular dynamics simulations and suitable lubricant is selected which is suitable on a DLC substrate at high temperature.

  12. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  13. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    OpenAIRE

    The-Vinh Do; Quang-Cherng Hsu

    2016-01-01

    As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....

  14. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    Science.gov (United States)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2

  15. The structure and formation of functional hard coatings: a short review

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available Turning tools come in different shapes and sizes, geometry, base material and coating, according to their destination. They are widely used both for obtaining parts and for machinability tests. In this paper a short review about high-speed steel (HSS turning tools and their coatings is presented. Hard coatings formed on the tool material should be functional depending on the tool final application. Requirements for hard coatings and technological problems for layer formation on the real cutting tool are discussed.

  16. A three-dimensional model for lubricant depletion under sliding condition on bit patterned media of hard disk drives

    Science.gov (United States)

    Wu, Lin

    2018-05-01

    In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.

  17. Effect of Argon Flow Rate on the Tribological Performance of Self-lubricating WS2/a-C Sputtered Coating

    NARCIS (Netherlands)

    Cao, Huatang; De Hosson, J.T.M.; Pei, Yutao T.

    2016-01-01

    Layered transition metal dichalcogenides (TMD) such as WS2 are well-known materials for their solid lubricating properties [1]. However, the lubricating performance degrades through oxidation or moisture and it is also limited by its low load-bearing capacity. In contrast amorphous diamond-like

  18. Development of surface coatings for air-lubricated, compliant journal bearings to 650 C

    Science.gov (United States)

    Bhushan, B.; Gray, S.

    1978-01-01

    Surface coatings for an air-lubricated, compliant journal for an automotive gas turbine engine were tested to find those capable of withstanding temperatures of either 540 C (1000 F) or 650 C (1200 F). Also, the coatings have to be capable of surviving the start-stop sliding contact cycles prior to rotor lift-off and at touchdown. Selected coating combinations were tested in start-stop tests at 14 kPa (2 psi) loading for 2000 cycles at room and maximum temperatures. Specific coating recommendations are: Cdo and graphite on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS-120 (Tribaloy 400, silver, and CaF2) on journal versus uncoated foil up to 540 C (1000 F); and chemically adherent Cr2O3 on journal and foil up to 650 C (1200 F). The chemically adherent Cr2O3 coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  19. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  20. Optimization of wear behavior of electroless Ni-P-W coating under dry and lubricated conditions using genetic algorithm (GA

    Directory of Open Access Journals (Sweden)

    Arkadeb Mukhopadhyay

    2016-12-01

    Full Text Available The present study aims to investigate the tribological behavior of Ni-P-W coating under dry and lubricated condition. The coating is deposited onto mild steel (AISI 1040 specimens by the electroless method using a sodium hypophosphite based alkaline bath. Coating characterization is done to investigate the effect of microstructure on its performance. The change in microhardness is observed to be quite significant after annealing the deposits at 400°C for 1h. A pin–on–disc type tribo-tester is used to investigate the tribological behavior of the coating under dry and lubricated conditions. The experimental design formulation is based on Taguchi’s orthogonal array. The design parameters considered are the applied normal load, sliding speed and sliding duration while the response parameter is wear depth. Multiple regression analysis is employed to obtain a quadratic model of the response variables with the main design parameters under considerations. A high value of coefficient of determination of 95.3% and 87.5% of wear depth is obtained under dry and lubricated conditions, respectively which indicate good correlation between experimental results and the multiple regression models. Analysis of variance at a confidence level of 95% shows that the models are statistically significant. Finally, the quadratic equations are used as objective functions to obtain the optimal combination of tribo testing parameters for minimum wear depth using genetic algorithm (GA.

  1. Fabrication and performance tests of a prototype in-situ coating machine for JT-60

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Abe, Tetsuya; Murakami, Yoshio

    1987-09-01

    Prior to the design and construction of the JT-60's in-situ coating device, a prototype machine was fabricated and tested to confirm the applicability of proposed driving methods and mechanical elements to the device which would be operated in very severe conditions including high ambient temperature and high vacuum. The machine basically consists of an in-vessel manipulator, a fiberscope and an ohmically heated titanium evaporator. From the test results, we recommended to use the combination of Inconel 625 and a self-lubricating alloy for the solid-lubricated bearings and MoS 2 -coated Inconel 625 for the solid-lubricated gears. It was also found that TiC coating showed a effect for the prevention of welding between bolts and nuts. In order to optimize the operating parameters of the machine, many wall inspection tests and titanium evaporation tests were carried out in a large vacuum vessel by simulating the JT-60 conditions. (author)

  2. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  3. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    Science.gov (United States)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  4. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  5. Corrosion performance of some titanium-based hard coatings

    International Nuclear Information System (INIS)

    Matthes, B.; Broszeit, E.; Aromaa, J.; Ronkainen, H.; Hannula, S.P.; Leyland, A.; Matthews, A.

    1991-01-01

    Tools and machine parts which could benefit from wear-resistant titanium-based hard films are often subject to corrosive environments. Physically vapour-deposited coatings frequently exhibit porosity and even small defects, which can cause rapid local corrosion of the substrate material; there is therefore a requirement for dense and chemically inert coatings. This paper presents corrosion data for titanium-based hard coatings such as TiN, (Ti, Al)N, Ti(B, N) and TiB 2 and also for multilayered structures where additional aluminium-based insulating surface layers (AlN and Al 2 O 3 ) were deposited. The corrosion resistance and porosity of the films were analysed by electrochemical techniques. The degree of metallic bonding can play a significant role in influencing the corrosion resistance of refractory transition-metal-based ceramic coatings. Here we demonstrate that, under potentiodynamic corrosion test conditions, resistance to corrosive attack was relatively poor for TiB 2 , better for (Ti, Al)N and Ti(B, N) and best for TiN. It is also shown that applying the additional protective aluminium-based insulating surface layers on the coating can further improve corrosion resistance. (orig.)

  6. Oil and natural gas technology review-lubrication and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Moos, J

    1966-01-01

    A summary is presented of the advances made during 1967 in the following areas: production and transmission of natural gas; geosciences; drilling and production technology; secondary recovery; transportation by tanker, pipelines, and tank cars; storage; planning of refineries; control and automation; cracking and gasification of crude oil; separation and hydrogenation processes; petrochemicals; combustion technology; fuels and additives; air and water pollution control; production of lubricants; lubrication with mist, gas, and vapors; hydraulic fluids; lubricant additives; oxidation and aging of oils; greases; solid lubricants; bearings; machining; friction and wear; and changes in materials of construction. (220 refs.)

  7. Microdistribution of phases and substructure of the composite electrolytic self-lubricating copper-molybdenite coating

    International Nuclear Information System (INIS)

    Pribysh, I.Z.; Bakakin, G.N.; Borzyak, A.G.; Sajfullin, R.S.

    1978-01-01

    The influence of MoS 2 particles on the substructure of a copper matrix was studied, and their location in the composition was established. It is shown that the presence of molybdenite causes a variation in the conditions of electrical crystallization of copper. The optimum composition has been found, which is used as a self-lubricating coating for friction machine parts

  8. Nanolaminated TiN/Mo2N hard multilayer coatings

    International Nuclear Information System (INIS)

    Martev, I N; Dechev, D A; Ivanov, N P; Uzunov, T S D; Kashchieva, E P

    2010-01-01

    The paper presents results on the synthesis of hard multilayer coatings consisting of titanium nitride and molybdenum nitride thin films with thickness of several nm. The TiN and Mo 2 N films were successively deposited by reactive DC magnetron sputtering. These multilayer structures were investigated by Auger electron spectroscopy (AES), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), cross-section scanning electron microscopy (CSSEM) and cross-section electron probe microanalysis (CSEPMA). The mechanical properties of the multilayer coatings, namely, hardness, Young's modulus and the coefficient of plastic deformation were measured. The adhesion was evaluated by the Rockwell-C-impact test. Coatings with different total thickness were examined with respect to adhesion to substrates of tool materials.

  9. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    International Nuclear Information System (INIS)

    Song, Jian; Liu, Yuhong; Liao, Zhenhua; Wang, Song; Tyagi, Rajnesh; Liu, Weiqiang

    2016-01-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO 2 composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO 2 composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO 2 coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO 2 nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO 2 nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive wear were the dominant wear

  10. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  11. FY 2000 report on the results of the technology development of energy use reduction of machine tools. Development of dry cutting use abrasion resistant/lubricous coated tools; 2000 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Dry sessakuyo taimamo junkatsusei hifuku kogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of energy conservation and reduction of environmental loads of machine tools, study was conducted on the dry cutting which is the cutting with no use of cutting oil, and the FY 2000 results were summed up. The study was made on dry cutting use abrasion resistance/lubricous coated tools coated with the composite membrane of which the cutting life become little lower than that of existing tools using coolant. In the survey of abrasion resistant/lubricous films, it was found out that in the adhesion to ultra-hard substrates, the DLC single-layer film consisting only of carbon indicated the same excellent adhesion as intermediate-layer inserts. As to the synthesis of abrasion resistant/lubricous films, the synthesis of the composite membrane (WC/C membrane) consisting of tungsten carbide (WC) and carbon (C) was made using arc ion plating device. The WC/C membrane is composed of W and C and has the structure in which at nm levels the layer with much W and the layer with less W were alternately piled. Study was made of devices necessary for the development of abrasion resistant/lubricous films and the film formation for drill. (NEDO)

  12. Effect of nanoparticles as lubricant additives on friction and wear behavior of tetrahedral amorphous carbon (ta-C coating

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2018-03-01

    Full Text Available As diamond like carbon (DLC coating becomes increasingly popular in providing low friction and wear under lubricated conditions, the effect of various oil additives on tribological behavior of DLC coating is drawing more attention. Various oil additives, such as ZnDTP and MoDTC, have been widely used in automobile engine industry to pursuit excellent tribological performance in the insufficient lubrication condition. Although such commercial oil additives have been proven to reduce friction or/and wear to some extent, usage of such high -SAPS (sulphuric ash, phosphor, sulfphur conventional additives is bound to arouse concerns due to environmental reasons. In this research, we investigate the effect of two nanoparticle oil additives, which are cerium oxide (CeO2 and zirconium dioxide (ZrO2, on friction and wear of non-hydrogen tetrahedral amorphous carbon (ta-C coating. The results show that by adding ZrO2 nanoparticle, the friction of DLC coating could be reduced about 32% compared to non-additive base oil scenario, but specific wear rate increases by 40%. When CeO2 nanoparticle is used, friction increases by 22% compared to non-additive base oil scenario, however wear decreases by nearly 77%.

  13. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  14. Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments

    Science.gov (United States)

    Muratore, C.; Voevodin, A. A.

    2009-08-01

    Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.

  15. Tough-coated hard powders for hardmetals of novel properties

    International Nuclear Information System (INIS)

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  16. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Liu, Xiu-Bo; Meng, Xiang-Jun; Liu, Hai-Qing; Shi, Gao-Lian; Wu, Shao-Hua; Sun, Cheng-Feng; Wang, Ming-Di; Qi, Long-Hao

    2014-01-01

    Highlights: • A novel high temperature self-lubricating anti-wear composite coating was fabricated. • Reinforced carbides as well as self-lubricating sulfides were in situ synthesized. • Microhardness of the Ti–6Al–4V substrate was significantly improved. • Friction coefficient and wear rate of the composite coating were greatly reduced. - Abstract: To enhance the wear resistance and friction-reducing capability of titanium alloy, a process of laser cladding γ-NiCrAlTi/TiC + TiWC 2 /CrS + Ti 2 CS coatings on Ti–6Al–4V alloy substrate with preplaced NiCr/Cr 3 C 2 –WS 2 mixed powders was studied. A novel coating without cracks and few pores was obtained in a proper laser processing. The composition and microstructure of the fabricated coating were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) techniques, and tribological properties were evaluated using a ball-on-disc tribometer under dry sliding wear test conditions at 20 °C (room-temperature), 300 °C, 600 °C, respectively. The results show that the coating has unique microstructure consisting of α-Ti, TiC, TiWC 2 , γ-NiCrAlTi, Ti 2 CS and CrS phases. Average microhardness of the composite coating is 1005 HV 0.2 , which is about 3-factor higher than that of Ti–6Al–4V substrate (360 HV 0.2 ). The friction coefficient and wear rate of the coating are greatly decreased due to the combined effects of the dominating anti-wear capabilities of reinforced TiC and TiWC 2 carbides and the CrS and Ti 2 CS sulfides which have excellent self-lubricating property

  18. Wear studies on ZrO{sub 2}-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Yuhong, E-mail: liuyuhong@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua; Wang, Song [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Tyagi, Rajnesh [Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005 (India); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2016-12-01

    Polyetheretherketone (PEEK) and its composite coatings are believed to be the potential candidates' bio-implant materials. However, these coatings have not yet been used on the surface of titanium-based orthopedics and joint products and very few investigations on the tribological characteristics could be found in the published literature till date. In this study, the wettabilities, composition and micro-hardness were characterized using contact angle measurement, scanning electron microscopy (SEM) and hardness tester. The tribological tests were conducted using a ball-on-disc contact pair under 25% newborn calf serum (NCS) lubricated condition. For comparison, bare Ti6Al4V was studied. The obtained results revealed that those PEEK/ZrO{sub 2} composite coatings could improve the tribological properties of Ti6Al4V significantly. Adhesive wear and mild abrasive wear might be the dominant wear and failure mechanisms for PEEK/ZrO{sub 2} composite coatings in NCS lubricated condition. After comprehensive evaluation in the present study, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Graphical abstract: Polyetheretherketone (PEEK) is a type of biomaterial which might be used in surface modification. In this study, the wettabilities, composition, hardness, friction and wear characteristics of PEEK/ZrO{sub 2} coatings were investigated, compared with bare Ti6Al4V sample. After comprehensive evaluation, 5 wt.% ZrO{sub 2} nanoparticles filled PEEK coating displayed the optimum tribological characteristics and could be taken as a potential candidate for the bearing material of artificial cervical disc. - Highlights: • PEEK coating were filled by ZrO{sub 2} nanoparticles with different weight percentage. • The lubrication regime of all the tested samples are boundary lubrication. • Adhesive wear and mild abrasive

  19. Cover layer technology and a new hard coat for cartridge-free Blu-ray disc

    Science.gov (United States)

    Kang, Tae-Sik; Han, Mi Young; Lee, Seong-Keun; Jang, Sung Hoon; Hong, Young Jun; Seo, Hun; Lee, Chang-Ho

    2004-09-01

    Spin coating method for cover layer of Blu-ray Disc (BD) has been studied and a new hard coat resin including antifouling property has been developed. A vacuum chuck was newly designed to minimize the ski-jump effect. 3 mm hard coat layer was stacked onto the 97 mm cover layer by spin coating method.

  20. Tribology and Microstructure of PS212 with a Cr2O3 Seal Coat

    Science.gov (United States)

    Sliney, Harold E.; Benoy, Patricia A.; Korenyi-Both, Andras; Dellacorte, Christopher

    1994-01-01

    PS212 is a plasma sprayed metal bonding chrome carbide coating with solid lubricant additives which has lubricating properties at temperatures up to about 900 deg C. The coating is diamond ground to achieve an acceptable tribological surface. But, as with many plasma spray coatings, PS212 is not fully-dense. In this study, a chromium oxide base seal coating is used in an attempt to seal any porosity that is open to the surface of the PS212 coating, and to study the effect of the sealant on the tribological properties of PS212. The results indicate that the seal coating reduces friction and wear when it is applied and then diamond ground leaving a thin layer of seal coating which fills in the surface pits of the PS212 coating.

  1. Lubricating graphene with a nanometer-thick perfluoropolyether

    International Nuclear Information System (INIS)

    Kozbial, Andrew; Li, Zhiting; Iasella, Steven; Taylor, Alexander T.; Morganstein, Brittni; Wang, Yongjin; Sun, Jianing; Zhou, Bo; Randall, Nicholas X.; Liu, Haitao; Li, Lei

    2013-01-01

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion

  2. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction

    Science.gov (United States)

    de Barros Bouchet, Maria Isabel; Martin, Jean Michel; Avila, José; Kano, Makoto; Yoshida, Kentaro; Tsuruda, Takeshi; Bai, Shandan; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji; Asensio, Maria C.

    2017-04-01

    The achievement of the superlubricity regime, with a friction coefficient below 0.01, is the Holy Grail of many tribological applications, with the potential to have a remarkable impact on economic and environmental issues. Based on a combined high-resolution photoemission and soft X-ray absorption study, we report that superlubricity can be realized for engineering applications in bearing steel coated with ultra-smooth tetrahedral amorphous carbon (ta-C) under oleic acid lubrication. The results show that tribochemical reactions promoted by the oil lubrication generate strong structural changes in the carbon hybridization of the ta-C hydrogen-free carbon, with initially high sp3 content. Interestingly, the macroscopic superlow friction regime of moving mechanical assemblies coated with ta-C can be attributed to a few partially oxidized graphene-like sheets, with a thickness of not more than 1 nm, formed at the surface inside the wear scar. The sp2 planar carbon and oxygen-derived species are the hallmark of these mesoscopic surface structures created on top of colliding asperities as a result of the tribochemical reactions induced by the oleic acid lubrication. Atomistic simulations elucidate the tribo-formation of such graphene-like structures, providing the link between the overall atomistic mechanism and the macroscopic experimental observations of green superlubricity in the investigated ta-C/oleic acid tribological systems.

  3. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant

    DEFF Research Database (Denmark)

    Samoilov, V. N.; Sivebæk, Ion Marius; Persson, B. N. J.

    2004-01-01

    We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C8H18) lubricant. We used two types of substrate-flat and corrugated-and varied the lubricant coverage from similar to1/8 to similar to4 ML (monolayers...

  4. Hard coatings by plasma CVD on polycarbonate for automotive and optical applications

    International Nuclear Information System (INIS)

    Schmauder, T.; Nauenburg, K.-D.; Kruse, K.; Ickes, G.

    2006-01-01

    In many applications, plastic surfaces need coatings as a protection against abrasion or weathering. Leybold Optics is developing Plasma CVD processes and machinery for transparent hard coatings (THC) for polycarbonate parts. In this paper we present the current features and remaining challenges of this technique. The coatings generally show excellent adhesion. Abrasion resistance is superior to commonly used lacquers. Climate durability of the coating has been improved to pass the tests demanded by automotive specifications. Current activities are focused on improving the durability under exposure to UV radiation. Estimations show that our high-rate plasma CVD hard coating process is also economically competitive to lacquering

  5. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  6. Thermal stability of solid lubricant element MoS2 in injection molded parts of 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Furlan, K.P.; Binder, C.; Klein, A.N.

    2009-01-01

    Sintered copper-based parts with self-lubricating properties are, nowadays, extensively employed, e.g. in automotive bushes. However, in such components, the liquid lubricant is added after the sintering stage. Recent developments have attempted to substitute the liquid lubricant for a solid one (which is incorporated during the mixing step), aiming operations under extreme conditions where liquids may be ineffective. For powder injection molding (PIM) market, stainless steels are the widest-ranging application group. In this study composites of 17-4 PH stainless steel with 10% vol. of molybdenum disulfide solid lubricant were prepared by PIM. The sintering of the compacts was carried out at various temperatures ranging from 650 to 1300 deg C. The composite structure was analyzed by SEM/EDS, and the phases formed were identified by XRD. Results indicated decomposition of MoS 2 during the sintering cycle, for temperatures above 650 deg C, with formation of others sulfides and supplementary diffusion of molybdenum into the matrix. (author)

  7. Tethered Lubricants for Small Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lynden A. Archer

    2006-01-09

    The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effect of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.

  8. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  9. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Taposh; Pingguan-Murphy, Belinda; Choudhury, Dipankar; Bin Mamat, Azuddin; Masjuki, H H

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. (paper)

  10. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  11. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    Directory of Open Access Journals (Sweden)

    The-Vinh Do

    2016-03-01

    Full Text Available As a successful solution applied to hard machining, the minimum quantity lubricant (MQL has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness. The L9 orthogonal array, the signal-to-noise (S/N ratio and analysis of variance (ANOVA were employed to analyze the effect of the performance characteristics of MQL parameters (i.e., cutting fluid type, pressure, and fluid flow on good surface finish. In the results section, lubricant and pressure of MQL condition are determined to be the most influential factors which give a statistically significant effect on machined surfaces. A verifiable experiment was conducted to demonstrate the reliability of the results. In the second section, the optimized MQL parameters were applied in a series of experiments to find out cutting parameters of hard milling. The Taguchi method was also used to optimize the cutting parameters in order to obtain the best surface roughness. The design of the experiment (DOE was implemented by using the L27 orthogonal array. Based on an analysis of the signal-to-noise response and ANOVA, the optimal values of cutting parameters (i.e., cutting speed, feed rate, depth-of-cut and hardness of workpiece were introduced. The results of the present work indicate feed rate is the factor having the most effect on surface roughness.

  12. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    Science.gov (United States)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  13. Preparation and Tribological Properties of Dual-Coated TiO2 Nanoparticles as Water-Based Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Yue Gu

    2014-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 were synthesized and then dual-coated with silane coupling agent (KH-570 and OP-10 in sequence in order to be dispersed stably in water as lubricant additives. The tribological properties and the application performance in Q235 steel machining of the nanoparticles as water-based lubricant additives were investigated on an MSR-10D four-ball tribotester and on a bench drilling machine, respectively. Scanning electron microscope (SEM and atomic force microscope (AFM were used to analyze the worn surface. The results show that the surface-modified TiO2 nanoparticles can remarkably improve the load-carrying capacity, the friction reducing, and anti wear abilities of pure water. The wear scar diameter and the coefficient of friction of the water-based lubricating fluids with TiO2 nanoparticles decreased, and the thick deep furrows on the surface of wear scar also decreased obviously with the increase of TiO2 concentration. The power consumption in drilling process was lower and the cutting surface was smoother using the water-based lubricating fluids added TiO2 nanoparticles compared to the fluid without addition. The reason for nanoparticles improving tribological properties of water based lubricating fluid might be the formation of a dynamic deposition film during rubbing process according to analysis of the worn surface.

  14. Lubrication of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Gaydos, P.A.; Dufrane, K.F.

    1989-01-01

    In support of efforts to apply ceramics to advanced heat engines, a study was performed of the wear mechanisms of ceramics at the ring/cylinder interface. A laboratory apparatus was constructed to reproduce most of the conditions of an actual engine but used easily prepared ring and cylinder specimens to facilitate their fabrication. Plasma-sprayed coatings of Cr 2 O 3 and hypersonic flame-sprayed coatings of cobalt-bonded WC performed particularly well as ring coatings. Similar performance was obtained with these coatings operating against SiC, Si 3 N 4 , SiC whisker-reinforced Al 2 O 3 and Cr 2 O 2 coatings. The study demonstrated the critical need for lubrication and evaluated the performance of two available lubricants

  15. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    Science.gov (United States)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  16. Investigation of the Influence of Ni Doping on the Structure and Hardness of Ti-Ni-C Coatings

    Directory of Open Access Journals (Sweden)

    J. Daniel

    2017-01-01

    Full Text Available Nanocomposite nc-TiC/a-C:H thin films exhibit unique combination of mechanical properties, high hardness, low friction, and wear. Selective doping by weak-carbide forming element can be used in order to specifically design the physical and chemical properties of nc-TiC/a-C:H coatings. In this paper we report on an effect of nickel addition on structure and hardness of the nc-TiC/a-C:H coatings. The effect of Ni alloying on the coating structure under conditions of DCMS and HiPIMS depositions was studied. The coating structure was correlated with the coating hardness. The grain size, the grain carbon vacancy concentration, and the mean grain separation were found to be the key parameters determining the coating hardness. Ni doping proved to have a significant effect on the coating microstructure which resulted in changes of the hardness of the deposited coatings.

  17. INFLUENCE OF THE THICKNESS OF Ni-P COATING APPLIED ON 7075 ALUMINUM ALLOY ON ITS HARDNESS

    Directory of Open Access Journals (Sweden)

    Kazimierz Czapczyk

    2016-12-01

    Full Text Available The paper presents the results of hardness tests of aluminum alloy AW-7075 (for plastic processing and Ni-P chemical coatings (nickel-phosphorus which had been applied by the no-current method. Coatings of various thickness have been made and their influence on the increase of the top layer hardness has been determined, as well as the increase of the hardness of the coating and substrate system after puncturing the coating with an indenter. The purpose of the investigation was to determine the possibility of applying the Ni-P coating for selected technical applications, among others, by the selection of its optimum thickness on the hard aluminum alloy and by the determination of the deformation resistance of the top layer if the given coating.

  18. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    Science.gov (United States)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon

  19. Towards green lubrication in machining

    CERN Document Server

    Liew Yun Hsien, Willey

    2014-01-01

    The book gives an overview of environmental friendly gaseous and vapour, refrigerated compressed gas, solid lubricant, mist lubrication, minimum quantity lubrication (MQL) and vegetable oils that can be used as lubricants and additives in industrial machining applications. This book introduces vegetable oils as viable and good alternative resources because of their environmental friendly, non-toxic and readily biodegradable nature.  The effectiveness of various types of vegetables oils as lubricants and additives in reducing wear and friction is discussed in this book. Engineers and scientist working in the field of lubrication and machining will find this book useful.

  20. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  1. A comparative tribological study of chromium coatings with different specific hardness

    International Nuclear Information System (INIS)

    Darbeida, A.; Von Stebut, J.; Barthole, M.; Belliard, P.; Lelait, L.

    1995-06-01

    The wear resistance in dry friction of two electrolytic and two pVD hard chromium coatings deposited on construction steel substrates is studied by means of standard pin on disc multi-pass, unidirectional operation. For both of these friction modes low cycle high load operation with cemented carbide pins leads to essentially coatings hardness controlled, abrasive wear. For these well adhering commercial coatings (both for through thickness cracking and for spalling failure) assessed by standard testing, are inadequate for quality ranking with respect to wear resistance. Steady state friction corresponds to a stabilised third body essentially composed of chromium oxide. (authors). 13 refs., 7 figs., 1 tab

  2. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  3. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  4. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  5. Study of adsorption states for lubricant molecule using hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Ikenaga, E.; Kobata, M.; Kim, J.J.; Wakabayashi, A.; Nishino, Y.; Tamasaku, K.; Sakane, Y.; Ishikawa, T.; Komiya, S.; Kobayashi, K.

    2007-01-01

    The adsorption states for lubricant molecules have been investigated using hard X-ray (hν = 7.95 keV) photoemission spectroscopy (HX-PES). This method has the advantage for the organic molecules to be able to measure damage few. Being aware of the fact that P atoms exist only in cyclotriphosphazene base, we measured the take-off angle dependence of the P1s spectra. Each spectrum consists from two peaks, that is, substrate NiP peak and cyclotriphosphazene P peak. The cyclotriphosphazene P peak rapidly disappears with increasing take-off angle. We have also measured C1s spectra. Combining these experimental results, we have found that the adsorption state of cyclotriphosphazene end group is undergoing

  6. The Effect of Tic Coated Balls and Stress on the Lubricant Lifetime of a Synthetic Hydrocarbon (pennzane 2001A) Using a Vacuum Spiral Orbit Tribometer

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Wheeler, Donald R.; Schroeer, Achim; Fluehmann, Freddy; Loewenthal, Stuart H.; Shogrin, Bradley A.

    2000-01-01

    A vacuum spiral orbit rolling contact tribometer was used to determine effect of varying mean Hertzian stress (1.0, 1.5, 2.0 GPa) and the use of 440C and TiC coated 440C balls on lubricant lifetime of a synthetic hydrocarbon (Pennzane 2001A) on 440C stainless steel. Conditions included 210 rpm, approx. 50 micrograms lubricant, an initial vacuum TiC coated 440C ball showed no increase in lifetime over the 440C ball. The decreasing lifetime with increasing stress level correlated well with energy dissipation calculations.

  7. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  8. Accompanying of parameters of color, gloss and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    International Nuclear Information System (INIS)

    Gonçalves Bardi, Marcelo Augusto; Brocardo Machado, Luci Diva

    2012-01-01

    In the search for alternatives to traditional paint systems solvent-based, the curing process of polymer coatings by ultraviolet light (UV) has been widely studied and discussed, especially because of their high content of solids and null emission of VOC. In UV-curing technology, organic solvents are replaced by reactive diluents, such as monomers. This paper aims to investigate variations on color, gloss and hardness of print inks cured by different UV radiation doses. The ratio pigment/clear coating was kept constant. The clear coating presented higher average values for König hardness than pigmented ones, indicating that UV-light absorption has been reduced by the presence of pigments. Besides, they have indicated a slight variation in function of cure degree for the studied radiation doses range. The gloss loss related to UV light exposition allows inferring that some degradation occurred at the surface of print ink films. - Highlights: ► Color, gloss and hardness are directly influenced by the different pigments. ► Clear coating analysis indicates reduction on UV-light absorption. ► Color and gloss indices indicated aeration in function of cure degree.

  9. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets.

    Science.gov (United States)

    Late, Sameer G; Yu, Yi-Ying; Banga, Ajay K

    2009-01-05

    Effects of calcium silicate (disintegration-promoting agent) and various lubricants on an optimized beta-cyclodextrin-based fast-disintegrating tablet formulation were investigated. Effects of moisture treatment were also evaluated at 75, 85 and 95% relative humidities. A two factor, three levels (3(2)) full factorial design was used to optimize concentrations of calcium silicate and lubricant. Magnesium stearate, being commonly used lubricant, was used to optimize lubricant concentration in optimization study. Other lubricants were evaluated at an obtained optimum concentration. Desiccator with saturated salt solutions was used to analyze effects of moisture treatments. Results of multiple linear regression analysis revealed that concentration of calcium silicate had no effect; however concentration of lubricant was found to be important for tablet disintegration and hardness. An optimized value of 1.5% of magnesium stearate gave disintegration time of 23.4 s and hardness of 1.42 kg. At an optimized concentration, glycerol dibehenate and L-leucine significantly affected disintegration time, while talc and stearic acid had no significant effect. Tablet hardness was significantly affected with L-leucine, while other lubricants had no significant effect. Hardness was not affected at 75% moisture treatment. Moisture treatment at 85 and 95% increased hardness of the tablets; however at the same time it negatively affected the disintegration time.

  10. A comparison of the performance of solid and liquid lubricants in oscillating spacecraft ball bearings

    Science.gov (United States)

    Gill, S.

    1994-01-01

    The European Space Tribology Laboratory (ESTL) has been engaged in a program to compare the performance of oscillating ball bearings when lubricated by a number of space lubricants, both liquid and solid. The results have shown that mean torque levels are increased by up to a factor of five above the normal running torque, and that often torque peaks of even greater magnitudes are present at the ends of travel. It is believed that these effects are caused by a build-up of compacted debris in the contact zone, thus reducing the ball/race conformity ratio.

  11. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  12. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  13. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  14. Investigation on hard coating of pivot-jewel bearing and wearing performance

    International Nuclear Information System (INIS)

    Han Kun; Dai Xingjian

    2014-01-01

    The reliability of high speed rotating machine is related to the anti-wear properties of pivot jewel bearing used in the system. To reduce its wearing process, hard coating method is used on the steel pivot. Through the wearing test on specialized facilities, its founded that the TiN coating shows better performance than DLC coating, and multi-layer TiN coating can slow down the pivot's wearing process obviously compared to other methods. (authors)

  15. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    Science.gov (United States)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  16. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy

    International Nuclear Information System (INIS)

    Malayoglu, Ugur; Tekin, Kadir C.; Malayoglu, Ufuk; Shrestha, Suman

    2011-01-01

    Highlights: → Mechanical properties of PEO and anodised coatings were studied using ultra-micro hardness tester. → Elastic modulus and hardness of the PEO coating were found much higher than those of the anodised coating. → Improved sliding wear of PEO coating is due to presence of hard α and γ-Al 2 O 3 phases. - Abstract: A ceramic coating on AA6082 aluminum alloy prepared by plasma electrolytic oxidation (PEO) has been studied and compared against a sulphuric acid hard-anodized coating on the same alloy. Surface morphology and microstructures of the coatings have been examined by scanning electron microscopy. X-ray diffraction is used to determine the phase composition of the coatings. The adhesion strength of the coatings has been evaluated using a scratch test method. The coating's mechanical properties such elastic modulus and hardness data have been generated using a dynamic ultra-microhardness tester. Sliding wear tests with different loading rates are performed on the coatings in order to assess their wear resistance. Test results show that the PEO treated samples exhibit significantly better mechanical properties compared to hard anodized samples. The elastic modulus and hardness of the PEO coating are 2-3 times greater than of the hard anodized coating and subsequently, an improved wear resistance of the PEO coating has been achieved. The mechanical properties of the coatings and their relations to their tribological performance are discussed.

  17. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A study of the nanostructure and hardness of electron beam evaporated TiAlBN Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.A., E-mail: m.baker@surrey.ac.u [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Monclus, M.A. [National Physical Laboratory, Hampton Road, Teddington, TW11 0LW (United Kingdom); Rebholz, C. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Gibson, P.N. [Institute for Health and Consumer Protection, Joint Research Centre, I-21027 Ispra (Italy); Leyland, A.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-05-31

    TiAlBN coatings have been deposited by electron beam (EB) evaporation from a single TiAlBN material source onto AISI 316 stainless steel substrates at a temperature of 450 {sup o}C and substrate bias of - 100 V. The stoichiometry and nanostructure have been studied by X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. The hardness and elastic modulus were determined by nanoindentation. Five coatings have been deposited, three from hot-pressed TiAlBN material and two from hot isostatically pressed (HIPped) material. The coatings deposited from the hot-pressed material exhibited a nanocomposite nc-(Ti,Al)N/a-BN/a-(Ti,Al)B{sub 2} structure, the relative phase fraction being consistent with that predicted by the equilibrium Ti-B-N phase diagram. Nanoindentation hardness values were in the range of 22 to 32 GPa. Using the HIPped material, coating (Ti,Al)B{sub 0.29}N{sub 0.46} was found to have a phase composition of 72-79 mol.% nc-(Ti,Al)(N,B){sub 1-x}+ 21-28 mol.% amorphous titanium boride and a hardness of 32 GPa. The second coating, (Ti,Al)B{sub 0.66}N{sub 0.25}, was X-ray amorphous with a nitride+boride multiphase composition and a hardness of 26 GPa. The nanostructure and structure-property relationships of all coatings are discussed in detail. Comparisons are made between the single-EB coatings deposited in this work and previously deposited twin-EB coatings. Twin-EB deposition gives rise to lower adatom mobilities, leading to (111) (Ti,Al)N preferential orientation, smaller grain sizes, less dense coatings and lower hardnesses.

  19. Highly Damping Hard Coatings for Protection of Titanium Blades

    National Research Council Canada - National Science Library

    Movchan, Boris A; Ustinov, Anatolii I

    2005-01-01

    Sn-Cr-MgO system is used as an example to show the basic capability to produce by EBPVD protective metal-ceramic coatings with a high adhesion strength, high values of hardness and damping capacity...

  20. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  1. Improving the Friction Durability of Magnetic Head-Disk Interfaces by Thin Lubricant Films

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2016-01-01

    Full Text Available Nanowear and viscoelasticity were evaluated to study the nanotribological properties of lubricant films of Z-tetraol, D-4OH, and A20H, including their retention and replenishment properties. For A20H and thick Z-tetraol-coated disks, the disk surface partially protrudes, and the phase lag (tan⁡δ increases with friction. This result is consistent with replenishment of the lubricant upon tip sliding. For the D-4OH-coated disk, the tan⁡δ value decreases with tip sliding, similar to the case for the unlubricated disk. The durability of the lubricant-coated magnetic disks was then evaluated by load increase and decrease friction tests. The friction force of the unlubricated disk rapidly increases after approximately 30 reciprocating cycles, regardless of the load. The lubrication state can be estimated by mapping the dependence of friction coefficient on the reciprocating cycle number and load. The friction coefficient can be classified into one of four areas. The lowest friction area constitutes fluid lubrication. The second area constitutes the transition to mixed lubrication. The third area constitutes boundary lubrication. The highest friction of the fourth area results from surface fracture. The boundary lubricating area of the A20H lubricant was wide, because of its good retention and replenishment properties.

  2. Comparative study of dlc coatings by pvd against cvd technique on textile dents

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Iftikhar, F.

    2007-01-01

    Diamond like Carbon (DLC) film is a hard amorphous carbon hydride film formed by Physical or Chemical vapor deposition (PVD or CVD) techniques. Due to its unique properties especially high hardness, lower coefficient of friction and lubricious nature, these coatings are not only used to extend the life of cutting tools but also for non cutting applications such as for forming dies, molds and on many functional parts of textile. In the present work two techniques were employed i.e. PVD and CVD for deposition of diamond like carbon film on textile dents. These dents are used as thread guider in high speed weaving machine. The measurement of coating thickness, adhesion, hardness and roughness values indicates that overall properties of DLC coating developed by PVD LARC technology reduces abrasion and increases the workability and durability of textile dents as well as suppress the need of lubricants. (author)

  3. Lubrication of soft and hard interfaces with thermo-responsive F127 hydrogel

    DEFF Research Database (Denmark)

    Røn, Troels; Chronakis, Ioannis S.; Lee, Seunghwan

    2014-01-01

    of F127-20 also displayed varying lubricating properties, both in the lubricating mechanism and efficacy, as a function of temperature, speed and tribopairs. F127-20 was most effective in lubricating a soft interface (PDMSePDMS) based on its gel-forming properties in 22.5-60 °C and feasible formation...

  4. Life assessment of PVD based hard coatings by linear sweep voltammetry for high performance industrial application

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Irfan, M.; Hassan, Z.

    2006-01-01

    PVD based hard coatings have remarkable achievements in order to improve Tribological and surface properties of coating tools and dies. As PVD based hard coatings have a wide range of industrial applications especially in aerospace and automobile parts where they met different chemical attacks and in order to improve industrial performance these coatings must provide an excellent resistance against corrosion, high temperature oxidation and chemical reaction. This paper focuses on study of behaviour of PVD based hard coatings under different corrosive environments like as H/sub 2/SO/sub 4/, HCl, NaCl, KCl, NaOH etc. Corrosion rate was calculate under linear sweep voltammetry method where the Tafel extrapolation curves used for continuously monitoring the corrosion rate. The results show that these coatings have an excellent resistance against chemical attack. (author)

  5. Solid Lubrication of Laser Deposited Carbon Nanotube Reinforced Nickel Matrix Nanocomposites Preprint

    Science.gov (United States)

    2009-03-01

    thickness 440C stainless steel (SS) and the deposited composites had a square geometry in order to assure a uniform laser heat distribution during the...tested against (a) 440C stainless steel counterface with Pmax=0.6 GPa and (b) Si3N4 counterface with Pmax=0.8 GPa. Fig. 4. (a) Pure Ni and (c...decrease in friction coefficients compared to pure Ni. 15. SUBJECT TERMS Tribology , friction, wear, solid lubricant, carbon nanotubes, metal

  6. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  7. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cancan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Lei, E-mail: chenlei@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Huidi; Chen, Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China)

    2014-05-01

    Highlights: • A new kind of adaptive coatings was fabricated using relatively simple spraying techniques. • The tribological properties of Ag/MoS{sub 2} phosphate composite coatings were investigated at the temperature from 20 °C to 700 °C. • The composition and wear mechanisms of Ag/MoS{sub 2} phosphate composite coatings were also discussed. • The Ag/MoS{sub 2} phosphate composite coatings have self-repairing capability in the rubbing process at 700 °C. - Abstract: Adaptive phosphate composite coatings with addition of solid lubricants of molybdenum disulfide (MoS{sub 2}) and silver (Ag) using aluminum chromium phosphate as the binder were fabricated on high-temperature steel. The tribological properties of phosphate composite coatings were evaluated from room temperature (RT) to 700 °C. The phase composition and microstructure were investigated according to the characterization by power X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The results show that the composite coating with the Ag/MoS{sub 2} mass ratio of 2:1 exhibits the stable and low friction coefficients from RT to 700 °C and relative low wear rates at all testing temperatures. The tribo-chemical reaction between Ag and MoS{sub 2} occurred in the rubbing process to form silver molybdates compounds lubricating film. The temperature-adaptive tribological properties were attributed to the formation of lubricating films composed of lubricants silver, MoS{sub 2} and silver molybdates phases on the worn surfaces of the composites coatings in a wide-temperature range.

  8. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  9. The limits of application of variable-energy slow positron beams for investigating TiN hard coatings prepared by PVD

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; Szeles, Cs.; Lynn, K.G.

    2000-01-01

    Samples of TiN hard coatings prepared by physical vapour deposition (PVD) were investigated by means of depth-sensitive positron annihilation spectroscopy. The results indicate that the samples are at the limits of the applicability of this method presumably due to the high defect concentration. Though the samples are thoroughly characterized by other independent methods, they might not be sufficient to explain all aspects of positron-solid interactions in these cases. (author)

  10. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  11. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  12. Investigation of sputtered Mo2BC hard coatings : correlation of nanostructure and mechanical properties

    OpenAIRE

    Gleich, Stephan

    2017-01-01

    This thesis is dedicated to the study of Mo2BC coatings on silicon substrates. According to reported ab initio calculations in literature, which predicted a high stiffness and a moderate ductile behavior for the material, Mo2BC is a predestinated candidate to act as hard coating layer. The focus in this thesis is set on the nanostructure of Mo2BC hard coatings explored by transmission electron microscopy as a function of the used substrate temperature, applied during the deposition process us...

  13. Evaluating elastic modulus and strength of hard coatings by relative method

    International Nuclear Information System (INIS)

    Bao, Y.W.; Zhou, Y.C.; Bu, X.X.; Qiu, Y.

    2007-01-01

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method

  14. Evaluating elastic modulus and strength of hard coatings by relative method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); China Building Materials Academy, Beijing 100024 (China)], E-mail: ywbao@imr.ac.cn; Zhou, Y.C. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Bu, X.X. [China Building Materials Academy, Beijing 100024 (China); Qiu, Y. [China Building Materials Academy, Beijing 100024 (China)

    2007-06-15

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method.

  15. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Science.gov (United States)

    Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.

    2017-05-01

    During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  16. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Directory of Open Access Journals (Sweden)

    Pil Seung Chung

    2017-05-01

    Full Text Available During the operation of hard disk drive (HDD, the perfluoropolyether (PFPE lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic and loss (viscous moduli (G′ and G″ by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  17. Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology

    International Nuclear Information System (INIS)

    Washizu, Hitoshi; Sanda, Shuzo; Hyodo, Shi-aki; Ohmori, Toshihide; Nishino, Noriaki; Suzuki, Atsushi

    2007-01-01

    Friction control of machine elements on a molecular level is a challenging subject in vehicle technology. We describe the molecular dynamics studies of friction in two significant lubrication regimes. As a case of elastohydrodynamic lubrication, we introduce the mechanism of momentum transfer related to the molecular structure of the hydrocarbon fluids, phase transition of the fluids under high pressure, and a submicron thickness simulation of the oil film using a tera-flops computer. For boundary lubrication, the dynamic behavior of water molecules on hydrophilic and hydrophobic silicon surfaces under a shear condition is studied. The dynamic structure of the hydrogen bond network on the hydrophilic surface is related to the low friction of the diamond-like carbon containing silicon (DLC-Si) coating

  18. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    Directory of Open Access Journals (Sweden)

    S. Bhowmick

    2015-09-01

    Full Text Available Diamond like carbon (DLC coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al under unlubricated (40 % RH and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF values of H-DLC and W-DLC were 0.15 and 0.20. A lower COF value of 0.11 was observed when W-DLC was tested using lubricant oil incorporating sulphur while the H-DLC’s COF remained almost unchanged. The mechanisms responsible for the low friction of W-DLC observed during lubricated sliding were revealed by studying the compositions of the coating surfaces and the transfer layers formed on 319 Al. Micro-Raman spectroscopy indicated that the transfer layers formed during lubricated sliding of W-DLC incorporated tungsten disulphide (WS2.

  19. Application of strip-reduction-test in hte evaluation of lubricants developed in Enform project

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Gazvoda, S.

    2001-01-01

    The performance of three different lubricants in relation to sheet metal forming of steel, Zinc coated steel and stainless steel is investigated in the present paper. A strip reduction test simulating can wall ironing is used. The test was originally developed for determining the limits...... of lubrication in forming of stainless steel by quantification of the degree of galling. The present results show that the test methodology to some extend can be used in testing of lubricants for Zinc coated steels whereas the lubricant performance in forming of steel is more complicated to quantify since...

  20. Selection of boron based tribological hard coatings using multi-criteria decision making methods

    International Nuclear Information System (INIS)

    Çalışkan, Halil

    2013-01-01

    Highlights: • Boron based coating selection problem for cutting tools was solved. • EXPROM2, TOPSIS and VIKOR methods were used for ranking the alternative materials. • The best coatings for cutting tool were selected as TiBN and TiSiBN. • The ranking results are in good agreement with cutting test results in literature. - Abstract: Mechanical and tribological properties of hard coatings can be enhanced using boron as alloying element. Therefore, multicomponent nanostructured boron based hard coatings are deposited on cutting tools by different methods at different parameters. Different mechanical and tribological properties are obtained after deposition, and it is a difficult task to select the best coating material. In this paper, therefore, a systematic evaluation model was proposed to tackle the difficulty of the material selection with specific properties among a set of available alternatives. The alternatives consist of multicomponent nanostructured TiBN, TiCrBN, TiSiBN and TiAlSiBN coatings deposited by magnetron sputtering and ion implantation assisted magnetron sputtering at different parameters. The alternative coating materials were ranked by using three multi-criteria decision-making (MCDM) methods, i.e. EXPROM2 (preference ranking organization method for enrichment evaluation), TOPSIS (technique for order performance by similarity to ideal solution) and VIKOR (VIšekriterijumsko KOmpromisno Rangiranje), in order to determine the best coating material for cutting tools. Hardness (H), Young’s modulus (E), elastic recovery, friction coefficient, critical load, H/E and H 3 /E 2 ratios were considered as material selection criteria. In order to determine the importance weights of the evaluation criteria, a compromised weighting method, which composes of the analytic hierarchy process and Entropy methods, were used. The ranking results showed that TiBN and TiSiBN coatings deposited at given parameters are the best coatings for cutting tools

  1. Experimental Study on the Influence on Vibration Characteristics of Thin Cylindrical Shell with Hard Coating under Cantilever Boundary Condition

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available This research has experimentally investigated the influence on vibration characteristics of thin cantilever cylindrical shell (TCS with hard coating under cantilever boundary condition. Firstly, the theoretical model of TCS with hard coating is established to calculate its natural frequencies and modal shapes so as to roughly understand vibration characteristic of TCS when it is coated with hard coating material. Then, by considering its nonlinear stiffness and damping influences, an experiment system is established to accurately measure vibration parameters of the shell, and the corresponding test methods and identification techniques are also proposed. Finally, based on the measured data, the influences on natural frequencies, modal shapes, damping ratios, and vibration responses of TCS with hard coating are analyzed and discussed in detail. It can be found that hard coating can play an important role in vibration reduction of TCS, and for the most modes of TCS, hard coating will result in the decrease of natural frequencies, but the decreased level is not very big, and its damping effects on the higher frequency range of the shell are weak and ineffective. Therefore, in order to make better use of this coating material, we must carefully choose the concerned antivibration frequency range of the shell; otherwise it may lead to some negative effects.

  2. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    Science.gov (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  3. Effect of short-term exposure to two hydrophilic-coated and one gel pre-lubricated urinary catheters on sperm vitality, motility and kinematics in vitro.

    Science.gov (United States)

    Auger, J; Rihaoui, R; François, N; Eustache, F

    2007-06-01

    This study aimed to determine the in vitro effect of a short-term exposure to two hydrophilic-coated and one gel pre-lubricated urinary catheters on human sperm quality. Semen samples of various qualities were coincubated with each catheter for 5 min at 37 degrees C. The percentages of live and motile sperm with their kinematic characteristics were blindly assessed in control and treated samples at the end of the coincubation and 10 and 55 min later. The three catheters had no effect on sperm vitality. Similarly, the lubricated catheter and one hydrophilic-coated catheter negligibly modulated sperm motility. In contrast, the other hydrophilic-coated catheter tested had a significant negative effect on sperm movement. Further studies are warranted, the issue being especially relevant to the collection of spermatozoa in spinal cord diseased patients catheterizing themselves several times a day. In this population, compounds releasing from the catheter and accumulating in the urethra could be an additional factor contributing to the poor sperm quality.

  4. Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition

    Science.gov (United States)

    Arslan, A.; Masjuki, H. H.; Varman, M.; Kalam, M. A.; Quazi, M. M.; Al Mahmud, K. A. H.; Gulzar, M.; Habibullah, M.

    2015-11-01

    In this study, the effect of surface texturing parameters on the tribological performance of amorphous hydrogenated diamond-like carbon (DLC) under oil lubrication has been investigated. Micro dimples were created on a substrate by using a picosecond laser. After surface texturing was performed, amorphous hydrogenated diamond-like carbon (DLC) coating was deposited through magnetron sputtering. Dimple diameter varied from 50 μm to 300 μm, and dimple depth varied from 6 μm to 30 μm. Results show that at respective dimple diameter and depth of 100 μm and 6 μm, surface texturing improved the tribological performance of the amorphous hydrogenated DLC coating. Whereas, at a higher dimple diameter of 300 μm and dimple depth of 30 μm, the tribological performance of textured amorphous hydrogenated DLC was worse than that of un-textured amorphous hydrogenated DLC. The performance enhancement in the case of dimple diameter and depth of 100 μm and 6 μm can be due to micro textures, which can serve as a lubricant reservoir at the interface during sliding and remove wear particles from the contact. However, this beneficial mechanism could be obtained at an optimum texture diameter and depth.

  5. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2008-01-01

    as lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully...... in the cup extrusion test. For all specimens without the porous coating, high friction conditions are identified....

  6. Analysis of Minimum Quantity Lubrication (MQL for Different Coating Tools during Turning of TC11 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Sheng Qin

    2016-09-01

    Full Text Available The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al2O3/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al2O3/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen.

  7. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14...

  8. Possible alternatives to critical elements in coatings for extreme applications

    Science.gov (United States)

    Grilli, Maria Luisa; Valerini, Daniele; Piticescu, Radu Robert; Bellezze, Tiziano; Yilmaz, Mehmet; Rinaldi, Antonio; Cuesta-López, Santiago; Rizzo, Antonella

    2018-03-01

    Surface functionalisation and protection have been used since a long time for improving specific properties of materials such as lubrication, water repellence, brightness, and for increasing durability of objects and tools. Among the different kinds of surface treatments used to achieve the required properties, the use of coatings is fundamental to guarantee substrate durability in harsh environments. Extreme working conditions of temperature, pressure, irradiation, wear and corrosion occur in several applications, thus very often requiring bulk material protection by means of coatings. In this study, three main classes of coatings used in extreme conditions are considered: i) hard and superhard coatings for application in machining tools, ii) coatings for high temperatures (thermal barrier coatings), and iii) coatings against corrosion. The presence of critical elements in such coatings (Cr, Y, W, Co, etc.) is analysed and the possibility to use CRMs-free substitutes is reviewed. The role of multilayers and nanocomposites in tailoring coating performances is also discussed for thermal barrier and superhard coatings.

  9. The hardness of the hydroxyapatite-titania bilayer coatings by microindentation and nanoindentation testing

    Science.gov (United States)

    SIDANE, Djahida; KHIREDDINE, Hafit; YALA, Sabeha

    2017-12-01

    The aim of this paper is to investigate the effect of the addition of titania (TiO2) inner-layer on the morphological and mechanical properties of hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel (316L SS) by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The addition of TiO2 as sublayer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness. The deposition of the inner-layer provides the formation of new types of hydroxyapatite coatings at the same condition of annealing. This represents an advantage for the various applications of the hydroxyapatite bioceramic in the medical field. Classical hardness measurements conducted on the coated systems under the same indentation load (10g) indicated that the microhardness of the HAP coating is improved by the addition of TiO2 inner-layer on the 316L stainless steel substrate. The hardness values obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation are slightly different. This is because nanoindentation is more sensitive to the surface roughness and the influence of defects that could be present into the material. Moreover, nanoindentation is the most useful method to separate the contribution of each layer in the bilayer coatings. In this study, the hardness is comparable with those reported previously for pure HAP ceramics (1.0-5.5 GPa) which are close to the properties of natural teeth.

  10. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    International Nuclear Information System (INIS)

    Masanta, Manoj; Ganesh, P.; Kaul, Rakesh; Nath, A.K.; Roy Choudhury, A.

    2009-01-01

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al 2 O 3 -TiB 2 -TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO 2 ) and boron carbide (B 4 C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV 0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al 2 O 3 ), titanium di-boride (TiB 2 ) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB 2 and Al 2 O 3 , which are discussed in detail.

  11. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  12. Mechanics of a gaseous film barrier to lubricant wetting of elastohydrodynamically lubricated conjunctions

    Science.gov (United States)

    Prahl, J. M.; Hamrock, B. J.

    1985-01-01

    Two analytical models, one based on simple hydrodynamic lubrication and the other on soft elastohydrodynamic lubrication, are presented and compared to delineate the dominant physical parameters that govern the mechanics of a gaseous film between a small droplet of lubricant and the outer race of a ball bearing. Both models are based on the balance of gravity forces, air drag forces, and air film lubrication forces and incorporate a drag coefficient C sub D and a lubrication coefficient C sub L to be determined from experiment. The soft elastohydrodynamic lubrication (EHL) model considers the effects of droplet deformation and solid-surface geometry; the simpler hydrodynamic lubrication (HL) model assumes that the droplet remains essentially spherical. The droplet's angular position depended primarily on the ratio of gas inertia to droplet gravity forces and on the gas Reynolds number and weakly on the ratio of droplet gravity forces to surface tension forces (Bond number) and geometric ratios for the soft EHL. An experimental configuration in which an oil droplet is supported by an air film on the rotating outer race of a ball bearing within a pressure-controlled chamber produced measurements of droplet angular position as a function of outer-race velocity droplet size and type, and chamber pressure.

  13. A study of DLC coatings for ironing of stainless steel

    Science.gov (United States)

    Sulaiman, M. H.; Christiansen, P.; Bay, N.

    2017-09-01

    Stamping of sheet metal components without lubrication or using minimum amount of hazard free lubricant is a possible solution to diminish health hazards to personnel and environmental impact and to reduce production costs. This paper studies the application of diamond-like coating (DLC) under severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i.e. with no sign of galling using no lubrication even at elevated tool temperature, while the other two coatings peeled off and resulted in severe galling unless lubrication was applied.

  14. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  15. Experimental investigations on the effect of process parameters with the use of minimum quantity solid lubrication in turning

    Science.gov (United States)

    Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.

    2018-04-01

    Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.

  16. Multilayer coating facility for the HEFT hard x-ray telescope

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Christensen, Finn Erland; Chen, Hubert

    2001-01-01

    A planar magnetron sputtering facility has been established at the Danish Space Research Institute (DSRI) for the production coating of depth graded multilayers on the thermally slumped glass segments which form the basis for the hard X-ray telescope on the HEFT balloon project. The facility...

  17. Surface Morphology and Hardness Analysis of TiCN Coated AA7075 Aluminium Alloy

    Science.gov (United States)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2017-12-01

    Successful titanium carbonitride (TiCN) coating on AA7075 plates using the PVD technique depends upon many variables, including temperature, pressure, incident angle and energy of the reactive ions. Coated specimens have shown an increase in their surface hardness of 2.566 GPa. In this work, an attempt to further augment the surface hardness and understand its effects on the surface morphology was performed through heat treatments at 500°C for different duration of times. Specimen's heat treated at 500°C for 1 h exhibited a maximum surface hardness of 6.433 GPa, corresponding to an increase of 92.07%. The XRD results showed the presence of Al2Ti and AlTi3N and indicate the bond created between them. Unit cell lattice parameters in the XRD data are calculated using Bragg's law. The SEM images exhibit increasing crack sizes as the heat treatment time is increased. From the studies, the heat treatment duration can be optimized to 1 h, which exhibited an augmented surface hardness, as further increases in durations caused a drop in the surface hardness. The heat treatment effectively modified the surface hardness. Equations providing the relationships that temperature and time have with the reaction parameters are presented.

  18. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Masanta, Manoj [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Ganesh, P.; Kaul, Rakesh [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Nath, A.K. [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Roy Choudhury, A., E-mail: roychoudhuryasimava@gmail.com [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India)

    2009-05-20

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al{sub 2}O{sub 3}-TiB{sub 2}-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO{sub 2}) and boron carbide (B{sub 4}C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV{sub 0.025} was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al{sub 2}O{sub 3}), titanium di-boride (TiB{sub 2}) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB{sub 2} and Al{sub 2}O{sub 3}, which are discussed in detail.

  19. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  20. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  1. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1979-02-15

    lubricant into uneven patches of varnish . This varnish , along with the file-like action of the exposed ball carbides on the relatively softer races, can...its structure. Fluorine , one of the most reactive elements, reacts with graphite without combustion from about 790’F to 1022°F, forming a grey-colored...to allow for molding and machining after molding. 0 Method 2 (Hughes) Impregnating these dense weaves with a Thermid 600 polyimide varnish

  2. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    Science.gov (United States)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with

  3. Plasma spraying of hard magnetic coatings based on Sm-Co alloys

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Saunin, V N; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Telegin, S V

    2015-01-01

    Our research is focused on the formation of hard magnetic coatings by plasma spraying an arc-melted Sm-Co powder. We have studied basic magnetic characteristics depending on the components ratio in the alloy. A sample with a 40 wt.% Sm coating exhibits the highest coercive force (63 kOe) as compared to near-to-zero coercive force in the starting powder. X-ray structure analysis of the starting alloy and the coating reveals that the amount of SmCo 5 phase in the sprayed coating increases occupying up to 2/3 of the sample. We have also studied temperature dependence of the coating and have been able to obtain plasma sprayed permanent magnets operating within the temperature range from -100 to +500 °C. The technique used does not involve any additional thermal treatment and allows a coating to be formed right on the magnetic conductor surface irrespective of the conductor geometry

  4. Effect of Interlayer Coating Thickness on the Hardness and Adhesion for the Tungsten Carbide Cutting Tool

    Directory of Open Access Journals (Sweden)

    Kamil Jawad Kadhim

    2017-12-01

    Full Text Available The thin film of the (Al,TiN coating is studied with the aid of two parameters: hardness and adhesion.  These parameters are very close to each other; however, in deposition field they could be interpreted differently.  Several coatings of (Al,TiN layers are developed on tungsten carbide insert using the standard commercial Al0.67Ti0.33 cathodes in cathodic arc plating system(PVD. The influence of coating layer thickness on the mechanical properties of the coatings was investigated via two parameters: hardness and adhesion are characterized by the Rockwell tester Vickers tester.  The measurements reveal that the highest hardness appears for the (Al,TiN thickness of 5.815 µm while the highest adhesion appears at a thickness of 3.089 µm.  At the opposite extreme, the lowest hardness appears at 2.717 µm and the lowest hardness at 5.815 µm. Overall, the (Al/Ti N coating of the thickness of 5.815 µm is controversial as it exhibits the highest hardness and the lowest adhesion. This result could be related to the effect of the formation of the micro-particle (MPs which has a direct effect on the hardness because these MPs appear mainly on the surface and their presence at the interface is very limited.  In addition, the creation of Ti buffering layer to reduce the delamination has its major effect on the adhesion but has no effect on the morphology of the surface.  For these two reasons and the effect of the bias voltage, the results presented in this paper might show slight differences with other published papers.  The composition of the (Al,TiN layer is characterized and, seemingly, it shows one important result which is showing that the ultimate composition of the (Al,TiN layer (Ti0.62Al0.38 is very close to the original target used in this study (Al0.67Ti0.33.

  5. Porous Organic Nanolayers for Coating of Solid-state Devices

    Science.gov (United States)

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  6. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  7. Excellent lubricating behavior of Brasenia schreberi mucilage.

    Science.gov (United States)

    Li, Jinjin; Liu, Yuhong; Luo, Jianbin; Liu, Pengxiao; Zhang, Chenhui

    2012-05-22

    The present work reports an excellent lubrication property of an aquatic plant called Brasenia schreberi (BS). To investigate the lubrication characteristics of the BS mucilage, a novel measuring system is designed, and an ultralow friction coefficient about 0.005 between the mucilage and glass surface has been obtained. It is found that the ultralow friction is closely related to the structure of mucilage and water molecules in the mucilage. The microstructure analysis indicates that the mucilage surrounding BS forms a kind of polysaccharide gel with many nanosheets. A possible lubrication mechanism is proposed that the formation of hydration layers among these polymer nanosheets with plenty of bonded water molecules causes the ultralow friction. The excellent lubrication property has a potential application for reducing the friction between a glossy pill coated with such layer of mucilage and people's throats.

  8. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  9. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy

    International Nuclear Information System (INIS)

    Wu Hanhua; Wang Jianbo; Long Beiyu; Long Beihong; Jin Zengsun; Naidan Wang; Yu Fengrong; Bi Dongmei

    2005-01-01

    Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (j a ) and the ratio of cathodic to anodic current density (j c /j a ) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of α-Al 2 O 3 , while those fabricated at low anodic current density are almost composed of γ-Al 2 O 3 . Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at j a = 15 A/dm 2 and j c /j a = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying j c /j a

  10. Friction, Wear, and Evaporation Rates of Various Materials in Vacuum to 10(exp -7) mm Hg

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max; Johnson, Robert L.

    1961-01-01

    The requirements for bearings and seals to operate in the environment of space dictate a new area for lubrication research. The low ambient pressures encountered in space can be expected to influence the behavior of oil, grease, and solid-film lubricants. The property of these materials most significantly affected by low ambient pressures is the evaporation rate. Various investigators have therefore measured the evaporation rates of oils and greases in vacuum as one method of establishing their relative merit for space applications (1-3). The results of this work have given some indication as to the oils and greases with the greatest stability at reduced ambient pressures. Only limited experimental work, however, has been reported in the literature for inorganic solids and soft metals which have potential use as solid lubricant films or coatings for hard alloy substrates [e.g. Reference ( 4 )]. In general, the evaporation rates of these materials would be lower than those of oils and greases. These films might therefore be very attractive as lubricants for high vacuum service.

  11. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  12. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal

    Directory of Open Access Journals (Sweden)

    Hassan A. Wahab

    2013-01-01

    Full Text Available Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt’s solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5 constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models.

  13. Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co–Cr

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), No 1, Dai Co Viet Road, Ha Noi (Viet Nam); Lee, Seung-Hee; Li, Yuanlong; Kim, Hyoun-Ee [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Shin, Kwan-Ha [Department of Dental Laboratory Science and Engineering, Korea University, Seoul, 136-703 (Korea, Republic of); Koh, Young-Hag, E-mail: kohyh@korea.ac.kr [Department of Dental Laboratory Science and Engineering, Korea University, Seoul, 136-703 (Korea, Republic of)

    2013-06-01

    This study reports the utility of tantalum (Ta) coating for improving the surface hardness, in vitro bioactivity and biocompatibility of Co–Cr implants. The use of direct current sputtering allowed for the deposition of a dense and uniform Ta film onto a Co–Cr substrate, which was composed of β-phase Ta grains. This hard Ta coating significantly improved the surface hardness of the Co–Cr by a factor of > 2.3. In addition, the Ta-deposited Co–Cr substrate showed a vigorous precipitation of apatite crystals on its surface after 4 weeks of immersion in simulated body fluid, suggesting its excellent in vitro bioactivity. This bioactive Ta coating led to a considerable improvement in the in vitro biocompatibility of the Co–Cr, which was assessed in terms of the attachment, proliferation and differentiation of pre-osteoblasts (MC3T3-E1). - Highlights: • Dense and uniform Ta film was deposited onto a Co–Cr substrate using DC sputtering. • The Ta coating significantly enhanced the surface hardness of the Co–Cr. • The in vitro biocompatibility of the Co–Cr was also significantly improved.

  14. Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co–Cr

    International Nuclear Information System (INIS)

    Pham, Vuong-Hung; Lee, Seung-Hee; Li, Yuanlong; Kim, Hyoun-Ee; Shin, Kwan-Ha; Koh, Young-Hag

    2013-01-01

    This study reports the utility of tantalum (Ta) coating for improving the surface hardness, in vitro bioactivity and biocompatibility of Co–Cr implants. The use of direct current sputtering allowed for the deposition of a dense and uniform Ta film onto a Co–Cr substrate, which was composed of β-phase Ta grains. This hard Ta coating significantly improved the surface hardness of the Co–Cr by a factor of > 2.3. In addition, the Ta-deposited Co–Cr substrate showed a vigorous precipitation of apatite crystals on its surface after 4 weeks of immersion in simulated body fluid, suggesting its excellent in vitro bioactivity. This bioactive Ta coating led to a considerable improvement in the in vitro biocompatibility of the Co–Cr, which was assessed in terms of the attachment, proliferation and differentiation of pre-osteoblasts (MC3T3-E1). - Highlights: • Dense and uniform Ta film was deposited onto a Co–Cr substrate using DC sputtering. • The Ta coating significantly enhanced the surface hardness of the Co–Cr. • The in vitro biocompatibility of the Co–Cr was also significantly improved

  15. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  16. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  17. Properties of radiation cured coatings

    International Nuclear Information System (INIS)

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  18. Influence of trimethylsilane flow on the microstructure, mechanical and tribological properties of CrSiCN coatings in water lubrication

    International Nuclear Information System (INIS)

    Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan

    2015-01-01

    Highlights: • CrSiCN coatings with different Si and C contents were deposited. • CrSiCN coatings consisted of Cr(C,N) nanocrystallites and amorphous phases such as a-Si_3N_4(SiC, SiCN) and a-C(a-CN_x). • CrSiCN coatings exhibited the highest hardness of 21.3 GPa at the TMS flow of 10 sccm. • CrSiCN coatings deposited at the TMS flow of 10 sccm possessed the excellent tribological properties in water. • The wear mechanism changed from tribochemical wear to mechanical wear when the TMS flow increased. - Abstract: CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si_3N_4 and a-C(a-CN_x). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8–4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10"−"8 mm"3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.

  19. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  20. Multilayer coatings containing diamond and other hard materials on hardmetal substrates

    International Nuclear Information System (INIS)

    Koepf, A.; Haubner, R.; Lux, B.

    2001-01-01

    In order to improve the wear resistance of hardmetal cutting tools, coatings of hard materials were established. Especially the production of multilayer coatings, which combine useful properties of different materials was a topic of industrial and academic research. The present work examined the possibilities of combining diamond as basic layer with protective CVD layers of TiC, TiN, Ti(C,N) and Al 2 O 3 . All these combinations could be realized and some showed quite good adherence under strain, which offers possibilities for technical applications. (author)

  1. Materials and lubrication for gear and bearing surfaces in UHV

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1981-01-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined by bushings to a fixed shaft on which it rotated, while the other gear was driven through a commercial rotary motion feedthrough rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. equal to 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91 000. Materials for gears included stainless steel, beryllium copper and aluminium alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome and a MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed. (orig.)

  2. Lubricant reflow after laser heating in heat assisted magnetic recording

    Science.gov (United States)

    Wu, Haoyu; Mendez, Alejandro Rodriguez; Xiong, Shaomin; Bogy, David B.

    2015-05-01

    In heat assisted magnetic recording (HAMR) technology for hard disk drives, the media will be heated to about 500 °C during the writing process in order to reduce its magnetic coercivity and thus allow data writing with the magnetic head transducers. The traditional lubricants such as Z-dol and Z-tetraol may not be able to perform in such harsh heating conditions due to evaporation, decomposition and thermal depletion. However, some of the lubricant depletion can be recovered due to reflow after a period of time, which can help to reduce the chance of head disk interface failure. In this study, experiments of lubricant thermal depletion and reflow were performed using a HAMR test stage for a Z-tetraol type lubricant. Various lubricant depletion profiles were generated using different laser heating conditions. The lubricant reflow process after thermal depletion was monitored by use of an optical surface analyzer. In addition, a continuum based lubrication model was developed to simulate the lubricant reflow process. Reasonably good agreement between simulations and experiments was achieved.

  3. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa 3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  4. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  5. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  6. Lubrication a practical guide to lubricant selection

    CERN Document Server

    Lansdown, A R

    1982-01-01

    Lubrication: A Practical Guide to Lubricant Selection provides a guide to modern lubrication practice in industry, with emphasis on practical application, selection of lubricants, and significant factors that determine suitability of a lubricant for a specific application. Organized into 13 chapters, this book begins with a brief theoretical opening chapter on the basic principles of lubrication. A chapter then explains the choice of lubricant type, indicating how to decide whether to use oil, grease, dry lubricant, or gas lubrication. Subsequent chapters deal with detailed selection of lubric

  7. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  8. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Mobarak, H.M.; Masjuki, H.H.; Mohamad, E. Niza; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-01-01

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  9. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  10. Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming; Varanasi, Kripa K.

    2018-04-17

    In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at the surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.

  11. Compatibility of refrigerants and lubricants with elastomers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  12. An analysis of formation mechanism and nano-scale hardness of the laser-induced coating on Ni–17Mo–7Cr based superalloy

    International Nuclear Information System (INIS)

    He, Yanming; Yang, Jianguo; Fu, Wei; Wang, Limei; Gao, Zengliang

    2016-01-01

    The Ni–17Mo–7Cr based superalloy was laser surface treated in argon atmosphere to enhance its tribological property. The formation mechanism of the coating was revealed and its mechanical properties were characterized. The microstructure and phase identification in the coating were investigated by scanning electron microscope, transmission electron microscope and X-ray diffraction techniques. The mechanical properties of the coating, i.e. elastic modulus and hardness, were measured by nanoindentation tests. The SiC particles were used as the coating materials. During the laser treatment, the SiC will first decompose and the decomposition products Si will trigger the formation of MoC carbides in the coating. After complete solidification, the coating consists of the MoC equiaxed dendrites, interdendritic Ni matrix and graphite. Lot of tiny MoC and chromium carbides can also occur in the interdendritic matrix. The elastic modulus and hardness of MoC are characterized to be 394.0 GPa and 22.3 GPa, which are far higher than that of the matrix (E = 246.8 GPa, H = 5.3 GPa). In addition, the volume fraction of hard MoC can reach about 45.3% in the coating. The method reported in this work will provide us a new approach to fabricate the wear-resisting coating. - Highlights: • The SiC will decompose and the released Si atoms can trigger formation of hard MoC. • The coating consists of MoC equiaxed dendrites, interdendritic matrix and graphite. • The elastic modulus and hardness of MoC are measured to be 394.0 GPa and 22.3 GPa. • The volume fraction of hard MoC in the coating can reach approximately 45.3%.

  13. An analysis of formation mechanism and nano-scale hardness of the laser-induced coating on Ni–17Mo–7Cr based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Yanming [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China); Yang, Jianguo, E-mail: yangjianguo@hit.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China); Fu, Wei [Shanghai Baosteel Industry Technological Service Co., Ltd., Shanghai, 201900 (China); Wang, Limei; Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China)

    2016-07-15

    The Ni–17Mo–7Cr based superalloy was laser surface treated in argon atmosphere to enhance its tribological property. The formation mechanism of the coating was revealed and its mechanical properties were characterized. The microstructure and phase identification in the coating were investigated by scanning electron microscope, transmission electron microscope and X-ray diffraction techniques. The mechanical properties of the coating, i.e. elastic modulus and hardness, were measured by nanoindentation tests. The SiC particles were used as the coating materials. During the laser treatment, the SiC will first decompose and the decomposition products Si will trigger the formation of MoC carbides in the coating. After complete solidification, the coating consists of the MoC equiaxed dendrites, interdendritic Ni matrix and graphite. Lot of tiny MoC and chromium carbides can also occur in the interdendritic matrix. The elastic modulus and hardness of MoC are characterized to be 394.0 GPa and 22.3 GPa, which are far higher than that of the matrix (E = 246.8 GPa, H = 5.3 GPa). In addition, the volume fraction of hard MoC can reach about 45.3% in the coating. The method reported in this work will provide us a new approach to fabricate the wear-resisting coating. - Highlights: • The SiC will decompose and the released Si atoms can trigger formation of hard MoC. • The coating consists of MoC equiaxed dendrites, interdendritic matrix and graphite. • The elastic modulus and hardness of MoC are measured to be 394.0 GPa and 22.3 GPa. • The volume fraction of hard MoC in the coating can reach approximately 45.3%.

  14. Electroformed Nanocrystalline Coatings: An Advanced Alternative to Hard Chrome Electroplating

    Science.gov (United States)

    2003-11-21

    100mL/min. The vials were then analyzed for any traces of cobalt, iron, chloride, sulphate, and for two additives. A summary of the emission results...observed that correspond to cobalt- phosphites , indicating that the phosphorus is present in the deposits in a solid solution state (similar to XRD...precipitation of cobalt- phosphites from the supersaturated solid solution at elevated temperatures. Figure 4-2 shows the variation in hardness as a

  15. Technology Exploitation/Exploration/Examination Report (TeX3): Adaptive Self-Lubricating Nanoporous Hard Coatings

    Science.gov (United States)

    2008-04-01

    tribological measurements were made, including friction coefficient and wear depths and rates of the coatings deposited on 304 stainless steel using a... stainless - steel dc dual magnetron sputter deposition system with a base pressure of 1.3×10-7 Pa (1×10-9 Torr). Water-cooled 5-cm-diameter Cr and Ag...illustrated schematically in Figure 2. The substrates consist of metallographically polished 304 stainless steel and Si(001) wafers that were cleaned with

  16. Investigation of stand-off distance effect on structure, adhesion and hardness of copper coatings obtained by the APS technique

    Science.gov (United States)

    Masoumeh, Goudarzi; Shahrooz, Saviz; Mahmood, Ghoranneviss; Ahmad, Salar Elahi

    2018-03-01

    The outbreak of the disease and infection in the hospital environment and medical equipment is one of the concerns of modern life. One of the effective ways for preventing and reducing the complications of infections is modification of the surface. Here, the handmade atmospheric plasma spray system is used for accumulating copper as an antibacterial agent on the 316L stainless steel substrate, which applies to hospital environment and medical equipment. As a durable coating with proper adhesion is needed on the substrate, the effect of stand-off distance (SOD) which is an important parameter of the spray on the microstructure, the hardness and adhesion of the copper coating on the 316L stainless steel were investigated. The structure and phase composition of copper depositions were investigated using scanning electron microscopy and X-ray diffraction. The adhesion and hardness of depositions are evidenced using the cross cut tester and Vickers hardness tester, respectively. The findings confirm that the voids in the coatings increase with increasing SOD, which leads to decreasing the hardness of coatings and also the adhesion strength between depositions and substrate. In addition, by increasing the SOD, the oxygen content and the size of grains in the lamellae (fine structure) of coatings also increase.

  17. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    Science.gov (United States)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  18. Systematic evaluation of common lubricants for optimal use in tablet formulation.

    Science.gov (United States)

    Paul, Shubhajit; Sun, Changquan Calvin

    2018-05-30

    As an essential formulation component for large-scale tablet manufacturing, the lubricant preserves tooling by reducing die-wall friction. Unfortunately, lubrication also often results in adverse effects on tablet characteristics, such as prolonged disintegration, slowed dissolution, and reduced mechanical strength. Therefore, the choice of lubricant and its optimal concentration in a tablet formulation is a critical decision in tablet formulation development to attain low die-wall friction while minimizing negative impact on other tablet properties. Three commercially available tablet lubricants, i.e., magnesium stearate, sodium stearyl fumerate, and stearic acid, were systematically investigated in both plastic and brittle matrices to elucidate their effects on reducing die-wall friction, tablet strength, tablet hardness, tablet friability, and tablet disintegration kinetics. Clear understanding of the lubrication efficiency of commonly used lubricants as well as their impact on tablet characteristics would help future tablet formulation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    Science.gov (United States)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  20. Dry coating of solid dosage forms: an overview of processes and applications.

    Science.gov (United States)

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  1. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Science.gov (United States)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  2. Physicochemical properties and lubricant potentials of Blighia ...

    African Journals Online (AJOL)

    Fatty acid methyl ester analysis (FAME) revealed 96.89 % of monounsaturated fatty acids and esters in the range ... uniformity, hardness, disintegration and dissolution characteristics. Conclusion: Blighia sapida seed oil is a potentially useful low-cost tablet lubricant. However ... Products derived from plants sources can be ...

  3. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative (Briefing Charts)

    Science.gov (United States)

    2011-02-10

    chrome plating utilizes chromium in the hexavalent state (Cr6+) Cr6+ is a known carcinogen and poses a health risk to operators OSHA lowered the Cr6+ PEL...from 52 µg/m3 to 5 µg/m3 8 Apr 09, Memorandum, DoD Directive Hexavalent Chromium Management Policy NAVAIR Cr6+ Authorization Process Hard Chrome ...Aerospace & Defense February 10, 2011 Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative Jack Benfer Co-PI NAVAIR

  4. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    Science.gov (United States)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  5. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.; Watanabe, H.; Ito, N.

    2010-01-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first

  6. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Tasdemir, H., E-mail: habdullah46@gmail.com [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mabuchi, Yutaka [Nissan Motor Co. (Japan)

    2014-07-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  7. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    International Nuclear Information System (INIS)

    Abdullah Tasdemir, H.; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Mabuchi, Yutaka

    2014-01-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  8. Plasmaspuiten van zelfsmerende deklagen met vaste smeermiddelen

    OpenAIRE

    Vos, Frans

    1999-01-01

    The development of 'plasma sprayed self-lubricating coatings with solid lubricants' is an answer to industry's increasing demand for alternatives to oil lubricated systems. Solid lubricants offer an improved high temperature and low pressure resistance and an immediate performance after a long out-of-service period. A homogeneous dispersion of solid lubricant particles in a wear resistant material guarantees a long-term service of the lubricated component due to a continuous release of the lu...

  9. Materials and lubrication for gear and bearing surfaces in uhv

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1980-06-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing, and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined to (by bushings) and rotated on a fixed shaft, while the other gear was driven by a commercial rotary motion feedthrough which was rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91,000. Materials for gears included stainless steel, beryllium copper, and aluminum alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome, and a MoS 2 -graphite-sodium silicate mixture. The successful gear pair was Ag-plated Al alloy and MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed

  10. Study on the property of low friction complex graphite-like coating containing tantalum

    Science.gov (United States)

    Wang, Zuoping; Feng, Lajun; Shen, Wenning

    2018-03-01

    In order to enhance equipment lifetime under low oil or even dry conditions, tantalum was introduced into the graphite-like coating (GLC) by sputtering mosaic targets. The results showed that the introduction of Ta obviously reduced the friction coefficient and hardness of the GLC, while improved the wearability. When the atomic percentage of Ta was larger than 3%, the steady friction coefficient was lower than 0.01, suggesting the coating exhibited super lubricity. When the content of Ta was about 5.0%, the average friction coefficient was 0.02 by a sliding friction test under load of 20 N in unlubricated condition. Its average friction coefficient reduced by 75%, compared with that of control GLC (0.0825).

  11. New lubrication concepts for environmental friendly machines. Tribological, thermophysical and viscometric properties of lubricants interacting with triboactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Klingenberg, G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Woydt, M. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2006-07-01

    The present research report was elaborated in close cooperation with Renault SAS, FUCHS Petrolub AG and Ingenieurgesellschaft Auto und Verkehr (IAV). The use of alternative oils for the lubrication of automobile engines has a potential of ecological and technical advantages. It requires the detailed knowledge of several thermophysical and viscometric properties in a large temperature range (mapping). Therefore, the following properties of up to twenty-eight different oils have been measured in the temperature range from 22 C to 150 C: density, heat capacity, thermal conductivity, viscosity at ambient pressure, viscosity under shear rates above 10{sup 6} s{sup -1}, and the viscosity at elevated pressures (maximum 100 MPa). The last two have been measured with a substantially improved and a newly developed apparatus, respectively. The pressure-viscosity coefficient has been measured on four hydrocarbon-based, factory-fill oils, a paraffin oil and twenty-three alternative oils. Nine of the alternative oils are based partly or completely on esters, the other fourteen on polyglycols, two of them additionally on water. Based on the piston ring/cylinder liner simulation tests of BAM performed outside of engines and the SRV {sup registered} tests both performed only under conditions of mixed/boundary lubrication, it is reasonable that thermally sprayed TiO{sub x}-based, Ti{sub n-2}Cr{sub 2}O{sub 2n-1} and (Ti,Mo)(C,N)+23NiMo piston ring coatings, so called 'lubricious or triboactive oxides', can substitute common materials and serve as a promising alternative to commercial piston ring coatings made of strategic Molybdenum and super-finishing intensive blends of WC/Cr{sub 3}C{sub 2}. Some couples qualified for 'zero' wear. In combination with bionotox ester- and polyglycol-based lubricants the coefficient of friction can be reduced fulfilling simultaneously stronger European exhaust emission regulations. Thermally sprayed Ti-based coatings with their

  12. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  13. Ti-Al-Si-C-N hard coatings synthesized by hybrid arc enhanced magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Guizhi; Liu, Sitao; Ma, Shengli; Xu, Kewei; Vincent, Ji; Chu, Paul K.

    2010-01-01

    Ti-Al-Si-C-N coatings are deposited by hybrid arc-enhanced magnetic sputtering and characterized by various micro- and macro-tools. X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy reveal that the coatings are nanocomposites consisting of nanocrystallites and amorphous phases. They are generally in the form of nc-(Ti,Al)(C,N)/a-Si_3N_4/a-C depending on the composition of the coatings. With increasing Al concentrations, the X-ray diffraction peaks shift to a lower angle indicating compressive stress in the coatings. The measured hardness also diminishes implying reduced contributions from the self-organized stable nanostructure. The dry friction coefficients of the Ti-Al-Si-C-N coatings are found to be about 0.3 which is lower than that of conventional Ti-Si-N coatings. These coatings can find potential applications requiring high temperature with heavy contact loading. (author)

  14. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contact when lubricated with mineral and biodegradable oils

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the "inertness" of DLC coatings raises se...

  15. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  16. Influence of trimethylsilane flow on the microstructure, mechanical and tribological properties of CrSiCN coatings in water lubrication

    Science.gov (United States)

    Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan

    2015-11-01

    CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si3N4 and a-C(a-CNx). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8-4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10-8 mm3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.

  17. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina; Zhang, Kan; Wen, Mao; Hou, Zhipeng; Gong, Chen; Liu, Xucheng; Hu, Chaoquan; Cui, Xiaoqiang; Zheng, Weitao

    2017-01-01

    of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results

  18. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  19. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  20. Shear thickening in suspensions: the lubricated-to-frictional contact scenario

    Science.gov (United States)

    Morris, Jeffrey

    2017-11-01

    Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the

  1. Computer simulation of solid-liquid coexistence in binary hard sphere mixtures

    NARCIS (Netherlands)

    Kranendonk, W.G.T.; Frenkel, D.

    1991-01-01

    We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a

  2. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  3. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  4. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Jing, X.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Yan, Z. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Lu, J.Z., E-mail: jzlu@ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-07-15

    The effects of massive laser shock peening (LSP) treatment on micro-hardness, residual stress and microstructure in four different zones of laser cladding coating was investigated. Furthermore, micro-hardness curves and residual stress distributions with and without massive LSP treatment were presented and compared, and typical microstructure in different zones of both coatings were characterized by transmission electron microscope (TEM) and cross-sectional optical microscope (OM) observations. Results and analyses showed that massive LSP treatment had an important influence on micro-hardness and residual stress of the cladding coating. Special attempt was made to the effects of massive LSP treatment on microstructure in three zones of the cladding coating. In addition, the underlying mechanism of massive LSP treatment on microstructure and mechanical properties of the cladding coating was revealed clearly. - Highlights: • Micro-hardness and residual stress curves of both coatings were presented and compared. • Typical microstructure in different zones of both coatings were characterized and analyzed. • LSP causes increased micro-activities, and induces plastic deformation layer in three zones. • Underlying mechanism of LSP on mechanical properties of cladding coating was revealed.

  5. Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces

    National Research Council Canada - National Science Library

    Legg, Keith O; Sartwell, Bruce D; Legoux, Jean-Gabriel; Nestler, Montia; Dambra, Christopher; Wang, Daming; Quets, John; Natishan, Paul; Bretz, Philip; Devereaux, Jon

    2006-01-01

    .... This document constitutes the final report on an investigation of deposition of coatings using miniature plasma spray guns that could replace hard chromium on internal surfaces where conventional...

  6. Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR)

    Science.gov (United States)

    Xiong, Shaomin; Wu, Haoyu; Bogy, David

    2014-09-01

    Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.

  7. Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect

    Science.gov (United States)

    Kumar, A. Madhan; Babu, R. Suresh; Obot, I. B.; Adesina, Akeem Yusuf; Ibrahim, Ahmed; de Barros, A. L. F.

    2018-05-01

    Protecting the surface of metals and alloys against corrosion and wear is of abundant importance owing to their widespread applications. In the present work, we report the improved anticorrosion and tribo-mechanical performance of copper (Cu) by a hard carbon (HC) coating synthesized in different pyrolysis temperature. Structural and surface characterization with roughness measurements was systematically investigated using various techniques. Effect of pyrolysis temperature on the corrosion behavior of coated Cu substrates in 0.6 M NaCl solution was evaluated via electrochemical impedance spectroscopy, potentiodynamic polarization. Pin-on-disk wear test of coated Cu substrate showed the influence of the pyrolysis temperature on the wear resistance performance of the HC coatings. According to the obtained results, it could be concluded that the HC coatings synthesized at 1100 °C revealed an enhanced comprehensive performance, revealing their possible utilization as a protective coating for Cu substrates in chloride environment. Monte Carlo simulations have been utilized to elucidate the interaction between the Cu surface and HC coatings.

  8. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  9. The microstructure and properties of unbalanced magnetron sputtered CrNx coatings

    International Nuclear Information System (INIS)

    Hurkmans, Antonius Petrus Arnoldus

    2002-01-01

    The most widely used surface treatment to protect engineering components is the deposition of hard chromium by electroplating. The coatings are known to be quite thick (up to 20 μm), reasonably hard (∼HV1000), but contain micro-cracks. This wet deposition process is well understood, but it has technical limitations and is under high political pressure because of the environmental pollution by hexavalent chromium. The physical vapour deposition (PVD) technique is an alternative method to produce high quality coatings. PVD is an almost pollution free technique, because the process occurs under vacuum. CrN by PVD is one of the most promising PVD coatings as a candidate to replace eventually electroplated hard chromium. The growth characteristics of CrN coatings are less understood than those of TiN, the well-known PVD coating material. This thesis anticipates to fill this technological gap. Along a wide range of experiments based on the deposition of CrN x coatings, XRD, SEM, SNMS and tribological analysis have been used to complete a thorough understanding of CrN x growth. The experiments show that there exist several different phases within the Cr-N system: bcc-Cr, hcp-Cr 2 N, fcc-CrN, and mixed phases. This is not fundamentally new, but the work has resulted in two new modifications, which are highly interesting candidates for the industry, including electroplating replacements, namely high nitrogen containing metallic bcc-Cr (solid solution with up to 18 at.% nitrogen) in the hardness range up to HV1800 and a very hard fcc-CrN phase with hardness values between HV1500 and HV3000, similar to TiN. The solid solution bcc-Cr-N is very dense fine-grained, reasonably hard (almost twice as hard as electroplated hard chromium), very smooth, and with a Young's modulus very similar to that of (hardened) steel. The hard fcc-CrN phase (approximately three times harder than electroplated hard chromium) could only be obtained by the current experiments in a rather non

  10. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.

    2010-02-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.

  11. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  12. Influence of the coating process on the tribological conditions during cold forging with a MoS2 based lubricant

    Science.gov (United States)

    Lorenz, Robby; Hagenah, Hinnerk; Merklein, Marion

    2018-05-01

    Cold forging processes such as forward rod extrusion can be used to produce high quality components like connection rods, shafts and gears. The main advantages of these extruded components are sufficient surface quality, work hardening, compressive residual stresses and fatigue strength. Since one technical disadvantage of extruded components lies in the achievable tolerance classes, the improvement of these should be of crucial importance. For instance, the attainable workpiece accuracy and component quality can be influenced by adapting the tribological system in such a way that the resulting friction is specifically controlled in order to improve component forming. Lubricant modification is one practical way of adapting the tribological system to the requirements of the forming process. An industrial established and highly efficient lubricant system is the application of a zinc-phosphate conversion layer with a molybdenum disulfide-based lubricant. While offering many advantages, its tribological conditions seem to depend strongly on the layer weight and the application strategy. These parameters and the respective interdependencies have not been sufficiently investigated yet. In order to examine this, the tribological conditions depending on the layer weight are analyzed in greater detail using the Ring-Compression-Test (RCT). This tribometer provides a comparative representation of the forming conditions during cold forging. Furthermore, a potential dependency between the tribological conditions and two different coating techniques is analyzed. The latter are represented by the industrial standards dipping and dip-drumming.

  13. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  14. The Lubricant Properties of LUBRITAB | Onyechi | Journal of ...

    African Journals Online (AJOL)

    The effect of the lubricants on tablet hardness, friability, disintegration and dissolution rate were also determined. Tablets containing LUBRITAB at a concentration level of 3 - 4 (% w/w) gave values of unit ejection force comparable with those of tablets containing 2% magnesium stearate. The tablets containing LUBRITAB ...

  15. Numerical simulation of lubrication mechanisms at mesoscopic scale

    DEFF Research Database (Denmark)

    Hubert, C.; Bay, Niels; Christiansen, Peter

    2011-01-01

    The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F...... of pyramidal indentations. The tests are performed with variable reduction and drawing speed under controlled front and back tension forces. Visual observations through a transparent die of the fluid entrapment and escape from the cavities using a CCD camera show the mechanisms of Micro......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....

  16. Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

    International Nuclear Information System (INIS)

    Ramesh, D.; Shakkthivel, P.; Manickam, A. Susai; Kalpana, A.; Vasudevan, T.

    2006-01-01

    Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications

  17. Industrial tribology tribosystems, friction, wear and surface engineering, lubrication

    CERN Document Server

    Mang, Theo; Bartels, Thorsten

    2010-01-01

    Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants.This result is a quick introductio

  18. Accompanying of parameters of color, brightness and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    International Nuclear Information System (INIS)

    Bardi, M.A.G.; Machado, L.D.B.

    2011-01-01

    Complete text of publication follows. In the search for alternatives to traditional paint systems containing solvents, the curing process of polymer coatings by ultraviolet (UV) light has been widely studied and discussed, specially because of their high content of solids and null emission of VOCs. Radiation curing is defined as the conversion of a reactive liquid into a solid through polymerization and crosslinking reactions between the species, promoted by the interaction of the chemical system with the incident ionizing radiation. The appearance of the coated object (e.g., color, gloss) is a complex function of the light incident on the object, the optical scattering characteristic of the material, and human perception. Pigments are very fine powders being nearly insoluble in binders and solvents, but provide color and the ability to hide the underlying surface. In this context, this paper aims to investigate variations on color, brightness and hardness of UV-cured pigmented coatings by different doses. When it comes to irradiation exposition, the incorporation of pigments can preferentially cause its reflection or absorption of the incident radiation. Reflection usually occurs at the pigment surface within the resin so that the radiation has to pass through the top layers twice. Some degradation can, therefore, occur at the surface, and this is why materials frequently lose gloss on exposure.

  19. Feasibility study of self-lubrication by chlorine implantation

    International Nuclear Information System (INIS)

    Akhajdenung, T.; Aizawa, T.; Yoshitake, M.; Mitsuo, A.

    2003-01-01

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing

  20. Hard and transparent hybrid polyurethane coatings using in situ incorporation of calcium carbonate nanoparticles

    International Nuclear Information System (INIS)

    Yao Lu; Yang Jie; Sun Jing; Cai Lifang; He Linghao; Huang Hui; Song Rui; Hao Yongmei

    2011-01-01

    Highlights: → In situ mineralization via gas diffusion was adopted for a good dispersion of calcium carbonate nanoparticles in the polymeric PU matrix. → Hybrid films with high dispersion, transparency, robust and thermal stability can be obtained by controlling the CaCO 3 loading. → The hybrid films display a significant improvement in its water resistance, surface hardness, scratch resistance and flexibility, with the introduction of CaCO 3 , and all coatings exhibited excellent chemical resistance and adhesion. - Abstract: The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this goal through the in situ introduction of an unmodified calcium carbonate (CaCO 3 ) into a water-soluble polyurethane (PU) matrix. Smooth and (semi-) transparent films were prepared from both the neat PU and the CaCO 3 -filled composites. As evidenced by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), hybrid films with high dispersion, transparency, robustness and thermal stability could be obtained by controlling the CaCO 3 loading. The storage modulus could increase from 441 MPa of neat PU matrix to 1034 MPa of hybrid film containing 2% (w/w) CaCO 3 . In addition, the same hybrid films displayed a significant improvement in its water resistance. In this case, the water-uptake ratio decreased from 41.54% of PU to 2.21% of hybrid film containing 2% (w/w) CaCO 3 . Moreover, with the introduction of CaCO 3 , conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, and all coatings exhibited excellent chemical resistance and adhesion.

  1. Lubrication fundamentals

    International Nuclear Information System (INIS)

    Wills, J.G.

    1990-01-01

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  2. Coating of Ultra-Small Micro End Mills: Analysis of Performance and Suitability of Eight Different Hard-Coatings

    Directory of Open Access Journals (Sweden)

    Martin Bohley

    2018-03-01

    Full Text Available Due to the constant need for better functionalized surfaces or smaller, function integrated components, precise and efficient manufacturing processes have to be established. Micro milling with micro end mills is one of the most promising processes for this task as it combines a high geometric flexibility in a wide range of machinable materials with low set-up costs. A downside of this process is the wear of the micro end mills. Due to size effects and the relatively low cutting speed, the cutting edge is especially subjected to massive abrasive wear. One possibility to minimize this wear is coating of micro end mills. This research paper describes the performance of eight different hard coatings for micro end mills with a diameter <40 µm and discusses some properties for the best performing coating type. With this research, it is therefore possible to boost the possibilities of micro milling for the manufacture of next generation products.

  3. Lubrication fundamentals

    CERN Document Server

    Pirro, DM

    2001-01-01

    This work discusses product basics, machine elements that require lubrication, methods of application, lubricant storage and handling, and lubricant conservation. This edition emphasizes the need for lubrication and careful lubricant selection.

  4. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  5. Development of high performance lubricant through the compatibility of polyalphaolefin, polyurea and irradiated polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Ratao, Natalia Torres

    2013-01-01

    Lubricants are gaseous, liquid, semi solid or solid (powder) materials those form a film between two parties preventing friction. High performance lubricants are designed to work under severe conditions of temperature, pressure, and contamination. The most used are liquids (oils) and semi solids (greases). Greases are applied where oils can drain or in inaccessible places and are divided generally into two classes, soap and no soap. The most used non soap grease is polyurea, obtained by the reaction between amine and isocyanate, has highly thixotropic, high dielectric strength and excellent anticorrosive property, so it is widely used for lubrication of electric motors and shipbuilding machinery. For a grease with high performance, in this study was used a synthetic lubricant fluid, polyalphaolefin, and was also employed solid lubricant additive polytetrafluoroethylene (PTFE) due its lowest coefficient of friction, is found commercially irradiated in air to obtain smaller particles and to produce oxygenated terminal groups those are more compatible with the metal surface. The tests conducted were comparatively between pure polyurea grease and with PTFE additive. The characterizations were made by infrared spectroscopy and elemental analysis of C, N and H and Free NCO index, proving the formation of four carbons polyurea (tetraurea). The functional analysis of drop point and oil separation showed high stability and compatibility between the polymers increased when PTFE was added. The excellent resistance of pure tetraurea grease to wear and extreme pressure were demonstrated by four-ball and practical bearings tests, characterizing this grease as a high performance lubricant, when compared to most used greases in the market. (author)

  6. Direct verification of the lubrication force on a sphere travelling through a viscous film upon approach to a solid wall

    KAUST Repository

    Marston, Jeremy

    2010-05-21

    Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.

  7. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  8. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... forging are extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures. Except for the more simple cold forging operations successful production therefore requires advanced lubrication systems. The present paper gives...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...

  9. Dry rotary swaging with structured and coated tools

    Science.gov (United States)

    Herrmann, Marius; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Rotary swaging is a cold bulk forming process for manufacturing of complex bar and tube profiles like axles and gear shafts in the automotive industry. Conventional rotary swaging is carried out under intense use of lubricant usually based on mineral oil. Besides lubrication the lubricant fulfills necessary functions like lubrication, flushing and cooling, but generates costs for recycling, replacement and cleaning of the workpieces. Hence, the development of a dry process design is highly desirable, both under economic and ecological points of view. Therefore, it is necessary to substitute the functions of the lubricant. This was realized by the combination of newly developed a-C:H:W coating systems on the tools to minimize the friction and to avoid adhesion effects. With the application of a deterministic structure in the forging zone of the tools the friction conditions are modified to control the axial process forces. In this study infeed rotary swaging with functionalized tools was experimentally investigated. Therefore, steel and aluminum tubes were formed with and without lubricant. Different structures which were coated and uncoated were implemented in the reduction zone of the tools. The antagonistic effects of coating and structuring were characterized by measuring the axial process force and the produced workpiece quality in terms of roundness and surface roughness. Thus, the presented results allow for further developments towards a dry rotary swaging process.

  10. Biofluid lubrication for artificial joints

    Science.gov (United States)

    Pendleton, Alice Mae

    This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids' property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are

  11. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  12. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    Science.gov (United States)

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  13. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    2017-12-01

    Full Text Available Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a an industrial standard chromium electrolyte; (b a custom-made hexavalent chromium (Cr6+ electrolyte with a reduced chromium trioxide (CrO3 content, both without solid additives and (c with the addition of fullerene (C60 nanoparticles; and (d a trivalent chromium (Cr3+ electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm than the hexavalent coatings (23–40 µm and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  14. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    Science.gov (United States)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  15. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  16. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings.

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-08-07

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr₂N, (CrAl)₂N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr₂N and (CrAl)₂N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  17. Tribology of the lubricant quantized sliding state.

    Science.gov (United States)

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  18. Characterization of hard nitride and carbide titanium and zirconium coatings on high-speed steel cutting tool inserts

    International Nuclear Information System (INIS)

    Fenske, G.; Kaufherr, N.; Albertson, C.; Mapalo, G.; Nielsen, R.; Kaminsky, M.

    1986-01-01

    Hard nitride and carbide coatings of titanium and zirconium deposited by reactive evaporation and reactive sputtering techniques were characterized by electron microscopy and Auger spectroscopy to determine the effect of coating process on coating composition and microstructure. Analysis of the chemical composition by Auger spectroscopy revealed the coatings were of high purity with slight differences in stoichiometry depending on the coating technique. Both techniques produced coatings with a columnar microstructure. However, the reactive sputtering technique produced coarser (shorter and wider) columnar grains than the reactive evaporation technique. Furthermore, selected area diffraction analysis of reactively sputtered ZrN coatings showed a two-phased zone (hcp Zr and fcc ZrN) near the substrate/coating interface, while TiC coatings deposited by reactive sputtering and evaporation only showed a single-phase region of fcc TiC

  19. Development of new engine bearings with overlay consisting of solid lubricants; Kotai junkatsu overlay tsuki engine yo suberi jikuuke zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, H; Kawakami, S; Gohara, C [Taiho Kogyo Co. Ltd., Aichi (Japan); Fuwa, Y; Michioka, H [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    Recently, modern engines have a tendency for higher output and longer periods. As a result , higher bearing performance is required. For this reason, we have developed the new conceptual overlay consisting of solid lubricants and thermosetting plastics. This paper describes the performance of engine bearings with the new overlay. 5 refs., 13 figs., 5 tabs.

  20. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    Science.gov (United States)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  1. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping, E-mail: linggp@zju.edu.cn

    2014-06-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl{sub 2}–AlCl{sub 3}–1-ethyl-3-methylim-idazolium chloride (MnCl{sub 2}–AlCl{sub 3}–EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm{sup 2}, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L{sub c} > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  2. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    International Nuclear Information System (INIS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-01-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl 2 –AlCl 3 –1-ethyl-3-methylim-idazolium chloride (MnCl 2 –AlCl 3 –EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm 2 , while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L c > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  3. Two feasible approaches to enhance the wear behaviors of NiCrBSi coating in atmosphere and aqueous environments

    Science.gov (United States)

    Ye, Yuwei; Wang, Chunting; Zheng, Wenru; Xiong, Wei; Wang, Yongxin; Li, Xiaogang

    2017-09-01

    NiCrBSi coating was deposited successfully on the surface of 316 stainless steel substrate by means of plasma spraying. The microstructures and mechanical property were analyzed by scanning electron microscopy, x-ray diffraction, and a Vickers hardness tester. The wear performances of the coatings sliding against the GCr15 ball under ambient air and water conditions were investigated, and two feasible approaches (tungsten carbide (WC)-doping and heat treatment) were used to improve the tribological performance. Results showed that the hardness of the NiCrBSi coating increased by 12.5% and 28.5% and the porosity decreased by 26.1% and 47.8%, respectively, after WC-doping and heat treatment. During dry friction, the friction coefficient and wear rate of the NiCrBSi coating were about 0.47 and 1.4  ×  10-5 mm3 N-1 m-1, respectively. These values were higher than those obtained on other coatings. In water conditions, all coatings showed a lower friction and wear rate than that in ambient air, which was as a result of the lubrication effect of water. Significantly, with WC-doping and heat treatment, the friction coefficients of both coatings were about 18.5% and 36.7%, respectively, lower than that of the NiCrBSi coating. Furthermore, the wear rates of both coatings were about 20% and 70%, respectively, lower than that of the NiCrBSi coating.

  4. Electrostatic powder coatings of pristine graphene: A new approach for coating of granular and fibril substrates

    Science.gov (United States)

    Nine, Md J.; Kabiri, Shervin; Tung, Tran Thanh; Tran, Diana N. H.; Losic, Dusan

    2018-05-01

    The use of pristine graphene (pG) based on solution processed coating technologies is often limited by their poor dispersibility in water and organic solvents which prevents to achieve the best performing properties of pG in coating applications. To address these limitations, we developed a dispersant-free coating approach of pG based on their intrinsic solid-lubricity and interlayer electrostatic interactions. The "rotating drum" method was established to provide suitable conditions for electrostatic deposition of pG-powder which is demonstrated on two model substrates with granular and fibril morphologies (urea and acrylic fibers) to improve their physical and electrical properties. The results showed that the pG coating enables to minimize moisture induced caking tendency of commercial urea prills at a relative humidity (RH) of 85% (higher than critical humidity) exhibiting greater moisture rejection ability (∼2 times higher than uncoated urea) and to improve their anti-abrasive properties. The pG-powder coating applied on nonconductive acrylic fibers provides a stable conductive layer (∼0.8 ± 0.1 kΩ/sq) which made them suitable for using in wearable electronics, sensors and electromagnetic interference (EMI) shielding. The developed coating method for pG-powder based on "rotating drum" is generic, simple, eco-friendly, low-cost, and scalable for broad range of coating applications.

  5. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  6. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings

    CERN Document Server

    Genzel, C

    2003-01-01

    Physical vapour deposition (PVD) of thin hard coatings on TiN basis is usually performed at rather low temperatures (T sub D < 500 C) far from thermal equilibrium, which leads to high intrinsic residual stresses in the growing film. In contrast to the extrinsic thermal residual stresses which can easily be estimated from the difference of the coefficients of thermal expansion between the substrate and the coating, a theoretical prediction of the intrinsic residual stresses is difficult, because their amount as well as their distribution within the film depend in a very complex way on the deposition kinetics. By the example of strongly fibre-textured PVD (Ti, Cr)N coatings which have been prepared under defined variation of the deposition parameters in order to adjust the residual stress distribution within the coatings, the paper compares different X-ray diffraction techniques with respect to their applicability for detecting residual stresses which are non-uniform over the coating thickness. (orig.)

  7. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Science.gov (United States)

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25–700 °C

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky Prospect 4, Moscow (Russian Federation); Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V. [National University of Science and Technology “MISIS”, Leninsky Prospect 4, Moscow (Russian Federation); Rojas, T.C.; Godinho, V.; Fernández, A. [Instituto de Ciencia de Materiales de Sevilla CSIC-US, Avda. Américo Vespucio 49, 41092 Sevilla (Spain)

    2013-05-15

    The preparation of hard coatings with low friction coefficient over a wide temperature range is still a challenge for the tribological community. The development of new nanocomposite materials consisting of different metal-ceramic phases, each of which exhibiting self-lubricating characteristics at different temperatures, may help to solve this problem. We report on the structure and tribological properties of MoCN-Ag coatings deposited by magnetron co-sputtering of Mo and C (graphite) targets and simultaneous sputtering of an Ag target either in pure nitrogen or in a gaseous mixture of Ar + N{sub 2}. The structure and elemental composition of the coatings were studied by means of X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, Raman spectroscopy, and glow discharge optical emission spectroscopy. The tribological properties of the coatings against an Al{sub 2}O{sub 3} ball were investigated first at discrete temperatures of 25, 500, and 700 °C, and then during continuous heating in the temperature range of 25–700 °C. The coating structure and their respective wear tracks were also examined to elucidate their phase transformations during heat treatments. The lowest friction coefficients (<0.4) were observed in the temperature ranges of 25–100 °C and 400–700 °C and can be explained by the presence of a free amorphous carbon phase, which served as a lubricant at low temperatures, and by a positive role of silver and two phases forming at elevated temperatures, molybdenum oxide and silver molybdate, which provided lubrication above 400 °C. In the temperature range between 100 and 400 °C, the friction coefficient was relatively high. This problem is to be addressed in future works.

  9. Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25–700 °C

    International Nuclear Information System (INIS)

    Shtansky, D.V.; Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Rojas, T.C.; Godinho, V.; Fernández, A.

    2013-01-01

    The preparation of hard coatings with low friction coefficient over a wide temperature range is still a challenge for the tribological community. The development of new nanocomposite materials consisting of different metal-ceramic phases, each of which exhibiting self-lubricating characteristics at different temperatures, may help to solve this problem. We report on the structure and tribological properties of MoCN-Ag coatings deposited by magnetron co-sputtering of Mo and C (graphite) targets and simultaneous sputtering of an Ag target either in pure nitrogen or in a gaseous mixture of Ar + N 2 . The structure and elemental composition of the coatings were studied by means of X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, Raman spectroscopy, and glow discharge optical emission spectroscopy. The tribological properties of the coatings against an Al 2 O 3 ball were investigated first at discrete temperatures of 25, 500, and 700 °C, and then during continuous heating in the temperature range of 25–700 °C. The coating structure and their respective wear tracks were also examined to elucidate their phase transformations during heat treatments. The lowest friction coefficients (<0.4) were observed in the temperature ranges of 25–100 °C and 400–700 °C and can be explained by the presence of a free amorphous carbon phase, which served as a lubricant at low temperatures, and by a positive role of silver and two phases forming at elevated temperatures, molybdenum oxide and silver molybdate, which provided lubrication above 400 °C. In the temperature range between 100 and 400 °C, the friction coefficient was relatively high. This problem is to be addressed in future works.

  10. properties of Cr(C,N) hard coatings deposited in Ar-C2H2-N2 plasma

    International Nuclear Information System (INIS)

    Macek, M.; Cekada, M.; Kek, D.; Panjan, P.

    2002-01-01

    Mechanical properties, microstructure and the average chemical composition of Cr(C,N) hard coatings deposited in Ar-C 2 H 2 -N 2 plasma strongly depends on the partial pressure of the reactive gases (N 2 , C 2 H 2 ) and on the type of the deposition equipment. In this study we report on the properties of Cr(C,N) hard coatings deposited by means of the triode ion plating in the BAI 730 apparatus and those prepared by sputter deposition in Balzers Sputron in the pressure range from 0.12 Pa (pure Ar) up to 0.35 Pa with different ratios (0-100%) between C 2 H 2 and N 2 . At first mechanical properties (microhardness and adhesion) of coatings were analyzed on the common way. Internal stress was measured by the radius of substrate curvature. Chemical composition of coatings was analyzed by means of AES while the Raman and XPS spectroscopy was used to determined the nature of carbon bonding in the Cr(C,N) films. Microstructure was determined by XRD as well as by means of TEM and TED. Chemical state of various elements in the coating has been studied by XPS. The ratio of the carbide bond (C-Cr) against the C-C and C-H bonds was calculated. The existence of the graphite phase in some Cr(C,N) coatings was confirmed by Raman spectroscopy. (Authors)

  11. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  12. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  13. Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings

    Science.gov (United States)

    Mele, Elisa; Heredia-Guerrero, José A.; Bayer, Ilker S.; Ciofani, Gianni; Genchi, Giada G.; Ceseracciu, Luca; Davis, Alexander; Papadopoulou, Evie L.; Barthel, Markus J.; Marini, Lara; Ruffilli, Roberta; Athanassiou, Athanassia

    2015-09-01

    Here we show that macrozwitterions of poly(ethyl 2-cyanoacrylate), commonly called Super Glue, can easily assemble into long and well defined fibers by electrospinning. The resulting fibrous networks are thermally treated on glass in order to create transparent coatings whose superficial morphology recalls the organization of the initial electrospun mats. These textured coatings are characterized by low liquid adhesion and anti-staining performance. Furthermore, the low friction coefficient and excellent scratch resistance make them attractive as solid lubricants. The inherent texture of the coatings positively affects their biocompatibility. In fact, they are able to promote the proliferation and differentiation of myoblast stem cells. Optically-transparent and biocompatible coatings that simultaneously possess characteristics of low water contact angle hysteresis, low friction and mechanical robustness can find application in a wide range of technological sectors, from the construction and automotive industries to electronic and biomedical devices.

  14. Comparative evaluation of Compritol® HD5 ATO with Sodium Stearyl Fumarate and PEG 6000 as amphiphilic, hydrodispersible pharmaceutical lubricants

    Directory of Open Access Journals (Sweden)

    Chhanda Kapadia

    2017-03-01

    Full Text Available Hydrophobic lubricants are commonly used to reduce the frictional forces generated during tableting but impart a hydrophobic film on the surface of the powder or granules. This negatively affects the performance properties of the resultant tablets by slowing disintegration and dissolution, which is especially problematic in the case of orally disintegrating tablets. In the present study a comparative evaluation of the lubricant capacity of Compritol® HD5 ATO was performed with commonly used amphiphilic lubricants, sodium stearyl fumarate and PEG 6000. The effect of concentration and mixing time of Compritol® HD5 ATO with the granulation, on material flow properties, tablet ejection force, hardness, disintegration time and rate of dissolution of paracetamol tablets was evaluated. The physical properties of the lubricants such as crystallinity, wettability, thermal behaviour and surface area were also measured. Compritol® HD5 ATO is crystalline, hydrodispersible and thermostable. It reduced the tablet ejection force, the desired hardness range was obtained at significantly lower compression forces and no significant effect of lubricant mixing time and concentration on the hardness and disintegration time of the tablets was observed when compared with Sodium stearyl fumarate and PEG 6000. Compritol® HD5 ATO was found to be an as effective a lubricant for a fast disintegrating paracetamol formulation containing microcrystalline cellulose, lactose and PVP prepared by wet granulation in comparison with sodium stearyl fumarate and PEG 6000.

  15. Development and characterization of nano structured hard coatings for high performance tools by using PVD technique

    International Nuclear Information System (INIS)

    Irfan, M.; Alam, S.; Hassan, Z.; Iftikhar, F.; Khadim, S.

    2006-01-01

    No doubt hard coatings nave major applications in high performance cutting tools in order to improve tribological and mechanical properties of these tools since last years. The actual top development in this regard is the development of PVD based AlTiN coatings and their supplementation with nano. layers. In present these nano coatings are replaced by nano composites along with an additional development of Multilayer Nano structured coatings. This PVD based nano structured coating development optimized by process parameters, crystalline structure and deposition in multilayer. These coating are definitely produced by combination of ARC and Sputtering with filtration of arc droplets. It is studied that the properties like oxidation resistance, wear resistance and resistance against chemical reaction may be obtained by alloying additions of different elements. This paper presents different development stages and Process parameters for- producing high performance Nanostructure coatings and including adhesion test by using Kalomax system for determination of adhesion strength of these coatings and coating thickness measurements by using image analyzer system. Results and conclusions are showing the optimum values for better coatings for different applications. (author)

  16. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    Directory of Open Access Journals (Sweden)

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  17. Experience with synthetic fluorinated fluid lubricants

    Science.gov (United States)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  18. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development

    Directory of Open Access Journals (Sweden)

    Shahereen Chowdhury

    2018-02-01

    Full Text Available The TiAlCrSiYN-based family of PVD (physical vapor deposition hard coatings was specially designed for extreme conditions involving the dry ultra-performance machining of hardened tool steels. However, there is a strong potential for further advances in the wear performance of the coatings through improvements in their architecture. A few different coating architectures (monolayer, multilayer, bi-multilayer, bi-multilayer with increased number of alternating nano-layers were studied in relation to cutting-tool life. Comprehensive characterization of the structure and properties of the coatings has been performed using XRD, SEM, TEM, micro-mechanical studies and tool-life evaluation. The wear performance was then related to the ability of the coating layer to exhibit minimal surface damage under operation, which is directly associated with the various micro-mechanical characteristics (such as hardness, elastic modulus and related characteristics; nano-impact; scratch test-based characteristics. The results presented exhibited that a substantial increase in tool life as well as improvement of the mechanical properties could be achieved through the architectural development of the coatings.

  19. The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction

    Science.gov (United States)

    Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.

    1978-01-01

    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.

  20. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    Science.gov (United States)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  1. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chong M.; Liu, Jun; Zhang, Jiguang

    2016-08-27

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.

  2. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  3. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  4. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  5. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  6. Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.

    2007-01-01

    Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.

  7. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.

    Science.gov (United States)

    Sorkin, Raya; Kampf, Nir; Dror, Yael; Shimoni, Eyal; Klein, Jacob

    2013-07-01

    Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters < 100 nm) of the symmetric saturated diacyl PCs DMPC (C(14)), DPPC (C(16)) and DSPC (C(18)) attached to mica surfaces were studied in their solid-ordered (SO) phase on the surface. Overall liposome lubrication ability improves markedly with increasing acyl chain length, and correlates strongly with the liposomes' structural integrity on the substrate surface: DSPC-SUVs were stable on the surface, and provided extremely efficient lubrication (friction coefficient μ ≈ 10(-4)) at room temperature at pressures up to at least 18 MPa. DMPC-SUVs ruptured following adsorption, providing poor high-pressure lubrication, while DPPC-SUVs behavior was intermediate between the two. These results can be well understood in terms of the hydration-lubrication paradigm, but suggest that an earlier conjecture, that highly-efficient lubrication by PC-SUVs depended simply on their being in the SO rather than in the liquid-disordered phase, should be more nuanced. Our results indicate that the resistance of the SUVs to mechanical deformation and rupture is the dominant factor in determining their overall boundary lubrication efficiency in our system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingguang, E-mail: xingguangliu1@gmail.com [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Iamvasant, Chanon, E-mail: ciamvasant1@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Liu, Chang, E-mail: chang.liu@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Matthews, Allan, E-mail: allan.matthews@manchester.ac.uk [Pariser Building - B24 ICAM, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Leyland, Adrian, E-mail: a.leyland@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-01-15

    found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of ‘self-replenishing’ silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  9. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Chaoqun [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li, Jinlong, E-mail: lijinlong11@126.com [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Yue; Chen, Jianmin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-11-15

    Graphical abstract: Hardness and elastic modulus of TiSiN coating (C1) and TiSiN/Ag multilayer coatings with different thickness of individual Ag layers of 33.87 nm (C2), 30.01 nm (C3), 26.67 nm (C4), 22.22 nm (C5) and 10.67 nm (C6), together with SEM micrographs of indention morphologies after Vickers indentation tests. Display Omitted - Highlights: • TiSiN/Ag multilayer coatings design for microstructure was shown by cross-sectional SEM micrographs. • The TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with the TiSiN coating. • The individual Ag layers as a self-lubricating. • TiSiN/Ag multilayer coating (individual Ag layers of 22.22 nm) exhibits high hardness, H/E and H{sup 3}/E{sup *2} values and excellent wear resistance. - Abstract: The TiSiN/Ag multilayer coatings deposited on Ti6Al4V alloy substrate using the multi-arc ion plating system. All multilayer coatings had a same total thickness of about 2.5 μm, and the TiSiN layer had a fixed thickness and the Ag layer had different thicknesses. Evidence concluded from X-ray diffraction, scanning electron microcopies, X-ray photoelectron spectroscopy revealed that nanocrystallites and amorphous microstructure of nc-TiN and amorphous Si{sub 3}N{sub 4} for individual TiSiN layers, where amorphous Si{sub 3}N{sub 4} around nanocrystallites TiN boundaries, and ductile nanocrystallites silver clusters and metallic silver for individual Ag layers which can limit continuous growth of single (200) preferential orientation coarse columnar TiN crystal. In addition, the TiN grain size presented a decreasing trend with the decrease of the thickness of Ag layers. The TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with the TiSiN coating. The individual Ag layers of nano-multilayer coatings, not only as a self-lubricating but also as a barrier which inhibited micro cracks propagation, the formation of threading defects throughout all coatings, cause

  10. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  11. The Preparation and Performances of Self-Dispersed Nanomicron Emulsified Wax Solid Lubricant Ewax for Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available An oil-in-water nanomicron wax emulsion with oil phase content 45 wt% was prepared by using the emulsifying method of surfactant-in-oil. The optimum prepared condition is 85°C, 20 min, and 5 wt% complex emulsifiers. Then the abovementioned nanomicron emulsifying wax was immersed into a special water-soluble polymer in a certain percentage by the semidry technology. At last, a solidified self-dispersed nanomicron emulsified wax named as Ewax, a kind of solid lubricant for water based drilling fluid, was obtained after dried in the special soluble polymer containing emulsifying wax in low temperature. It is shown that the adhesion coefficient reduced rate (ΔKf is 73.5% and the extreme pressure (E-P friction coefficient reduced rate (Δf is 77.6% when the produced Ewax sample was added to fresh water based drilling fluid at dosage 1.0 wt%. In comparison with other normal similar liquid products, Ewax not only has better performances of lubrication, filtration loss control property, heat resistance, and tolerance to salt and is environmentally friendly, but also can solve the problems of freezing in the winter and poor storage stability of liquid wax emulsion in oilfield applications.

  12. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    International Nuclear Information System (INIS)

    Waseem, B; Alam, S; Irfan, M; Shahid, M; Soomro, B D; Hashim, S; Iqbal, R

    2014-01-01

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms

  13. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    International Nuclear Information System (INIS)

    Waseem, B.; Alam, S.; Irfan, M.; Shahid, M.; Soomro, B. D.; Hashim, S.; Iqbal, R.

    2013-01-01

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms. (author)

  14. Effect of thermophysical property and coating thickness on microstructure and characteristics of a casting

    Directory of Open Access Journals (Sweden)

    Ai-chao Cheng

    2017-01-01

    Full Text Available A new improved investment casting technology (IC has been presented and compared with the existing IC technology such as lost foam casting (LFC. The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d and cooling rate (v of the castings is d= –0.41v+206.1. The linear regression equation for the content of pearlite (w and solid cooling rate (t is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LFC, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.

  15. Estimation of temperature in the lubricant film during cold forging of stainless steel based on studies of phase transformation in the film

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Olsen, J.S.; Christensen, Erik

    1999-01-01

    -3(PO4)(2). 4H(2)O and amorphous Zn1.5Ca1.5(PO4)(2)) lubricated with soap or MoS2. The temperature in the lubricant film during the process was estimated from changes in friction in correlation with observed phase transitions in the lubricant. Phase transitions in the carrier coatings as a function...

  16. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    Science.gov (United States)

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  17. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    Science.gov (United States)

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  18. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  19. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  20. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  1. Developments in lubricant technology

    CERN Document Server

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  2. Structure, elastic stiffness, and hardness of Os 1- xRu xB 2 solid solution transition-metal diborides

    KAUST Repository

    Kanoun, Mohammed; Hermet, Patrick; Goumri-Said, Souraya

    2012-01-01

    On the basis of recent experiments, the solid solution transition-metal diborides were proposed to be new ultra-incompressible hard materials. We investigate using density functional theory based methods the structural and mechanical properties, electronic structure, and hardness of Os 1-xRu xB 2 solid solutions. A difference in chemical bonding occurs between OsB 2 and RuB 2 diborides, leading to significantly different elastic properties: a large bulk, shear moduli, and hardness for Os-rich diborides and relatively small bulk, shear moduli, and hardness for Ru-rich diborides. The electronic structure and bonding characterization are also analyzed as a function of Ru-dopant concentration in the OsB 2 lattice. © 2012 American Chemical Society.

  3. Structure, elastic stiffness, and hardness of Os 1- xRu xB 2 solid solution transition-metal diborides

    KAUST Repository

    Kanoun, Mohammed

    2012-05-31

    On the basis of recent experiments, the solid solution transition-metal diborides were proposed to be new ultra-incompressible hard materials. We investigate using density functional theory based methods the structural and mechanical properties, electronic structure, and hardness of Os 1-xRu xB 2 solid solutions. A difference in chemical bonding occurs between OsB 2 and RuB 2 diborides, leading to significantly different elastic properties: a large bulk, shear moduli, and hardness for Os-rich diborides and relatively small bulk, shear moduli, and hardness for Ru-rich diborides. The electronic structure and bonding characterization are also analyzed as a function of Ru-dopant concentration in the OsB 2 lattice. © 2012 American Chemical Society.

  4. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  5. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  6. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    Science.gov (United States)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  7. Development and synthesis nanocompositions DLC coatings with orientation effect

    International Nuclear Information System (INIS)

    Levchenko, V.A.; Novoselova, N.V.; Matveenko, V.N.

    2008-01-01

    On the basis of volume modelling and a detailed experimental research of physical and chemical properties nanocompositions DLC with one-dimensional highly orientationally the carbon structure on interphase border of section with lubricant as models tribological knot, proves typical models of synthesis new nanocompositions the DLC possessing high tribological properties (by high wear resistance, low of a friction, etc.). The influence mechanism orientation properties of a surface of the synthesized coatings on molecular in a boundary lubricant layer is investigated. On basis tribological experimental batch tests nanocompositions the carbon coatings possessing orientation effect, the synthesis mechanism highly orientationally DLC coatings with optimum tribological properties is developed.

  8. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  9. Crystalline and amorphous solid phases in the classical hard sphere system

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Souza, R.F.T.; Llano, M. de; Mini, S.

    1984-01-01

    A qualitative crystalline, as well as amorphous, solid behavior is simultaneously extracted for a classical hard sphere system from its known virial power series expansion in the density augmented by only one further virial coefficient, taken from an extrapolated estimate of the Cauchy-Hadamard radius of convergence criterion. Results are compared with computer simulation data. (Author) [pt

  10. The Role of Diffusion Media in Nitriding Process on Surface Layers Characteristics of AISI 4140 with and without Hard Chrome Coatings

    Directory of Open Access Journals (Sweden)

    K.A. Widi

    2016-09-01

    Full Text Available The surface layer characteristics of the AISI 4140 tool steel treated by nitriding gas before and after hard chrome plating utilizing pure nitrogen diffusion media (fluidized bed reactor and the without gas (muffle reactor has been studied experimentally. The result shows that nitriding substrate with hard chrome layers has nitrogen atoms concentration almost twice greater than that without hard chrome layers. After being given a hard chrome plating, nitriding on AISI 4140 steel generally has a nitrogen concentration of up to 4 times more than the substrate without hard chrome coating. Almost the entire specimen showed the highest concentration of N atoms in the area below the surface (hardening depth of 200 to 450 µm. N atoms diffusion depth profile has a correlation with hardening depth profile, especially on the specimens layered with hard chromium. The substrate without hard chrome plating tends to have higher surface hardness than the sub-surface. The results show that the effectiveness and efficiency of the gas nitriding diffusion process can be produced without the use of gas in the muffle reactor but the specimens must be hard chromium coated first. This phenomenon can be explained by the role of the passive layer formation that works as a barrier to keeps the spreading of N atoms concentrated in sub-surface areas.

  11. Experimental Analysis of Damping and Tribological Characteristics of Nano-CuO Particle Mixed Lubricant in Ball Bearings

    Science.gov (United States)

    Prakash, E.; Sivakumar, K.

    2015-12-01

    Experimental analysis of damping capacity and tribological characteristics of nano CuO added Servosystem 68 lubricant is attempted. CuO nano particles were synthesized by aqueous precipitation method and characterized. Prior to dispersion into lubricant, CuO nano particles were coated with 0.2 wt.% surfactant (Span-80) to stabilize the nano fluid. Tribological characteristics of particle added lubricant were tested in ASTM D 4172 four ball wear tester. Scanning electron microscopy test results of worn surfaces of nano CuO particle added lubricant were smoother than base lubricant. The particle added lubricant was applied in a new ball bearing and three defected ball bearings. When particle added lubricant was used, the ball defected bearing's vibration amplitude was reduced by 21.94% whereas it was 16.46% for new bearing and was ≤ 11% for other defected bearings. The formation of protection film of CuO over ball surface and regime of full film lubrication near the ball zone were observed to be reason for improved damping of vibrations.

  12. Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental–numerical approach

    NARCIS (Netherlands)

    Sluis, van der O.; Abdallah, Amir; Bouten, P.C.P.; Timmermans, P.H.M.; Toonder, den J.M.J.; With, de G.

    2011-01-01

    Layer buckling and delamination is a common interfacial failure phenomenon in thin film multi-layer structures that are used in flexible display applications. Typically, the substrate is coated on both sides with a hybrid coating, calleda hard coat (HC), which acts as a gas barrier and also

  13. Oral coatings: a study on the formation, clearance and perception

    NARCIS (Netherlands)

    Camacho, S.

    2015-01-01

    Oral coatings are residues of food and beverages that coat the oral mucosa after consumption. Several studies have reported on the lubrication properties in mouth, and the after-feel and after-taste impact of oral coatings. Further, oral coatings have been suggested to influence subsequent taste

  14. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H...

  15. Deposition and characterisation of multilayer hard coatings. Ti/TiNδ/TiCxNy/(TiC) a-C:H/(Ti) a-C:H

    International Nuclear Information System (INIS)

    Burinprakhon, T.

    2001-02-01

    Multilayer hard coatings containing Ti, TiNδ, TiC x N y , (TiC m ) a-C:H, (TiC n ) a-C:H, and (Ti) a-C:H were deposited on commercially pure titanium substrates by using an asymmetric bipolar pulsed-dc reactive magnetron sputtering of a titanium target, with Ar, Ar+N 2 , Ar+N 2 +CH 4 , and Ar+CH 4 gas mixtures. The microstructures, elemental compositions and bonding states of the interlayers and the coating surfaces were studied by using cross-sectional transmission electron microscopy (XTEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The microstructure development of the multilayer coating was strongly influenced by target poisoning. As a result of the complete poisoning of the titanium target during the deposition of TiNδ and TiC x N y interlayers, the a-C:H interlayers containing graded titanium and nitrogen contents were found to develop successively to the TiC x N y interlayer without the formation of near-stoichiometric TiC. The (TiC m ) a-C:H interlayer consisted of nano-particles of distorted fcc crystal structure embedded in the a-C:H matrix. The (TiC n ) a-C:H and (Ti) a-C:H top layers were found to be a-C:H matrix without nano-particles. In the (Ti) a-C:H top layer there was no measurable amount of Ti observed, regardless of the variation of CH 4 concentration between 37.5 and 60 % flow rate in Ar+-CH4 gas mixture. The top layer (Ti) a-C:H was found to contain approximately 10 atomic % nitrogen, due to N 2 contamination during deposition caused by low conductance of N 2 through the nominally closed valve of the mass flow controller. The change of the CH 4 concentration during deposition of the top layer (Ti) a-C:H, however, showed a strong influence on the hydrogen content. The comparison of the fluorescence background of the Raman spectra revealed that hydrogen-less (Ti) a-C:H was deposited at a CH 4 concentration of less than 50 % flow rate in Ar. The hardness

  16. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  17. Friction of self-lubricating surfaces by ion beam techniques. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.S.; Rai, A.K.

    1992-05-01

    UES, Inc. conducted a research and development program designed to establish conditions for ion implantation/mixing of suitable additives into the surfaces of bulk ceramics and metals for obtaining self-lubricating low friction and wear characteristics. The substrates considered were ZrO{sub 2}, Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, steel and Ni-base superalloy. The lubricant additives chosen were BaF{sub 2}/CaF{sub 2}Ag, MoS{sub 2}, WS{sub 2}and B{sub 2}O{sub 3}. The initial tasks of the program were to synthesis these lubricant compounds by co-implantation of constituent elements if sufficient beams of desired elements were obtained. The final tasks were to investigate high energy (MeV) ion mixing of deposited coatings as well as to investigate ion beam assisted deposition using low energy ion beams. It was shown that MoS{sub 2} can be synthesized by co-implantation of Mo{sup +} and S{sup +} in ceramic materials with appropriate choice of energies to obtain nearly overlapping depth profiles. The sliding life of DC magnetron sputtered MoS{sub 2} films of thicknesses {approximately}7500{Angstrom} on ceramic materials such as sapphire, Si{sub 3}N{sub 4} and ZrO{sub 3} were improved by ten to thousand fold after 2 Mev Ag{sup +} ion mixing. Ion beam assisted deposition (IBAD) and ion beam mixing were utilized to fabricate self-lubricating coatings of CaF{sub 2}/Ag and BaF/CaF{sub 2}/Ag composites.

  18. Influence of hardness and roughness on the tribological performance of TiC/a-C nanocomposite coatings

    NARCIS (Netherlands)

    Shaha, K. P.; Pei, Y. T.; Martinez Martinez, D.; De Hosson, J. Th. M.

    2010-01-01

    The influence of the hardness of counterface materials on the tribological behavior of TiC/a-C nanocomposite coatings exhibiting various surface roughness was examined by using a ball on a disc configuration in humid air. While sliding against 100Cr6 steel balls, the steady state coefficient of

  19. Superhard carbon film deposition by means of Laser-Arco {sup registered} on the way from the laboratory into the industrial series coating; Abscheidung superharter Kohlenstoffschichten mittels Laser-Arco {sup registered} auf dem Weg vom Labor in die industrielle Serienfertigung

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Hans-Joachim; Leonhardt, Michael; Leson, Andreas; Meyer, Carl-Friedrich; Stucky, Thomas; Weihnacht, Volker [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik (IWS), Dresden (Germany)

    2008-12-15

    Diamond-like carbon films (DLC) are more and more applied as wear protection coatings for components and tools due to their unique combination of high hardness, low friction and sticking tendency to metallic counter bodies. Up to now applied DLC films are hydrogen containing (a-C:H) or metal carbon films (Me-C:H) deposited by a plasma assisted CVD process from carbon-hydrogen gas mixtures. Their wide industrial effort results from that the can be deposited with slowly modified coating machines for classical hard coating (e.g. TiN or CrN). A new generation DLC films are the hydrogen-free ta-C films (ta-C = tetrahedral bounded amorphous carbon) with a between two and three-times higher hardness and with a resulting higher wear resistance under extreme condition than classical DLC films. They have excellent emergency running properties at lubrication break down. Their industrial application is more difficult due to that they cannot deposited with modified coating machines for classical hard and DLC coating and a new technology with corresponding equipment was not available up to now. The laser controlled, pulsed arc deposition technology (Laser-Arco {sup registered}) of the Fraunhofer IWS Dresden has this potential. In kind of a Laser-Arc-Module-source the ta-C film deposition can be integrated in every industrial used deposition machine. (orig.)

  20. Possibilities of Application of High Pressure Jet Assisted Machining in Hard Turning with Carbide Tools

    Directory of Open Access Journals (Sweden)

    G. Globočki Lakić

    2017-06-01

    Full Text Available High Pressure Jet Assisted Machining (HPJAM in turning is a hybrid machining method in which a high pressure jet of cooling and lubrication fluid, under high pressure (50 MPa, leads to the zone between the cutting tool edge and workpiece. An experimental study was performed to investigate the capabilities of conventional and high pressure cooling (HPC in the turning of hard-to-machine materials: hard-chromed and surface hardened steel Ck45 (58 HRc and hardened bearing steel 100Cr6 (62 HRc. Machining experiments were performed using coated carbide tools and highly cutting speed. Experimental measurements were performed for different input process parameters. The cooling capabilities are compared by monitoring of tool wear, tool life, cooling efficiency, and surface roughness. Connection between the tool wear and surface roughness is established. Experimental research show that the hard turning with carbide cutting tools and HP supply CLF provides numerous advantages from the techno-economic aspect: greater productivity, reduce of temperature in the cutting zone, improved control chip formation, extended tool life, low intensity of tool wear, surface roughness in acceptable limits, significant reduce of production costs related to the CLF.

  1. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. It has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.

  2. A study of DLC coatings for ironing of stainless steel

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    Stamping of sheet metal components without lubrication or using minimum amount of hazard free lubricant is a possible solution to diminish health hazards to personnel and environmental impact and to reduce production costs. This paper studies the application of diamond-like coating (DLC) under...

  3. Pleural Lubrication

    Directory of Open Access Journals (Sweden)

    Cristina Porta

    2016-05-01

    Full Text Available During breathing, the pleural surfaces slide against each other continuously without damage. Pleural liquid and lubricating molecules should provide the lubrication of the sliding surfaces, thus protecting the mesothelium from shear-induced abrasion. D’Angelo et al. (Respir. Physiol. Neurobiol. 2004 measured the coefficient of kinetic friction (μ of rabbit parietal pleura sliding against visceral pleura in vitro at physiological velocities and under physiological loads; it was ~0.02 and did not change with sliding velocity, consistent with boundary lubrication. μ in boundary lubrication can be influenced by surface molecules like hyaluronan, sialomucin or surface active phospholipidis. Hyaluronan or sialomucin is able to restore good boundary lubrication in damaged mesothelium. Nevertheless, hyaluronidase and neuraminidase treatment of the mesothelium does not increase μ, though neuraminidase cleaves sialic acid from the mesothelium. Short pronase or phospholipase treatment, so as to affect only the mesothelial glycocalyx, increases μ, and this increase is removed by hyaluronan or sialomucin. On the other hand, addition of phospholipids after phospholipase treatment produces a small effect relative to that of hyaluronan or sialomucin, and this effect is similar with unsaturated or saturated phospholipids. In damaged mesothelium, the lubrication regimen becomes mixed, but addition of hyaluronan or sialomucin restores boundary lubrication.

  4. ZnO nanorod array solid phase micro-extraction fiber coating: fabrication and extraction capability

    International Nuclear Information System (INIS)

    Wang Dan; Zhang Zhuomin; Li Tiemei; Zhang Lan; Chen Guonan; Luo Lin

    2009-01-01

    In this paper, a ZnO nanorod array has been introduced as a coating to the headspace solid phase micro-extraction (HSSPME) field. The coating shows good extraction capability for volatile organic compounds (VOCs) by use of BTEX as a standard and can be considered suitable for sampling trace and small molecular VOC targets. In comparison with the randomly oriented ZnO nanorod HSSPME coating, ZnO nanorod array HSSPME fiber coating shows better extraction capability, which is attributed to the nanorod array structure of the coating. Also, this novel nanorod array coating shows good extraction selectivity to 1-propanethiol.

  5. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    Science.gov (United States)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  6. Preliminary Results of Cleaning Process for Lubricant Contamination

    Science.gov (United States)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  7. Preliminary Results of Cleaning Process for Lubricant Contamination

    International Nuclear Information System (INIS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-01-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented

  8. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  9. Production of hard hydrophilic Ni-B coatings on hydrophobic Ni-Ti and Ti-6Al-4V alloys by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Karabudak, Filiz; Yesildal, Ruhi [Ataturk Univ., Erzurum (Turkey). Mechanical Engineering Dept.

    2017-07-01

    This paper is mainly focused on the wetting state of liquid droplets on Ni-Ti and Ti-6Al-4V hierarchical structured hydrophobic surfaces in micro/nanoscale. Electroless Ni-B deposition as a surface coating treatment has recently drawn considerable attention of researchers owing to remarkable advantages when compared with other techniques such as low price, conformal ability to coat substrates, good bath stability and relatively easier plating process control. The Ni-Ti and Ti-6Al-4V substrates were plated by electroless Ni-B plating process. The coated films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness testing and static contact angle measurement. Results obtained from the analyses show that electroless Ni-B deposition may improve the hardness and wettability of the Ni-Ti and Ti-6Al-4V alloy surfaces.

  10. Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to quality high-velocity oxygen-fuel (HVOF) thermal spray WC/Co coatings as a replacement for hard chrome plating on landing gear components...

  11. Numerical analysis of all flow state lubrication performance of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei; Liu Lizhi; Zhao Xuecen; Liu Songya

    2015-01-01

    A model enabling all different flow state lubrication performance simulation and analysis for water-lubricated thrust bearing is presented, considering the temperature influence and elastic deformation. Lubrication state in the model is changed directly from laminar lubrication to turbulent lubrication once Reynolds number exceeds the critical Reynolds number. The model is numerically solved and results show that temperature variation is too little to influence the lubrication performance; the elastic deformation can slightly reduce the load carrying capacity of the thrust bearing; and the turbulent lubrication can remarkably improve the load carrying capacity. (authors)

  12. Carbon-based coatings for automotive components; Kohlenstoffbasierte Beschichtungen fuer automotive-Komponenten. Einsatz von Beschichtungen als Konstruktionselement

    Energy Technology Data Exchange (ETDEWEB)

    Huben, Theresa [Oerlikon Balzers AG, Balzers (Liechtenstein). Geschaeftsbereich Automotive-Komponenten; Becker, Juergen [Oerlikon Balzers Coating Germany GmbH, Bingen (Germany). Entwicklung fuer den Geschaeftsbereich Automotive-Komponenten

    2012-04-15

    The outstanding properties of carbon-based coatings are the low friction against steel and the wear resistance, interconnected with the high hardness. In lubricated systems coatings only work in the mixed and boundary friction regime; this means as long as primary body and counter body are still in contact. The properties of coatings can be adjusted in wide ranges. A purposeful adaptation requires that the tribological system is sufficiently well understood. It has been shown that solutions based on coatings are only sub-optimal if the coating is only introduced at the end of the design-phase. A greater benefit is obtained, when the scope for development as given by a coating is utilized already in the early design phase. The coating is accepted as a design element. To test the suitability of the selected coating quickly and inexpensively in advance, the usual standard laboratory tests are not always appropriate. A test set-up has to be close enough to the application to generate useful results. These considerations are illustrated using the example of a piston pin coating. The roughness of the primary body and of the counter body is of particular importance for the adjustment of the coating system, when high loads are applied. The example presented here shows that the usual indicators for surface roughness like R{sub a} and R{sub z} are not always sufficient. (orig.)

  13. Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouzakis, K.D. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Vidakis, N. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Leyendecker, T. [CemeCon, 52068 Aachen (Germany); Lemmer, O. [CemeCon, 52068 Aachen (Germany); Fuss, H.G. [CemeCon, 52068 Aachen (Germany); Erkens, G. [CemeCon, 52068 Aachen (Germany)

    1996-12-15

    The impact test, in combination with a finite element method (FEM) simulation, is used to determine stress values that characterise the fatigue behaviour of thin hard coatings, such as TiAlN, TiAlCN, CrN, MoN, etc. The successive impacts of a cemented carbide ball onto a coated probe induce high contact loads, which can vary in amplitude and cause plastic deformation in the substrate. In the present paper FEM calculations are used in order to determine the critical stress values, which lead to coating fatigue failure. The parametric FEM simulation developed considers elastic behaviour for the coating and elastic plastic behaviour for the substrate. The results of the FEM calculations are correlated to experimental data, as well as to SEM observations of the imprints and to microspectrum analyses within the contact region. Herewith, critical values for various stress components, which are responsible for distinctive fatigue failure modes of the coating-substrate compounds can be obtained. (orig.)

  14. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  15. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Science.gov (United States)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  16. Double hollow MoS{sub 2} nano-spheres: Synthesis, tribological properties, and functional conversion from lubrication to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yueru [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Kunhong, E-mail: hukunhong@163.com [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Enzhu; Guo, Jianhua; Han, Chengliang [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Xianguo [Institute of Tribology, Hefei University of Technology, Hefei 230009 (China)

    2017-01-15

    Highlights: • Novel double-hollow-sphere MoS{sub 2} nanoparticles were synthesized on sericite. • Friction and wear decreased by 22.4 and 63.5% by the novel MoS{sub 2}/sericite. • Friction induced conversion of MoS{sub 2}/sericite from lubricant to catalyst. • MoS{sub 2}/sericite can be used as a photocatalyst after lubricating service life. • A possible approach was proposed for designing a novel green lubricant. - Abstract: Molybdenum disulfide (MoS{sub 2}) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS{sub 2}, novel double-hollow-sphere MoS{sub 2} (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.

  17. Tribological Performance of MoS2 Coatings in Various Environments

    Directory of Open Access Journals (Sweden)

    Thomas Gradt

    2016-09-01

    Full Text Available Molybdenum disulfide (MoS2 is a well-known solid lubricant for tribosystems running in vacuum or dry gases. Problems arise due to its sensitivity to humidity, which is a drawback for its application under ambient conditions. However, by using a physical vapor deposition (PVD process, deposition parameters can be optimized not only to gain a coatings structure with favorable frictional properties but also to minimize the sensitivity to attack by water molecules. Therefore, an improved tribological behavior even under moist conditions can be achieved. MoS2 coatings are also candidates for being applied at cryogenic temperatures. They already have proven their suitability, e.g., for sliding support elements between superconducting magnets of the nuclear fusion-experiment Wendelstein 7-X. However, these coatings were exclusively produced for this particular application and the utilization for more common tribosystems may be precluded due to cost considerations. In view of a wider range of applications, pure and Cr containing PVD-MoS2 coatings with an optimized structure were tested under varying environments including hydrogen gas and cryogenic temperatures. Results of the most promising variant are presented in this paper.

  18. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  19. Evaluation on machined surface of hardened stainless steel generated by hard turning using coated carbide tools with wiper geometry

    International Nuclear Information System (INIS)

    Noordin, M.Y.; Kurniawan, D.; Sharif, S.

    2007-01-01

    Hard turning has been explored to be the finish machining operation for parts made of hardened steel. Its feasibility is determined partially by the quality of the resulting machined surface. This study evaluates the surface integrity of martensitic stainless steel (48 HRC) resulting from hard turning using coated carbide tool with wiper geometry at various cutting speed and feed and compares to that obtained using coated carbide tool with conventional geometry. The wiper coated carbide tool is able to produce machined surface which is of finer finish (Ra is finer than 0.4 μm at most cutting parameters) and yet is similarly inducing only minor microstructural alteration compared to its conventional counterpart. From the view of the chip morphology where continuous type of chip is desired rather than sawtooth chip type, the wiper tool generates continuous chip at almost similar range of cutting parameters compared to the case when using conventional tool. Additionally, the use of wiper tool also induces the preferred compressive residual stress at the machined surface. (author)

  20. Rejection thresholds in solid chocolate-flavored compound coating.

    Science.gov (United States)

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers compared to melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate, a bitter and generally recognized as safe additive. Paired preference tests (blank compared to spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between 2 self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (P= 0.01). Conversely, eating style did not affect group rejection thresholds (P= 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (P= 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. This work makes use of the rejection threshold method to study market segmentation, extending its use to solid foods. We believe this method has broad applicability to the sensory specialist and product developer by providing a

  1. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  2. Glass transitions in lubricants - Its relation to elastohydrodynamic lubrication /EHD/

    Science.gov (United States)

    Alsaad, M.; Bair, S.; Sanborn, D. M.; Winer, W. O.

    1977-01-01

    A preliminary investigation into the possible role of glass transition and glassy state behavior of lubricants in EHD contacts is reported. Measurements of the glass transition of lubricants as a function of pressure by two methods are presented along with a discussion indicating possible implications of the results to EHD lubrication.

  3. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    International Nuclear Information System (INIS)

    Li, Shuo; Bhushan, Bharat

    2016-01-01

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  4. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [School of Materials Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian Distract, Beijing 100083 (China); Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States); Bhushan, Bharat, E-mail: bhushan.2@osu.edu [Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States)

    2016-08-15

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  5. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    International Nuclear Information System (INIS)

    Xie, Z.W.; Wang, L.P.; Wang, X.F.; Huang, L.; Lu, Y.; Yan, J.C.

    2011-01-01

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si 3 N 4 , a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.

  6. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  7. Tribological performance of an H-DLC coating prepared by PECVD

    Science.gov (United States)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  8. Ni–Mo–Co ternary alloy as a replacement for hard chrome

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Meenu, E-mail: meenu_srivas@yahoo.co.uk; Anandan, C.; Grips, V.K. William

    2013-11-15

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel–molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°–600 °C. It was observed that the micro hardness of Ni–Mo–Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co–P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni–Mo–Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni–Mo–Co alloy was better than as-deposited Ni–Mo–Co and Ni–Mo coating.

  9. Ni–Mo–Co ternary alloy as a replacement for hard chrome

    International Nuclear Information System (INIS)

    Srivastava, Meenu; Anandan, C.; Grips, V.K. William

    2013-01-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel–molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°–600 °C. It was observed that the micro hardness of Ni–Mo–Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co–P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni–Mo–Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni–Mo–Co alloy was better than as-deposited Ni–Mo–Co and Ni–Mo coating.

  10. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-I., E-mail: s1322509@gmail.com [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemistry and Material Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Wang, Gao-Liang, E-mail: wanggl@takming.edu.tw [Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan (China)

    2015-12-01

    Highlights: • The Ni-P-BN(h) coatings were prepared by electroless plating techniques in this research. • Surfactant CTAB resulting in a uniform dispersion of particles in Ni-P coating. • CTAB with a positive effect on the tribological performance of Ni–P/BN(h) coatings. • Frictional tests results show that optimal friction coefficient would be decreased 75%. • Wear resistance of the Ni-P/BN(h) coating is higher about 10 times Ni–P coatings. - Abstract: Ni–P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni–P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni–P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni–P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni–P composites is approximately 10 times higher than Ni–P coating.

  11. Oral coatings: a study on the formation, clearance and perception

    OpenAIRE

    Camacho, S.

    2015-01-01

    Oral coatings are residues of food and beverages that coat the oral mucosa after consumption. Several studies have reported on the lubrication properties in mouth, and the after-feel and after-taste impact of oral coatings. Further, oral coatings have been suggested to influence subsequent taste perception. Although it is well known that oral coatings can influence sensory perception, there was little information available on the chemical composition and physical properties of oral coatings. ...

  12. Simulative Testing of Friction and Lubrication in Cold Forging of Steel and Aluminum

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Aida, Tetsuo

    2012-01-01

    torque during testing combined with an analysis of the sliding velocity distribution along the punch nose. The latter is determined by FE analysis of the test. Results show friction stress for unalloyed low C-steel provided with different types of lubricants, i.e. phosphate coating plus soap, phosphate...

  13. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  14. A study of DLC coatings for ironing of stainless steel

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i...

  15. Effect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies

    Directory of Open Access Journals (Sweden)

    M. M. Larijani

    2013-06-01

    Full Text Available Titanium nitride-Copper (TiN-Cu nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of the deposited films was studied using atomic force microscopy. Film hardness was estimated by a triboscope nanoindentation system. However, X-ray photoelectron spectroscopy analysis was performed to study the surface chemical bonding states. It was found that addition of soft Cu phase above 2 at.% to TiN film drastically decreased the film hardness from 30 to 2.8 Gpa due to lubricant effect of segregated copper particles. X-ray photoelectron spectroscopy results showed that Cu and TiN phases grew separately. In our case,the formation of a solid solution or chemical bonding between Cu and Ti was rejected.

  16. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.

    Science.gov (United States)

    Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad

    2015-02-25

    The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.

  17. The role of lubricant analysis in maximizing lubricant and equipment life

    International Nuclear Information System (INIS)

    Janis, J.

    1995-01-01

    Lubricant analysis has always played an important yet somewhat invisible role in equipment health monitoring. At its most primitive, simple observations and field testing alert equipment operators to changing conditions. At its most advanced, data from performance and analytical tests are used to develop or select optimum lubricants for service, stretch drain intervals, predict remaining equipment life and identify potential equipment or system problems at an incipient stage. Coupled with thermography and vibration analysis, lubricant analysis can become a major component of a comprehensive predictive maintenance (PM) program. Ontario Hydro finds itself at a turning point regarding the use and monitoring of lubricants. Increasing emphasis on equipment reliability and plant life extension, coupled with major, recent changes in lubricant composition in response to environmental, energy and safety concerns, forces an upgrading of many aspects of lubricant monitoring so that it may establish itself as a key part of modern PM practices. This paper discusses some of these aspects. (author)

  18. Studies of the process of an unsteady formation of hard nitride coatings in an arc plasma flow

    International Nuclear Information System (INIS)

    Zake, M.

    1996-01-01

    The kinetic studies of an unsteady formation of hard ZrN and TiN coatings on the surface of metallic (Zr, Ti) samples in an Ar-N plasma flow are carried out. The obtained result is that at the initial stage of an unsteady heating of titanium samples nitrogen atoms penetrate into metal lattice and form interstitial compounds of hard nitrogen solutions in α-phase of Ti. This process is followed by a growth of thin surface layers of titanium nitrides with subsequent changes of surface radiance of exposed samples. Unsteady formation of ZrN is a similar two-stage process which includes the ZrN film growth and formation of a α-hard solution with subsequent changes of total normal emissivity of the surface. (author). 1 ref., 1 fig

  19. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  20. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  1. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  2. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions.

    Science.gov (United States)

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J; Harris, Michael T

    2015-12-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API.

  3. Predictive modelling of fatigue failure in concentrated lubricated contacts.

    Science.gov (United States)

    Evans, H P; Snidle, R W; Sharif, K J; Bryant, M J

    2012-01-01

    Reducing frictional losses in response to the energy agenda will require use of less viscous lubricants causing hydrodynamically-lubricated bearings to operate with thinner films leading to "mixed lubrication" conditions in which a degree of direct interaction occurs between surfaces protected only by boundary tribofilms. The paper considers the consequences of thinner films and mixed lubrication for concentrated contacts such as those occurring between the teeth of power transmission gears and in rolling element bearings. Surface fatigue in gears remains a serious problem in demanding applications, and its solution will become more pressing with the tendency towards thinner oils. The particular form of failure examined here is micropitting, which is identified as a fatigue phenomenon occurring at the scale of the surface roughness asperities. It has emerged recently as a systemic difficulty in the operation of large scale wind turbines where it occurs in both power transmission gears and their support bearings. Predictive physical modelling of these contacts requires a transient mixed lubrication analysis for conditions in which the predicted lubricant film thickness is of the same order or significantly less than the height of surface roughness features. Numerical solvers have therefore been developed which are able to deal with situations in which transient solid contacts occur between surface asperity features under realistic engineering conditions. Results of the analysis, which reveal the detailed time-varying behaviour of pressure and film clearance, have been used to predict fatigue and damage accumulation at the scale of surface asperity features with the aim of improving understanding of the micropitting phenomenon. The possible consequences on fatigue of residual stress fields resulting from plastic deformation of surface asperities is also considered.

  4. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  5. Sol-Gel Derived, Nanostructured Oxide Lubricant Coatings

    National Research Council Canada - National Science Library

    Taylor, Douglas

    2000-01-01

    In this program, we deposited oxide coatings of titanium and nickel by wet-chemical deposition methods, also referred to as sol-gel, which showed excellent tribological properties in previous investigations...

  6. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    Science.gov (United States)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  7. Effect of thin-film coating on wear in EGR-contaminated oil

    International Nuclear Information System (INIS)

    Ajayi, O. O.; Aldajah, S. H.; Erdemir, A.; Fenske, G. R.

    2001-01-01

    Increased use of higher-efficiency compression ignition direct injection (CIDI) diesel engines instead of today's gasoline engines will result in reduced fuel consumption and greenhouse gases emissions. However, NO(sub x) and particulate exhaust emissions from diesel engines must be significantly reduced due to their possible adverse health effects. Exhaust gas recirculation (EGR) is an effective way to reduce NO(sub x) emissions from diesel engines, but the particulates and acidic exhaust products in the recirculated gas will contaminate engine lubricant oil by increasing the soot content and total acid number (TAN). These factors will increase the wear rate in many critical engine components and seriously compromise engine durability. We have investigated the use of commercially available thin and hard coatings (TiN, TiCN, TiAlN, and CrN) to mitigate the negative effects of EGR on wear. In tests with the four-ball machine according to ASTM D4172, we found that all the four coatings deposited on M-50 steel significantly reduced wear in EGR-contaminated oils when compared with uncoated M50 steel balls

  8. Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudhansu Ranjan; Kuma, Amaresh [National Institute of Technology, Jamshedpur (India); Dhupal, Debabrata [Veer Surendra Sai University of Technology, Burla (India)

    2015-10-15

    This experimental investigation deals with dry hard turning of AISI 4140 steel using PVD-TiN coated Al{sub 2}O{sub 3}+TiCN mixed ceramic inserts. The combined effect of cutting parameters (cutting speed, feed and depth of cut) on performance characteristics such as surface roughness and flank wear is explored by Full factorial design (FFD) and analysis of variance (ANOVA). The results show that feed is the principal cutting parameter influencing surface roughness, followed by cutting speed. However, flank wear is affected by the cutting speed and interaction of feed-depth of cut, although depth of cut has not been found statistically significant, but flank wear is an increasing function of depth of cut. Observations are made on the machined surface, and worn tool by Scanning electron microscope (SEM) to establish the process. Abrasion was the major wear mechanism found during hard turning within the studied range. The effect of tool wear on surface roughness was also studied. The experimental data were analyzed to predict the optimal range of surface roughness and flank wear. Based on Response surface methodology (RSM), mathematical models were developed for surface roughness (Ra) and flank wear (VB) with 95% confidence level. Finally, under optimum cutting conditions (obtained by response optimization technique), tool life was evaluated to perform cost analysis for justifying the economic viability of coated ceramic inserts in hard turning. The estimated machining cost per part for TiN coated ceramic was found to be lower (Rs. 12.31) because of higher tool life (51 min), which results in the reduction of downtime and increase in savings.

  9. Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts

    International Nuclear Information System (INIS)

    Das, Sudhansu Ranjan; Kuma, Amaresh; Dhupal, Debabrata

    2015-01-01

    This experimental investigation deals with dry hard turning of AISI 4140 steel using PVD-TiN coated Al_2O_3+TiCN mixed ceramic inserts. The combined effect of cutting parameters (cutting speed, feed and depth of cut) on performance characteristics such as surface roughness and flank wear is explored by Full factorial design (FFD) and analysis of variance (ANOVA). The results show that feed is the principal cutting parameter influencing surface roughness, followed by cutting speed. However, flank wear is affected by the cutting speed and interaction of feed-depth of cut, although depth of cut has not been found statistically significant, but flank wear is an increasing function of depth of cut. Observations are made on the machined surface, and worn tool by Scanning electron microscope (SEM) to establish the process. Abrasion was the major wear mechanism found during hard turning within the studied range. The effect of tool wear on surface roughness was also studied. The experimental data were analyzed to predict the optimal range of surface roughness and flank wear. Based on Response surface methodology (RSM), mathematical models were developed for surface roughness (Ra) and flank wear (VB) with 95% confidence level. Finally, under optimum cutting conditions (obtained by response optimization technique), tool life was evaluated to perform cost analysis for justifying the economic viability of coated ceramic inserts in hard turning. The estimated machining cost per part for TiN coated ceramic was found to be lower (Rs. 12.31) because of higher tool life (51 min), which results in the reduction of downtime and increase in savings.

  10. Lubrication of nuclear reactor components

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.

    1978-01-01

    Safe operation of liquid metal cooled nuclear reactors requires a knowledge of the tribological behaviour of contacting components at high temperatures with slow relative movement at high frictional loads in a chemically aggressive environment. Experiments have been performed on various material combinations in liquid sodium and argon. Because of the small sliding movements, hydrodynamic lubrication is not expected and thus surface finish is an important factor. Tests have been performed on brushed, ground and lapped surfaces. Among the material combinations tested a CrC-coating on a 1.4961 stainless steel substrate performed well. Friction coefficients of 0.35-0.5 in argon and 0.1-1.2 in liquid sodium were recorded. (author)

  11. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    Energy Technology Data Exchange (ETDEWEB)

    Qu, J. [ORNL; Viola, M. B. [General Motors Company

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  12. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies

    International Nuclear Information System (INIS)

    Arun, Ilangovan; Duraiselvam, Muthukannan; Senthilkumar, V.; Narayanasamy, R.; Anandakrishnan, V.

    2014-01-01

    Highlights: • Electrical discharge alloying/coating made on AISI D2 tool steel. • The hardness of EDA layer is three to four time higher than the base material. • The dry sliding wear tests performed on EDA layer at different temperatures. • The alloyed layer acts as a self-lubricant at higher temperature. - Abstract: The present study examines the method of depositing nickel and tungsten on die steel surface by means of dispersing these elements in dielectric fluid in an electrical discharge alloying (EDA) process. The modified surface was mechanically and metallurgically characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), microhardness tester and Pin-on-disc tribometer. The phase transformations that occurred during EDA process were evaluated by XRD. The deposition of Ni and W on die steel surfaces yielded minimal cracks with excellent metallurgical bonding. Higher hardness (∼1059 HV 0.3 ) with little brittleness resulted in superior wear resistance properties, a property which was retained even at elevated temperature

  13. De-Lubrication Behavior Of Novel EBS Based Admixed Lubricant In Aluminum P/M Alloy

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The objective of the present research is to develop a novel lubricant for Al-Cu-Mg P/M alloy and to address the effects of the lubricant and compaction pressure on sintered properties. A lubricant mixture consisting of Ethylene Bis Stearamide, Zn-Stearate, and fatty acid was newly developed in this study, and the de-lubrication behavior was compared with that of other commercial lubricants, such as Ethylene Bis Stearamide, Zn-Stearate, and Al-Stearate. Density and transverse rupture strength of sintered materials with each lubricant were examined, respectively. The microstructural analysis was conducted using optical microscope.

  14. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  15. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon

    2014-01-01

    Palm olein (PO o ) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of PO o being considered to be used as renewable raw material for bio lubricant synthesis. PO o is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. PO o contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of PO o were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  16. A review on procedures for the preparation of coatings for solid phase microextraction

    International Nuclear Information System (INIS)

    Aziz-Zanjani, Mohammad Ovais; Mehdinia, Ali

    2014-01-01

    Introduced in the 1990s, solid-phase microextraction (SPME) has found numerous applications. This is due to the solventless nature of SPME and the large variety of sorbents and coatings available. Highly diverse procedures have been applied to coat supports such as fused silica fibers or metal wires with sorbents in order to enhance capability, selectivity and robustness of SPME. Lately, research also is directed towards more simple methods for deposition of different types of coatings. Several of these methods have resulted in better stability and higher effective surface areas of the coatings. This review (with 128 references) covers the state of the art in methods for coating materials for use in SPME. It is divided into the following sections: (a) Dip methods and physical agglutination methods, (b) sol-gel technology, (c) chemical grafting, (d) electrochemical methods for coating (such as electrodeposition, anodizing and electrophoretic deposition), (e) electrospinning, (f) liquidphase deposition, and (g) hydrothermal methods. A final section covers conclusions and future trends. (author)

  17. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  18. Microstructure and Wear Resistance of Laser-Clad (Co, Ni61.2B26.2Si7.8Ta4.8 Coatings

    Directory of Open Access Journals (Sweden)

    Luan Zhang

    2017-10-01

    Full Text Available It has been reported that a quaternary Co61.2B26.2Si7.8Ta4.8 alloy is a good glass former and can be laser-clad to an amorphous composite coating with superior hardness and wear resistance. In this paper, alloys with varying Ni contents to substitute for Co are coated on the surface of #45 carbon steel using a 5-kW CO2 laser source for the purpose of obtaining protective coatings. In contrast to the quaternary case, the clad layers are characterized by a matrix of α-(Fe, Co, Ni solid solution plus CoB, Co3B, and Co3Ta types of precipitates. The cladding layer is divided into four regions: Near-surface dendrites, α-(Fe, Co, Ni solid solution plus dispersed particles in the middle zone, columnar bonding zone, and heat-affected area that consists of martensite. The hardness gradually decreases with increasing Ni content, and the maximum hardness occurs in the middle zone. Both the friction coefficient and wear volume are minimized in the alloy containing 12.2% Ni. Compared with the previous cobalt-based quaternary alloy Co61.2B26.2Si7.8Ta4.8, the addition of the Ni element reduces the glass-forming ability and henceforth the hardness and wear resistance of the clad layers.

  19. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  20. Thermal–Hydrodynamic Behaviour of Coated Pivoted Pad Thrust Bearings: Comparison between Babbitt, PTFE and DLC

    OpenAIRE

    Konstantinos Katsaros; Dimitrios A. Bompos; Pantelis G. Nikolakopoulos; Stephanos Theodossiades

    2018-01-01

    The hydrodynamic lubrication and thermal analysis of tilting pad thrust bearings has been a major subject for many studies in the field of tribology. There is only a limited number of studies regarding thrust bearings with coated surfaces. The purpose of this study is to build a parametric, iterative algorithm in order to perform a complete thermal and hydrodynamic lubrication analysis for pivoted pad thrust bearings with coatings. The analytical model is mainly based on the energy, continuit...

  1. Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.

    Science.gov (United States)

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-07-28

    Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  2. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    Science.gov (United States)

    Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui

    2016-01-01

    Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755

  3. Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper

    Directory of Open Access Journals (Sweden)

    Yiyong Wang

    2016-07-01

    Full Text Available Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV. The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.

  4. Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding

    Science.gov (United States)

    Inoue, Shigeru; Aoyama, Tojiro

    Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.

  5. On the lubrication mechanism of detonation-synthesis nanodiamond additives in lubricant composites

    Science.gov (United States)

    Shepelevskii, A. A.; Esina, A. V.; Voznyakovskii, A. P.; Fadin, Yu. A.

    2017-09-01

    The lubrication of detonation-synthesis diamond additives in lubricant composites has been discussed. The mechanism of interaction between nanodiamonds and friction surface has been shown to depend on the applied load. Two models of the lubrication of nanodiamonds and the conditions for their validity have also been proposed.

  6. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    International Nuclear Information System (INIS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-01-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior

  7. Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Dongmok; Sim, Jeonghyun; Baik, Seunghyun; Kim, Wonyoung; Moon, Chuldong; Cho, Wookdong

    2015-01-01

    We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10"5 S cm"−"1 and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10"5 S cm"−"1) and carrier mobility (11 cm"2 V"−"1 s"−"1) due to the formation of Ni_3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni_3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10"5 S cm"−"1) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries. (paper)

  8. Application of Triton X-100 coated poly vinyl chloride as new solid ...

    African Journals Online (AJOL)

    The influences of the analytical parameters including pH, ligand amount, surfactant type and concentration, eluting condition and sample volume on metal ions recovery were investigated. The method has been ... KEY WORDS: Surfactant coated PVC, Atomic absorption spectrometry, Solid phase extraction. Bull. Chem. Soc.

  9. The Investigaton of Physical and Mechanical Properties of Ni-P Coatings

    Directory of Open Access Journals (Sweden)

    Vadim Chayevski

    2016-04-01

    Full Text Available The parameters of electrolytic synthesis of Ni-P coatings on steel surface from sulfate-chloride electrolyte have been determinated. The Ni-P alloys consist of separate phases of Ni and Ni3P and solid solution of implementation on the basis of the FCC Ni lattice, when it was deposited from the electrolyte at current density to be more than 7 A/dm2. The coating was formed with continuous globular surface at current density of 5 A/dm2. The globular formations are the Ni3P phase. The obtained at current density of 9 A/dm2 coatings have maximum value of micro¬hardness 430 HV.

  10. Effects of V and Cr on Laser Cladded Fe-Based Coatings

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2018-03-01

    Full Text Available Fe-based coatings with high V and Cr content were obtained by laser cladding using Fe-based powder with different Cr3C2 and FeV50 content. The results showed that Fe-based coatings were uniform and dense. The constituent phases were mainly composed of α-Fe solid solution with the increase of Cr3C2 and FeV50, γ-Fe and V8C7 phases were achieved. The microstructure of the coatings exhibited a typical dendrite structure. The concentration of C, V and Cr were saturated in dendritic areas, and the other alloying elements were mainly dissolved in the interdendritic areas. The hardness and wear resistance of Fe-based coatings were enhanced with the Cr3C2 and FeV50 addition. The specimen with 15% Cr3C2 and 16% FeV50 had the highest hardness of 66.1 ± 0.6 HRC, which was 1.05 times higher than the sample with 4.5% Cr3C2 and 5% FeV50, and the wear resistance of the former was three times greater than the latter.

  11. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  12. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Science.gov (United States)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  13. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  14. Ultralow Friction Self-Lubricating Nanocomposites with Mesoporous Metal-Organic Frameworks as Smart Nanocontainers for Lubricants.

    Science.gov (United States)

    Zhang, Guoliang; Xie, Guoxin; Si, Lina; Wen, Shizhu; Guo, Dan

    2017-11-01

    Smart nanocontainers with stimuli-responsive property can be used to fabricate a new kind of self-lubricating nanocomposite, while the practical potential of the metal-organic frameworks (MOFs) as nanocontainers for lubricants has not been realized. In this work, mesoporous Cu-BTC MOFs storing oleylamine nanocomposites were explored from synthesis and microstructure to self-lubricating characterization. The stress stimuli-responsiveness behavior of the Cu-BTC storing oleylamine (Cu-BTCO) for lubrication has been investigated by subjecting it to macroscopic ball-on-disc friction tests. The steady-state coefficients of friction (COFs) of the Cu-BTC nanocomposites without lubricants were ca. 0.5. In contrast, after oleylamine as the lubricant was incorporated into the Cu-BTC container in the nanocomposite, ultralow friction (COF, ca. 0.03) was achieved. It has been demonstrated that the improved lubricating performance was associated with the lubricating film which was in situ produced by the chemical reaction between the oleylamine released from the nanocontainer and the friction pairs. Therefore, the nanocomposite with smart Cu-BTC container holds the promise of realizing extraordinary self-lubricating properties under stress stimuli.

  15. Experiments on Ultrasonic Lubrication Using a Piezoelectrically-assisted Tribometer and Optical Profilometer.

    Science.gov (United States)

    Dong, Sheng; Dapino, Marcelo

    2015-09-28

    Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered.

  16. Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings

    International Nuclear Information System (INIS)

    Abad, M.D.; Sanchez-Lopez, J.C.; Brizuela, M.; Garcia-Luis, A.; Shtansky, D.V.

    2010-01-01

    The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB 2 :TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB 2 /TiC or TiB x C y phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiB x C y phase. An estimation of the carbon present in the form of carbide (TiB x C y or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiB x C y phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates (μ ∼ 0.1; k -6 mm 3 /Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.

  17. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    International Nuclear Information System (INIS)

    Schmitt, R; Koenig, N; Zheng, H

    2011-01-01

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  18. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    Science.gov (United States)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  19. Effect of solid lubricants on friction and wear behaviour of alloyed ...

    Indian Academy of Sciences (India)

    Friction and wear behaviour of MoS2, boric acid, graphite and TiO2 at four different sliding speeds (1.0, 1.5, 2.0, 2.5 m/s) has been compared with dry sliding condition. MoS2 and graphite show 30 to 50% reduction in mass loss compared to other lubricants at all sliding speeds. Friction coefficient reduces with increase in ...

  20. Influence of the target-substrate distance on the S-W stoichiometry and triboperformance of WSxC films deposited by PVD in reactive and non-reactive processes

    NARCIS (Netherlands)

    Cao, Huatang; De Hosson, J.T.M.; Pei, Yutao T.

    2017-01-01

    Layered transition metal dichalcogenides (TMD) such as WS2 are materials well-known for their solid lubrication properties in vacuum [1]. However, the lubricating property degrades through oxidation in moisture and it is also limited by its low hardness and low load-bearing capacity. The

  1. Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Liu, Yuntong

    2018-06-01

    Poor surface wettability and relative high friction coefficients of pristine polyetheretherketone (PEEK) have limited its application in orthopedic implants. In this study, inspired by the structure of natural articular cartilage, we presented a novel method to fabricate a "soft-on-hard" structure on the surface of pristine PEEK specimens, which combined a soft polyvinyl alcohol (PVA) hydrogel layer and a three-dimensional porous layer with PEEK substrates. A variety of analytical methods were used to evaluate their properties, our results demonstrated that the hydrogel layer could be seamlessly connected with substrate, and the hydrogel-covered PEEK owned a highly hydrophilic surface, a very low water contact angle of 7° could be obtained. The friction coefficients of untreated and hydrogel-covered PEEK surfaces were measured using a tribometer under water lubrication, due to the presence of the top hydrogel layer and the hard substrate could provide excellent aqueous lubrication and bearing capacity, respectively, the friction coefficient could be reduced from 0.292 to 0.021. In addition, the porous layer under PVA hydrogel layer could work as gel reservoirs, the reserved hydrogel would be released after the surface layer was sheared off, and a regenerable lubrication status was obtained. This work provides a new route for the design of improving the surface wettability and tribological properties of PEEK. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Practical lubrication for industrial facilities

    CERN Document Server

    Bloch, Heinz

    2016-01-01

    Now completely revised and updated, this definitive, hands-on reference provides a comprehensive resource on the fundamental principles of lubricant application, what products are available, and which lubricants are most effective for specific applications. It also offers a detailed and highly practical discussion of lubrication delivery systems. You'll gain a clearer understanding of the "why" of relevant industrial lubrication practices, and, importantly, how these practices will facilitate optimized results. Lubricant applications covered include bearings and machine elements in earthbound

  3. The role of phosphate conversion coatings in make-up of casing connections

    NARCIS (Netherlands)

    Ernens, D; van Riet, E.J.; de Rooij, M.B.; Pasaribu, H.R.; van Haaften, W.M.; Schipper, D.J.

    2017-01-01

    Phosphate conversion coatings are widely used on (premium) casing connections for protection against corrosion. Next to that, in conjunction with the lubricant these coatings provide galling protection. The friction and wear that occurs during make-up and subsequent load cycling determines the

  4. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Yu, Honglian; Cole, William T S; Ho, Tien D; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2014-04-01

    The extraction performance of four polymeric ionic liquid (PIL)-based solid-phase microextraction (SPME) coatings has been studied and compared to that of commercial SPME coatings for the extraction of 16 volatile compounds in cheeses. The analytes include 2 free fatty acids, 2 aldehydes, 2 ketones and 10 phenols and were determined by headspace (HS)-SPME coupled to gas chromatography (GC) with flame-ionization detection (FID). The PIL-based coatings produced by UV co-polymerization were more efficient than PIL-based coatings produced by thermal AIBN polymerization. Partition coefficients of analytes between the sample and the coating (Kfs) were estimated for all PIL-based coatings and the commercial SPME fiber showing the best performance among the commercial fibers tested: carboxen-polydimethylsyloxane (CAR-PDMS). For the PIL-based fibers, the highest K(fs) value (1.96 ± 0.03) was obtained for eugenol. The normalized calibration slope, which takes into account the SPME coating thickness, was also used as a simpler approximate tool to compare the nature of the coating within the determinations, with results entirely comparable to those obtained with estimated K(fs) values. The PIL-based materials obtained by UV co-polymerization containing the 1-vinyl-3-hexylimidazolium chloride IL monomer and 1,12-di(3-vinylimiazolium)dodecane dibromide IL crosslinker exhibited the best performance in the extraction of the select analytes from cheeses. Despite a coating thickness of only 7 µm, this copolymeric sorbent coating was capable of quantitating analytes in HS-SPME in a 30 to 2000 µg L(-1) concentration range, with correlation coefficient (R) values higher than 0.9938, inter-day precision values (as relative standard deviation in %) varying from 6.1 to 20%, and detection limits down to 1.6 µg L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  6. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  7. Slippery self-lubricating polymer surfaces

    Science.gov (United States)

    Aizenberg, Joanna; Aizenberg, Michael; Cui, Jiaxi; Dunn, Stuart; Hatton, Benjamin; Howell, Caitlin; Kim, Philseok; Wong, Tak Sing; Yao, Xi

    2018-05-08

    The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.

  8. Impact of dilution on the microstructure and properties of Ni-based 625 alloy coatings

    Directory of Open Access Journals (Sweden)

    Tiago Jose Antoszczyszyn

    2014-06-01

    Full Text Available Nickel-based alloy IN 625 is used to protect components of aircrafts, power generation and oil refinery due to an association of toughness and high corrosion resistance. These properties are associated with the chemical composition and microstructure of coatings which depend on the processing parameters and the composition of the component being protected. This paper assessed impact of dilution on the microstructure and properties of the Ni alloy IN 625 deposited by Plasma Transferred Arc (PTA on two substrates: carbon steel API 5L and stainless steel AISI 316L. Differences due to the interaction with the substrate were maximized analyzing single layer coatings, processed with three deposition current: 120, 150 and 180 A. Correlation with a cast Nickel-based alloy sample contributed to assess the impact of dilution on coatings. Dilution was determined by the area ratio and Vickers hardness measured on the transverse section of coatings. Scanning electron and Laser confocal microscopy and X-ray diffraction analysis were carried out to characterize the microstructure. Results indicated the increasing dilution with the deposition current was deeply influenced by the substrate. Dilution ranging from 5 to 29% was measured on coatings processed on the API 5L steel and from 22 to 51% on the low thermal conductivity AISI 316L steel substrate. Differences on the microstructure and properties of coatings can be associated with the interaction with each substrate. Higher fraction of carbides account for the higher coating hardness when processing on API 5L whereas the low thermal conductivity of AISI 316L and the higher Fe content in solid solution contributed to the lower hardness of coatings.

  9. Self-Organization of Friction Surface of Fe-Mn-C-B Coating With Increased Resistance to Abrasion / Samoorganizacja Powierzchni Tarcia Powłoki Fe-Mn-C-B O Zwiększonej Odporności Na Zużycie Ścierne

    Directory of Open Access Journals (Sweden)

    Barszcz M.

    2015-12-01

    Full Text Available The paper concerns the research on self-organization of the surface of coating of hypoeutectic alloy Fe-Mn-C-B modified Si, Ni, Cr, Cu with friction with C45 steel. The coatings were obtained by arc welding using a flux-cored wire. Tests of resistance to wear were carried out for hypoeutectic coatings with use of the friction pair pin-on-disc in the conditions of sliding friction, in model lubricating environments. The surface-active (glycerol oil and inactive (Vaseline grease lubricant was used. Tribological tests carried out showed that cooperation of hypoeutectic alloy coating with counterbody of C45 steel with lubrication with surface-active lubricant results in a significant improvement in tribological properties than in case of the lubrication with surface-inactive lubricant. The resulting effect is related to the self-organization of friction surface. After deposition and wear resistance tests, the friction surface microstructure was analysed, as well as the surface and depth distribution of the elements.

  10. Numerical investigation of solid mixing in a fluidized bed coating process

    Science.gov (United States)

    Kenche, Venkatakrishna; Feng, Yuqing; Ying, Danyang; Solnordal, Chris; Lim, Seng; Witt, Peter J.

    2013-06-01

    Fluidized beds are widely used in many process industries including the food and pharmaceutical sectors. Despite being an intensive research area, there are no design rules or correlations that can be used to quantitatively predict the solid mixing in a specific system for a given set of operating conditions. This paper presents a numerical study of the gas and solid dynamics in a laboratory scale fluidized bed coating process used for food and pharmaceutical industries. An Eulerian-Eulerian model (EEM) with kinetic theory of granular flow is selected as the modeling technique, with the commercial computational fluid dynamics (CFD) software package ANSYS/Fluent being the numerical platform. The flow structure is investigated in terms of the spatial distribution of gas and solid flow. The solid mixing has been evaluated under different operating conditions. It was found that the solid mixing rate in the horizontal direction is similar to that in the vertical direction under the current design and operating conditions. It takes about 5 s to achieve good mixing.

  11. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  12. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  13. Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces

    KAUST Repository

    Li, Yangyang

    2012-02-22

    In situ lateral force microscopy (LFM) and X-ray photoelectron spectroscopy (XPS) were used to probe the lubrication behavior of an aqueous solution of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) (PEO-PPO-PEO) symmetric triblock copolymer on thin films of polypropylene (PP), polyethylene (PE), and cellulose. LFM experiments were carried out while the substrates were immersed in water and in solutions of the copolymer. The friction coefficient on PP and PE was reduced after adsorption from the PEO-PPO-PEO aqueous solution while the opposite effect was observed for cellulose surfaces. A critical normal loading force, at which the friction coefficient of the lubricated and unlubricated surfaces is equal, was identified and related to the affinity of the polymer with the substrate. Further experiments were performed to mimic practical operations involving lubricant addition during manufacturing and postprocessing removal. XPS was used to verify the presence of the lubricant on the polymeric substrates and to evaluate its removal by water washing. The lubricant layer was easily removed by water from the PP and cellulose surfaces while a durable layer was found on PE. The XPS results were in agreement with the highest critical normal loading force measured for PE (52 nN for PE in contrast to a minimum of 10 nN for cellulose). While several reports exist on lubrication on hard surfaces, friction behavior on soft surfaces is still not well documented as the substrates usually deform under loading pressure. Therefore, we also propose a simple lubrication model for PP, PE, and cellulose and the use of critical normal loading force as a parameter to predict lubricity and durability of adsorbed nonionic block copolymers. © 2012 American Chemical Society.

  14. Thermal–Hydrodynamic Behaviour of Coated Pivoted Pad Thrust Bearings: Comparison between Babbitt, PTFE and DLC

    Directory of Open Access Journals (Sweden)

    Konstantinos Katsaros

    2018-05-01

    Full Text Available The hydrodynamic lubrication and thermal analysis of tilting pad thrust bearings has been a major subject for many studies in the field of tribology. There is only a limited number of studies regarding thrust bearings with coated surfaces. The purpose of this study is to build a parametric, iterative algorithm in order to perform a complete thermal and hydrodynamic lubrication analysis for pivoted pad thrust bearings with coatings. The analytical model is mainly based on the energy, continuity and Navier–Stokes equations, which are solved numerically with the Semi-Implicit Method for Pressure Linked Equations Consistent (SIMPLEC method. The analysis focuses on a single pivoted pad of the thrust bearing. The thermal properties of the coating material are taken into account and the resulting thermal and flow fields are solved. The basic hydrodynamic and tribological characteristics are calculated for an uncoated, a Babbitt coated, a PTFE coated and a diamond like carbon (DLC coated pivoted pad thrust bearing. The pressure and the film thickness distribution, as well as the load capacity and the frictional forces, are determined for several pad positions and velocities of the rotor. A mineral oil lubricant is used to estimate the shear thinning or thickening effects on the pad tribological performance. The results indicate that pads coated with PTFE and DLC show lower friction forces compared to the common steel and Babbitt applications. At the same time, the DLC coating seems to affect the bearing’s flow and thermal fields less than the PTFE, making it more suitable for thrust bearings applications.

  15. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  16. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    Science.gov (United States)

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  17. Nanostructured diamond coatings for orthopaedic applications

    Science.gov (United States)

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  18. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  19. Graphene as a protective coating and superior lubricant for electrical contacts

    Science.gov (United States)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-01

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions).

  20. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.