WorldWideScience

Sample records for hard x-ray flare

  1. Characteristics of hard X-ray double sources in impulsive solar flares

    Science.gov (United States)

    Sakao, T.; Kosugi, T.; Masuda, S.; Yaji, K.; Inda-Koide, M.; Makishima, K.

    1996-01-01

    Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.

  2. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  3. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    Science.gov (United States)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  4. Hard x ray imaging and the relative contribution of thermal and nonthermal emission in flares

    International Nuclear Information System (INIS)

    Holman, G.D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV x ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard x ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard x ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard x ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard x ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism

  5. The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.

    2016-01-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  6. Recurrent pulse trains in the solar hard X-ray flare of 1980 June 7

    International Nuclear Information System (INIS)

    Kiplinger, A.L.; Dennis, B.R.; Frost, K.J.; Orwig, L.E.

    1983-01-01

    This study presents a detailed examination of the solar hard X-ray and γ-ray flare of 1980 June 7 as seen by the Hard X-Ray Burst Spectrometer on SMM. The hard X-ray profile is most unusual in that it is characterized by an initial pulse train of seven intense hard X-ray spikes. However, the event is unique among the 6300 events observed by HXRBS in that the temporal signature of this pulse train recurs twice during the flare. Such signatures of temporal stability in impulsive solar flares have not been observed before. Examinations of the hard X-ray data in conjunction with radio and γ-ray observations show that the 28--480 keV X-ray emission is simultaneous with the 17 GHz microwave fluxes within 128 ms and that the 3.5--6.5 MeV prompt γ-ray line emission is coincident with secondary maxima of the microwave and X-ray fluxes. Studies of the temporal and spectral properties of the pulses indicate that the pulses are not produced by purely reversible processes, and that if the source is oscillatory, it is not a high quality oscillator. Although the absence of spatially resolved hard X-ray observations leaves other possibilities open, a parameterization of the event as a set of seven sequentially firing loops is presented that offers many satisfying explanations of the observations

  7. Spatial and temporal structures of impulsive bursts from solar flares observed in UV and hard X-rays

    Science.gov (United States)

    Cheng, C.-C.; Tandberg-Hanssen, E.; Bruner, E. C.; Orwig, L.; Frost, K. J.; Kenny, P. J.; Woodgate, B. E.; Shine, R. A.

    1981-01-01

    New observations are presented of impulsive UV and hard X-rays bursts in two solar flares obtained with instruments on Solar Maximum Mission. The UV bursts were observed in the Si IV and O IV emission lines, whose intensity ratio is density-sensitive. By comparing the spatially resolved Si IV/O IV observations with the corresponding hard X-ray observations, it is possible to study their spatial and temporal relationships. For one flare, the individual component spikes in the multiply peaked hard X-ray burst can be identified with different discrete Si IV/O IV flaring kernels of size 4 arcsec x 4 arcsec or smaller, which brighten up sequentially in time. For the other, many Si IV/O kernels, widely distributed over a large area, show impulsive bursts at the same time, which correlate with the main peak of the impulsive hard X-ray burst. The density of the flaring Si IV/O IV kernels is in the range from 5 x 10 to the 12th-13th/cu cm.

  8. Great microwave bursts and hard X-rays from solar flares

    International Nuclear Information System (INIS)

    Wiehl, H.J.; Batchelor, D.A.; Crannell, C.J.; Dennis, B.R.; Price, P.N.

    1983-06-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained

  9. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  10. The inner-relationship of hard X-ray and EUV bursts during solar flares

    International Nuclear Information System (INIS)

    Emslie, A.G.; Brown, J.C.; Donnelly, R.F.

    1978-01-01

    A comparison is made between the flux-versus-time profile in the EUV band and the thick target electron flux profile as inferred from hard X-rays for a number of moderately large solar flares. This complements Kane and Donnelly's (1971) study of small flares. The hard X-ray data are from ESRO TD-1A and the EUV inferred from SFD observations. Use of a chi 2 minimising method shows that the best overall fit between the profile fine structures obtains for synchronism to < approximately 5 s which is within the timing accuracy. This suggests that neither conduction nor convection is fast enough as the primary mechanism of energy transport into the EUV flare and rather favours heating by the electrons themselves or by some MHD wave process much faster than acoustic waves. The electron power deposited, for a thick target model, is however far greater than the EUV luminosity for any reasonable assumptions about the area and depth over which EUV is emitted. This means that either most of the power deposited is conducted away to the optical flare or that only a fraction < approximately 1-10% of the X-ray emitting electrons are injected downwards. Recent work on Hα flare heating strongly favours the latter alternative - i.e. that electrons are mostly confined in the corona. (Auth.)

  11. Analysis of the 1980 November 18 limb flare observed by the hard X-ray imaging spectrometer (HXIS)

    NARCIS (Netherlands)

    Hoyng, P.; Haug, E.; Elwert, G.

    1984-01-01

    X-ray images of the 18 November 1980 limb flare taken by the HXIS instrument aboard SMM were analysed. The hard X-rays originated from three spots on the SW limb of the solar disk with different altitudes and time evolution. The locations of the brightest spots in hard and soft X-rays are compared

  12. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  13. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  14. VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Sook; Kim, Sang Joon [School of Space Science, Kyunghee University, Seocheon-dong, Giheung-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Soon-Wook [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kurayama, Tomoharu [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Honma, Mareki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sasao, Tetsuo, E-mail: evony@kasi.re.kr, E-mail: skim@kasi.re.kr [Yaeyama Star Club, Ookawa, Ishigaki, Okinawa 904-0022 (Japan)

    2013-07-20

    We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

  15. HARD X-RAY ASYMMETRY LIMITS IN SOLAR FLARE CONJUGATE FOOTPOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Daou, Antoun G.; Alexander, David, E-mail: agdaou@rice.edu, E-mail: dalex@rice.edu [Department of Physics and Astronomy, Rice University, 6100 Main Street, MS 108, Houston, TX, 77005 (United States)

    2016-11-20

    The transport of energetic electrons in a solar flare is modeled using a time-dependent one-dimensional Fokker–Planck code that incorporates asymmetric magnetic convergence. We derive the temporal and spectral evolution of the resulting hard X-ray (HXR) emission in the conjugate chromospheric footpoints, assuming thick target photon production, and characterize the time evolution of the numerically simulated footpoint asymmetry and its relationship to the photospheric magnetic configuration. The thick target HXR asymmetry in the conjugate footpoints is found to increase with magnetic field ratio as expected. However, we find that the footpoint HXR asymmetry saturates for conjugate footpoint magnetic field ratios ≥4. This result is borne out in a direct comparison with observations of 44 double-footpoint flares. The presence of such a limit has not been reported before, and may serve as both a theoretical and observational benchmark for testing a range of particle transport and flare morphology constraints, particularly as a means to differentiate between isotropic and anisotropic particle injection.

  16. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Oka, Mitsuo; Saint-Hilaire, Pascal; Krucker, Säm [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Glesener, Lindsay, E-mail: feffen@stanford.edu, E-mail: frubio@stanford.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  17. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  18. The size of coronal hard X-ray sources in solar flares: How big are they?

    Science.gov (United States)

    Effenberger, F.; Krucker, S.; Rubio da Costa, F.

    2017-12-01

    Coronal hard X-ray sources are considered to be one of the key signatures of non-thermal particle acceleration and heating during the energy release in solar flares. In some cases, X-ray observations reveal multiple components spatially located near and above the loop top and even further up in the corona. Here, we combine a detailed RHESSI imaging analysis of near-limb solar flares with occulted footpoints and a multi-wavelength study of the flare loop evolution in SDO/AIA. We connect our findings to different current sheet formation and magnetic break-out scenarios and relate it to particle acceleration theory. We find that the upper and usually fainter emission regions can be underestimated in their size due to the majority of flux originating from the lower loops.

  19. HARD X-RAY EMISSION DURING FLARES AND PHOTOSPHERIC FIELD CHANGES

    International Nuclear Information System (INIS)

    Burtseva, O.; Petrie, G. J. D.; Pevtsov, A. A.; Martínez-Oliveros, J. C.

    2015-01-01

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the Global Oscillation Network Group and Helioseismic and Magnetic Imager instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the strongest peak in the HXR signal when the footpoints start moving away from the PIL, i.e., the field changes follow the same trajectory as the HXR footpoint, but at an earlier time. Thus, the field changes and HXR emission are spatio-temporally related but not co-spatial nor simultaneous. We also find that in the strongest X-class flares the amplitudes of the field changes peak a few minutes earlier than the peak of the HXR signal. We briefly discuss this observed time delay in terms of the formation of current sheets during eruptions

  20. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    Science.gov (United States)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  1. Reconnection, Particle Acceleration, and Hard X-ray Emission in Eruptive Solar Flares

    Science.gov (United States)

    Martens, Petrus C.

    1998-11-01

    The frequent occurrence of Hard X-ray emission from the top of flaring loops was one of the discoveries by the Hard X-ray telescope on board the Japanese Yohkoh satellite. I will show how the combined effect of magnetic field convergence and pitch- angle scattering of non-thermal electrons injected at the top of the loop results in the generation of looptop sources with properties akin to those observed by Yohkoh. In addition it is shown that the injection of proton beams in the loop legs, expected from theory, reproduces the observed high temperature ``ridges" in the loop legs by mirroring and energy loss through collisions. I will interpret these numerical results as supporting the now widely accepted model of an erupting magnetic flux tube generating a reconnecting current sheet in its wake, where most of the energy release takes place. The strong similarity with the reconnection observed in the MRX experiment in Princeton will be analyzed in detail.

  2. The over-the-limb hard X-ray events

    Science.gov (United States)

    Hudson, H. S.

    Over-the-limb hard X-ray events offer a uniquely direct view of the hard X-ray emission from the solar corona during a major flare. Limb occultation at angles greater than about 10 deg (an arbitrary definition of this class of events) excludes any confusion with brighter chromospheric sources. Published observations of seven over-the-limb events, beginning with the prototype flare of March 30, 1969, are reviewed. The hard X-ray spectra appear to fall into two classes: hard events, with power-law index of about 2.0; and soft events, with power-law index about 5.4. This tendency towards bimodality is only significant at the 90-percent confidence level due to the smallness of the number of events observed to date. If borne out by future data, the bimodality would suggest the existence of two different acceleration mechanisms.

  3. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    Science.gov (United States)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  4. NuSTAR Hard X-Ray Observation of a Sub-A Class Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota, Minneapolis (United States); Krucker, Säm; Hudson, Hugh [Space Sciences Laboratory, University of California at Berkeley, Berkeley (United States); Hannah, Iain G. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Grefenstette, Brian W. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque (United States); Smith, David M.; Marsh, Andrew J. [Santa Cruz Institute of Particle Physics and Department of Physics, University of California at Santa Cruz, Santa Cruz (United States)

    2017-08-20

    We report a Nuclear Spectroscopic Telescope Array ( NuSTAR ) observation of a solar microflare, SOL2015-09-01T04. Although it was too faint to be observed by the GOES X-ray Sensor, we estimate the event to be an A0.1 class flare in brightness. This microflare, with only ∼5 counts s{sup −1} detector{sup −1} observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ), is fainter than any hard X-ray (HXR) flare in the existing literature. The microflare occurred during a solar pointing by the highly sensitive NuSTAR astrophysical observatory, which used its direct focusing optics to produce detailed HXR microflare spectra and images. The microflare exhibits HXR properties commonly observed in larger flares, including a fast rise and more gradual decay, earlier peak time with higher energy, spatial dimensions similar to the RHESSI microflares, and a high-energy excess beyond an isothermal spectral component during the impulsive phase. The microflare is small in emission measure, temperature, and energy, though not in physical size; observations are consistent with an origin via the interaction of at least two magnetic loops. We estimate the increase in thermal energy at the time of the microflare to be 2.4 × 10{sup 27} erg. The observation suggests that flares do indeed scale down to extremely small energies and retain what we customarily think of as “flare-like” properties.

  5. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  6. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  7. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  8. The Giant Flares of the Microquasar Cygnus X-3: X-Rays States and Jets

    Directory of Open Access Journals (Sweden)

    Sergei Trushkin

    2017-11-01

    Full Text Available We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e. hard fluxes (Swift/BAT 15–50 keV data dropped to zero, the soft X-ray fluxes (MAXI 2–10 keV data staying high, and then later, the binary came back to a hard state. Both similar giant flares indicated the unchanged mechanism of the jets’ formation in Cyg X-3, probably in conditions of strong stellar wind and powerful accretion onto a black hole.

  9. Plasma heating in solar flares and their soft and hard X-ray emissions

    International Nuclear Information System (INIS)

    Falewicz, R.

    2014-01-01

    symmetric and there are no differences in the emissions originating from the feet of the flares loop and by relative simplicity of the applied numerical 1D code and procedures. No doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement. Despite these problems, a collation of modeled results with observations shows that soft and hard X-ray emissions observed for analyzed single-loop-like events may be fully explained by electron-beam-driven evaporation only.

  10. Plasma Heating in Solar Flares and their Soft and Hard X-Ray Emissions

    Science.gov (United States)

    Falewicz, R.

    2014-07-01

    symmetric and there are no differences in the emissions originating from the feet of the flares loop and by relative simplicity of the applied numerical 1D code and procedures. No doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement. Despite these problems, a collation of modeled results with observations shows that soft and hard X-ray emissions observed for analyzed single-loop-like events may be fully explained by electron-beam-driven evaporation only.

  11. DUAL-STAGE RECONNECTION DURING SOLAR FLARES OBSERVED IN HARD X-RAY

    International Nuclear Information System (INIS)

    Xu Yan; Jing Ju; Wang Haimin; Cao Wenda

    2010-01-01

    In this Letter, we present hard X-ray (HXR) observation by the Reuven Ramaty High Energy Solar Spectroscopic Imager of the 2003 October 29 X10 flare. Two pairs of HXR conjugate footpoints have been identified during the early impulsive phase. This geometric configuration is very much in the manner predicted by the 'tether-cutting' scenario first proposed by Moore and Roumeliotis. The HXR light curves show that the outer pair of footpoints disappeared much faster than the other pair. This temporal behavior further confirms that this event is a good example of the 'tether-cutting' model. In addition, we reconstructed a three-dimensional magnetic field based on the nonlinear force-free extrapolation and found that each pair of HXR footpoints were indeed linked by corresponding magnetic field lines.

  12. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  13. Modelling the flaring activity of the high-z, hard X-ray-selected blazar IGR J22517+2217: Flaring activity of IGR J22517+2217

    International Nuclear Information System (INIS)

    Lanzuisi, G.; De Rosa, A.; Ghisellini, G.; Panessa, F.

    2012-01-01

    We present new Suzaku and Fermi data and re-analysed archival hard X-ray data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift–Burst Alert Telescope (BAT) surveys to investigate the physical properties of the luminous, high-redshift, hard X-ray-selected blazar IGR J22517+2217, through the modelling of its broad-band spectral energy distribution (SED) in two different activity states. Through analysis of new Suzaku data and flux-selected data from archival hard X-ray observations, we build the source SED in two different states, one for the newly discovered flare that occurred in 2005 and one for the following quiescent period. Both SEDs are strongly dominated by the high-energy hump peaked at 10 20 –10 22 Hz, which is at least two orders of magnitude higher than the low-energy (synchrotron) one at 10 11 –10 14 Hz and varies by a factor of 10 between the two states. In both states the high-energy hump is modelled as inverse Compton emission between relativistic electrons and seed photons produced externally to the jet, while the synchrotron self-Compton component is found to be negligible. In our model the observed variability can be accounted for by a variation of the total number of emitting electrons and by a dissipation region radius changing from inside to outside the broad-line region as the luminosity increases. In its flaring activity, IGR J22517+2217 is revealed as one of the most powerful jets among the population of extreme, hard X-ray-selected, high-redshift blazars observed so far.

  14. A giant radio flare from Cygnus X-3 with associated γ-ray emission: The 2011 radio and γ-ray flare of Cyg X-3

    International Nuclear Information System (INIS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  15. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  16. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  17. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  18. Deducing Electron Properties from Hard X-Ray Observations

    Science.gov (United States)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  19. Backscatter, anisotropy, and polarization of solar hard X-rays

    International Nuclear Information System (INIS)

    Bai, T.; Ramaty, R.

    1978-01-01

    Hard X-rays incident upon the photosphere with energies > or approx. =15 keV have high probabilities of backscatter due to Compton collisions with electrons. This effect has a strong influence on the spectrum, intensity, and polarization of solar hard X-rays - especially for anisotropic models in which the primary X-rays are emitted predominantly toward the photosphere. We have carried out a detailed study of X-ray backscatter, and we have investigated the interrelated problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter in a coherent fashion. The results of this study are compared with observational data. Because of the large contribution from backscatter, for an anisotropic primary X-ray source which is due to bremsstrahlung of accelerated electrons moving predominantly down toward the photosphere, the observed X-ray flux around 30 keV does not depend significantly on the position of flare on the Sun. For such an anisotropic source, the X-ray spectrum observed in the 15-50 keV range becomes steeper with the increasing heliocentric angle of the flare. These results are compatible with the data. The degree of polarization of the sum of the primary and reflected X-rays with energies between about 15 and 30 keV can be very large for anisotropic primary X-ray sources, but it is less than about 4% for isotropic sources. We also discuss the characteristics of the brightness distribution of the X-ray albedo patch created by the Compton backscatter. The height and anisotropy of the primary hard X-ray source might be inferred from the study of the albedo patch

  20. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    Science.gov (United States)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  1. Comparison of hard X-ray spectra obtained by spectrometers on Hinotori and SMM and detection of 'superhot' component

    Science.gov (United States)

    Nitta, Nariaki

    1988-01-01

    Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.

  2. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xia; Yuan, Ding; Xia, Chun; Doorsselaere, Tom Van; Keppens, Rony [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2016-12-10

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHI vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.

  3. Investigation of solar flares in X-ray and optical spectral region

    International Nuclear Information System (INIS)

    Kurt, V.; Kurochka, L.N.; Zenchenko, V.M.

    1989-01-01

    Measurements of hard X h radiation of 180 solar flares carried out on board of the space probes Venera-13,-14, were compared with measurements of optical and thermal X t radiation. Values of total energy release during a flare in these regions are calculated, and correlation analysis is carried out. The bond correlations found have shown that total energy of fast electrons, caused X h -flare in the flare pulse phase, and thermal energy at the end of a pulse phase are practically connected with each othesr functionally. Quantitative connection between a flare ball in H α -line and the most probable energy values, being in different radiation regions calculated in the scope of generally accepted models, is established. The total energy of an optical (cold) part of the flare, radiation energy in X-ray region and the energy introduced to the flare volume by energy particles are shown to be compared between each other

  4. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  5. Gamma-ray Burst X-ray Flares Light Curve Fitting

    Science.gov (United States)

    Aubain, Jonisha

    2018-01-01

    Gamma Ray Bursts (GRBs) are the most luminous explosions in the Universe. These electromagnetic explosions produce jets demonstrated by a short burst of prompt gamma-ray emission followed by a broadband afterglow. There are sharp increases of flux in the X-ray light curves known as flares that occurs in about 50% of the afterglows. In this study, we characterized all of the X-ray afterglows that were detected by the Swift X-ray Telescope (XRT), whether with flares or without. We fit flares to the Norris function (Norris et al. 2005) and power laws with breaks where necessary (Racusin et al. 2009). After fitting the Norris function and power laws, we search for the residual pattern detected in prompt GRB pulses (Hakkila et al. 2014, 2015, 2017), that may indicate a common signature of shock physics. If we find the same signature in flares and prompt pulses, it provides insight into what causes them, as well as, how these flares are produced.

  6. Comparison of theoretically predicted and observed Solar Maximum Mission X-ray spectra for the 1980 April 13 and May 9 flares

    International Nuclear Information System (INIS)

    Smith, D.F.; Orwig, L.E.

    1982-01-01

    A method for predicting the hard X-ray spectrum in the 10--100 keV range for compact flares during their initial rise is developed on the basis of a thermal model. Observations of the flares of 1980 April 13, 4:05 U.T., and 1980 May 9, 7:12 U.T. are given and their combined spectra from the Hard X-ray Burst Spectrometer and Hard X-ray Imaging Spectrometer on the Solar Maximum Mission are deduced. Constraints on the cross sectional area of the supposed emitting arch are obtained from data from the Hard X-ray Imaging Spectrometer. A power-law spectrum is predicted for the rise of the flare of April 13 for initial arch densities less than 10 10 cm -3 and also for the flare of May 9 for initial arch densities less than 5.4 x 10 10 cm -3 . In both cases power-law spectra are observed. Limitations and implications of these results are discussed

  7. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  8. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    Science.gov (United States)

    Linford, G. A.; Wolfson, C. J.

    1988-01-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density.

  9. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    International Nuclear Information System (INIS)

    Linford, G.A.; Wolfson, C.J.

    1988-01-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density. 44 references

  10. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.A.; Wolfson, C.J.

    1988-08-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density. 44 references.

  11. A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, Dana; Qiu, Jiong; Brewer, Jasmine [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-12-20

    A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.

  12. Evidence for two hard X-ray components in double power-law fits to the 1980 June 7 flare

    Science.gov (United States)

    Smith, Dean F.; Orwig, Larry E.

    1988-01-01

    The June 7, 1980 flare at 0312 UT was analyzed with double power-law fits on the basis of SMM hard X-ray burst spectrometer data. The flare is found to consist of seven peaks of characteristic time scale of about 8 sec followed by seven valleys which may contain significant peak components because of overlap. It is suggested that the possibility of thermal spectra for the peaks is unlikely. An investigation of the double power-law parameters through the third and fourth peaks revealed a hysteresis effect in the fourth peak. The present results have been interpreted in terms of a trap plus precipitation model.

  13. A giant radio flare from Cygnus X-3 with associated γ-ray emission

    Science.gov (United States)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-04-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  14. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  15. THE HEIGHT OF A WHITE-LIGHT FLARE AND ITS HARD X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Oliveros, Juan-Carlos; Hudson, Hugh S.; Hurford, Gordon J.; Krucker, Saem; Lin, R. P. [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States); Lindsey, Charles [North West Research Associates, CORA Division, Boulder, CO (United States); Couvidat, Sebastien; Schou, Jesper [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA (United States); Thompson, W. T. [Adnet Systems, Inc., NASA Goddard Space Flight Center, code 671, Greenbelt, MD (United States)

    2012-07-10

    We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 A from the Solar Dynamics Observatory. We find that the centroids of the impulsive-phase emissions in WL and HXRs (30-80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0.''2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Angstrom-Sign image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; {tau} = 1 at 5000 A) of 305 {+-} 170 km and 195 {+-} 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of {tau} = 1 for the 6173 Angstrom-Sign and the {approx}40 keV photons observed, respectively.

  16. The Height of a White-Light Flare and its Hard X-Ray Sources

    Science.gov (United States)

    Oliveros, Juan-Carlos Martinez; Hudson, Hugh S.; Hurford, Gordon J.; Kriucker, Saem; Lin, R. P.; Lindsey, Charles; Couvidat, Sebastien; Schou, Jesper; Thompson, W. T.

    2012-01-01

    We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 Ang. from the Solar Dynamics Observatory.We find that the centroids of the impulsive-phase emissions in WL and HXRs (30 -80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0".2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Ang. image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 Ang.) of 305 +/- 170 km and 195 +/- 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 Ang and the approx 40 keV photons observed, respectively.

  17. X-ray observations of solar flares with the Einstein Observatory

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Fink, H.; Harnden, F.R. Jr.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1987-01-01

    The first Einstein Observatory Imaging Proportional Counter (IPC) observations of solar flares are presented. These flares were detected in scattered X-ray light when the X-ray telescope was pointed at the sunlit earth. The propagation and scattering of solar X-rays in the earth's atmosphere are discussed in order to be able to deduce the solar X-ray flux incident on top of the atmosphere from scattered X-ray intensity measurements. After this correction, the scattered X-ray data are interpreted as full-disk observations of the sun obtained with the same instrumentation used for observations of flares on other stars. Employing the same data analysis and interpretation techniques, extremely good agreement is found between the physical flare parameters deduced from IPC observations and known properties of compact loop flares. This agreement demonstrates that flare observations with the IPC can reveal physical parameters such as temperature and density quite accurately in the solar case and therefore suggests that the interpretations of stellar X-ray flare observations are on a physically sound basis. 26 references

  18. Observations of a post-flare radio burst in X-rays

    Science.gov (United States)

    Svestka, Z.; Hoyng, P.; Van Tend, W.; Boelee, A.; De Jager, C.; Stewart, R. T.; Acton, L. W.; Bruner, E. C.; Gabriel, A. H.; Rapley, C. G.

    1982-01-01

    More than six hours after the two-ribbon flare of May 21, 1980, the hard X-ray spectrometer aboard the SMM imaged an extensive arch above the flare region which was found to be the lowest part of a stationary post-flare noise storm recorded at the same time at Culgoora. The bent crystal spectrometer aboard the SMM confirms that the arch emission was basically thermal. Variations in brightness and energy spectrum at one of the supposed footpoints of the arch are seen as correlation in time with radio brightness, suggesting that suprathermal particles from the radio noise regions dumped in variable quantities onto the low corona and transition layer.

  19. A study of solar flare energy transport based on coordinated H-alpha and X-ray observations

    International Nuclear Information System (INIS)

    Canfield, R.C.; Wulser, J.; Zarro, D.M.; Dennis, B.R.

    1991-01-01

    The temporal evolution of the ratio between H-alpha to nonthermal hard X-ray emission was investigated using coordinated H-alpha and hard- and soft-X-ray observations of five solar flares (on May 7, June 23, June 24, and June 25, 1980 and on April 30, 1985). These observations were used to estimate the emitted flare energy flux F(H-alpha) in H-alpha, the flux of F(2O) energy deposited by nonthermal electrons with energies above 20 keV, and the pressure p(c) of soft X-ray-emitting plasma as functions of time during the impulsive phase of each flare. It was found that the F(H-alpha)/F(2O) ratio shows a power-law dependence on F(2O), with a slope that differs slightly from that predicted by the static thick-target model of solar transport. Results also indicate that the power-law dependence is modified by hydrostatic pressure effects. 25 refs

  20. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    Science.gov (United States)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  1. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max-Planck-Institut f. extraterrestrische Physik, HEG, Garching (Germany); Bauer, Franz [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusets Institute of Technology, Cambridge, MA 02139 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Giommi, Paolo, E-mail: kaya@astro.columbia.edu [ASI Science Data Center, Via del Politecnico snc I-00133, Roma (Italy); and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  2. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  3. Giant Rapid X-ray Flares in Extragalactic Globular Clusters

    Science.gov (United States)

    Irwin, Jimmy

    2018-01-01

    There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.

  4. Hard X-ray variability of V404 Cygni during the 2015 outburst

    Science.gov (United States)

    Sánchez-Fernández, C.; Kajava, J. J. E.; Motta, S. E.; Kuulkers, E.

    2017-06-01

    Aims: Hard X-ray spectra of black hole binaries (BHB) are produced by Comptonization of soft seed photons by hot electrons near the black hole. The slope of the resulting energy spectra is governed by two main parameters: the electron temperature (Te) and optical depth (τ) of the emitting plasma. Given the extreme brightness of V404 Cyg during the 2015 outburst, we aim to constrain the source spectral properties using an unprecedented time resolution in hard X-rays, and to monitor the evolution of Te and τ over the outburst. Methods: We have extracted and analysed 602 X-ray spectra of V404 Cyg obtained by the IBIS/ISGRI instrument on-board INTEGRAL during the 2015 June outburst, using effective integration times ranging between 8 and 176 000 s. We fitted the resulting spectra in the 20-200 keV energy range. Results: We find that while the light curve and soft X-ray spectra of V404 Cyg are remarkably different from those of other BHBs, the spectral evolution of V404 Cyg in hard X-rays and the relations between the spectral parameters are consistent with those observed in other BHBs. We identify a hard branch in which the Te is anti-correlated with the hard X-ray flux, and a soft flaring branch in which the relation reverses. In addition, we find that during long X-ray plateaus detected at intermediate fluxes, the thermal Comptonization models fail to describe the spectra. However, the statistics improve if we allow NH to vary freely in the fits to these spectra. Conclusions: We conclude that the hard branch in V404 Cyg is analogous to the canonical hard state of BHBs. V404 Cyg never seems to enter the canonical soft state, although the soft flaring branch bears resemblance to the BHB intermediate state and ultra-luminous state. The X-ray plateaus are likely the result of absorption by a Compton-thick outflow (NH ≳ 1024 cm-2) which reduces the observed flux by a factor of about 10. Variable covering of the central source by this Compton-thick material may be the

  5. Observation of solar flare by Hinotori SXT/HXM

    International Nuclear Information System (INIS)

    Ohki, Ken-ichiro; Takakura, Tatsuo; Tsuneta, Sukehisa; Nitta, Nariaki; Makishima, Kazuo.

    1982-01-01

    Solar flares were observed by SXT (hard X-ray two-dimensional observation system) and HXM (hard X-ray spectrometer) on Hinotori. The results of two-dimensional analysis of 20 flares are reported in this paper. Various images of hard X-ray were observed. Hard X-ray bursts with relatively long duration may be generated in corona. The hard X-ray flare generated on the solar disc gives information on the relative position to the H flare. The examples of this hard X-ray images are presented. The HXM can observe the hard X-ray spectra up to 350 keV. The flares with duration less than 5 min have the spectra coninciding with the thermal radiation from a single temperature before the peak, and power law type non-thermal radiation spectra after the peak. The hard X-ray flares with duration longer than 10 min have power law type spectra. (Kato, T.)

  6. Studies of solar flares: Homology and X-ray line broadening

    Science.gov (United States)

    Ranns, Neale David Raymond

    This thesis starts with an introduction to the solar atmosphere and the physics that governs its behaviour. The formation processes of spectral lines are presented followed by an explanation of employed plasma diagnostic techniques and line broadening mechanisms. The current understanding on some principle concepts of flare physics are reviewed and the topics of flare homology and non-thermal line broadening are introduced. The many solar satellites and instrumentation that were utilised during this thesis are described. Analysis techniques for some instruments are also presented. A series of solar flares that conform to the literature definition for homologous flares are examined. The apparent homology is shown to be caused by emerging flux rather than continual stressing of a single, or group of, magnetic structure's. The implications for flare homology are discussed. The analysis of a solar flare with a rise and peak in the observed non-thermal X-ray line broadening (Vnt) is then performed. The location of the hot plasma within the flare area is determined and consequently the source of Vnt is located to be within and above the flare loops. The flare footpoints are therefore discarded as a possible source location. Viable source locations are discussed with a view to determining the dominant mechanism for the generation of line broadening. The timing relationships between the hard X-ray (HXR) flux and Vnt in many solar flares are then examined. I show that there is a causal relationship between these two parameters and that the HXR rise time is related to the time delay between the maxima of HXR flux and Vnt. The temporal evolution of Vnt is shown to be dependent upon the shape of the HXR burst. The implications of these results are discussed in terms of determining the line broadening mechanism and the limitations of the data. A summary of the results in this thesis is then presented together with suggestions for future research.

  7. Relationship between Hard X-Ray Footpoint Sources and Photospheric Electric Currents in Solar Flares: a Statistical Study

    Science.gov (United States)

    Zimovets, I. V.; Sharykin, I. N.; Wang, R.; Liu, Y. D.; Kosovichev, A. G.

    2017-12-01

    It is believed that solar flares are a result of release of free magnetic energy contained in electric currents (ECs) flowing in active regions (ARs). However, there are still debates whether the primary energy release and acceleration of electrons take place in coronal current sheets or in chromospheric footpoints of current-carrying magnetic flux tubes (loops). We present results of an observational statistical study of spatial relationship between hard X-ray (HXR; EHXR≥50keV) footpoint sources detected by RHESSI and vertical photospheric ECs calculated using vector magnetograms obtained from the SDO/HMI data. We found that for a sample of 47 flares (from C3.0 to X3.1 class) observed on the solar disk by both instruments in 2010-2016, at least one HXR source was in a region of strong (within 20% of the maximum EC density in the corresponding ARs) vertical ECs having the form of a ribbon (79%) or an island (21%). The total vertical ECs in such HXR sources are in the range of 1010-1013 A. The EC density is in the range of 0.01-1.0 A/m2. We found no correlation between intensity of the HXR sources and the EC density. By comparing pre-flare and post-flare EC maps we did not find evidences of significant dissipation of vertical ECs in the regions corresponding to the HXR sources. In some cases, we found amplification of ECs during flares. We discuss effects of sensitivity and angular resolution of RHESSI and SDO/HMI. In general, the results indicate that there is a link between the flare HXR footpoint sources and enhanced vertical ECs in the photosphere. However, the results do not support a concept of electron acceleration by the electric field excited in footpoints of current-carrying loops due to some (e.g. Rayleigh-Taylor) instabilities (Zaitsev et al., 2016), since strong correlation between the HXR intensity and the EC density is expected in such concept.

  8. Giant Radio Flare of Cygnus X-3 in September 2016

    Science.gov (United States)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2017-06-01

    In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.

  9. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  10. Statistics of “Cold” Early Impulsive Solar Flares in X-Ray and Microwave Domains

    Science.gov (United States)

    Lysenko, Alexandra L.; Altyntsev, Alexander T.; Meshalkina, Natalia S.; Zhdanov, Dmitriy; Fleishman, Gregory D.

    2018-04-01

    Solar flares often happen after a preflare/preheating phase, which is almost or entirely thermal. In contrast, there are the so-called early impulsive flares that do not show a (significant) preflare heating, but instead often show the Neupert effect—a relationship where the impulsive phase is followed by a gradual, cumulative-like, thermal response. This has been interpreted as a dominance of nonthermal energy release at the impulsive phase, even though a similar phenomenology is expected if the thermal and nonthermal energies are released in comparable amounts at the impulsive phase. Nevertheless, some flares do show a good quantitative correspondence between the nonthermal electron energy input and plasma heating; in such cases, the thermal response was weak, which results in them being called “cold” flares. We undertook a systematic search for such events among early impulsive flares registered by the Konus-Wind instrument in the triggered mode from 11/1994 to 4/2017, and selected 27 cold flares based on relationships between hard X-ray (HXR) (Konus-Wind) and soft X-ray (Geostationary Operational Environmental Satellite) emission. For these events, we put together all available microwave data from different instruments. We obtained temporal and spectral parameters of HXR and microwave emissions of the events and examined correlations between them. We found that, compared to a “mean” flare, the cold flares: (i) are weaker, shorter, and harder in the X-ray domain; (ii) are harder and shorter, but not weaker in the microwaves; (iii) have a significantly higher spectral peak frequencies in the microwaves. We discuss the possible physical reasons for these distinctions and implication of the finding.

  11. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    Science.gov (United States)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  12. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    Science.gov (United States)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they

  13. Simulation of GRIS spectrometer response to the solar gamma-ray flare of 23 July 2002

    International Nuclear Information System (INIS)

    Trofimov, Yu A; Kotov, Yu D; Yurov, V N; Lupar, E E; Faradzhaev, R M; Glyanenko, A S

    2017-01-01

    GRIS is a prospective experiment designed to measure hard X-rays and γ-rays of solar flares in the energy range from 50 keV to 200 MeV as well as solar neutrons > 30 MeV. This study considers results of GEANT 4 simulation of GRIS detectors response to cosmic background radiation and to the solar flare SOL2002-07-23 (X4.8). It is shown that the GRIS spectrometers have enough sensitivity and energy resolution to measure redshifts of some narrow γ-rays in flare spectra, that the low energy thresholds of the detectors can be lowered considerably without a risk of counting rate saturation during high magnitude flares and that at a choice between LaBr 3 (Ce) and CeBr 3 the second one is a preferable scintillator for a hard X-ray and γ-ray spectrometer of solar flares. (paper)

  14. X-ray Emission Characteristics of Flares Associated with CMEs ...

    Indian Academy of Sciences (India)

    tics of solar flares and their relationship with the dynamics of CMEs have ... lation between X-ray peak intensity of the flares with linear speed as well ... shear angle (θ1, measured at the flare onset), the final shear angle (θ2, measured at the.

  15. Investigation of Relationship between High-energy X-Ray Sources and Photospheric and Helioseismic Impacts of X1.8 Solar Flare of 2012 October 23

    Energy Technology Data Exchange (ETDEWEB)

    Sharykin, I. N.; Zimovets, I. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Kosovichev, A. G.; Sadykov, V. M. [New Jersey Institute of Technology, Newark, NJ (United States); Myshyakov, I. I., E-mail: ivan.sharykin@phystech.edu [Institute of Solar-Terrestrial Research (ISTP) of the Russian Academy of Sciences, Siberian Branch, Irkutsk (Russian Federation)

    2017-07-01

    The X-class solar flare of 2012 October 23 generated continuum photospheric emission and a strong helioseismic wave (“sunquake”) that points to an intensive energy release in the dense part of the solar atmosphere. We study properties of the energy release with high temporal and spatial resolutions, using photospheric data from the Helioseismic Magnetic Imager (HMI) on board Solar Dynamics Observatory , and hard X-ray observations made by RHESSI . For this analysis we use level-1 HMI data (filtergrams), obtained by scanning the Fe i line (6731 Å) with the time cadence of ∼3.6 s and spatial resolution of ∼0.″5 per pixel. It is found that the photospheric disturbances caused by the flare spatially coincide with the region of hard X-ray emission but are delayed by ≲4 s. This delay is consistent with predictions of the flare hydrodynamics RADYN models. However, the models fail to explain the magnitude of variations observed by the HMI. The data indicate that the photospheric impact and helioseismic wave might be caused by the electron energy flux, which is substantially higher than that in the current flare radiative hydrodynamic models.

  16. ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.

    Science.gov (United States)

    Tsunemi, H.; Kitamoto, S.

    The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.

  17. Thermal x-rays and deuterium production in stellar flares

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The x-ray spectrum of flares is shown to be necessarily thermal up to greater than or equal to 200 keV because the self magnetic field of any electron stream required for a thick or thin target source is inconsistently large. The resulting flare model can then be related to stellar luminosity, convection and magnetic fields to result in a maximum possible γ-burst (Mullan, 1976) and continuous x-ray flux. One of the most striking isotopic anomalies observed is the extreme enrichment of Helium (3) in some solar flares and the mysterious depletion of deuterium. It is discussed how deuterium may be produced and emitted in the largest flares associated with γ-bursts but in amounts insufficient to support the tentative conclusion of Colemen and Worden

  18. Decimetric type III radio bursts and associated hard X-ray spikes

    Science.gov (United States)

    Dennis, B. R.; Benz, A. O.; Ranieri, M.; Simnett, G. M.

    1984-01-01

    For a relatively weak solar flare on August 6, 1981, at 10:32 UT, a detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts. The hard X-ray observations are made at energies above 30 keV, and the radio data are obtained in the frequency range from 100 to 1000 MHz. The time resolution for all the data sets is approximately 0.1 s or better. The dynamic radio spectrum exhibits many fast drift type III radio bursts with both normal and reverse slope, whereas the X-ray time profile contains many well resolved short spikes with durations less than or equal to 1 s. Some of the X-ray spikes are seen to be associated in time with reverse-slope bursts, indicating either that the electron beams producing the radio burst contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can induce the acceleration of additional electrons or occur in coincidence with this acceleration. A case is presented in which a normal slope radio burst at approximately 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s.

  19. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  20. A search for X-rays from UV Ceti flare stars

    International Nuclear Information System (INIS)

    Crannell, C.J.; Spangler, S.R.

    1975-01-01

    A search of the MIT/OSO-7 data has been made for evidence of X-ray emission from flares of UV Ceti flare stars. Observations from McDonald Observatory have been used to identify the times of optical flares. The only instance of coincident coverage occurred on 1974 January 21 UT at 03:43:26 GMT for a Δm = 0.86 flare of YZ CMi. No radio coverage of this particular event was obtained. Upper limits of 0.8, 1.0, and 0.7 photons/cm 2 s on the observed X-ray flux have been set for the energy ranges >= 15, >= 3, and 1-10 keV, respectively. (orig.) [de

  1. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  2. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    Science.gov (United States)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  3. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  4. A ``perfect'' Late Phase Flare Loop: X-ray And Radio Studies

    Science.gov (United States)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    We present observations of a GOES X3.1 class flare which occurred on the 24th August 2002. The event was observed by a number of instruments including RHESSI, TRACE and NoRH. This flare is particularly interesting due to its position and orientation on the west limb of the Sun. The flare appears to be perpendicular to the line of sight making it possible to ascertain the geometrical parameters of the post flare arcade loops. We investigate the decay phase of the flare by comparing X-ray and radio observations of the post flare arcade loops with models of soft x-ray and thermal gyrosynchrotron emission to characterise the electron distribution present within the loop. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  5. CONJUGATE HARD X-RAY FOOTPOINTS IN THE 2003 OCTOBER 29 X10 FLARE: UNSHEARING MOTIONS, CORRELATIONS, AND ASYMMETRIES

    International Nuclear Information System (INIS)

    Liu Wei; Dennis, Brian R.; Holman, Gordon D.; Petrosian, Vahe

    2009-01-01

    We present a detailed imaging and spectroscopic study of the conjugate hard X-ray (HXR) footpoints (FPs) observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in the 2003 October 29 X10 flare. The double FPs first move toward and then away from each other, mainly parallel and perpendicular to the magnetic neutral line, respectively. The transition of these two phases of FP unshearing motions coincides with the direction reversal of the motion of the loop-top (LT) source, and with the minima of the estimated loop length and LT height. We find temporal correlations between the HXR flux, spectral index, and magnetic field strength of each FP. The HXR flux exponentially correlates with the magnetic field strength, which also anticorrelates with the spectral index before the second HXR peak's maximum, suggesting that particle acceleration sensitively depends on the magnetic field strength and/or reconnection rate. Asymmetries are observed between the FPs: on average, the eastern FP is 2.2 times brighter in HXR flux and 1.8 times weaker in magnetic field strength, and moves 2.8 times faster away from the neutral line than the western FP; the estimated coronal column density to the eastern FP from the LT source is 1.7 times smaller. The two FPs have marginally different spectral indices. The eastern-to-western FP HXR flux ratio and magnetic field strength ratio are anticorrelated only before the second HXR peak's maximum. Neither magnetic mirroring nor column density alone can explain the totality of these observations, but their combination, together with other transport effects, might provide a full explanation. We have also developed novel techniques to remove particle contamination from HXR counts and to estimate effects of pulse pileup in imaging spectroscopy, which can be applied to other RHESSI flares in similar circumstances.

  6. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  7. Sub-second pulsations simultaneously observed at microwaves and hard X-rays in a solar burst

    International Nuclear Information System (INIS)

    Takakura, T.; Degaonkar, S.S.; Nitta, N.; Ohki, N.

    1982-11-01

    Sub-second time structures have been found in the emissions during solar bursts in mm-waves and, independently, in hard X-rays. However, simultaneous observations of such fast time structure in mm radio and X-ray ranges has not been available so far. Accordingly, coordinated observations of solar bursts in November 1981 with a high time resolution of a few milliseconds were planned. The hard X-rays (30-40 KeV were observed with hard X-ray monitor (HXM) aboard the Hinotori Satellite with a time resolution of 7.81 ms and the radio emissions were observed on the ground with 45ft dish at Itapetinga Radio Observatory with a high time resolution (1 ms) and high sensitivities at 22 GHz and 44 GHz, supplemented by a patrol observation at 7 GHz with time resolution of 100 ms. The pulsations repeated with a period of about 300 ms. The physical implication of the good correlation is not clear at this stage, but it may give a clue to the understanding of the high energy phenomena occuring during the solar flares. (Author) [pt

  8. X-ray line coincidence photopumping in a solar flare

    Science.gov (United States)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  9. Coordinated soft X-ray and H-alpha observation of solar flares

    Science.gov (United States)

    Zarro, D. M.; Canfield, R. C.; Metcalf, T. R.; Lemen, J. R.

    1988-01-01

    Soft X-ray, Ca XIX, and H-alpha observations obtained for a set of four solar flares in the impulsive phase are analyzed. A blue asymmetry was observed in the coronal Ca XIX line during the soft-Xray rise phase in all of the events. A red asymmetry was observed simultaneously in chromospheric H-alpha at spatial locations associated with enhanced flare heating. It is shown that the impulsive phase momentum of upflowing soft X-ray plasma equalled that of the downflowing H-alpha plasma to within an order of magnitude. This supports the explosive chromospheric evaporation model of solar flares.

  10. PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A*

    Energy Technology Data Exchange (ETDEWEB)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-kwan [Steward Observatory and Department of Astronomy, University of Arizona (United States)

    2016-07-20

    Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform general relativistic magnetohydrodynamic simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. The proximity of these high-field regions to the event horizon forms a natural connection between IR and X-ray variability and accounts for the rapid timescales associated with the X-ray flares. The qualitative nature of this variability is consistent with observations, producing X-ray flares that are always coincident with IR flares, but not vice versa, i.e., there are a number of IR flares without X-ray counterparts.

  11. On the expected γ-ray emission from nearby flaring stars

    Science.gov (United States)

    Ohm, S.; Hoischen, C.

    2018-02-01

    Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ-ray burst. In this work, we estimate the expected γ-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0-decay γ-ray emission could be detectable from stellar superflares with ground-based γ-ray telescopes. On the other hand, the detection of γ-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.

  12. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  13. Registration of intensive hard X-rays and soft gamma-rays from the thunderstorm clouds at Tien-Shan installation Adron

    International Nuclear Information System (INIS)

    Antonova, V.P.; Kryukov, S.V.; Vil'danova, L.I.; Gurevich, A.V.; Zybin, K.P.; Kokobaev, M.M.; Nesterova, N.M.; Piskal', V.V.; Ptitsyn, M.O.; Chubenko, A.P.; Shchepetov, A.L.

    2001-01-01

    The Adron installation mounted at the Tien-Shan station is intended for studying the extensive air showers. The Adron installation consists of a neutron supermonitor charged particles detector, muon detector and detector for registering the hard X-ray and soft gamma-radiation from the thunderstorm clouds accomplished on the basis of the Geiger-Mueller counters with sensitivity area of 16-17 m 2 . The intensive fluxes of the hard X-ray and soft gamma-radiation from the thunderstorm clouds passing over the Adron installation at the height below 1 km are registered using this installation. The short-time radiation flares of 1-5 min duration are separated at the background of the intensity slow change. This testifies to the benefit of existence of the runaway electron effect in the thunderstorm clouds [ru

  14. Joint Spectral Analysis for Early Bright X-ray Flares of γ-Ray Bursts ...

    Indian Academy of Sciences (India)

    Abstract. A joint spectral analysis for early bright X-ray flares that were simultaneously observed with Swift BAT and XRT are present. Both BAT and XRT lightcurves of these flares are correlated. Our joint spectral anal- ysis shows that the radiations in the two energy bands are from the same spectral component, which can ...

  15. The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes

    Science.gov (United States)

    Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano

    2005-12-01

    We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.

  16. Localization of the solar flare SF900610 in X-rays with the WATCH instrument of the GRANAT observatory

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Kuzmin, A.G.; Shevchenko, A.V.

    2002-01-01

    -ray source do not coincide with the coordinates of the Ha-line flare. The X-ray source moved over the solar disk during the flare. This probably implies that, as the X-ray emission was generated, different parts of one loop or a system of magnetic loops dominated at different flare times.......During the solar flare of June 10, 1990, the WATCH instrument of the GRANAT space observatory obtained 110 localizations of the X-ray source in the X-ray range 8-20 keV. Its coordinates were measured with an accuracy of similar to2 arcmin at a 3sigma confidence level. The coordinates of the X...

  17. Hard X-ray studies on the Castor tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.

    1990-04-01

    The electron runaway processes in tokamaks are discussed with regard to hard X radiation measurements. The origin and confinement of runaway electrons, their bremsstrahlung spectra and the influence of lower hybrid current drive on the distribution of high-energy electrons are analyzed for the case of the Castor tokamak. The hard X-ray spectrometer designed for the Castor tokamak is also described and preliminary qualitative results of hard X-ray measurements are presented. The first series of integral measurements made it possible to map the azimuthal dependence of the hard X radiation

  18. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  19. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  20. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  1. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  2. NuSTAR Hard X-ray Survey of the Galactic Center Region. I. Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    DEFF Research Database (Denmark)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman

    2015-01-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). Nu...

  3. The analysis and the three-dimensional, forward-fit modeling of the X-ray and the microwave emissions of major solar flares

    Science.gov (United States)

    Kuroda, Natsuha; Wang, Haimin; Gary, Dale E.

    2017-08-01

    It is well known that the time profiles of the hard X-ray (HXR) emission and the microwave (MW) emission during the impulsive phase of the solar flare are well correlated, and that their analysis can lead to the understandings of the flare-accelerated electrons. In this work, we first studied the source locations of seven distinct temporal peaks observed in HXR and MW lightcurves of the 2011-02-15 X2.2 flare using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radioheliograph. We found that the seven emission peaks did not come from seven spatially distinct sites in HXR and MW, but rather in HXR we observed a sudden change in location only between the second and the third peak, with the same pattern occurring, but evolving more slowly in MW, which is consistent with the tether-cutting model of solar flares. Next, we closely examine the widely-used notion of a "common population" of the accelerated electrons producing the HXR and the MW, which has been challenged by some studies suggesting the differences in the inferred energy spectral index and emitting energies of the HXR- and MW- producing electrons. We use the Non-linear Force Free Field model extrapolated from the observed photospheric magnetogram in the three-dimensional, multi-wavelength modeling platform GX Simulator, and attempt to create a unified electron population model that can simultaneously reproduce the observed X-ray and MW observations of the 2015-06-22 M6.5 flare. We constrain the model parameters by the observations made by the highest-resolving instruments currently available in two wavelengths, the RHESSI for X-ray and the Expanded Owens Valley Solar Array for MW. The results suggest that the X-ray emitting electron population model fits to the standard flare model with the broken, hardening power-law spectrum at ~300 keV that simultaneously produces the HXR footpoint emission and the MW high frequency emission, and also reveals that there could be a “X-ray

  4. Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare

    Science.gov (United States)

    Kuroda, Natsuha; Gary, Dale E.; Wang, Haimin; Fleishman, Gregory D.; Nita, Gelu M.; Jing, Ju

    2018-01-01

    The well-established notion of a “common population” of the accelerated electrons simultaneously producing the hard X-ray (HXR) and microwave (MW) emission during the flare impulsive phase has been challenged by some studies reporting the discrepancies between the HXR-inferred and MW-inferred electron energy spectra. The traditional methods of spectral inversion have some problems that can be mainly attributed to the unrealistic and oversimplified treatment of the flare emission. To properly address this problem, we use a nonlinear force-free field (NLFFF) model extrapolated from an observed photospheric magnetogram as input to the three-dimensional, multiwavelength modeling platform GX Simulator and create a unified electron population model that can simultaneously reproduce the observed HXR and MW observations. We model the end of the impulsive phase of the 2015 June 22 M6.5 flare and constrain the modeled electron spatial and energy parameters using observations made by the highest-resolving instruments currently available in two wavelengths, the Reuven Ramaty High Energy Solar Spectroscopic Imager for HXR and the Expanded Owens Valley Solar Array for MW. Our results suggest that the HXR-emitting electron population model fits the standard flare model with a broken power-law spectrum ({E}{break}∼ 200 keV) that simultaneously produces the HXR footpoint emission and the MW high-frequency emission. The model also includes an “HXR-invisible” population of nonthermal electrons that are trapped in a large volume of magnetic field above the HXR-emitting loops, which is observable by its gyrosynchrotron radiation emitting mainly in the MW low-frequency range.

  5. Latitudinal distribution of soft X-ray flares and dispairty in butterfly diagram

    Science.gov (United States)

    Pandey, K. K.; Yellaiah, G.; Hiremath, K. M.

    2015-04-01

    We present statistical analysis of about 63000 soft X-ray flare (class≥C) observed by geostationary operational environmental satellite (GOES) during the period 1976-2008. Class wise occurrence of soft X-ray (SXR) flare is in declining trend since cycle 21. The distribution pattern of cycle 21 shows the transit of hemispheric dominance of flare activity from northern to southern hemisphere and remains there during cycle 22 and 23. During the three cycles, 0-100, 21-300 latitude belts in southern hemisphere (SH) and 31-400 latitude belt in northern hemisphere (NH) are mightier. The 11-200 latitude belt of both hemisphere is mightiest. Correlation coefficient between consecutive latitude appears to be increasing from equator to poleward in northern hemisphere whereas pole to equatorward in southern hemisphere. Slope of the regression line fitted with asymmetry time series of daily flare counts is negative in all three cycles for different classes of flares. The yearly asymmetry curve fitted by a sinusoidal function varies from 5.6 to 11 years period and depends upon the intensity of flare. Variation, of curve fitted with wings of butterfly diagram, from first to second order polynomial suggests that latitudinal migration of flare activity varies from cycle to cycle, northern to southern hemisphere. The variation in slope of the butterfly wing of different flare class indicates the non uniform migration of flare activity.

  6. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    Science.gov (United States)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  7. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  8. Central-engine-powered Bright X-Ray Flares in Short Gamma-Ray Bursts: A Hint of a Black Hole–Neutron Star Merger?

    Science.gov (United States)

    Mu, Hui-Jun; Gu, Wei-Min; Mao, Jirong; Hou, Shu-Jin; Lin, Da-Bin; Liu, Tong

    2018-05-01

    Short gamma-ray bursts may originate from the merger of a double neutron star (NS) or the merger of a black hole (BH) and an NS. We propose that the bright X-ray flare related to the central engine reactivity may indicate a BH–NS merger, since such a merger can provide more fallback materials and therefore a more massive accretion disk than the NS–NS merger. Based on the 49 observed short bursts with the Swift/X-ray Telescope follow-up observations, we find that three bursts have bright X-ray flares, among which three flares from two bursts are probably related to the central engine reactivity. We argue that these two bursts may originate from the BH–NS merger rather than the NS–NS merger. Our suggested link between the central-engine-powered bright X-ray flare and the BH–NS merger event can be checked by future gravitational wave detections from advanced LIGO and Virgo.

  9. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  10. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    Science.gov (United States)

    Bruner, M. E.; Crannell, C. J.; Goetz, F.; Magun, A.; Mckenzie, D. L.

    1988-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 x 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again.

  11. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    International Nuclear Information System (INIS)

    Bruner, M.E.; Crannell, C.J.; Goetz, F.; Magun, A.; Mckenzie, D.L.

    1987-12-01

    This study compares flare source volumes inferred from impulsive hard x rays and microwaves with those derived from density sensitive soft x ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard x ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard x rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard x ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard x ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again

  12. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    International Nuclear Information System (INIS)

    Bruner, M.E.; Crannell, C.J.; Goetz, F.; Magun, A.; Mckenzie, D.L.

    1988-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 x 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again. 29 references

  13. Hard X-ray mirrors for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brejnholt, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alameda, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soufli, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pivovaroff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  14. Principal component analysis of solar flares in the soft X-ray flux

    International Nuclear Information System (INIS)

    Teuber, D.L.; Reichmann, E.J.; Wilson, R.M.; National Aeronautics and Space Administration, Huntsville, AL

    1979-01-01

    Principal component analysis is a technique for extracting the salient features from a mass of data. It applies, in particular, to the analysis of nonstationary ensembles. Computational schemes for this task require the evaluation of eigenvalues of matrices. We have used EISPACK Matrix Eigen System Routines on an IBM 360-75 to analyze full-disk proportional-counter data from the X-ray event analyzer (X-REA) which was part of the Skylab ATM/S-056 experiment. Empirical orthogonal functions have been derived for events in the soft X-ray spectrum between 2.5 and 20 A during different time frames between June 1973 and January 1974. Results indicate that approximately 90% of the cumulative power of each analyzed flare is contained in the largest eigenvector. The first two largest eigenvectors are sufficient for an empirical curve-fit through the raw data and a characterization of solar flares in the soft X-ray flux. Power spectra of the two largest eigenvectors reveal a previously reported periodicity of approximately 5 min. Similar signatures were also obtained from flares that are synchronized on maximum pulse-height when subjected to a principal component analysis. (orig.)

  15. NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A{sup *} flares

    Energy Technology Data Exchange (ETDEWEB)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby (Denmark); Dexter, Jason [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Hailey, Charles J.; Mori, Kaya; Zhang, Shuo [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-05-01

    Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.

  16. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  17. Periodic Recurrence Patterns In X-Ray Solar Flare Appearances

    Science.gov (United States)

    Gyenge, N.; Erdélyi, R.

    2018-06-01

    The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P 1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P 1/P N ) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.

  18. A hard X-ray nanoprobe beamline for nanoscale microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winarski, Robert P., E-mail: winarski@anl.gov; Holt, Martin V. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Rose, Volker [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Maser, Jörg [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States)

    2012-11-01

    The Hard X-ray Nanoprobe Beamline is a precision platform for scanning probe and full-field microscopy with 3–30 keV X-rays. A combination of high-stability X-ray optics and precision motion sensing and control enables detailed studies of the internal features of samples with resolutions approaching 30 nm. The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  19. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  20. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  1. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.; Dai, Zi-Gao

    2017-01-01

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  2. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Shuang-Xi [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Yu, Hai; Wang, F. Y.; Dai, Zi-Gao, E-mail: fayinwang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-07-20

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  3. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  4. Prospects for supermirrors in hard x-ray spectroscopy

    DEFF Research Database (Denmark)

    Joensen, Karsten D.; Gorenstein, Paul; Christensen, Finn Erland

    1994-01-01

    . The measured x-ray reflectivities are well accounted for by the standard dynamical theories of multilayer reflection. Hard x ray applications that could benefit from x-ray supermirror coatings include focusing and imaging instrumentation for astrophysics, collimating and focusing devices for synchrotron...

  5. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  6. Hard X-Ray PHA System on the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Lin Shiyao; Shi Yuejiang; Wan Baonian; Chen Zhongyong; Hu Liqun

    2006-01-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes

  7. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... and characterized with respect to their shape. Their optical performances were tested at the European Synchrotron Radiation Facility (ESRF). Two 1D-focusing Si-CRLs suitable as condensers in hard-XRM were developed utilizing the aforementioned two different strategies. The first Si-condenser showed focusing of a 56...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  8. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  9. Prepulse dependence in hard x-ray generation from microdroplets

    International Nuclear Information System (INIS)

    Anand, M.; Kahaly, S.; Kumar, G. Ravindra; Sandhu, A. S.; Gibbon, P.; Krishnamurthy, M.

    2006-01-01

    We report on experiments which show that liquid microdroplets are very efficient in hard x-ray generation. We make a comparative study of hard x-ray emission from 15 μm methanol microdroplets and a plain slab target of similar atomic composition at similar laser intensities. The hard X-ray yield from droplet plasmas is about 35 times more than that obtained from solid plasmas. A prepulse that is about 10ns and at least 2% in intensity of the main pulse is essential for hard x-ray generation from the droplets at about 1015 W cm-2. A hot electron temperature of 36 keV is measured from the droplets at 8 x 1014 W cm-2; three times higher intensity is needed to obtain similar hot electron temperature from solid plasmas that have similar atomic composition. We use 1D-PIC simulation to obtain qualitative correlation to the experimental observations

  10. The microwave and H-alpha sources of the 1992 January 13 flare

    Science.gov (United States)

    Wang, H.; Gary, D. E.; Zirin, H.; Kosugi, T.; Schwartz, R. A.; Linford, G.

    1995-01-01

    We compare X-ray, microwave and H-alpha observations for the 1992 January 13 limb flare. The soft and hard X-ray images of the flare have been studied thoroughly by Masuda et al. (1994) with Yohkoh SXT and HXT images. We find that during the hard X-ray emission peak there is no H-alpha brightening on the disk nor at the limb, so the main ribbons of this flare must be beyond the limb. The microwave source maintains a fixed distance about 10 arcsecs from the optical limb in the frequency range 2.8-14.0 GHz. We interpret this limit in source position as due to the presence of a microwave limb that extends higher than the white-light limb -- to a height of 7300 +/- 1500 km. We believe that the high-frequency microwave emissions are occulted by this extended limb, while the soft and hard X-ray emissions are able to pass through largely unaffected. We also believe, however, that the hard X-ray footpoints are also partially occulted by the photospheric limb, despite the appearance of 'footpoint sources' in HXT data shown by Masuda et al. The smooth X-ray and microwave time profiles, microwave-rich emission relative to hard X-rays, and progressive hard X-ray spectral hardening through the flare peak are all characteristics that we interpret as being a direct result of the occultation of footpoint emission.

  11. Design of MiSolFA Hard X-Ray Imager

    Science.gov (United States)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  12. Investigation of the hard x-ray background in backlit pinhole imagers

    Energy Technology Data Exchange (ETDEWEB)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Peebles, J. L. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States)

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  13. Ultraviolet radiation from stellar flares and the coronal X-ray emission for dwarf-Me stars

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, J.G.; Butler, C.J. (Armagh Observatory, Northern Ireland (UK))

    1985-01-31

    The authors correlate Einstein observations of the X-ray flux of quiescent dMe stars with the time-averaged energy emitted by flares in the Johnson-U band, showing that the X-ray energy emitted by the coronae of these stars is about an order of magnitude greater than the U-band flare energy. From the estimate of the ratio of the total radiation emitted to the U-band flux, it is possible that, if a similar amount of energy were dissipated in the stellar atmosphere, then the observed flare events could heat the coronae of these stars.

  14. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  15. Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

    Science.gov (United States)

    Bertsch, D. L.; Bruhweiler, F.; Macomb, D. J.; Cheng, K.-P.; Carter-Lewis, D. A.; Akerlof, C. W.; Aller, H. D.; Aller, M. F.; Buckley, J. H.; Cawley, M. F.

    1995-01-01

    A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission.

  16. Hard X-ray observation of HER X-1

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure.

  17. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  18. Evidence of elevated X-ray absorption before and during major flare ejections in GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); Rodriguez, Jérôme [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU SAp, F-91191 Gif-sur-Yvette (France); Trushkin, Sergei A., E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Special Astrophysical Observatory RAS, Nizhnij Arkhyz, 369167 (Russian Federation)

    2014-03-10

    We present time-resolved X-ray spectroscopy of the microquasar GRS 1915+105 with the MAXI observatory in order to study the accretion state just before and during the ejections associated with its major flares. Radio monitoring with the RATAN-600 radio telescope from 4.8-11.2 GHz has revealed two large, steep-spectrum major flares in the first eight months of 2013. Since the RATAN has received one measurement per day, we cannot determine the jet-forming time without more information. Fortunately, this is possible since a distinct X-ray light curve signature that occurs preceding and during major ejections has been determined in an earlier study. The X-ray luminosity spikes to very high levels in the hours before ejection, then becomes variable (with a nearly equal X-ray luminosity when averaged over the duration of the ejection) during a brief 3-8 hr ejection process. By comparing this X-ray behavior with MAXI light curves, we can estimate the beginning and end of the ejection episode of the strong 2013 flares to within ∼3 hr. Using this estimate in conjunction with time-resolved spectroscopy from the data in the MAXI archives allows us to deduce that the X-ray absorbing hydrogen column density increases significantly in the hours preceding the ejections and remains elevated during the ejections responsible for the major flares. This finding is consistent with an outflowing wind or enhanced accretion at high latitudes.

  19. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Reid, Mark J.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Rivilla, Victor M. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Rau, Urvashi; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2017-08-01

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.

  20. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  1. Hard X-ray observation of HER X-1

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G.

    1981-01-01

    A hard X-rays (15-170 KeV) measurement of the spectrum of Her X-1, during a mid turn-on is presented. The presence of an emission line at about 53 KeV during the mid-on state is confirmed by the present measure. (orig.)

  2. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay

    2010-01-01

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

  3. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  4. A hard X-ray laboratory for monochromator characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Since their installation at ILL during the 1970`s the ILL {gamma}-ray diffractometers have been intensively used in the development of neutron monochromators. However, the ageing of the sources and new developments in hard X-ray diffractometry lead to a decision at the end of 1995 to replace the existing {gamma}-ray laboratory with a hard X-ray laboratory, based on a 420 keV generator, making available in the long term several beam-lines for rapid characterisation of monochromator crystals. The facility is now installed and its characteristics and advantages are outlined. (author). 2 refs.

  5. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    International Nuclear Information System (INIS)

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  6. Study of SMM flares in gamma-rays and neutrons

    Science.gov (United States)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  7. The Hard X-ray Sky: Recent Observational Progress

    International Nuclear Information System (INIS)

    Gehrels, Neil; Cannizzo, John K.

    2009-01-01

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  8. DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brigida, M.

    2011-01-01

    We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activity as their power source.

  9. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    International Nuclear Information System (INIS)

    Vink, Jacco

    2009-01-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  10. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    Science.gov (United States)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  11. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    Science.gov (United States)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  12. Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Fang-Kun; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    Dozens of high-energy neutrinos have been detected by the IceCube neutrino telescope, but no clear association with any classes of astrophysical sources has been identified so far. Recently, Kadler et al. reported that a PeV cascade-like neutrino event occurred in positional and temporal coincidence with a giant gamma-ray flare of the blazar PKS B1424-418. Since IceCube track-like events have much better angular resolution, we here search for possible short-term gamma-ray flares that are associated with the IceCube track-like events with Fermi Large Area Telescope (LAT) observations. Among them, three track-like neutrino events occur within the field of view of Fermi -LAT at the time of the detection, so searching for the prompt gamma-ray emission associated with neutrinos is possible. Assuming a point source origin and a single power-law spectrum for the possible gamma-ray sources associated with neutrinos, a likelihood analysis of 0.2–100 GeV photons observed by Fermi -LAT on the timescales of ∼12 hr and one year are performed, and for the three special neutrinos, the analyses are also performed on the timescales of thousands of seconds before and after the neutrino detection. No significant GeV excesses over the background are found and upper limit fluxes at the 95% confidence level are obtained for different timescales. We also search for possible the Swift hard X-ray transient sources associated with the IceCube track-like neutrino events, but the search also yields null results. We discuss the implication of the non-detection of gamma-ray flares for the constraints on the neutrino source density.

  13. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    Science.gov (United States)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  14. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    Science.gov (United States)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  15. Confinement of hot, hard x-ray producing electrons in solar flares

    International Nuclear Information System (INIS)

    Smith, D.F.; Lilliequist, C.G.

    1979-01-01

    Possible thermal models for solar, hard X-ray emission, consisting of small volumes in which the electrons are rapidly heated to 4 x 10 8 K, are examined to determine under what conditions such models can be more efficient than nonthermal models. The primary energy-loss mechanism in these models is source expansion due to heat conduction which deviates from its classical value by mechanisms which are reviewed and systematized. One such mechanism is saturation of the heat flux at its maximum possible value, corresponding to direct convection by electrons. Another mechanism is anomalous limitation of the heat flux due to instability of the return current which must compensate the electron current carrying the heat. A simple, one-dimensional model in which a section of the flux tube of constant density is heated to 4 x 10 8 K is analyzed. A conduction front, determined by the above collisionless process, moves along the flux tube at the head of the expanding source. A more realistic, one-dimensional, one-fluid, two-temperature model with a spatially and temporally varying energy source which delivers energy to the electrons at a finite rate is formulated and solved numerically. This results in some ion heating and mass motions which, by themselves, represent only a small energy loss. However, because of changes in the anomalous limitation of the heat flux with higher ion temperature, the expansion losses increase considerably

  16. Impulsive behavior in solar soft X-radiation

    Science.gov (United States)

    Hudson, H. S.; Strong, K. T.; Dennis, B. R.; Zarro, D.; Inda, M.; Kosugi, T.; Sakao, T.

    1994-01-01

    The Yohkoh soft X-ray telescope has observed impulsive, thermal, soft X-ray emission at the footpoints of magnetic loops during solar flares. The soft X-ray (thermal) time profiles at the footpoints closely match the hard X-ray (nonthermal) time profiles, directly demonstrating the heating of the lower solar atmosphere on short timescales during the interval of nonthermal energy release. This phenomenon is the rule, rather than the exception, occurring in the majority of flares that we have examined with the Yohkoh data. We illustrate the impulsive behavior with data from the major flare of 1992 January 26. For this flare, the soft X-ray peak times matched the hard X-ray peak times within the time resolution of the soft X-ray measurements (about 10 s), and the soft and hard X-ray locations match within the resolution of the hard X-ray imager. The impulsive soft X-ray emission clearly has a thermal spectral signature, but not at the high temperature of a 'superhot' source. We conclude that the impulsive soft X-ray emission comes from material heated by precipitating electrons at loop footpoints and evaporating from the deeper atmosphere into the flaring flux tube.

  17. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  18. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  19. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    Science.gov (United States)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  20. Solar flare X-radiation and energetic particles by the observation data from the Venera-13,14 space probes

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Dajbog, E.I.; D'yachkov, A.P.

    1984-01-01

    The relationship between bursts of solar hard X-radiation quanta (Esub(x) > 0.055 MeV) and flares of solar cosmic rays (SCR) was considered on the basis of the data from the Venera-13, 14 space probes. The data on solar flares in Hsub(α) and thermal X-radiation range as well as radio-frequency radiation of the 3d type were used for analysis. It was established that the intensity amplitude of flare electrons (Esub(e) > 0.025 and > 0.07 MeV) and protons (Esub(p) > 1.0 MeV) correlates best with the flare importance in the thermal X-radiation range (r approximately 0.8+-0.03). The use of flare importance in thermal X-radiation range was independent measure of flare power in which SCR particles were generated enabled to construct heliolongitudinal dependences of the flare electron fluxes and to obtain the idea of the heliolongitudinal flare interval in which the effects of coronal propagation could be ignored. It is shown that the flux of the flare nonrelativistic electrons is related with the total energy release in the burst of hard X-radiation better than with the amplitude of this burst. Distributions of the solar events were studied with respect to the amplitudes of the intensity of electrons of SCR, thermal and hard X-radiation. It is shown that in the most part of the varying amplitude ranqe the distribution functions are approximated according to the power law. It is shown that the distribution function factor depends both on the parameter used for its construction and the type of events being used for analysis

  1. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  2. Hard X-ray techniques suitable for polymer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bras, W; Goossens, H; Goderis, B, E-mail: Wim.Bras@esrf.fr [Netherlands Organisation for Scientific Research (NWO) (Netherlands); DUBBLE-ESRF, BP 220, F38043 Grenoble Cedex (France); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Molecular and Nanomaterials, Chemistry Department, Catholic University of Leuven, Celestijnenlaan 200F (Belgium)

    2010-11-15

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  3. Hard X-ray techniques suitable for polymer experiments

    International Nuclear Information System (INIS)

    Bras, W; Goossens, H; Goderis, B

    2010-01-01

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  4. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  5. Blazars in Hard X-rays

    Science.gov (United States)

    Ghisellini, Gabriele

    2009-05-01

    Although blazars are thought to emit most of their luminosity in the γ-ray band, there are subclasses of them very prominent in hard X-rays. These are the best candidates to be studied by Simbol-X. They are at the extremes of the blazar sequence, having very small or very high jet powers. The former are the class of TeV emitting BL Lacs, whose synchrotron emission often peaks at tens of keV or more. The latter are the blazars with the most powerful jets, have high black hole masses accreting at high (i.e. close to Eddington) rates. These sources are predicted to have their high energy peak even below the MeV band, and therefore are very promising candidates to be studied with Simbol-X.

  6. Solar flares: radio and X-ray signatures of magnetic reconnection processes

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian

    2014-01-01

    Roč. 14, č. 7 (2014), s. 753-772 ISSN 1674-4527 R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : Sun: flares * Sun: radio radiation * Sun: X- rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.640, year: 2014

  7. Flare Observations

    Directory of Open Access Journals (Sweden)

    Benz Arnold O.

    2008-02-01

    Full Text Available Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  8. Flare Observations

    Science.gov (United States)

    Benz, Arnold O.

    2017-12-01

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  9. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  10. CHARACTERIZATION OF THE X-RAY LIGHT CURVE OF THE {gamma} Cas-LIKE B1e STAR HD 110432

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Myron A. [Catholic University of America, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lopes de Oliveira, Raimundo [Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Sao Cristovao, SE (Brazil); Motch, Christian, E-mail: msmith@stsci.edu [Observatoire Astronomique, Universite de Strasbourg, CNRS UMR 7550, 11 rue de l' Universite, F-67000 Strasbourg (France)

    2012-08-10

    HD 110432 (BZ Cru; B1Ve) is the brightest member of a small group of '{gamma} Cas analogs' that emit copious hard X-ray flux, punctuated by ubiquitous 'flares'. To characterize the X-ray time history of this star, we made a series of six RXTE multi-visit observations in 2010 and an extended observation with the XMM-Newton in 2007. We analyzed these new light curves along with three older XMM-Newton observations from 2002 to 2003. Distributed over five months, the RXTE observations were designed to search for long X-ray modulations over a few months. These observations indeed suggest the presence of a long cycle with P Almost-Equal-To 226 days and an amplitude of a factor of two. We also used X-ray light curves constructed from XMM-Newton observations to characterize the lifetimes, strengths, and interflare intervals of 1615 flare-like events in the light curves. After accounting for false positive events, we infer the presence of 955 (2002-2003) and 386 (2007) events we identified as flares. Similarly, as a control we measured the same attributes for an additional group of 541 events in XMM-Newton light curves of {gamma} Cas, which, after a similar correction, yielded 517 flares. We found that the flare properties of HD 110432 are mostly similar to our control group. In both cases the distribution of flare strengths are best fit with log-linear relations. Both the slopes of these distributions and the flaring frequencies themselves exhibit modest fluctuations. We discovered that some flares in the hard X-ray band of HD 110432 were weak or unobserved in the soft band and vice versa. The light curves also occasionally show rapid curve drop-offs that are sustained for hours. We discuss the existence of the long cycle and these flare properties in the backdrop of two rival scenarios to produce hard X-rays, a magnetic star-disk interaction, and the accretion of blobs onto a secondary white dwarf.

  11. Model independent method to deconvolve hard X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))

    1984-07-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.

  12. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration gamma-ray bursts.

    Science.gov (United States)

    Hurley, K; Boggs, S E; Smith, D M; Duncan, R C; Lin, R; Zoglauer, A; Krucker, S; Hurford, G; Hudson, H; Wigger, C; Hajdas, W; Thompson, C; Mitrofanov, I; Sanin, A; Boynton, W; Fellows, C; von Kienlin, A; Lichti, G; Rau, A; Cline, T

    2005-04-28

    Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.

  13. Hard x- and gamma-rays from supernova 1987A

    International Nuclear Information System (INIS)

    Kumagai, S.; Shigeyama, T.; Nomoto, K.; Nishmura, J.; Itoh, M.

    1988-01-01

    The x-ray light curve and spectrum from SN 1987A due to Compton degradation of γ-rays from the 56 Co decay are calculated and compared with the Ginga and Kvant observations. If mixing of 56 Co into outer layers has taken place, the x-rays emerge much earlier than in the case without mixing and the resulting hard x-rays are in reasonable agreement with observations

  14. Study with the sigma data base of the galactic bulge hard x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Vargas, Marielle

    1997-01-01

    The Sigma coded-mask telescope on board the Granat spacecraft produces sky images in the hard X-ray and soft gamma-ray energy domain (30-1300 keV) with an angular resolution of 15 arc minutes. The observations of the 18 Angstroms x 17 Angstroms region around the Galactic Center, performed with Sigma regularly during seven years, allowed the detection of a cluster of 17 sources showing activity beyond 40 ke V. This cluster is identified with the Galactic Bulge and its core coincides with the Galactic Center. Each of these sources reveals matter accretion by a collapse star in binary system. Its nature is determined by the luminosity and the spectral behavior recorded beyond 40 keV. Three accreting black holes show peculiar transient activities and comparable flare luminosities providing a criterion to evaluate distance of other specimens located elsewhere in the Galaxy. No sign of activity has been detected from the very center of the Galaxy where a supermassive black hole would be placed and would accrete the surrounding matter. (author) [fr

  15. Hard X-ray spectrum of Her X-1

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.D.; Polcaro, V.F.

    1981-01-01

    The results of a balloon borne hard X-ray observation of Her X-1 is presented. The experiment, released from the base of Hyderabad (India) the 19th April 1980, was a collaboration between the Istituto di Astrofisica Spaziale (Italy) and the TIFR (India). The data obtained are compatible with a thermal emission at low energy with a strong emission line overimposed on the continuum around 50-60 keV

  16. Studies in useful hard x-ray induced chemistry

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  17. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  18. Hard X-ray balloon observations of compact galactic and extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Staubert, R.; Kendziorra, E.; Pietsch, W.; Proctor, R.J.; Reppin, C.; Steinle, H.; Truemper, J.; Voges, W.

    1981-01-01

    A balloon program in hard X-ray astronomy (20-200 keV) is jointly pursued by the Astronomisches Institut der Universitaet Tuebingen (AIT) and the Max Planck-Institut fuer Extraterrestrische Physik in Garching (MPE). Since 1973 nine succussful balloon flights have been performed from Texas and Australia. Here results on Centaurus A and on several galactic binary X-ray sources are summarized. In particular the high energy photon spectrum of Hercules X-1 and the evidence for the cyclotron line feature which was discovered by us in 1976 is reviewed. (orig.)

  19. Design and Tests of the Hard X-ray Polarimeter X-Calibur

    Directory of Open Access Journals (Sweden)

    M. Beilicke

    2014-12-01

    Full Text Available X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-Calibur, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-Calibur achieves a high detection efficiency of order unity.

  20. Hard X-ray intensity reduction during lower hybrid current drive experiments

    International Nuclear Information System (INIS)

    Mlynar, J.; Stoeckel, J.; Magula, P.

    1993-01-01

    A strong hard X-ray intensity reduction during a standard LHCD at the CASTOR tokamak was studied. From discussion it followed that the magnetic fluctuations level decrease is likely to be responsible for this effect beside the loop voltage decrease. To verify this idea, the connection between the magnetic fluctuation level and the hard X-ray intensity was studied in a nonstandard LHCD regime with a zero loop voltage reduction. These measurements strongly supported the concept that magnetic fluctuations level substantially influences the runaway electrons cross-field transport. Though, more data and a good code for modelling the anomalous transport and hard X-rays production would be of high value. Similar measurements especially for higher RF power should be carried out soon. Besides, the reduction of hard X-rays was observed in the experiments with edge plasma polarization lately; therefore, the magnetic fluctuations level in these experiments should be studied soon. (author) 6 figs., 6 refs

  1. Hard X-ray bursts and DD microfusion neutrons from complex ...

    Indian Academy of Sciences (India)

    explosive destruction of micrograins is accompanied by X-ray radiation (during hydrody- ... makes it possible to produce lasing in hard X-rays due to the effects of multiple scattering ... portant, information on the X-ray random media, including some indirect diagnostics. In ... stages of ionization in the total flux of particles.

  2. Solar flares

    International Nuclear Information System (INIS)

    Brown, J.C.; Smith, D.F.

    1980-01-01

    The current observational and theoretical status of solar flares as a typical astrophysical problem is reviewed with especial reference to the intense and complex energy release in large flares. Observations and their diagnostic applications are discussed in three broad areas: thermal radiation at temperatures T 5 K; thermal radiation at T > approximately 10 5 K; and non-thermal radiation and particles. Particular emphasis is given to the most recent observational discoveries such as flare γ-rays, interplanetary Langmuir waves, and the ubiquitous association of soft x-ray loops with flares, and also the progress in particle diagnostics of hard x-ray and radio bursts. The theoretical problems of primary energy release are considered in terms of both possible magnetic configuration and in plasma instabilities and the question of achieving the necessary flash power discussed. The credibility of models for the secondary redistribution through the atmosphere of the primary magnetic energy released in terms of conduction, convection, radiation and particle transport is examined. Progress made in the flare problem in the past decade is assessed and some possible reasons why no convincing solution has yet been found are considered. 296 references. (U.K.)

  3. Common SphinX and RHESSI observations of solar flares

    Science.gov (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  4. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  5. Hard X-ray Sources for the Mexican Synchrotron Project

    International Nuclear Information System (INIS)

    Reyes-Herrera, Juan

    2016-01-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392). (paper)

  6. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  7. Studies of soft x-ray emission during solar flares

    International Nuclear Information System (INIS)

    Anandaram, M.N.

    1973-01-01

    Solar flare soft x-ray emission from 0.5 A to 8.5 A was observed during 1967-68 by Bragg crystal (LiF and EDDT) spectrometers aboard the OSO-4 satellite and also by NRL broad-band ionization detectors aboard the OGO-4 satellite. In this work, instrumental parameters for the LiF crystal spectrometer based on experimental values have been determined and used in the data analysis. The total continuum emission in the 0.5 to 3 A and the 1 to 8 A broad band segments has been determined from OGO-4 data for 21 flares. In doing this, a simple and approximate method of converting the total emission based on the gray body approximation (in which the OGO-4 data are reported) to one based on the thermal continuum spectrum has been developed. (author)

  8. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  9. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  10. Design of grazing-incidence multilayer supermirrors for hard-X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K. D.; Voutov, P.; Szentgyorgyi, A.

    1995-01-01

    Extremely broadband grazing-incidence multilayers for hard-X-ray reflection can be obtained by a gradual change of the layer thicknesses down through the structure. Existing approaches for designing similar neutron optics, called supermirrors, are shown to provide respectable performance when...... applied to X-ray multilayers. However, none of these approaches consider the effects of imperfect layer interfaces and absorption in the overlying layers. Adaptations of neutron designs that take these effects into account are presented, and a thorough analysis of two specific applications (a single hard......-X-ray reflector and a hard-X-ray telescope) shows that an improved performance can be obtained. A multilayer whose bilayer thicknesses are given by a power law expression is found to provide the best solution; however, it is only slightly better than some of the adapted neutron designs...

  11. A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4

    DEFF Research Database (Denmark)

    Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.

    2015-01-01

    The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unkno...... behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity....

  12. Hard X-ray Microscopy with Elemental, Chemical and Structural Contrast

    International Nuclear Information System (INIS)

    Schroer, C.G.; Boye, P.; Feldkamp, J.P.

    2010-01-01

    We review hard X-ray microscopy techniques with a focus on scanning microscopy with synchrotron radiation. Its strength compared to other microscopies is the large penetration depth of hard x rays in matter that allows one to investigate the interior of an object without destructive sample preparation. In combination with tomography, local information from inside of a specimen can be obtained, even from inside special non-ambient sample environments. Different X-ray analytical techniques can be used to produce contrast, such as X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample, respectively. This makes X-ray microscopy attractive to many fields of science, ranging from physics and chemistry to materials, geo-, and environmental science, biomedicine, and nanotechnology. Our scanning microscope based on nanofocusing refractive X-ray lenses has a routine spatial resolution of about 100 nm and supports the contrast mechanisms mentioned above. In combination with coherent X-ray diffraction imaging, the spatial resolution can be improved to the 10 nm range. The current state-of-the-art of this technique is illustrated by several examples, and future prospects of the technique are given. (author)

  13. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    International Nuclear Information System (INIS)

    Correa, C

    2004-01-01

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060

  14. System of an analysis of a fine time structure of X-ray solar flares in the RGS-1M spectrometer

    International Nuclear Information System (INIS)

    Lazutkov, V.P.

    1980-01-01

    The possibilities of RGS-1M spectral equipment intended for determination of more detailed data on the solar flare structure are discussed. Spectrometer modernization permits to record the fine time structure of solar events in the hard X-ray range (50-90 keV). The main requirement for fine time analysis of nonstationary processes is determination of the maximum possible resolution at the maximum available length of the signal under investigation. The scheme of the time analyzer of splash events with the time resolution Δt=62.5 ms and the length of the range processed T=27.6 s is given and described. Operation of the spectrometer telemetric apparatus is considered in detail. The fine solar flare structure occurred on 14.04.79 with visually chosen periodic structure is shown as an example [ru

  15. A model independent method to deconvolve hard X-ray spectra

    International Nuclear Information System (INIS)

    Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C.

    1984-01-01

    A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented. (orig.)

  16. M. I. T. studies of transient X-ray phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Canizares, C R [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Physics

    1976-06-01

    A variety of transient X-ray phenomena have been studied by the M.I.T. X-ray Astronomy Group. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and of GX339-4 (MX1658-48) which may represent a very different type of transient source. A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent balloon flight the Crab pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535+26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.

  17. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    Science.gov (United States)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (zBAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  18. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...

  19. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  20. THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105

    International Nuclear Information System (INIS)

    Punsly, Brian; Rodriguez, Jérôme

    2013-01-01

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L intrinsic , from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L intrinsic (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L intrinsic (1.2-50) 0-4 hr before the ejection, the increase in L intrinsic (1.2-50) in the hours preceding the ejection and the time-averaged L intrinsic (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L intrinsic (1.2-50) during ejection) is strongly correlated with L intrinsic (1.2-50) just before launch with near equality if the distance to the source is ≈10.5 kpc.

  1. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Dickson, Ewan C. [IGAM/Institute of Physics, University of Graz, A-8010 Graz (Austria); Su, Yang [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China); Gömöry, Peter, E-mail: aaron.hernandez-perez@uni-graz.at [Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica (Slovakia)

    2017-10-01

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager ( RHESSI ) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  2. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  3. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  4. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  5. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  6. On the enhanced X-ray emission from SGR 1900+14 after the August 27th giant flare

    International Nuclear Information System (INIS)

    Ertan, Ue.; Alpar, M.A.

    2004-01-01

    We show that the giant flares of soft gamma ray repeaters (E∼10 44 erg) can push the inner regions of a fall-back disk out to larger radii by radiation pressure, while matter remains bound to the system for plausible parameters. The subsequent relaxation of this pushed-back matter can account for the observed enhanced X-ray emission after the August 27 th giant flare of SGR 1900+14

  7. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  8. THE FIRST FOCUSED HARD X-RAY IMAGES OF THE SUN WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Grefenstette, Brian W.; Madsen, Kristin K.; Forster, Karl; Harrison, Fiona A. [Cahill Center for Astrophysics, 1216 E. California Blvd, California Institute of Technology, Pasadena, CA 91125 (United States); Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota—Twin Cities, Minneapolis, MN 55455 (United States); Krucker, Säm; Hudson, Hugh; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hannah, Iain G. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, David M.; Marsh, Andrew J. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Vogel, Julia K. [Physics Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque, NM (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO 80302 (United States); Chen, Bin [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shih, Albert [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kuhar, Matej [University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J., E-mail: bwgref@srl.caltech.edu [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); and others

    2016-07-20

    We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray ( NuSTAR ) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR , their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  9. The First Focused Hard X-Ray Images of the Sun with NuSTAR

    Science.gov (United States)

    Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.; hide

    2016-01-01

    We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  10. Sudden f/sub min/ enhancements and sudden cosmic noise absorptions associated with solar X-ray flares

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T [Hyogo Coll. of Medicine, Hyogo (Japan). Dept. of Physics

    1975-01-01

    Sudden fsub(min) enhancements (SFsub(m)E's) and sudden cosmic noise absorptions (SCNA's) associated with increments of X-ray fluxes during solar flares are studied on the basis of X-ray flux data measured by SOLRAD 9 and 10 satellites. Some statistical analyses on SFsub(m)E's observed at five observatories in Japan, corresponding to increased X-ray fluxes in the 1-8 A band are made for 50 solar flare events during the period January 1972 to December 1973, and value of fsub(min) is expressed as functions of cos x(x; solar zenith angle) and 1-8 A band X-ray flux. Similar study is also made for SCNA's observed by 30 MHz riometer at Hiraiso for 15 great solar flare events during the same period, together with 27.6 MHz riometer data reported by Schwentek (1973) and 18 MHz data published by Deshpande and Mitra (1972b). It is found that fsub(min) value (MHz) and SCNA value (L, dB) of a radio wave with frequency f(MHz) are related to X-ray flux (F/sub 0/, erg cm/sup -2/ sec/sup -1/) in the 1-8 A band and to cos x, by following approximate expressions, fsub(min)(MHz)=10F/sub 0/sup(1/4) cossup(1/2) x, and L(dB)=4.37x10/sup 3/f/sup -2/F/sub 0/sup(1/2) cos x, respectively. Blackout seems to occur for F/sub 0/ values causing fsub(min)'s greater than about 5 MHz. It is shown that these expressions can be derived from a brief theoretical calculation of radio wave absorption in the lower ionosphere. Also it is suggested that threshold X-ray fluxes in the 1-8 A band which may produce a minimum SFsub(m)E (2 MHz), blackout and minimum SCNA (0.27-0.36 dB for 30 MHz noise) are 1.6x10/sup -3/, 6.2x10/sup -2/ and (3-8) x 10/sup -3/ erg cm/sup -2/ sec/sup -1/, respectively, for cos x=1.

  11. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A., E-mail: aline.meuris@cea.fr [CEA-Irfu – CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Limousin, O.; Gevin, O.; Blondel, C.; Martignac, J. [CEA-Irfu – CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Vassal, M.-C.; Soufflet, F.; Fiant, N. [3D Plus – 408 rue Hélène Boucher, F-78532 Buc Cedex (France); Bednarzik, M.; Stutz, S. [Paul Scherrer Institute (PSI), Laboratory for Micro- and Nanotechnology, 5232 Villigen (Switzerland); Grimm, O.; Commichau, V. [ETH Zurich, Institute for Particle Physics, Schafmattstrasse 20, 8093 Zurich (Switzerland)

    2015-07-01

    Caliste-SO is a CdTe hybrid detector designed to be used as a spectrometer for a hard X-ray Fourier telescope. The imaging technique was implemented in the Yohkoh satellite in 1991 and the RHESSI satellite in 2002 to achieve arc-second angular resolution images of solar flares with spectroscopic capabilities. The next generation of such instruments will be the Spectrometer Telescope Imaging X-rays (STIX) on-board the Solar Orbiter mission adopted by the European Space Agency in 2011 for launch in 2017. The design and performance of Caliste-SO allows both high spectral resolution and high count rate measurements from 4 to 150 keV with limited demands on spacecraft resources such as mass, power and volume (critical for interplanetary missions). The paper reports on the flight production of the Caliste-SO devices for STIX, describing the test facilities built-up in Switzerland and France. It illustrates some results obtained with the first production samples that will be mounted in the STIX engineering model.

  12. X-RAY FLARING ACTIVITY OF MRK 421 IN THE FIRST HALF OF 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kapanadze, B.; Kapanadze, S.; Tabagari, L. [E. Kharadze Abastumani Astrophysical Observatory, Ilia State University, Colokashvili Av. 3/5, Tbilisi, 0162, Georgia (United States); Dorner, D. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics, Emil-Fischer-Str. 31, D-97074 Würtzburg (Germany); Vercellone, S.; Romano, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Aller, H.; Aller, M.; Hughes, P.; Reynolds, M. [Astronomy Department, University of Michigan, Ann Arbor, MI 48109-1107 (United States)

    2016-11-01

    We present the results of the Swift and NuSTAR observations of the nearby BL Lac object Mrk 421 during 2013 January–June. The source exhibited a strong long-term variability in the 0.3–10 keV and 3–79 keV bands with the maximum-to-minimum daily-binned flux ratios of 22 and 95, respectively, in about 3 months, mainly due to unprecedented strong X-ray outbursts by more than an order of magnitude in both bands within 2 weeks in 2013 April when the 0.3–10 keV count rate exceeded the level of 200 cts s{sup −1} for the first time, and Mrk 421 became one of the brightest sources in the X-ray sky. The source was also very active on intra-day timescales, and it showed flux doubling and halving timescales of 1.16–7.20 hr and 1.04–3.54 hr, respectively. On some occasions, the flux varied by 4%–23% within 300–840 s. During this period, the source also exhibited some of the most extreme X-ray spectral variability ever reported for BL Lacs—the location of the synchrotron spectral energy distribution peak shifted from a few eV to ∼10 keV, and the photon index at 1 keV and curvature parameter varied on timescales from a few weeks down to intervals shorter than 1 ks. MAGIC and First G-APD Cherenkov Telescope observations also revealed a very strong very high energy (VHE) flare during April 11–17. The UV and HE γ -ray flares were much weaker compared to their X-ray counterparts, and they generally showed significantly stronger correlation with each other than with the X-ray fluxes.

  13. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  14. Bonded Multilayer Laue Lens for focusing hard X-rays

    International Nuclear Information System (INIS)

    Liu Chian; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.

    2007-01-01

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi 2 and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 o C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 o C. A bonded MLL was polished to a 5-25 μm wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays

  15. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  16. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    Science.gov (United States)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  17. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  18. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  19. Bragg concentrators for hard (> 10 keV) X-ray astronomy: Status report

    Energy Technology Data Exchange (ETDEWEB)

    Pareschi, G.; Pasqualini, G. [Ferrara, Univ. (Italy). Dipt. di Fisica; Frontera, F. [CNR, Bologna (Italy). Istituto di TESRE]|[Ferrara, Univ. (Italy). Dipt. di Fisica

    1997-09-01

    The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging performances with respect to the direct-viewing detectors, utilized until now. They present recent results obtained from their group regarding the possible use of Bragg-diffraction technique to design hard X-ray focusing telescopes.

  20. Bragg concentrators for hard (> 10 keV) X-ray astronomy: Status report

    International Nuclear Information System (INIS)

    Pareschi, G.; Pasqualini, G.; Frontera, F.; Ferrara, Univ.

    1997-01-01

    The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging performances with respect to the direct-viewing detectors, utilized until now. They present recent results obtained from their group regarding the possible use of Bragg-diffraction technique to design hard X-ray focusing telescopes

  1. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    Science.gov (United States)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  2. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters†

    Science.gov (United States)

    Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie

    2014-01-01

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes. PMID:24463467

  3. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  4. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  5. XSST/TRC rocket observations of July 13, 1982 flare. [X-ray Spectrometer, Spectrograph and Telescope/Transition Region Camera

    Science.gov (United States)

    Foing, Bernard H.; Bonnet, Roger M.; Dame, Luc; Bruner, Marilyn; Acton, Loren W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum.

  6. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    Science.gov (United States)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  7. Solar flare impulsivity and its relationship with white-light flares and with CMEs

    Science.gov (United States)

    Watanabe, K.; Masuda, S.

    2017-12-01

    There are many types of classification in solar flares. One of them is a classification by flare duration in soft X-rays; so-called impulsive flare and long duration event (LDE). Typically, the duration of an impulsive flare is shorter than 1 hour, and that of an LDE is longer than 1 hour. These two types of flare show different characteristics. In soft X-rays, impulsive flares usually have a compact loop structure. On the other hand, LDEs show a large-scale loop, sometimes a large arcade structure. In hard X-rays (HXRs), the difference appears clear, too. The former shows a strong and short-time (10 minutes) emissions and show a large coronal source. These facts suggest that HXR observation becomes one of a good indicator to classify solar flares, especially for the study on the particle acceleration and the related phenomena. However, HXR data do not always exist due to the satellite orbit and the small sensitivity of HXR instruments. So, in this study, based on the concept of the Neupert effect (Neupert, 1968), we use soft X-ray derivative data as the proxy of HXR. From this data, we define impulsivity (IP) for each flare. Then we investigate solar flares using this new index. First we apply IP index to white-light flare (WLF) research. We investigate how WL enhancement depends on IP, then it is found that WLF tend to have large IP values. So the flare impulsivity (IP) is one of the important factors if WL enhancement appears or not in a solar flare. Next we investigate how CME itself and/or its physical parameters depend on IP index. It has been believed that most of CMEs are associated with LDEs, but we found that there is only a weak correlation between the existence of CME and IP index. Finally, we also search for the relationship between WLF and CME as a function of IP and discuss the physical condition of WLF.

  8. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  9. A hard x-ray prototype production exposure station at NSLS

    International Nuclear Information System (INIS)

    Johnson, E.D.; Milne, J.C.

    1997-07-01

    Exposures conducted at the NSLS R and D beamline (X-27B) for High Aspect Ratio Precision Manufacture have proven sufficiently successful that the authors are constructing a dedicated hard x-ray exposure beamline. The new beamline (X-14B) provides an exposure field ∼ 120 mm wide, three times larger than that of X-27B. The scanner is based on the hydraulic system from the X-27B program. It is optimized for planar exposures and takes advantage of the full 525 mm stroke available. Exposures of multiple substrates and masks will be possible, with the fixturing supporting mounting of substrate holders from other groups (ALS, APS, CAMD, and UW). The function of this beamline is to establish a hard x-ray exposure station where manufacturing scale protocols can be developed and ultimately exploited for production runs

  10. X-ray flares in NGC 4151: A thermal model and constraints on a central black hole

    International Nuclear Information System (INIS)

    Lightman, A.P.; Giacconi, R.; Tananbaum, H.

    1978-01-01

    Motivated by the recent discovery that the Seyfert galaxy NGC 4151 exhibits rapid X-ray flaring, we discuss a thermal model for this source. Inverse Compton scattering of soft photons gives a predicted relationship for rise time versus energy during X-ray flares. A second prediction, arising from the large optical depth to pair production deduced for the source, is that the power law spectrum should not extend to energies E> or approx. =m/sub e/c 2 approx. =500 KeV. If it is assumed that NGC 4151 is powered by accretion onto a black hole, then we deduce a black hole mass M 6 Msun for the source and suggest constraints on such black hole models in general

  11. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  12. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  13. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  14. An imaging escape gated MPWC for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.; Butler, R.C.; Di Cocco, G.; Spada, G.; Charalambous, P.; Dean, A.J.; Stephen, J.B.

    1983-01-01

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm 2 . (orig.)

  15. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Ajello, M.; Beardmore, A.; Evans, P.; Godet, O.; Brandt, W. N.; Burrows, D.; Grupe, D.; Chincarini, G.; Campana, S.; Cusumano, G.; Fenimore, E.

    2010-01-01

    We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ∼30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ∼ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 x 10 -11 erg cm -2 s -1 (1 mCrab) over most of the sky in the 14-195 keV band.

  16. Adaptive Lobster-Eye Hard X-Ray Telescope, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for hard X-ray telescopes for starlight detection and wavefront analysis, Physical Optics Corporation (POC) proposes to develop an Adjustable...

  17. The hard X-ray spectrum of Cyg X-1 during the transition in November 1975

    International Nuclear Information System (INIS)

    Sommer, M.; Maurus, H.; Urbach, R.

    1976-01-01

    Some observations are reported of the hard X-ray spectrum of Cyg X-1 during a transition to the high state in November 1975, made with a balloon-borne X-ray detector. The range covered was 25 to 150 keV. The data obtained appeared to confirm the characteristic spectral time variation, and suggested a single power law spectrum from 3 to 80 keV, with an increasing spectral index during the upward transition to the high state. A power spectrum is expected if it is assumed that the universe Compton effect is the basic mechanism that produces the hard X-ray tail of Cyg X-1. Spectral time variation may be caused by a varying intensity of an inner soft photon source within a stable hot cloud. (U.K.)

  18. Hard X-ray sources from miniature plasma focus devices

    International Nuclear Information System (INIS)

    Raspa, V.; Silva, P.; Moreno, J.; Zambra, M.; Soto, L.

    2004-01-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, ∼ 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, ∼ 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  19. Hard X-ray sources from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Silva, P.; Moreno, J.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  20. Suppression of Hydrogen Emission in an X-class White-light Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Ondrej; Milligan, Ryan O.; Mathioudakis, Mihalis [Astrophysics Research Centre, Queen’s University Belfast, Northern Ireland (United Kingdom); Allred, Joel C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305 (United States); Kotrč, Pavel, E-mail: oprochazka01@qub.ac.uk [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic)

    2017-03-01

    We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondřejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and γ -ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 × 10{sup 11} erg cm{sup −2} s{sup −1} is deposited by an electron beam with a spectral index of ≈3, and a second where the same energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.

  1. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    International Nuclear Information System (INIS)

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-01-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  2. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    Science.gov (United States)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  3. FARIMA MODELING OF SOLAR FLARE ACTIVITY FROM EMPIRICAL TIME SERIES OF SOFT X-RAY SOLAR EMISSION

    International Nuclear Information System (INIS)

    Stanislavsky, A. A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K.

    2009-01-01

    A time series of soft X-ray emission observed by the Geostationary Operational Environment Satellites from 1974 to 2007 is analyzed. We show that in the solar-maximum periods the energy distribution of soft X-ray solar flares for C, M, and X classes is well described by a fractional autoregressive integrated moving average model with Pareto noise. The model incorporates two effects detected in our empirical studies. One effect is a long-term dependence (long-term memory), and another corresponds to heavy-tailed distributions. The parameters of the model: self-similarity exponent H, tail index α, and memory parameter d are statistically stable enough during the periods 1977-1981, 1988-1992, 1999-2003. However, when the solar activity tends to minimum, the parameters vary. We discuss the possible causes of this evolution and suggest a statistically justified model for predicting the solar flare activity.

  4. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  5. Fast spectral fitting of hard X-ray bremsstrahlung from truncated power-law electron spectra

    Czech Academy of Sciences Publication Activity Database

    Brown, J. C.; Kašparová, Jana; Massone, A.M.; Piana, M.

    2008-01-01

    Roč. 486, č. 3 (2008), s. 1023-1029 ISSN 0004-6361 R&D Projects: GA ČR GP205/06/P135 Institutional research plan: CEZ:AV0Z10030501 Keywords : sun flares * X-rays * gamma rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.153, year: 2008

  6. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    DEFF Research Database (Denmark)

    Crosby, N.; Vilmer, N.; Lund, Niels

    1998-01-01

    be observed as low as 10 keV. A statistical study is performed on the total WATCH solar database and frequency distributions are built on measured X-ray flare parameters. It is also investigated how the properties of these frequency distributions behave when subgroups of events defined by different ranges......Solar flare observations in the deka-keV range are performed by the WATCH experiment on board the GRANAT satellite. The WATCH experiment is presented, including the energy calibration as applied in the present work. The creation of the solar burst catalogue covering two years of observation...... is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained...

  7. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    Science.gov (United States)

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X-ray

  8. Evidence for explosive chromospheric evaporation in a solar flare observed with SMM

    Science.gov (United States)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.; Canfield, R. C.; Metcalf, T.

    1986-01-01

    SMM soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflow motions, was observed in the coronal Ca XIX line during the soft X-ray rise phase. H-alpha redshifts, indicative of downward motions, were observed simultaneously in bright flare kernels during the period of hard X-ray emission. It is shown that, to within observational errors, the impulsive phase momentum transported by the upflowing soft X-ray plasma is equivalent to that of the downward moving chromospheric material.

  9. Hard x-ray nanoprobe of beamline P06 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, C. G., E-mail: christian.schroer@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Baumbach, C. [Institute of Optics and Photonics of Condensed Matter, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); Döhrmann, R.; Kahnt, M.; Reinhardt, J.; Scholz, M.; Schropp, A.; Seyrich, M.; Wittwer, F.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg (Germany); Klare, S.; Hoppe, R.; Patommel, J.; Ritter, S.; Samberg, D.; Seiboth, F. [Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2016-07-27

    The hard x-ray scanning microscope at beamline P06 of PETRA III at DESY in Hamburg serves a large user community, from physics, chemistry, and nanotechnology to the bio-medical, materials, environmental, and geosciences. It has been in user operation since 2012, and is mainly based on nanofocusing refractive x-ray lenses. Using refractive optics, nearly gaussian-limited nanobeams in the range from 50 to 100 nm can be generated in the hard x-ray energy range from 8 to 30 keV. The degree of coherence can be traded off against the flux in the nanobeam by a two-stage focusing scheme. We give a brief overview on published results from this instrument and describe its most important components and parameters.

  10. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    Science.gov (United States)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  11. New hard X-ray sources at 380 declination

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters. (orig.)

  12. Ultraviolet and optical observations of the HDE 245770/A0535+26 system during an X-ray flare

    International Nuclear Information System (INIS)

    Giovannelli, F.; Ferrari-Toniolo, M.; Giangrande, A.; Persi, P.; Bartolini, C.; Guarnieri, A.; Piccioni, A.

    1981-01-01

    We present high and low dispersion UV spectra of HDE 245770, which is the optical counterpart of the recurrent transient X-ray pulsar A0535+26, during a decay of an X-ray flare. UBV photometric measurements and medium dispersion optical spectra were simultaneously obtained. The energy distribution of the star in the 12-10 micron range is compared with the models of Kurucz and Poeckert and Marlborough. In this phase, HDE 245770 does not show evaluable variations with respect to the quiescent X-ray phase. (orig.)

  13. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    Science.gov (United States)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  14. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  15. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  16. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Science.gov (United States)

    Kiplinger, Alan L.

    1998-01-01

    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  17. New solar broad-band hard X-ray spectrometer: first results

    Czech Academy of Sciences Publication Activity Database

    Fárník, František; Garcia, H.; Karlický, Marian

    2001-01-01

    Roč. 201, č. 2 (2001), s. 357-372 ISSN 0038-0938 R&D Projects: GA ČR GA205/00/1726; GA AV ČR IAA3003003; GA AV ČR IBS1003006; GA AV ČR KSK2043105; GA AV ČR IAA303108 Institutional research plan: CEZ:AV0Z1003909 Keywords : X-ray * spectrometer * solar flare * radio emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  18. Flare observation by the satellite 'Hinotori'

    International Nuclear Information System (INIS)

    Tanaka, Toshio

    1981-01-01

    The satellite ''Hinotori'' makes 5 rounds a day and is doing flare observation. The total observation days amounted to 94 days. Among the observed flares, the quiet mode flares were picked up from the reproduced data. The plot of the time variation of flares was obtained for four energy bands, HXM-1 (17 to 40 keV), HXM2 - 7 (over 40 keV), FLM-L (1 to 5 keV) and FLM-H (5 to 12 keV). At present, the judge of flares is made by using hard X-ray of the HXM-1 plot. False signals were completely removed. A large percentage of big flares was collected by Hinotori, eleven X-class flares were recorded. The operation status of ''Hinotori'' has been in good condition. The spin frequency has increased with a constant rate. (Kato, T.)

  19. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  20. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  1. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  2. Theoretical modeling of Comptonized X-ray spectra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources

    Science.gov (United States)

    Kitaki, Takaaki; Mineshige, Shin; Ohsuga, Ken; Kawashima, Tomohisa

    2017-12-01

    X-ray continuum spectra of super-Eddington accretion flow are studied by means of Monte Carlo radiative transfer simulations based on the radiation hydrodynamic simulation data, in which both thermal- and bulk-Compton scatterings are taken into account. We compare the calculated spectra of accretion flow around black holes with masses of MBH = 10, 102, 103, and 104 M⊙ for a fixed mass injection rate (from the computational boundary at 103 rs) of 103 LEdd/c2 (with rs, LEdd, and c being the Schwarzschild radius, the Eddington luminosity, and the speed of light, respectively). The soft X-ray spectra exhibit mass dependence in accordance with the standard-disk relation; the maximum surface temperature is scaled as T ∝ M_{ BH}^{ -1/4}. The spectra in the hard X-ray band, by contrast with soft X-ray, look to be quite similar among different models, if we normalize the radiation luminosity by MBH. This reflects that the hard component is created by thermal- and bulk-Compton scatterings of soft photons originating from an accretion flow in the overheated and/or funnel regions, the temperatures of which have no dependence on mass. The hard X-ray spectra can be reproduced by a Wien spectrum with the temperature of T ˜ 3 keV accompanied by a hard excess at photon energy above several keV. The excess spectrum can be fitted well with a power law with a photon index of Γ ˜ 3. This feature is in good agreement with that of the recent NuSTAR observations of ULXs (ultra-luminous X-ray sources).

  3. Relationship between type III-V radio and hard X-ray bursts

    International Nuclear Information System (INIS)

    Stewart, R.T.

    1978-01-01

    Type III-V radio bursts are found to be closely associated with impulsive hard X-ray bursts. Probably 0.1% to 1% of the fast electrons in the X-ray source region escape to heights >0.1 solar radii in the corona and excite the type III-V burst. (Auth.)

  4. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  5. Short term variation of Cyg X-1 in the hard x-ray region

    International Nuclear Information System (INIS)

    Doi, Kosei

    1978-01-01

    Cyg X-1 is a peculiar celestial body considered to be a close binary system of a black hole and a blue super-giant star. It is presently known that the time fluctuation of Cyg X-1 is considerably complex, ranging from seconds to days or months. Of these variation, attention has been paid to the short time variation in relation to the black hole theory. Observations of fluctuations in the order of second have been limited to soft X-ray (20 keV or more) so far, because great technical difficulties are involved due to the low intensity of hard X-ray. The present investigation is based on the fluctuations in the order of second in hard X-ray, and was conducted by employing an unprecedented large area X-ray telescope. The text describes on the brief history of the short time fluctuation, explains the experimental plan, X-ray detecting system, flight of a balloon and the analyses and discussions of fluctuation factor by variation function method, and gives the analysis data and conclusion. The observations resulted in the fact that the fluctuations in the order of second were small at 20 to 30 keV, but become large when energy is higher or lower than this value. The most natural explanation available for this result may be that it is essentially spectrum fluctuation, being inverse correlation in higher and lower energies. Physical meaning of such spectrum fluctuation is considered in connection with precipitating disk model around a black hole. (Wakatsuki, Y.)

  6. Short term variation of Cyg X-1 in the hard x-ray region

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Kosei [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1978-08-01

    Cyg X-1 is a peculiar celestial body considered to be a close binary system of a black hole and a blue super-giant star. It is presently known that the time fluctuation of Cyg X-1 is considerably complex, ranging from seconds to days or months. Of these variation, attention has been paid to the short time variation in relation to the black hole theory. Observations of fluctuations in the order of second have been limited to soft X-ray (20 keV or more) so far, because great technical difficulties are involved due to the low intensity of hard X-ray. The present investigation is based on the fluctuations in the order of second in hard X-ray, and was conducted by employing an unprecedented large area X-ray telescope. The text describes on the brief history of the short time fluctuation, explains the experimental plan, X-ray detecting system, flight of a balloon and the analyses and discussions of fluctuation factor by variation function method, and gives the analysis data and conclusion. The observations resulted in the fact that the fluctuations in the order of second were small at 20 to 30 keV, but become large when energy is higher or lower than this value. The most natural explanation available for this result may be that it is essentially spectrum fluctuation, being inverse correlation in higher and lower energies. Physical meaning of such spectrum fluctuation is considered in connection with precipitating disk model around a black hole.

  7. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  8. Hard x-ray Morphological and Spectral Studies of the Galactic Center Molecular Cloud SGR B2: Constraining Past SGR A* Flaring Activity

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Mori, Kaya

    2015-01-01

    In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(N......), surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr. B2 emission is still decreasing or has reached a constant background level. A decreasing X-ray emission can be best explained by the X-ray reflection nebula scenario, where the cloud reprocesses a past giant outburst from...... Sgr A*. In the X-ray reflection nebula (XRN) scenario, the 3-79 keV Sgr. B2 spectrum allows us to self-consistently test the XRN model using both the Fe K alpha line and the continuum emission. The peak luminosity of the past Sgr A* outburst is constrained to L3-79keV∼5 x 1038 ergs s-1. A newly...

  9. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  10. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  11. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt...... outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre....

  12. Full Multilayer Laue Lens for Focusing Hard X-rays

    International Nuclear Information System (INIS)

    Liu Chian; Shi, B.; Qian, J.; Conley, R.; Yan, H.; Wieczorek, M.; Macrander, A. T.; Maser, J.; Stephenson, G. B.

    2010-01-01

    Multilayer Laue Lenses (MLLs) were developed by us using dynamic diffraction effects to efficiently focus hard x-rays to very small spots. Using a partial MLL we were able to focus 19.5-keV hard x-rays to a line focus of 16 nm with an efficiency of 31%. A full MLL is a complete linear MLL structure. It can be fabricated by bonding two partial MLL wafers, or by growing the full structure using magnetron sputtering without bonding. A 40-μm full MLL, with a total of 5166 layers of WSi 2 and Si, has been successfully grown by sputter deposition. The layer thicknesses gradually vary from 4 nm to ∼400 nm and then back to 4 nm. Two coating runs were used to grow the full structure, one for each half. It took over 56 h for each run. A 100-μm nearly-full MLL was constructed by bonding. Each 50-μm half-structure has 1788 WSi 2 and Si layers with 12-nm to ∼32-nm thicknesses and ∼32-μm total thickness, followed by a thick WSi 2 layer of ∼17 μm, and an AuSn layer of ∼1 μm. Both full MLL structures survived dicing and polishing. The primary results demonstrate the feasibility and potential of a full MLL with a doubled numerical aperture and large beam acceptance for hard x-rays.

  13. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  14. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    International Nuclear Information System (INIS)

    Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.

    2013-01-01

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  15. Hard X-ray brightening of Ginga 1843+009 seen by INTEGRAL

    DEFF Research Database (Denmark)

    Leyder, J.-C.; Chenevez, Jérôme; Fiocchi, M.T.

    2005-01-01

    The transient X-ray pulsar, Ginga 1843+009, appears to be undergoing a hard X-ray outburst brighter than the one reported in May 2003 (ATEL #159). The source has been observed during ISWT observations of the Scutum Arm region with INTEGRAL and was first detected when the source was in the field o...

  16. HIGH-ENERGY OBSERVATIONS OF PSR B1259–63/LS 2883 THROUGH THE 2014 PERIASTRON PASSAGE: CONNECTING X-RAYS TO THE GeV FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Tam, P. H. T.; Li, K. L.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Takata, J. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Hui, C. Y., E-mail: phtam@phys.nthu.edu.tw [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-01

    The binary system PSR B1259–63/LS 2883 is well sampled in radio, X-rays, and TeV γ-rays, and shows orbital-phase-dependent variability in these frequencies. The first detection of GeV γ-rays from the system was made around the 2010 periastron passage. In this Letter, we present an analysis of X-ray and γ-ray data obtained by the Swift/XRT, NuSTAR/FPM, and Fermi/LAT, through the recent periastron passage which occurred on 2014 May 4. While PSR B1259–63/LS 2883 was not detected by the Large Area Telescope before and during this passage, we show that the GeV flares occurred at a similar orbital phase as in early 2011, thus establishing the repetitive nature of the post-periastron GeV flares. Multiple flares each lasting for a few days have been observed and short-term variability is seen as well. We also found X-ray flux variation contemporaneous with the GeV flare for the first time. Strong evidence of the keV-to-GeV connection came from the broadband high-energy spectra, which we interpret as synchrotron radiation from the shocked pulsar wind.

  17. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  18. Thick and large area PIN diodes for hard X-ray astronomy

    CERN Document Server

    Ota, N; Sugizaki, M; Kaneda, M; Tamura, T; Ozawa, H; Kamae, T; Makishima, K; Takahashi, T; Tashiro, M; Fukazawa, Y; Kataoka, J; Yamaoka, K; Kubo, S; Tanihata, C; Uchiyama, Y; Matsuzaki, K; Iyomoto, N; Kokubun, M; Nakazawa, T; Kubota, A; Mizuno, T; Matsumoto, Y; Isobe, N; Terada, Y; Sugiho, M; Onishi, T; Kubo, H; Ikeda, H; Nomachi, M; Ohsugi, T; Muramatsu, M; Akahori, H

    1999-01-01

    Thick and large area PIN diodes for the hard X-ray astronomy in the 10-60 keV range are developed. To cover this energy range in a room temperature and in a low background environment, Si PIN junction diodes of 2 mm in thickness with 2.5 cm sup 2 in effective area were developed, and will be used in the bottom of the Phoswich Hard X-ray Detector (HXD), on-board the ASTRO-E satellite. Problems related to a high purity Si and a thick depletion layer during our development and performance of the PIN diodes are presented in detail.

  19. Statistical and observational research of solar flare for total spectra and geometrical features

    Science.gov (United States)

    Nishimoto, S.; Watanabe, K.; Imada, S.; Kawate, T.; Lee, K. S.

    2017-12-01

    Impulsive energy release phenomena such as solar flares, sometimes affect to the solar-terrestrial environment. Usually, we use soft X-ray flux (GOES class) as the index of flare scale. However, the magnitude of effect to the solar-terrestrial environment is not proportional to that scale. To identify the relationship between solar flare phenomena and influence to the solar-terrestrial environment, we need to understand the full spectrum of solar flares. There is the solar flare irradiance model named the Flare Irradiance Spectral Model (FISM) (Chamberlin et al., 2006, 2007, 2008). The FISM can estimate solar flare spectra with high wavelength resolution. However, this model can not express the time evolution of emitted plasma during the solar flare, and has low accuracy on short wavelength that strongly effects and/or controls the total flare spectra. For the purpose of obtaining the time evolution of total solar flare spectra, we are performing statistical analysis of the electromagnetic data of solar flares. In this study, we select solar flare events larger than M-class from the Hinode flare catalogue (Watanabe et al., 2012). First, we focus on the EUV emission observed by the SDO/EVE. We examined the intensities and time evolutions of five EUV lines of 55 flare events. As a result, we found positive correlation between the "soft X-ray flux" and the "EUV peak flux" for all EVU lines. Moreover, we found that hot lines peaked earlier than cool lines of the EUV light curves. We also examined the hard X-ray data obtained by RHESSI. When we analyzed 163 events, we found good correlation between the "hard X-ray intensity" and the "soft X-ray flux". Because it seems that the geometrical features of solar flares effect to those time evolutions, we also looked into flare ribbons observed by SDO/AIA. We examined 21 flare events, and found positive correlation between the "GOES duration" and the "ribbon length". We also found positive correlation between the "ribbon

  20. Impulsive phase of solar flares: theory

    International Nuclear Information System (INIS)

    Mackinnon, A.L.

    1986-01-01

    The paper reviews the theoretical interpretation of impulsive phase phenomena in solar flares. The impulsive phase is defined to be that period of approx. 10 - 100s duration, during which the flare radiative output undergoes its most rapid, dramatic increase and decrease. The interpretation of the various impulsive phase radiation signatures are examined, including the i) hard x-ray emission, ii) radio emission, iii) UV, Hα and white light emissions and iv) gamma-ray emission. The acceleration mechanisms are discussed with respect to candidate acceleration mechanisms, and the synthesis of the theory and observations. (UK)

  1. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  2. Flares from a new Integral hard X-ray source, IGR J17407-2808, likely associated with the ROSAT source SBM 10

    DEFF Research Database (Denmark)

    Kretschmar, P.; Mereghetti, S.; Hermsen, W.

    2004-01-01

    This new hard X-ray source, IGR J17407-2808, is positionally coincident with a faint ROSAT source listed as no. 10 in the catalogue of sources in the Galactic Center region by Sidoli, Belloni & Mereghetti 2001, A&A 368, 835 and as 2RXP J174040.9-280852 in the ROSAT Source Browser. No other observ...

  3. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N. [NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 (United States); Mushotzky, R. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Evans, P. A., E-mail: whbaumga@alum.mit.edu [X-Ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom)

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  4. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    International Nuclear Information System (INIS)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Mushotzky, R. F.; Evans, P. A.

    2013-01-01

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8σ, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 × 10 –11 erg s –1 cm –2 over 50% of the sky and 1.34 × 10 –11 erg s –1 cm –2 over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site

  5. Self-standing quasi-mosaic crystals for focusing hard X-rays

    International Nuclear Information System (INIS)

    Camattari, Riccardo; Guidi, Vincenzo; Bellucci, Valerio; Neri, Ilaria; Frontera, Filippo; Jentschel, Michael

    2013-01-01

    A quasi mosaic bent crystal for high-resolution diffraction of X and γ rays has been realized. A net curvature was imprinted to the crystal thanks to a series of superficial grooves to keep the curvature without external devices. The crystal highlights very high diffraction efficiency due to quasi mosaic curvature. Quasi mosaic crystals of this kind are proposed for the realization of a high-resolution focusing Laue lens for hard X-rays.

  6. Multiwavelength analysis of a well observed flare from SMM. [Solar Maximum Mission

    Science.gov (United States)

    Macneice, P.; Pallavicini, R.; Mason, H. E.; Simnett, G. M.; Antonucci, E.; Shine, R. A.; Dennis, B. R.

    1985-01-01

    Observations of an M 1.4 flare which began at 17:00 UT on November 12, 1980, are presented and analyzed. Ground based H-alpha and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission satellite. The preflare phase was marked by a gradual brightening of the flare site in O v and the disappearance of an H-alpha filament. Filament ejecta were seen in O v moving southward at a speed of about 60 km/s, before the impulsive phase. The flare loop footpoints brightened in H-alpha and the Ca XIX resonance line broadened dramatically 2 min before the impulsive phase. Nonthermal hard X-ray emission was detected from the loop footpoints during the impulsive phase, while during the same period blue-shifts corresponding to upflows of 200-250 km/s were seen in Ca XIX. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. Two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona are considered, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.

  7. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  8. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.

    Science.gov (United States)

    Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D

    2017-06-01

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is

  9. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    Science.gov (United States)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  10. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  11. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  12. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    Science.gov (United States)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  13. Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X

    Science.gov (United States)

    Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.

  14. SWIFT OBSERVATIONS OF HARD X-RAY EMITTING WHITE DWARFS IN SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Kennea, J. A.; Burrows, D. N.; Mukai, K.; Markwardt, C. B.; Sokoloski, J. L.; Luna, G. J. M.; Tueller, J.

    2009-01-01

    The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than ∼20 keV. The Swift Burst Alert Telescope (BAT) instrument has detected hard X-ray emission from four such accreting WDs in symbiotic stars: RT Cru, T CrB, CD -57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greater than 50 keV at >5σ confidence level. Combining data from the X-Ray Telescope (XRT) and BAT detectors, we find that the 0.3-150 keV spectra of RT Cru, T CrB, and CD -57 3057 are well described by emission from a single-temperature, optically thin thermal plasma, plus an unresolved 6.4-6.9 keV Fe line complex. The X-ray spectrum of CH Cyg contains an additional bright soft component. For all four systems, the spectra suffer high levels of absorption from material that both fully and partially covers the source of hard X-rays. The XRT data did not show any of the rapid, periodic variations that one would expect if the X-ray emission were due to accretion onto a rotating, highly magnetized WD. The X-rays were thus more likely from the accretion-disk boundary layer around a massive, non-magnetic WD in each binary. The X-ray emission from RT Cru varied on timescales of a few days. This variability is consistent with being due to changes in the absorber that partially covers the source, suggesting localized absorption from a clumpy medium moving into the line of sight. The X-ray emission from CD -57 3057 and T CrB also varied during the nine months of Swift observations, in a manner that was also consistent with variable absorption.

  15. Radio wave heating of the corona and electron precipitation during flares

    Science.gov (United States)

    Melrose, D. B.; Dulk, G. A.

    1982-01-01

    Electron-cyclotron masers, excited while energy release is occurring in a flaring magnetic loop, are likely to generate extremely intense radiation at decimeter wavelengths. The energy in the radiation can be comparable with that in the electrons associated with hard X-ray bursts, i.e., a significant fraction of the total energy in the flare. Essentially all of the radio energy is likely to be reabsorbed by gyroresonance absorption, either near the emitting region or at some distance away in neighboring loops. Enhanced diffusion of fast electrons caused by the maser can lead to precipitation at the maximum possible rate, and hence account for hard X-ray emission from the footpoints of the magnetic loops.

  16. AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Freeland, Samuel L.

    2012-01-01

    We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to ≈5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of α F = 1.98 ± 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction α F = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of α T = 2.02 ± 0.04 during solar cycle minima years, which is also consistent with the prediction α T = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of α T ≈ 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of α E = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

  17. Searches for hard X-ray gamma-ray burst afterglows with the BAT on Swift

    International Nuclear Information System (INIS)

    Krimm, Hans A.; Ozawa, Hideki; Weidenspointner, Georg; Barbier, Louis M.; Barthelmy, Scott D.; Gehrels, Neil; Parsons, Ann M.; Tueller, Jack; Eftekharzadeh, Ardeshir; Hullinger, Derek D.; Markwardt, Craig; Fenimore, Edward E.; Palmer, David M.

    2003-01-01

    The Burst Alert Telescope (BAT) on the Swift gamma ray burst mission will continue to observe the fields of all detected gamma-ray bursts for several days after the prompt emission has faded. Utilizing first event-by-event data, then one minute and later five minute survey accumulations, the BAT will be extremely sensitive to the hard X-ray afterglow known to be associated with many bursts. This data will cover the crucial transition of the afterglow from rapid variability to the smoothly decaying power law in time and will extend observations of the tails of individual bursts to longer time scales than have been achievable so far. Since Swift is sensitive to short duration GRBs, we will also be able to determine whether hard X-ray afterglows are associated with short GRBs. The BAT will provide high resolution spectra of burst afterglows, allowing us to study in detail the time evolution of GRB spectra

  18. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    Science.gov (United States)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  19. Bragg concentrators for hard (> 10keV) x-ray astronomy: Status report

    DEFF Research Database (Denmark)

    Pareschi, G.; Frontera, F.; Pasqualini, G.

    1997-01-01

    The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging performances with respect to the direct-viewing detectors, utilized until now. We present recent results obtained from our group regarding the possible use of Bragg-diffraction tec......The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging performances with respect to the direct-viewing detectors, utilized until now. We present recent results obtained from our group regarding the possible use of Bragg...

  20. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation

  1. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  2. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    Science.gov (United States)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  3. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    International Nuclear Information System (INIS)

    Kouveliotou, C.; Norris, J.P.; Cline, T.L.; Dennis, B.R.; Desai, U.D.; Orwig, L.E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster. 19 references

  4. Magnified hard x-ray microtomography: toward tomography with submicron resolution

    Science.gov (United States)

    Schroer, Christian G.; Benner, Boris; Guenzler, Til F.; Kuhlmann, Marion; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly A.; Snigireva, Irina

    2002-01-01

    Parabolic compound refractive lenses (PCRLs) are high quality imaging optics for hard x-rays that can be used as an objective lens in a new type of hard x-ray full field microscope. Using an aluminium PCRL, this new type of microscope has been shown to have a resolution of 350 nm. Further improvement of the resolution down to 50 nm can be expected using beryllium as a lens material. The large depth of field (several mm) of the microscope results in sharp projection images for samples that fit into the field of view of about 300 micrometers. This allows to combine magnified imaging with tomographic techniques. First results of magnified microtomography are shown. Contrast formation in the microscope and the consequences for tomographic reconstruction are discussed. An outlook on further developments is given.

  5. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  6. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  7. Submicron hard X-ray fluorescence imaging of synthetic elements.

    Science.gov (United States)

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hard X-ray nano-focusing with Montel mirror optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjun, E-mail: wjliu@anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Assoufid, Lahsen; Liu Chian; Shi Bing; Zschack, Paul [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Tischler, Jon [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Qian Jun; Khachartryan, Ruben; Shu Deming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    Kirkpatrick-Baez mirrors in the Montel (or nested) configuration were tested for hard X-ray nanoscale focusing at a third generation synchrotron beamline. In this scheme, two mirrors, mounted side-by-side and perpendicular to each other, provide for a more compact focusing system and a much higher demagnification and flux than the traditional sequential K-B mirror arrangement. They can accept up to a 120 {mu}mx120 {mu}m incident X-ray beam with a long working distance of 40 mm and broad-bandpass of energies up to {approx}30 keV. Initial test demonstrated a focal spot of about 150 nm in both horizontal and vertical directions with either polychromatic or monochromatic beam. Montel mirror optics is important and very appealing for achromatic X-ray nanoscale focusing in conventional non-extra-long synchrotron beamlines.

  9. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  10. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    Science.gov (United States)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  11. SuperAGILE: The Hard X-ray Imager of AGILE

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Barbanera, L.; Del Monte, E.; Di Persio, G.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Porrovecchio, G.; Preger, B.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Mastropietro, M.; Morelli, E.; Argan, A.; Ghirlanda, G.; Mereghetti, S.

    2004-01-01

    SuperAGILE is the hard X-ray (10-40 keV) imager for the gamma-ray mission AGILE, currently scheduled for launch in mid-2005. It is based on 4 Si-microstrip detectors, with a total geometric area of 1444 cm 2 (max effective about 300 cm 2 ), equipped with one-dimensional coded masks. The 4 detectors are perpendicularly oriented, in order to provide pairs of orthogonal one-dimensional images of the X-ray sky. The field of view of each 1-D detector is 107 deg. x 68 deg., at zero response, with an overlap in the central 68 deg. x 68 deg. area. The angular resolution on axis is 6 arcmin (pixel size). We present here the current status of the hardware development and the scientific potential for GRBs, for which an onboard trigger and imaging system will allow distributing locations through a fast communication telemetry link from AGILE to the ground

  12. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    Energy Technology Data Exchange (ETDEWEB)

    Borm, B.; Gärtner, F.; Khaghani, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by a larger drive laser energy.

  13. Design of a scattering polarimeter for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Costa, E.; Cinti, M.N.; Feroci, M.; Matt, G.; Rapisarda, M.

    1995-01-01

    The design of a new hard X-ray Compton scattering polarimeter based on scintillating fibre technology is presented and studied in detail by means of Monte Carlo calculations. Several different configurations and materials have been tested in order to optimise the sensitivity in the medium/high energy X-ray band. A high sensitivity over the energy band 20-200 keV is obtained for a two material configuration. The advantages deriving from employing a new scintillating material, the YAP (YAlO 3 ), are also discussed. (orig.)

  14. Investigation of Energy Release in Microflares Observed by the Second Sounding Rocket Flight of the Focusing Optics X-ray Solar Imager (FOXSI-2)

    Science.gov (United States)

    Vievering, J. T.; Glesener, L.; Panchapakesan, S. A.; Ryan, D.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Inglis, A. R.; Musset, S.

    2017-12-01

    Observations of the Sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. RHESSI is the only solar-dedicated imager currently operating in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the indirect imaging method of rotating collimating optics is fundamentally limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Here we present current imaging and spectral analyses of these microflares, exploring the nature of energy release and comparing to observations from other instruments. Additionally, we feature the first analysis of data from the FOXSI-2 CdTe strip detectors, which provide improved efficiency above 10 keV. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.

  15. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  16. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  17. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: fabio.muleri@iaps.inaf.it [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  18. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80305 (United States); Allred, Joel C.; Daw, Adrian [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Cauzzi, Gianna [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Carlsson, Mats, E-mail: Adam.Kowalski@lasp.colorado.edu [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  19. X-ray Time Lags in TeV Blazars X. Chen1,∗ , G. Fossati1, E. Liang1 ...

    Indian Academy of Sciences (India)

    Abstract. We use Monte Carlo/Fokker–Planck simulations to study the. X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling time scales are similar. Hard lags can be pro- duced in the presence of a competitive ...

  20. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  1. Time Delays Between Decimetric Type-Iii Bursts and Associated Hard X-Rays

    Science.gov (United States)

    Sawant, H. S.; Lattari, C. J. B.; Benz, A. O.; Dennis, B. R.

    1990-11-01

    RESUMEN. En julio de 1987, se efectuaron radio observaciones en 1.6 CHz usando la antena de 13.7-m de Itapetinga con un tiempo de resoluci5n de 3 ms. Las observaciones en rayos-X fueron obtenidas del HXRBS en SMM. Comparaciones de observaciones de 1.6 CHz con espectro dinamico en el intervalo de (1000 - 100) MHz y rayos-X duros muestran los siguientes resultados: I) en 12 casos, identificamos la continuaci6n de brotes de tipo Ill-RD hasta 1.6 GHz. ii) Por primera vez, hemos identificadopicos de rayos-X demorados en comparaci6n con el brote decimetrico tipolll-RD. Estos retardos son mas largos - 1 5 - que lo esperado ( " 100 ms) y han sido interpretados suponiendo que la emisi6n decimetrica es la 2a. ar- m6nica y esta causada por el borde delantero del excitador, mientras que los picos de los rayos-X han sido atribuidos a la entrada completa del excitador dentro de la regi6n que produce los rayos-X. ABSTRACT. In July, 1985 radio observations were made at 1.6 GHz using 13.7 m Itapetinga antenna with time resolution of 3 ms. The hard X-ray observations were obtained from HXRBS on SMM. Comparison of 1.6 GHz observations with dynamic spectra in the frequency range of (1000 - 100) MHz and hard X-rays shows the following results: i) In 12 cases, we identify continuation of type Ill-RD bursts up to 1.6 GHz suggesting presence of type Ill-RD bursts at 1.6 GHz. ii) For the first time, we have idetified hard X-ray peaks delayed in comparison to decimetric type Ill-RD bursts. These dalays are longer - 1 5 - than expected ( 100 ms) and have been interpreted assuming that the decimetric emission is at 2 nd harmonic and caused by the leading edge of the exciter, whereas peaks of X-rays have been attributed to entire entry of the exciter into the X-ray producing region. Keq : SUN BURSTS - SUN-

  2. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    CERN Document Server

    Schrör, C; Benner, B; Kuhlmann, M; Tümmler, J; Lengeler, B; Rau, C; Weitkamp, T; Snigirev, A; Snigireva, I

    2001-01-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  3. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    Science.gov (United States)

    Schroer, Christian G.; Günzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tümmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  4. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    International Nuclear Information System (INIS)

    Schroer, Christian G.; Guenzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tuemmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina

    2001-01-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging

  5. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    Science.gov (United States)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  6. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  7. Quiet Sun X-rays as Signature for New Particles

    CERN Document Server

    Zioutas, Konstantin; Di Lella, L; Hoffmann, Dieter H H; Jacoby, J; Papaevangelou, T

    2004-01-01

    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more pr...

  8. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    Energy Technology Data Exchange (ETDEWEB)

    Pasham, Dheeraj R.; Sadowski, Aleksander [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cenko, S. Bradley; Cannizzo, John K. [NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillochon, James [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Stone, Nicholas C. [Columbia University, New York, NY 10027 (United States); Velzen, Sjoert van [The Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-03-10

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  9. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    International Nuclear Information System (INIS)

    Pasham, Dheeraj R.; Sadowski, Aleksander; Cenko, S. Bradley; Cannizzo, John K.; Guillochon, James; Stone, Nicholas C.; Velzen, Sjoert van

    2017-01-01

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  10. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Romano, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Kennea, J. A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720-3411 (United States); Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Palmer, D. M. [Los Alamos National Laboratory, B244, Los Alamos, NM 87545 (United States); Sakamoto, T. [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Stamatikos, M. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  11. The Swift/BAT Hard X-ray Transient Monitor

    Science.gov (United States)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  12. The Swift-BAT Hard X-Ray Transient Monitor

    Science.gov (United States)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  13. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    International Nuclear Information System (INIS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations

  14. HARD X-RAY TAIL DISCOVERED IN THE CLOCKED BURSTER GS 1826–238

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, J.; Jourdain, E.; Roques, J. P., E-mail: jrodi@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-02-01

    The low-mass X-ray binary (LMXB) neutron star (NS) GS 1826–238 was discovered by Ginga in 1988 September. Due to the presence of quasi-periodicity in the type I X-ray burst rate, the source has been a frequent target of X-ray observations for almost 30 years. Though the bursts were too soft to be detected by INTEGRAL/SPI, the persistent emission from GS 1826–238 was detected over 150 keV during the ∼10 years of observations. Spectral analysis found a significant high-energy excess above a Comptonization model that is well fit by a power law, indicating an additional spectral component. Most previously reported spectra with hard tails in LMXB NS have had an electron temperature of a few keV and a hard tail dominating above ∼50 keV with an index of Γ ∼ 2–3. GS 1826–238 was found to have a markedly different spectrum with kT{sub e} ∼ 20 keV and a hard tail dominating above ∼150 keV with an index of Γ ∼ 1.8, more similar to black hole X-ray binaries. We report on our search for long-term spectral variability over the 25–370 keV energy range and on a comparison of the GS 1826–238 average spectrum to the spectra of other LMXB NSs with hard tails.

  15. NuSTAR Hard X-ray Optics

    DEFF Research Database (Denmark)

    Koglin, Jason E.; Christensen, Finn Erland; Craig, William W.

    2005-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a small explorer (SMEX) mission currently under an extended Phase A study by NASA. NuSTAR will be the first satellite mission to employ focusing optics in the hard X-ray band (8- 80 keV). Its design eliminates high detector backgrounds, allows...... and production process. We also describe the progress of several components of our independent optics development program that are beginning to reach maturity and could possibly be incorporated into the NuSTAR production scheme. We then present environmental test results that are being conducted in preparation...... of full space qualification of the NuSTAR optics....

  16. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    Science.gov (United States)

    Scaringi, Simone

    2009-11-01

    Within this thesis are discussed two main topics of contemporary astrophysics. The first is that of machine learning algorithms for astronomy whilst the second is that of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA: INTEGRAL Scouce Identifiction Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. The feature extraction process on an initial candidate list is described together with feature merging. Three trainng and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. ISINA is also compared to the more conventional approach of visual inspection. Next mCVs are discussed, and in particular the properties arising from a hard X-ray selected sample which has proven remarkably efficient in detecting intermediate polars and asynchronous polars, two of the rarest type of cataclysmic variables (CVs). This thesis focuses particularly on the link between hard X-ray properties and spin/orbital periods. To this end, a new sample of these objects is constructed by cross-corelating candidate sources detected in INTEGRAL/IBIS observations against catalogues of known CVs. Also included in the analysis are hard X-ray Observations from Swift/BAT and SUZAKU/HXD in order to make the study more complete. It is found that most hard X-ray detected mCVs have Pspin/Porb<0.1 above the period gap. In this respect, attention is given to the very low number of detected systems in any ban

  17. Development and application of cryogenic radiometry with hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, Martin

    2008-01-01

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 μm in thickness and a cylindrical shell made of copper 90 μm in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer SYRES

  18. Optimising hard X-ray generation from laser-produced plasmas

    International Nuclear Information System (INIS)

    Lindheimer, C.

    1995-04-01

    The aim of this work is to increase the X-ray yield for a laser produced plasma by optimising the focusing conditions and temporal shape of the laser pulses. The focusing conditions are improved by introducing a control system that secures the laser target surface to exact focus within a range of a few micrometers, allowing continuously high laser intensity for plasma generation. The temporal shape of the laser pulses is changed by introducing a saturable absorber in the laser beam. The laser produces a substantial pre-pulse that heats and expands the target material prior to main pulse arrival. The saturable absorber can increase the main pulse/pre-pulse ratio of the laser pulse up to four orders of magnitude and consequently reduce expansion of the target material before the main pulse. The belief is that an increase in target density at the time of main pulse arrival will change the energy distribution of the X-rays, towards a more efficient X-ray production in the hard X-ray region. This report and the work connected to it, includes the preliminary measurements and results for these improvements. 17 refs

  19. New hard X-ray sources at 38/sup 0/ declination

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale)

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters.

  20. A New Relationship Between Soft X-Rays and EUV Flare Light Curves

    Science.gov (United States)

    Thiemann, Edward

    2016-05-01

    Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).

  1. Resolving the hard X-ray emission of GX 5-1 with INTEGRAL

    DEFF Research Database (Denmark)

    Paizis, A.; Ebisawa, K.; Tikkanen, T.

    2005-01-01

    We present the study of one year of INTEGRAL data on the neutron star low mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX 5-1 from similar to 5keV to similar to 100 keV, for the first time without...... contamination from the nearby black hole candidate GRS 1758-258 above 20 keV. During our observations, GX 5-1 was mostly found in the horizontal and normal branch of its hardness intensity diagram. A clear hard X-ray emission is observed above similar to 30 keV which exceeds the exponential cut-off spectrum...... expected from lower energies. This spectral flattening may have the same origin of the hard components observed in other Z sources as it shares the property of being characteristic to the horizontal branch. The hard excess is explained by introducing Compton up-scattering of soft photons from the neutron...

  2. Radiation signatures from a locally energized flaring loop

    Science.gov (United States)

    Emslie, A. G.; Vlahos, L.

    1980-01-01

    The radiation signatures from a locally energized solar flare loop based on the physical properties of the energy release mechanisms were consistent with hard X-ray, microwave, and EUV observations for plausible source parameters. It was found that a suprathermal tail of high energy electrons is produced by the primary energy release, and that the number of energetic charged particles ejected into the interplanetary medium in the model is consistent with observations. The radiation signature model predicts that the intrinsic polarization of the hard X-ray burst should increase over the photon energy range of 20 to 100 keV.

  3. NuSTAR detection of high-energy X-ray emission and rapid variability from sagittarius A* flares

    DEFF Research Database (Denmark)

    Barrière, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.

    2014-01-01

    Sagittarius A* harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A* spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at...

  4. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    International Nuclear Information System (INIS)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E.L.; Huntington, C.M.; Izumi, N.; LaCaille, G.; Landen, O.L.; Palmer, N.; Park, H.-S.; Thomas, C.A.; Hohenberger, M.

    2016-01-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  5. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    Science.gov (United States)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  6. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    Science.gov (United States)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  7. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    Science.gov (United States)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  8. SphinX catalogue of small flares and brightenings

    Science.gov (United States)

    Gryciuk, Magdalena; Sylwester, Janusz; Gburek, Szymon; Siarkowski, Marek; Mrozek, Tomasz; Kepa, Anna

    The Solar Photometer in X-rays (SphinX) was designed to measure soft X-ray solar emission in the energy range between 1 keV and 15 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of extraordinary low minimum of solar activity. Thanks to its very high sensitivity SphinX was able to record large number of tiny flares and brightenings. A catalogue of events observed by SphinX will be presented. Results of statistical analysis of events’ characteristics will be discussed.

  9. Method of separation of celestial gamma-ray bursts from solar flares

    International Nuclear Information System (INIS)

    Chuang, K.W.; White, R.S.; Klebesadel, R.W.; Laros, J.G.

    1991-01-01

    We recently discovered 217 ''new'' celestial gamma-ray burst candidates from the ''new'' burst search of the PVO real time data base. 1 The burst search covered the time period from September 1978 to July 1988. Sixty were confirmed by at lest on other spacecraft, e.g., ISEE-3, V-11, V-12, etc. None triggered the PVO high time resolution memory. In this paper we describe a new algorithm based ont eh relationship between time width T w and hardness ratio HR, to distinguish cosmic gamma-ray bursts from solar flares without knowing the directions of the events. The criteria for identification as a gamma-ray burst candidate are: If T ww ≤a then HR≥bT w , or T w >a then HR>c. Otherwise, the event is a solar flare candidate. Here, a, b, and c are parameter which differ for different gamma-ray burst detectors. For PVO, a=18.8 s, b=(1.38/18.8) s -1 , and c=1.38. This algorithm was tested with 83 triggered and 60 nontriggered confirmed gamma-ray burst and 30 confirmed solar flares from PVO

  10. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.; Shu, D.; Shvyd' ko, Y.; Stoupin, S.; Maxwell, T.J.; Ding, Y.; Fawley, W. M.; Hastings, J.; Huang, Z; Krzywinski, J.; Marcus, G.; Qin, Weilun; Medvedev, N.; Zemella, J.; Blank, V.; Terentyev, S.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  11. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    Science.gov (United States)

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  12. Plasma dynamics above solar flare soft x-ray loop tops

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); McKenzie, D. E. [Montana State University, Bozeman, MT 59717 (United States)

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase with height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. Multilayer coating facility for the HEFT hard x-ray telescope

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Christensen, Finn Erland; Chen, Hubert

    2001-01-01

    A planar magnetron sputtering facility has been established at the Danish Space Research Institute (DSRI) for the production coating of depth graded multilayers on the thermally slumped glass segments which form the basis for the hard X-ray telescope on the HEFT balloon project. The facility...

  15. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  16. Electronic properties of Nd2−xCexCuO4+δ: A hard X-ray photoemission investigation

    International Nuclear Information System (INIS)

    Guarino, A.; Panaccione, G.; Offi, F.; Monaco, G.; Fondacaro, A.; Torelli, P.; Fittipaldi, R.; Vecchione, A.; Pace, S.; Nigro, A.

    2016-01-01

    Highlights: • We grow and characterize Nd 2−x Ce x CuO 4+δ samples as thin film and single crystal. • We study the Cu 2p levels of our samples by hard X-ray photoemission spectroscopy. • We investigate bulk features of the Nd 2−x Ce x CuO 4+δ samples. • Signature of the bulk response is correlated with the crystallinity of the samples. - Abstract: Cu 2p core levels spectra measured by X-ray photoemission spectroscopy of selected as-grown Nd 2−x Ce x CuO 4+δ samples are presented and discussed. The presence of a satellite peak in the 2p core level of Nd 2−x Ce x CuO 4+δ single crystal by hard X-ray photoemission is confirmed in all non-superconducting samples, films and single crystals investigated in this work. The comparison of the spectral features of the different samples suggests that the presence and the intensity of this satellite peak is not related to the electric transport properties, but to the texture characteristics.

  17. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.

    2013-01-01

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV w...

  18. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    Science.gov (United States)

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  19. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  20. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  1. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  2. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  3. Development of thermally formed glass optics for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Craig, W.W.; Hailey, C.J.; Jimenez-Garate, M.

    2000-01-01

    The next major observational advance in hard X-ray/soft gamma-ray astrophysics will come with the implementation of telescopes capable of focusing 10-200 keV radiation. Focusing allows high signal-to-noise imaging and spectroscopic observations of many sources in this band for the first time...

  4. Swift detections of the flaring blazar GAIA 18ayp (PKS 2333-415) in X-rays and the UV

    Science.gov (United States)

    Grupe, Dirk; Komossa, S.; Angioni, R.; Schartel, N.

    2018-04-01

    We report Swift observations of the z=1.41 QSO GAIA 18ayp (PKS 2333-415) which was detected by GAIA in an optically flaring state on 2018-April-14. Swift observed GAIA 18ayp on 2018 April 23 for a total of 1.4 ks. The QSO is clearly detected in X-rays and the UV. The X-ray position found using the enhanced XRT position (Goad et al. 2007, Evans et al. 2009) is RA-2000 = 23 36 34.1, Dec-2000 = -41 15 21.4 with an uncertainty of 3.0".

  5. Hard X-ray Spectrum of Mkn 421 during the Active Phase

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Spectral measurement of Mkn 421 were made in the hard X-ray energy band of ... In the canonical models for blazars, the observed radiation in radio, UV and low ... defined by a slat collimator specially designed with a sandwiched material of.

  6. Early evolution of an X-ray emitting solar active region

    International Nuclear Information System (INIS)

    Wolfson, C.J.; Acton, L.W.; Leibacher, J.W.; Roethig, D.T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the Lockheed Mapping X-Ray Heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of Hα plage. At that time, a plasma temperature of 4 x 10 6 K in a region having a density of the order of 10 10 cm -3 is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by plasma with a temperature of the order 3 x 10 6 K. If it is assumed that the X-rays result from heating due to dissipation of current systems or magnetic field reconnection, it can be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration. (Auth.)

  7. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    Science.gov (United States)

    Osten, Rachel A.; Kowalski, Adam; Drake, Stephen; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Page, Mathew; Miguel, Enrique De; Novak, Rudolf; Gehrels, Cornelis

    2016-01-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3100 kiloelectron volts bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T(sub x) of 290 megakelvin. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be greater than 10(exp 20) sq cm, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T approximately 10(exp 4) K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 kiloelectron volts bandpass of 4 x 10(exp 35) and 9 x 10(exp 35) erg, and optical flare energies at E(sub V) of 2.8 x 10(exp 34) and 5.2 x 10(exp 34) erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  8. DATA-DRIVEN RADIATIVE HYDRODYNAMIC MODELING OF THE 2014 MARCH 29 X1.0 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia [University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952-5159 (United States); Allred, Joel C., E-mail: frubio@stanford.edu [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2016-08-10

    Spectroscopic observations of solar flares provide critical diagnostics of the physical conditions in the flaring atmosphere. Some key features in observed spectra have not yet been accounted for in existing flare models. Here we report a data-driven simulation of the well-observed X1.0 flare on 2014 March 29 that can reconcile some well-known spectral discrepancies. We analyzed spectra of the flaring region from the Interface Region Imaging Spectrograph ( IRIS ) in Mg ii h and k, the Interferometric BIdimensional Spectropolarimeter at the Dunn Solar Telescope (DST/IBIS) in H α 6563 Å and Ca ii 8542 Å, and the Reuven Ramaty High Energy Solar Spectroscope Imager ( RHESSI ) in hard X-rays. We constructed a multithreaded flare loop model and used the electron flux inferred from RHESSI data as the input to the radiative hydrodynamic code RADYN to simulate the atmospheric response. We then synthesized various chromospheric emission lines and compared them with the IRIS and IBIS observations. In general, the synthetic intensities agree with the observed ones, especially near the northern footpoint of the flare. The simulated Mg ii line profile has narrower wings than the observed one. This discrepancy can be reduced by using a higher microturbulent velocity (27 km s{sup −1}) in a narrow chromospheric layer. In addition, we found that an increase of electron density in the upper chromosphere within a narrow height range of ≈800 km below the transition region can turn the simulated Mg ii line core into emission and thus reproduce the single peaked profile, which is a common feature in all IRIS flares.

  9. Observation of cosmic hard x-ray by L-3H-9 rocket

    International Nuclear Information System (INIS)

    Hayakawa, Sachio; Makino, Fumiyoshi; Matsui, Yutaka; Fukada, Yutaka.

    1978-01-01

    It has been considered that the isotropic constituents of cosmic hard X-ray have their origins outside the galactic system. As the spectra are uncertain, the generation mechanism of X-ray has not been clearly known yet. It was attempted to make more reliable observation by shutter method and the technique removing charged particles, using the L-3H-8 rocket. The equipment consists of NaI scintillation counter, a front counter, a Xenon counter, a UV sensor, a collimator, a shutter and a shutter-driving device. The L-3H-9 rocket was launched on August 16, 1977, and reached height of 310 km in about 300 seconds. Then the observation was started, but it was not able to observe the isotropic constituents of hard X-ray which were aimed at, as the shutter didn't work normally. It is expected to make another observation with the K-9M-64 rocket in August, 1978, after investigating the action of the shutter and employing and improved driving device. (Kobatake, H.)

  10. CHANDRA AND XMM-NEWTON X-RAY OBSERVATIONS OF THE HYPERACTIVE T TAURI STAR RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), Univ. of Colorado, Boulder, CO 80309-0389 (United States); Audard, Marc [Dept. of Astronomy, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix (Switzerland); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: marc.audard@unige.ch, E-mail: manuel.guedel@univie.ac.at [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2016-07-20

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton . We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau’s bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T {sub hot} ∼ 50 MK, but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O viii. X-ray light curves show complex variability consisting of short-duration (∼hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly varying (∼one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g., coronal) origin. Soft- and hard-band light curves undergo similar slow variability implying that at least some of the cool plasma shares a common magnetic origin with the hot plasma. Any contribution to the X-ray emission from cool shocked plasma is small compared to the dominant hot component but production of individual low-temperature lines such as O viii in an accretion shock is not ruled out.

  11. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  12. Solar Flare Termination Shock and Synthetic Emission Line Profiles of the Fe xxi 1354.08 Å Line

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lijia [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA (United States); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Reeves, Kathy; Raymond, John, E-mail: gang.li@uah.edu [Harvard-Smithsonian Center for Astrophysics, Boston, MA (United States)

    2017-09-01

    Solar flares are among the most energetic phenomena that occur in the solar system. In the standard solar flare model, a fast mode shock, often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the TS has been recently related to spectral hardening of a flare’s hard X-ray spectra at energies >300 keV. Observations of the Fe xxi 1354.08 Å line during solar flares by the Interface Region Imaging Spectrograph ( IRIS ) spacecraft have found significant redshifts with >100 km s{sup −1}, which is consistent with a reconnection downflow. The ability to detect such a redshift with IRIS suggests that one may be able to use IRIS observations to identify flare TSs. Using a magnetohydrodynamic simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe xxi 1354.08 line in this work. We show that the existence of the TS in the solar flare may manifest itself in the Fe xxi 1354.08 Å line.

  13. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  14. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  15. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  16. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass

    International Nuclear Information System (INIS)

    Liu, Liwan; Shao, Chongyun; Zhang, Yu; Liao, Xili; Yang, Qiuhong; Hu, Lili; Chen, Danping

    2016-01-01

    Ce 3+ -doped Gd 2 O 3 -based scintillation glasses are prepared within an air or CO atmosphere. The effects of fluorine, lutetium, barium, and the melting atmosphere on the optical properties, scintillation properties and irradiation hardness are studied. Absorption spectra, luminescence spectra under UV and X-ray excitation, and the X-ray radiation-induced spectra are presented. The results show that the density can be increased by doping with fluorine, lutetium and barium. The luminescence intensity decreases after X-ray irradiation. Because of charge transfer quenching, fluorine and lutetium enhance the UV-excited and X-ray excited luminescence intensity, but barium decreases. Moreover, fluorine and lutetium are advantageous to irradiation hardness while barium is not. In addition, a non-reducing atmosphere provides a higher irradiation hardness than a reducing atmosphere. Fluorine-doped glass is promising to enhance luminescence intensity, promote irradiation hardness, and increase the density.

  17. The morphology of 20 x 10 exp 6 K plasma in large non-impulsive solar flares

    Science.gov (United States)

    Acton, Loren W.; Feldman, Uri; Bruner, Marilyn E.; Doschek, George A.; Hirayama, Tadashi; Hudson, Hugh S.; Lemen, James R.; Ogawara, Yoshiaki; Strong, Keith T.; Tsuneta, Saku

    1992-01-01

    We have examined images of 10 flares observed by the Soft X-ray Telescope on-board the Yohkoh spacecraft. These images show that the hottest portion of the soft X-ray flare is located in compact regions that appear to be situated at the tops of loops. These compact regions form at, or shortly after, flare onset, and persist well into the decay phase of the flares. In some cases, the compact regions are only a few thousand kilometers in size and are small compared to the lengths of flaring loops. This is inconsistent with the smoother intensity distribution along the loops expected from models of chromospheric evaporation.

  18. Solar Flares and Their Prediction

    Science.gov (United States)

    Adams, Mitzi L.

    1999-01-01

    Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.

  19. The impulsive and gradual phases of a solar limb flare as observed from the solar maximum mission satellite

    International Nuclear Information System (INIS)

    Poland, A.I.; Frost, K.J.; Woodgate, B.E.; Shine, R.A.; Kenny, P.J.; Wolfson, C.J.; Bruner, E.C.; Cheng, C.C.; Tandberg-Hanssen, E.A.

    1982-01-01

    Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25-300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30-0.3 keV range. The ultraviolet observations were images with a 10'' spatial resolution in the lines of O v (Tsub(e) approx. equal to 2.5 x 10 5 K) and Fe XXI (Tsub(e) approx. equal to 1.1 x 10 7 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30,000 km above the solar surface at specific points in the flare loop. The Fe XXI observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient. (orig.)

  20. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  1. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    Directory of Open Access Journals (Sweden)

    Michael Pravica

    2016-12-01

    Full Text Available We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC2O4 pressurized to 7 GPa inside a diamond anvil cell (DAC. After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO2 even under ambient conditions with the sample exposed to air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part with dispersed CO2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press without the need for the dangerous and complex loading of toxic CO. A novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.

  2. X-Ray Observations of the Black Hole Transient 4U 1630-47 during 2 Years of X-Ray Activity

    Science.gov (United States)

    Tomsick, John A.; Corbel, Stéphane; Goldwurm, Andrea; Kaaret, Philip

    2005-09-01

    The black hole candidate (BHC) X-ray transient 4U 1630-47 continuously produced strong X-ray emission for more than 2 years during its 2002-2004 outburst, which is one of the brightest and longest outbursts ever seen from this source. We use more than 300 observations made with the Rossi X-Ray Timing Explorer (RXTE) to study the source throughout the outburst, along with hard X-ray images from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), which are critical for interpreting the RXTE data in this crowded field. The source exhibits extreme behaviors, which can be interpreted as an indication that the system luminosity approaches the Eddington limit. For 15 observations, fitting the spectral continuum with a disk-blackbody plus power-law model results in measured inner disk temperatures between 2.7 and 3.8 keV, and such temperatures are only rivaled by the brightest BHC systems, such as GRS 1915+105 and XTE J1550-564. If the high temperatures are caused by the dominance of electron scattering opacity in the inner regions of the accretion disk, it is theoretically required that the source luminosity be considerably higher than 20% of the Eddington limit. We detect a variety of high-amplitude variability, including hard 10-100 s flares, which peak at levels as much as 2-3 times higher than nonflare levels. This flaring occurs at the highest disk luminosities in a regime in which the source deviates from the Ldisk~T4in relationship that is seen at lower luminosities, possibly suggesting that we are seeing transitions between a Shakura & Sunyaev disk and a ``slim'' disk, which is predicted to occur at very high mass accretion rates. The X-ray properties in 2002-2004 are significantly different from those seen during the 1998 outburst, which is the only outburst with detected radio jet emission. Our results support the ``jet line'' concept recently advanced by Fender and coworkers. Our study allows for a test of the quantitative McClintock & Remillard

  3. Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal

  4. Design parameters of transmission curved crystal spectrometer for hard X-ray diagnoses

    International Nuclear Information System (INIS)

    Qian Feng; Cao Leifeng; Zhou Weimin; Zhao Zongqing; Gu Yuqiu; Yan Yonghong; Wei Lai; Xiao Shali

    2013-01-01

    The high resolving measurement of hard X-ray spectra generated in laser-produced plasma is usually performed using a cylindrically curved crystal spectrometer. In this paper, theoretical analysis and numerical simulation are performed to investigate the dependence of the energy range and resolving power on various design parameters, including crystal bending radius, source to crystal standoff distance, source size, location of the detector, etc. The investigation provides a means to design and develop cylindrically transmission curved crystal spectrometer which is used in hard X-ray diagnostics. The results show that crystal bending radius has a great influence on energy range of spectra and resolving power, and the separation between the spectral lines increases with the distance behind the focal circle faster than the line width, resulting in increased resolving power with distance. (authors)

  5. Upgrading multilayer zone plate technology for hard x-ray focusing

    Energy Technology Data Exchange (ETDEWEB)

    Hirotomo, Toshiki; Konishi, Shigeki [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); SPring-8 Service Co., Ltd (Japan); Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Sumida, Kazuhiro; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Koyama, Takahisa [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) (Japan); Ichimaru, Satoshi; Ohchi, Tadayuki [NTT Advanced Technology Corporation (Japan); Takenaka, Hisataka [NTT Advanced Technology Corporation (Japan); TOYAMA Corporation (Japan)

    2016-01-28

    Multilayer zone plate (MZP) technology for hard X-ray focusing was upgraded and its focusing performance was evaluated using 20-keV X-rays at the synchrotron beamline (BL24XU) of SPring-8. The MZP consists of MoSi{sub 2} and Si layers alternately deposited on a glass fiber by magnetron sputtering so that all zone boundaries satisfy the Fresnel zone configuration. The focused beam was evaluated using knife-edge scanning in which the measured intensity distribution is identical to the line spread function (LSF) in the focal plane. The focused beamsize of about 30 nm was estimated by oscillation peaks observed in the measured LSF according to Rayleigh’s criterion.

  6. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    Science.gov (United States)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  7. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  8. A pacemaker with P = 2.48 h modulated the generator of flares in the X-ray light curve of Sgr A* in the year 2012

    Science.gov (United States)

    Leibowitz, Elia

    2017-01-01

    In an intensive observational campaign in the nine month duration of Chandra X-ray Visionary Project that was conducted in the year 2012, 39 large X-ray flares of Sgr A* were recorded. An analysis of the times of the observed flares reveals that the 39 flares are separated in time by intervals that are grouped around integer numbers times 0.10333 days. This time interval is thus the period of a uniform grid of equally spaced points on the time axis. The grouping of the flares around tic marks of this grid is derived from the data with at least a 3.2 σ level of statistical significance. No signal of any period can be found among 22 flares recorded by Chandra in the years 2013-2014. If the 0.10333 day period is that of a nearly circular Keplerian orbit around the blackhole at the center of the Galaxy, its radius is at 7.6 Schwarzschild radii. Large flares were more likely to be triggered when the agent responsible for their outbursts was near the peri-center phase of its slightly eccentric orbit.

  9. Young Stellar Objects from Soft to Hard X-rays

    Science.gov (United States)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  10. In-flight PSF calibration of the NuSTAR hard X-ray optics

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Westergaard, Niels J.

    2014-01-01

    We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source...... observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We...... describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is less than or similar to 3 for extraction apertures of R greater than or similar to 60" with no significant energy dependence. We also show that the PSF...

  11. Analysis of OGO-5 and OSO-7 x-ray data. Final report

    International Nuclear Information System (INIS)

    Moore, R.L.

    1975-02-01

    The physical nature of solar flares implied by the data was studied. The empirical results were obtained primarily from the OGO-5 and OSO-7 x-ray data in combination with optical data. The principal conclusions regarding the physics of flares are the following. (1) Flares are produced by magnetic field reconnection. (2) The resulting thermal x-ray plasma is cooled primarily by heat conduction rather than by radiative cooling. (3) The heating and cooling of the thermal x-ray plasma are approximately in balance during the maximum phase of the flare. (auth)

  12. The detection of hard x-rays (10-140 KeV) by channel plate electron multipliers

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1976-12-01

    Results are presented indicating that hard X-rays in the energy range 10 to 50 keV can be detected with good efficiency (5 to 10%) in channel plate electron multipliers (CPEM). From 50 keV to 140 keV the detection efficiency lies in the range 1 to 2%. A simple physical model is developed which indicates that not only can good detection efficiency be obtained but that very good X-ray imaging is possible. The model predicts that with further development, a wideband, hard X-ray detector can be realised with a detection efficiency in the range 5 to 20% and spatial response better than 10 lp/mm in the energy range 10 to 140 keV. (author)

  13. Quantitative 3D imaging of yeast by hard X-ray tomography.

    Science.gov (United States)

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  14. Providing Bright-Hard X-ray Beams from a Lower Energy Light Source

    Science.gov (United States)

    Robin, David

    2002-04-01

    At the Advanced Light Source (ALS) there had been an increasing demand for more high brightness harder X-ray sources in the 7 to 40 KeV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than the 1.3 Tesla bends, making them excellent sources of harder x-rays for protein crystallography and other harder x-ray applications. At the same time the Superbends do not compromise the performance of the facility in the UV and Soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new x-ray beam lines greatly enhancing the facility's capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since the ring was commissioned in 1993. In this paper we present, a history of the project, details of the magnet, installation, commissioning, and resulting performance of the ALS with Superbends.

  15. Boundary conditions for the solar burst phenomenons stablished from the statistical behaviour in the hard X-ray range

    International Nuclear Information System (INIS)

    Correia, E.

    1983-01-01

    A review on the statistical studies of solar burst parameters at X-rays and microwaves, as well as an analysis of the limits caused by instrumental sensitivity and their effect on the form of the distributions and on the establishment of boundary conditions for solar flare phenomena are presented. A study on the statistical behaviour of events observed with high sensitivity at hard X-rays with the HXRBS experiment (SMM) was performed. Maxima have been formed in the parameters distribution, which may be related to intrinsic characteristics of the source-regions. This result seems to confirm searly studies which indicated the influence of the sensitivity limits. Assuming the maxima of the distributions as real, it was possible to establish boundary conditions for the mechanisms of primary energy release. The principal condition establishes that solar bursts can be interpreted as a superposition of primary explosions. The statistical analysis permitted the estimate of a value for the amount of energy in a primary explosion, making use of adjustments of Poisson functions. The value found is consistent with values derived directly from ultra-fast time structures observed in bursts. Assuming an empirical pulse shape for the primary burst and the superposition condition, simulations of bursts have been successfully obtained. (Author) [pt

  16. The Solar-A soft X-ray telescope experiment

    Science.gov (United States)

    Acton, L.; Bruner, M.; Brown, W.; Lemen, J.; Hirayama, T.

    1988-01-01

    The Japanese Solar-A mission for the study of high energy solar physics is timed to observe the sun during the next activity maximum. This small spacecraft includes a carefully coordinated complement of instruments for flare studies. In particular, the soft X-ray telescope (SXT) will provide X-ray images of flares with higher sensitivity and time resolution than have been available before. This paper describes the scientific capabilities of the SXT and illustrates its application to the study of an impulsive compact flare.

  17. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  18. The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    Science.gov (United States)

    Baglio, M. C.; Campana, S.; D'Avanzo, P.; Papitto, A.; Burderi, L.; Di Salvo, T.; Muñoz-Darias, T.; Rea, N.; Torres, D. F.

    2017-04-01

    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4 m Gran Telescopio Canarias (GTC) in August 2014. Although the source was in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced in bluer filters (I.e. the g-band). After subtracting the flares, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even when a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing the new outburst of the source, which occurred a few months later, in 2015. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  19. A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute (United States); Kowalski, Adam [U. Md/GSFC (United States); Drake, Stephen A. [USRA/CRESST and NASA/GSFC (United States); Krimm, Hans [USRA/CRESST (United States); Page, Kim [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Gazeas, Kosmas [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR-15784 Zografos, Athens (Greece); Kennea, Jamie [Penn State (United States); Oates, Samantha [Instituto de Astrofsica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Page, Mathew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); De Miguel, Enrique [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Novák, Rudolf [Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Apeltauer, Tomas [Brno University of Technology, Faculty of Civil Engineering, Veveri 331/95, 602 00 Brno (Czech Republic); Gehrels, Neil, E-mail: osten@stsci.edu [NASA/GSFC (United States)

    2016-12-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3–100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T{sub X} of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >10{sup 20} cm{sup 2}, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T  ∼ 10{sup 4} K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3–10 keV bandpass of 4 × 10{sup 35} and 9 × 10{sup 35} erg, and optical flare energies at E{sub V} of 2.8 × 10{sup 34} and 5.2 × 10{sup 34} erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  20. Electronic properties of Nd{sub 2−x}Ce{sub x}CuO{sub 4+δ}: A hard X-ray photoemission investigation

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, A., E-mail: guarino@sa.infn.it [CNR-SPIN-Salerno, Fisciano, SA (Italy); Dipartimento di Fisica “E. R. Caianiello” Università di Salerno, Fisciano, SA (Italy); Panaccione, G. [CNR-IOM Laboratorio TASC, AREA Science Park, 34012 Basovizza, TS (Italy); Offi, F. [CNISM and Dipartimento di Scienze, Università Roma Tre, Roma (Italy); Monaco, G. [Dipartimento di Fisica, Università di Trento, Trento (Italy); Fondacaro, A. [European Synchrotron Radiation Facility, BP 220, F-38042 Grenoble (France); Torelli, P. [CNR-IOM Laboratorio TASC, AREA Science Park, 34012 Basovizza, TS (Italy); Fittipaldi, R.; Vecchione, A. [CNR-SPIN-Salerno, Fisciano, SA (Italy); Pace, S.; Nigro, A. [CNR-SPIN-Salerno, Fisciano, SA (Italy); Dipartimento di Fisica “E. R. Caianiello” Università di Salerno, Fisciano, SA (Italy)

    2016-10-15

    Highlights: • We grow and characterize Nd{sub 2−x}Ce{sub x}CuO{sub 4+δ} samples as thin film and single crystal. • We study the Cu 2p levels of our samples by hard X-ray photoemission spectroscopy. • We investigate bulk features of the Nd{sub 2−x}Ce{sub x}CuO{sub 4+δ} samples. • Signature of the bulk response is correlated with the crystallinity of the samples. - Abstract: Cu 2p core levels spectra measured by X-ray photoemission spectroscopy of selected as-grown Nd{sub 2−x}Ce{sub x}CuO{sub 4+δ} samples are presented and discussed. The presence of a satellite peak in the 2p core level of Nd{sub 2−x}Ce{sub x}CuO{sub 4+δ} single crystal by hard X-ray photoemission is confirmed in all non-superconducting samples, films and single crystals investigated in this work. The comparison of the spectral features of the different samples suggests that the presence and the intensity of this satellite peak is not related to the electric transport properties, but to the texture characteristics.

  1. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    Science.gov (United States)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  2. Impulsive and gradual phases of a solar limb flare as observed from the solar maximum mission satellite

    Energy Technology Data Exchange (ETDEWEB)

    Poland, A.I.; Frost, K.J.; Woodgate, B.E.; Shine, R.A.; Kenny, P.J. (National Aeronautics and Space Administration, Greenbelt, MD (USA). Lab. for Astronomy and Solar Physics); Machado, M.E. (Observatorio Nacional de Fisica Cosmica, San Miguel (Argentina)); Wolfson, C.J.; Bruner, E.C. (Lockheed Palo Alto Research Labs., CA (USA)); Cheng, C.C. (Naval Research Lab., Washington, DC (USA)); Tandberg-Hanssen, E.A. (National Aeronautics and Space Administration, Huntsville, AL (USA). George C. Marshall Space Flight Center)

    1982-06-01

    Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25-300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30-0.3 keV range. The ultraviolet observations were images with a 10'' spatial resolution in the lines of O v (Tsub(e) approx. equal to 2.5 x 10/sup 5/ K) and Fe XXI (Tsub(e) approx. equal to 1.1 x 10/sup 7/ K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30,000 km above the solar surface at specific points in the flare loop. The Fe XXI observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.

  3. X-ray flares from runaway pair production in active galactic nuclei

    Science.gov (United States)

    Kirk, J. G.; Mastichiadis, A.

    1992-01-01

    The hard X-ray spectrum of AGNs is nonthermal, probably arising from an electron-positron pair cascade, with some emission reflected off relatively cold matter. There has been interest in models on which protons are accelerated and create relativistic electrons on interaction with a local radiation field. It is shown here that a sufficient column density of protons can lead to runaway pair production: photons generated by the relativistic pairs are the targets for the protons to produce more pairs. This can produce X-ray fluxes with the characteristics observed in AGN. The model predicts the maximum ratio of luminosity to source size as well as their spectrum in the early phases. The same mechanism may also be able to create the knots of synchrotron-radiating pair plasma seen in sources such as 3C273.

  4. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    International Nuclear Information System (INIS)

    LeBrun, T.

    1996-01-01

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells

  5. High resolution hard X-ray photoemission using synchrotron radiation as an essential tool for characterization of thin solid films

    International Nuclear Information System (INIS)

    Kim, J.J.; Ikenaga, E.; Kobata, M.; Takeuchi, A.; Awaji, M.; Makino, H.; Chen, P.P.; Yamamoto, A.; Matsuoka, T.; Miwa, D.; Nishino, Y.; Yamamoto, T.; Yao, T.; Kobayashi, K.

    2006-01-01

    Recently, we have shown that hard X-ray photoemission spectroscopy using undulator X-rays at SPring-8 is quite feasible with both high resolution and high throughput. Here we report an application of hard X-ray photoemission spectroscopy to the characterization of electronic and chemical states of thin solid films, for which conventional PES is not applicable. As a typical example, we focus on the problem of the scatter in the reported band-gap values for InN. We show that oxygen incorporation into the InN film strongly modifies the valence and plays a crucial role in the band gap problem. The present results demonstrate the powerful applicability of high resolution photoemission spectroscopy with hard X-rays from a synchrotron source

  6. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  7. Discovery of powerful gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  8. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  9. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  10. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  11. INTEGRAL detection of a hard X-ray transient in NGC 6440

    DEFF Research Database (Denmark)

    Kuulkers, E.; Bozzo, E.; Bazzano, A.

    2015-01-01

    Referred to by ATel #: 7106, 7136, 7183 Tweet During INTEGRAL Galactic bulge monitoring (e.g., ATel #438) observations performed on UT 2015 February 17 at 12.53-16:45, IBIS/ISGRI detected renewed activity at hard X-rays from a transient within the Globular Cluster NGC 6440. The best determined...

  12. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Kapilashrami, M.; Zegkinoglou, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Törndahl, T.; Fjällström, V. [Ångström Solar Center, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lischner, J. [Department of Physics, University of California, Berkeley, California 94720 (United States); Louie, Steven G. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Hamers, R. J.; Zhang, L. [Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Himpsel, F. J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States)

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  13. Long duration hard X-ray transatlantic payload

    International Nuclear Information System (INIS)

    La Padula, C.D.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Ubertini, P.

    1981-01-01

    The HXR80M large-area hard X-ray experiment, to be flown aboard a transatlantic balloon, is described. The detectors are two multiwire spectroscopic proportional counters (MWSPC) with a 2700-sq-cm sensitive area each. The two detectors are filled with an extremely pure xenon-isobutane mixture at high pressure (3-6 atm) in order to obtain good spectral resolution and high efficiency. The onboard data handling is performed by microprocessor-controlled electronics. The scientific aim of the experiment is the survey of the sky belt around the 38th parallel and in particular the observation of faint galactic objects and galactic binary systems in the 15-200 keV range

  14. A novel probe of intrinsic electronic structure: hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Takata, Y.; Tamasaku, K.; Nishino, Y.; Miwa, D.; Yabashi, M.; Ikenaga, E.; Horiba, K.; Arita, M.; Shimada, K.; Namatame, H.; Nohira, H.; Hattori, T.; Soedergren, S.; Wannberg, B.; Taniguchi, M.; Shin, S.; Ishikawa, T.; Kobayashi, K.

    2005-01-01

    We have realized hard X-ray (HX) photoemission spectroscopy (PES) with high throughput and high-energy resolution for core level and valence band studies using high-energy and high-brilliance synchrotron radiation at SPring-8. This is a brand new method because large escape depth of high-energy photoelectrons enables us to probe intrinsic bulk states free from surface condition. By use of a newly developed electron energy analyzer and well-focused X-rays, high-energy resolution of 75 meV (E/ΔE 79,000) was realized for 5.95 keV photoelectrons

  15. Modeling of finite systems irradiated by intense ultrashort hard X-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Zoltan [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Ziaja, Beata [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Santra, Robin [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2013-07-01

    Large number of experiments have already been carried out at the existing hard X-Ray Free-Electron Laser facilities (LCLS, SACLA) during the recent years. Their great success generates even higher anticipation for the forthcoming X-ray sources (European XFEL). Single molecule imaging and nanoplasma formation are the challenging projects with XFELs that investigate the interaction of finite, small objects, e.g. single molecules, atomic clusters with intense X-ray radiation. Accurate modelling of the time evolution of such irradiated systems is required in order to understand the current experiments and to inspire new directions of experimental investigation. In this presentation we report on our theoretical molecular-dynamics tool able to follow non-equilibrium dynamics within finite systems irradiated by intense X-ray pulses. We introduce the relevant physical processes, present computational methods used, discuss their limitations and also the specific constraints on calculations imposed by experimental conditions. Finally, we conclude with a few simulation examples.

  16. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  17. A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2001-01-01

    Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed

  18. The Multi-Instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Residual Non-Thermal Soft X-Ray Emission

    Science.gov (United States)

    McTiernan, James M.; Caspi, Amir; Warren, Harry

    2015-04-01

    In the soft X-ray energy range, solar flare spectra are typically dominated by thermal emission. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI). The improvement over the isothermal approximation is intended to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV for medium to large solar flares.Previous work (Caspi et.al. 2014ApJ...788L..31C) has concentrated on obtaining DEM models that fit both instruments' observations well. Now we are interested in any breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. Thermal emission is again modeled using a DEM that is parametrized as multiple gaussians in temperature; the non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner. The results for non-thermal parameters then are compared with those found using RHESSI data alone, with isothermal and double-thermal models.

  19. Comparison of emission properties of two homologous flares in AR 11283

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Jing, Ju; Wang, Shuo; Wang, Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2014-05-20

    Large, complex, active regions may produce multiple flares within a certain period of one or two days. These flares could occur in the same location with similar morphologies, commonly referred to as 'homologous flares'. In 2011 September, active region NOAA 11283 produced a pair of homologous flares on the 6th and 7th, respectively. Both of them were white-light (WL) flares, as captured by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory in visible continuum at 6173 Å which is believed to originate from the deep solar atmosphere. We investigate the WL emission of these X-class flares with HMI's seeing-free imaging spectroscopy. The durations of impulsive peaks in the continuum are about 4 minutes. We compare the WL with hard X-ray (HXR) observations for the September 6 flare and find a good correlation between the continuum and HXR both spatially and temporally. In absence of RHESSI data during the second flare on September 7, the derivative of the GOES soft X-ray is used and also found to be well correlated temporally with the continuum. We measure the contrast enhancements, characteristic sizes, and HXR fluxes of the twin flares, which are similar for both flares, indicating analogous triggering and heating processes. However, the September 7 flare was associated with conspicuous sunquake signals whereas no seismic wave was detected during the flare on September 6. Therefore, this comparison suggests that the particle bombardment may not play a dominant role in producing the sunquake events studied in this paper.

  20. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  1. A Multiwavelength Study of Cygnus X-3

    Science.gov (United States)

    McCollough, M. L; Robinson, C. R.; Zhang, S. N.; Paciesas, W. S.; Harmon, B. A.; Hjellming, R. M.; Rupen, M.; Waltman, E. B.; Foster, R. S.; Ghigo, F. D.

    1997-01-01

    We present a global comparison of long term observations of the hard X-ray (20-100 keV), soft X-ray (1.5-12 keV), infrared (1-2 micron) and radio (2.25, 8.3 and 15 GHz) bands for the unusual X-ray binary Cygnus X-3. Data were obtained in the hard X-ray band from CGRO/BATSE, in the soft X-ray band from Rossi Xray Timing Explorer (RXTE)/ASM, in the radio band from the Green Bank Interferometer and Ryle Telescope and in the infrared band from various ground based observatories. Radio flares, quenched radio states and quiescent radio emission can all be associated with changes in the hard and soft X-ray intensity. The injection of plasma into the radio jet is directly related to changes in the hard and soft X-ray emission. The infrared observations are examined in the context of these findings.

  2. Probing deeper by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P.; Renault, O., E-mail: olivier.renault@cea.fr; Martinez, E.; Delaye, V. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); Detlefs, B. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Zegenhagen, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gaumer, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Grenet, G. [Institut des Nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69 134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  3. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  4. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal, E-mail: moka@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  5. LIFTING THE VEIL ON OBSCURED ACCRETION: ACTIVE GALACTIC NUCLEI NUMBER COUNTS AND SURVEY STRATEGIES FOR IMAGING HARD X-RAY MISSIONS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Draper, A. R.; Madsen, K. K.; Rigby, J. R.; Treister, E.

    2011-01-01

    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (∼20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions.

  6. Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare

    Science.gov (United States)

    Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.

    2017-12-01

    We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  7. The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    NARCIS (Netherlands)

    den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Rea, N.; Durant, M.; Stappers, B.; Kaspi, V.M.; Dib, R.

    2007-01-01

    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in

  8. Development of a hard x-ray wavefront sensor for the EuXFEL

    Science.gov (United States)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  9. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    International Nuclear Information System (INIS)

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-01-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se 2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBM CIGS – VBM diamond  = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  10. Quantitative relationship between VLF phase deviations and 1-8 A solar X-ray fluxes during solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Y; Murata, H; Sato, T [Hyogo Coll. Of Medicine (Japan). Dept. of Physics

    1977-07-01

    An attempt is made to investigate the quantitative relationship between VLF phase deviations in SPA (sudden phase anomalies) events and associated solar X-ray fluxes in the 1 to 8 A band during solar flares. The phase deviations (..delta..phi) of the 18.6 kHz VLF wave transmitted from NLK, USA are used in this analysis which were recorded at Nishinomiya, Japan during the period June 1974 to May 1975. The solar X-ray fluxes (F/sub 0/) in the 1 to 8 A band are estimated from fsub(min) variations using the empirical expression given by Sato (J.Geomag.Geoelectr.;27: 95(1975)), because no observed data were available on the 1 to 8 a X-ray fluxes during the period of the VLF observation. The result shows that the normalized phase variation, ..delta..phi/coschisub(min), where chisub(min) represents the minimum solar zenith angle on the VLF propagation path, increases with increasing logF/sub 0/. A theoretical explanation for this is presented assuming that enhanced ionizations produced in the lower ionosphere by a monochromatic solar X-ray emission are responsible for the VLF phase deviations. Also it is found that a threshold X-ray flux to produce a detectable SPA effect is approximately 1.5 x 10/sup -3/ cm/sup -2/ sec/sup -1/ in the 1 to 8 a band.

  11. Water Formation and Destruction by 'Super' X-ray Flares from a T-Tauri Star in a Protoplanetary Disk

    Science.gov (United States)

    Waggoner, Abygail R.; Cleeves, L. Ilsedore

    2018-01-01

    We present models of H2O chemistry is protoplanetary disks in the presence of 'super' X-ray flares emitted by a T-Tauri star. We examine the time-evolving chemistry of H2O at radial locations from 1 to 20 AU at various vertical heights from the mid-plane to the surface of the disk. We find the gas-phase H2O abundance can be enhanced in the surface (Z/R ≥ 0.3) by more than a factor of approximately 3 - 5 by strong flares, i.e., those that increase the ionization rate by a factor of 100. Dissociative recombination of H3O+ , H2O adsorption onto grain, and photolysis of H2O are found to be the three dominant processes leading to a change in H2O abundance. We find X-ray flares have predominantly short- term (days) effects on gaseous H2O abundance, but some regions show a long-term (for the duration of the test about 15 days) decrease in gaseous H2O due to adsorption onto grains, which results in an increase (up to 200%) in ice H2O in regions where ice H2O is 10-8 abundance no are response in the ice is observed.Thanks to the National Science Foundation for funding this research as a part of the Smithsonian Astrophysical Observatory Research Experience for Undergraduates (SAO REU).

  12. Velocity-Resolved [Ne III] from X-Ray Irradiated Sz 102 Microjets

    Science.gov (United States)

    Liu, C.-F.; Shang, H.; Walter, F. M.; Herczeg, G. J.

    2014-03-01

    Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III] .3869 emission from the microjet of low-mass young star Sz 102. Spectroastrometric analysis of the two-dimensional [Ne III] spectral image obtained from the archival high-dispersion (R - 33,000) Very Large Telescope/UVES spectra suggests that the emission consists of two velocity components spatially separated by ~ 0.''3. The stronger redshifted component is centered at ~ +21 km s-1 with a line width of ~ 140 km s-1, and the weaker blueshifted component at ~ -90 km s-1 with a larger line width of ~ 190 km s-1. Both components have large line widths that extend across the systemic velocity, suggesting their origin from diverging streamlines of a wide-angle wind. Optical line ratio diagnostics indicate that Sz 102 drives a pair of hot (T . 2 ◊ 104 K) and ionized (ne . 2 ◊ 104 cm-3) jets. The blueshifted jet has on average ~ 50% higher temperature and electron density. We suggest that the jet is ionized by an embedded hard X-ray source close to the driving region. Freezing-in of the ionization state is consistent with the flow speed and the Ne2+ recombination timescales. We postulate that these X-rays originate from hard coronae or stellar flares; the hard (keV) X-ray photons ionize neon in the inner wind, while the soft X-rays are mostly absorbed by the accretion funnel. These postulates await validation from high-sensitivity X-ray and subarcsecond resolution optical observations.

  13. INITIATION PROCESSES FOR THE 2013 MAY 13 X1.7 LIMB FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jinhua [Xinjiang Astronomical Observatory, CAS, 830011, Urumqi (China); Wang, Ya; Zhou, Tuanhui; Ji, Haisheng, E-mail: jihs@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing, 210008 (China)

    2017-01-20

    For the X1.7 class flare on 2013 May 13 (SOL2013-05-13T01:53), its initiation process was well observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory and the Extreme UltraViolet Imager (EUVI) on board STEREO-B . The initiation process incorporates the following phenomena: an X-ray precursor that started ∼9 minutes before flare onset, two hot magnetic loops (as seen with AIA hot channels) forming a sigmoidal core magnetic structure (as seen with the EUVI), a rapidly formed magnetic flux rope (MFR) that expands outward, and a flare loop that contracts inward. The two hot magnetic loops were activated after the occurrence of the X-ray precursor. After activation, magnetic reconnection occurred between the two hot magnetic loops (inside the sigmoid structure), which produced the expanding MFR and the contracting flare loop (CFL). The MFR and CFL can only be seen with AIA hot and cool channels, respectively. For this flare, the real initiation time can be regarded as being from the starting time of the precursor, and its impulsive phase started when the MFR began its fast expansion. In addition, the CFL and the growing postflare magnetic loops are different loop systems, and the CFL was the product of magnetic reconnection between sheared magnetic fields that also produced the MFR.

  14. INITIATION PROCESSES FOR THE 2013 MAY 13 X1.7 LIMB FLARE

    International Nuclear Information System (INIS)

    Shen, Jinhua; Wang, Ya; Zhou, Tuanhui; Ji, Haisheng

    2017-01-01

    For the X1.7 class flare on 2013 May 13 (SOL2013-05-13T01:53), its initiation process was well observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory and the Extreme UltraViolet Imager (EUVI) on board STEREO-B . The initiation process incorporates the following phenomena: an X-ray precursor that started ∼9 minutes before flare onset, two hot magnetic loops (as seen with AIA hot channels) forming a sigmoidal core magnetic structure (as seen with the EUVI), a rapidly formed magnetic flux rope (MFR) that expands outward, and a flare loop that contracts inward. The two hot magnetic loops were activated after the occurrence of the X-ray precursor. After activation, magnetic reconnection occurred between the two hot magnetic loops (inside the sigmoid structure), which produced the expanding MFR and the contracting flare loop (CFL). The MFR and CFL can only be seen with AIA hot and cool channels, respectively. For this flare, the real initiation time can be regarded as being from the starting time of the precursor, and its impulsive phase started when the MFR began its fast expansion. In addition, the CFL and the growing postflare magnetic loops are different loop systems, and the CFL was the product of magnetic reconnection between sheared magnetic fields that also produced the MFR.

  15. X-Ray pictures of the developmental anomalis of the hard dental tissue

    International Nuclear Information System (INIS)

    Cecetkova, A.; Ondrasovicova, J.

    2008-01-01

    Dental anomalies are rare lessions of the hard dental tissue. They are as symptoms varies of the syndromes. They are as follow: hyperdoncia, hypodoncia, oligodoncia, anodoncia, mesiodens, macrodoncia and microdoncia. All of the above anomalis are detected by X-ray diagnostics ( intraoral and extra-oral radiography ). (authors)

  16. A comparison of theoretical and solar-flare intensity ratios for the Fe XIX X-ray lines

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Mason, H.E.; Fawcett, B.C.; Phillips, K.J.H.

    1989-04-01

    Atomic data consisting of energy levels, g f-values and wavelengths are presented for the Fe XIX 2s 2 2p 4 -2s 2 2p 3 3s, 2s 2 2p 3 3d arrays that give rise to lines in solar flare and active-region X-ray spectra. Collision strengths and theoretical intensity ratios are given for the 2s 2 2p 4 -2s 2 2p 3 3d lines, which occur in the 13.2-14.3 A range. Solar spectra in this range include a large number of other intense lines, notably those due to He-like Ne (Ne IX). Although the Ne IX lines are potentially the most useful indicators of electron density in solar X-ray spectra, blending with the Fe XIX lines has been a major problem for previous analyses. Comparison of observed spectra with those calculated from the Fe XIX atomic data presented here and Ne IX lines from other work indicates that there is generally good agreement. We use the calculated Fe XIX and Ne IX line spectra and several observed spectra during a flare previously analysed to estimate electron density from Ne IX line ratios, thus for the first time properly taking into account blends with Fe XIX lines. (author)

  17. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  18. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  19. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; et al.

    2015-01-23

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10(50) erg s(–)(1), makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  20. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    Science.gov (United States)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  1. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832–093

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.

    2017-01-01

    −093, is detected up to ~30 keV and is well-described by an absorbed power-law model with a best-fit photon index . A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245−0921539 is (90% C.L.), much less than previously reported. A search for a pulsar spin...... of XMMU J183245−0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission...

  2. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming, E-mail: minwu@sandia.gov; Rochau, Greg [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moy, Ken [Special Technology Laboratories, NSTec, Santa Barbara, California 93111-2335 (United States); Kruschwitz, Craig [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ∼10 μm in diameter pores, ∼12 μm center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  3. Hard X-ray emission from accretion shocks around galaxy clusters

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  4. Hard X-ray emission from accretion shocks around galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  5. Hard X-ray emission from accretion shocks around galaxy clusters

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2010-01-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed

  6. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  7. Model of motion of the X-ray loop-top source at the beginning of cusp-type flares

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian; Veronig, A.; Vršnak, B.

    2006-01-01

    Roč. 30, č. 1 (2006), s. 85-95 ISSN 1845-8319. [Central European Solar Physics Meeting /2./. Bairisch Kölldorf, 19.05.2005-21.05.2005] R&D Projects: GA AV ČR IAA3003203; GA AV ČR 1QS300120506; GA ČR GA205/04/0358 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar flares * heating processes * X-ray emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  9. Polarization and dipole effects in hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Pauly, N., E-mail: nipauly@ulb.ac.be [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer X-rays are unpolarized or linearly polarized. Black-Right-Pointing-Pointer A difference of polarization implies a variation in path travelled by the photoelectrons. Black-Right-Pointing-Pointer We show the influence of the polarization on the partial intensity distributions. Black-Right-Pointing-Pointer We also point out the influence of the dipole approximation. Black-Right-Pointing-Pointer We use Monte Carlo simulations. - Abstract: Hard X-ray photoelectron spectroscopy (HXPS) using X-rays in the 1.5-15 keV energy range generated by synchrotron sources becomes an increasingly important analysis technique due to its potential for bulk sensitive measurements. However, besides their high energy, another characteristic of photons generated by synchrotron sources is their linear polarization while X-rays from Al K{alpha} or Mg K{alpha} for instance are unpolarized. This difference implies a possible variation in total path travelled by the photoelectrons generated by the X-rays inside the medium and consequently a modification of the resulting spectrum shape. We show the influence of the polarization on the partial intensity distributions, namely the number of electrons escaping after n inelastic scattering events, for photoelectron with energies of 0.5, 1, 2, 3, 4 and 5 keV and originating from Si 1s{sub 1/2}, Cu 1s{sub 1/2}, Cu 2p{sub 3/2}, Au 4d{sub 3/2} and Au 4f{sub 7/2} subshells. Moreover, we point out the influence of the dipole approximation leading to an underestimation of the partial intensity distributions due to the neglect of the forward-backward asymmetry of the angular photoelectron distribution.

  10. Statistical analysis of tiny SXR flares observed by SphinX

    Science.gov (United States)

    Gryciuk, Magdalena; Siarkowski, Marek; Sylwester, Janusz; Kepa, Anna; Gburek, Szymon; Mrozek, Tomasz; Podgórski, Piotr

    2015-08-01

    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between ~1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of micro-flares and brightenings. Despite a very low activity more than a thousand small X-ray events have been recognized by semi-automatic inspection of SphinX light curves. A catalogue of temporal and physical characteristics of these events is shown and discussed and results of the statistical analysis of the catalogue data are presented.

  11. Proceedings of the second workshop on thermal-non-thermal interactions in solar flares [TNT-II

    International Nuclear Information System (INIS)

    Phillips, K.J.H.

    1989-09-01

    The Second Workshop on the theme of Thermal-Non-thermal Interactions in Solar Flares (TNT-II) was held at Somerville College, University of Oxford, England, during the week of April 10-14, 1989. The keynote address, gave a view of the problems still outstanding with regard to soft and hard X-ray observations of flares. The gathering broke up into four subgroups. The subjects under discussion were: large-scale magnetic field phenomena, flare dynamics, energy release and deposition, and global energy balance. (author)

  12. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    Science.gov (United States)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  13. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  14. Multiple-wavelength analysis of energy release during a solar flare - Thermal and nonthermal electron populations

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Klein, Karl-Ludwig; Kerdraon, Alain; Trottet, Gerard

    1990-01-01

    Collaborative solar investigations by Tufts University and the Observatoire de Paris have resulted in simultaneous radio observations with the Very Large Array (VLA) and the Nancay Radioheliograph (NR), comparisons of this radio data with X-ray observations, and theoretical interpretations of the dominant radiation mechanisms during a weak impulsive solar flare observed on May 28, 1988. The VLA has mapped the flaring structures at time intervals of 3.3 s, showing that the preflash and flash-phase components of the impulsive emission originate in spatially separated sources. The 20.7 cm preflash source is ascribed to thermal gyroresonance emission from coronal loops with typical magnetic field strengths of up to 270 G; this emission is associated with heating and exhibits no detectable hard X-ray radiation above 30 keV. The flash-phase 20.7 cm source and the hard X-ray emission are attributed to nonthermal electrons in the coronal and chromospheric portions of a magnetic loop. The combination of imaging observations at 20.7 and 91.6 cm excludes emission from a confined hot plasma during the flash phase.

  15. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard X-ray radiation

    International Nuclear Information System (INIS)

    Suniaev, R.A.; Titarchuk, L.G.

    1984-01-01

    Analytical consideration is given to the comptonization of photons and its effects on the radiation emitted from accretion disks of compact X-ray sources, such as black holes and neutron stars. Attention is given to the photon distribution during escape from the disk, the angular distribution of hard radiation from the disk, the polarization of hard radiation and the electron temperature distribution over the optical depth. It is shown that the hard radiation spectrum is independent of the low-frequency photon source distribution. The angular distribution and polarization of the outgoing X-rays are a function of the optical depth. A Thomson approximation is used to estimate the angular distribution of the hard radiation and the polarization over the disk. The polarization results are compared with OSO-8 satellite data for Cyg X-1 and show good agreement at several energy levels. 17 references

  16. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  17. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    Energy Technology Data Exchange (ETDEWEB)

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  18. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    International Nuclear Information System (INIS)

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    A nested Kirkpatrick–Baez mirror pair has been designed, fabricated and tested for achromatic nanofocusing synchrotron hard X-rays. The prototype system achieved a FWHM focal spot of about 150 nm in both horizontal and vertical directions. The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway

  19. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    DEFF Research Database (Denmark)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay

    2017-01-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due...... to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales...... as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the Nu...

  20. Behavior of hard X-ray emission in discharges with current disruptions in the DAMAVAND and TVD tokamaks

    International Nuclear Information System (INIS)

    Farshi, E.; Amrollahy, R.; Bortnikov, A.V.; Brevnov, N.N.; Gott, Yu.V.; Shurygin, V.A.

    2001-01-01

    Results are presented from studies of the behavior of hard X-ray emission in discharges with current disruptions in the DAMAVAND and TVD tokamaks. The current disruptions are caused by either an MHD instability or the instability related to the vertical displacement of the plasma column. Experiments were conducted at a fixed value of the safety factor at the plasma boundary (q a ≅ 2.3). Experimental data show that, during a disruption caused by an MHD instability, hard X-ray emission is suppressed by this instability if the amplitude of the magnetic field fluctuations exceeds a certain level. If the disruption is caused by the instability related to the vertical displacement of the plasma column, then hard X-ray emission is observed at the instant of disruption. The experimental results show that the physical processes resulting in the generation and suppression of runaway electron beams are almost identical in large and small tokamaks

  1. Study of hard braking x-ray radiation on the radiation-beam complex ''TEMP''

    International Nuclear Information System (INIS)

    Batrakov, A.B.; Glushko, E.G.; Egorov, A.M.; Zinchenko, A.A.; Litvinenko, V.V.; Lonin, Yu.F.; Ponomarev, A.G.; Rybka, A.V.; Fedotov, S.I.; Uvarov, V.T.

    2015-01-01

    A calculation over of basic parameters of the hard brake x-rayed radiation for the microsecond accelerating of relativistic electronic beam T EMP . Optimization of converters is conducted for these aims. Maximal doses are experimentally got brake x-rayed radiation on beam-radiation complex T EMP . The diagrams of orientation of the brake x-rayed radiation are taken off depending on energies of bunches and forms of electrodes.

  2. A FOCUSED, HARD X-RAY LOOK AT ARP 299 WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ptak, A.; Hornschemeier, A.; Lehmer, B.; Yukita, M.; Wik, D.; Tatum, M. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Zezas, A. [Department of Physics, University of Crete, Herakleion (Greece); Antoniou, V. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Argo, M. K. [Jodrell Bank Centre for Astrophysics, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Ballo, L.; Della Ceca, R. [Osservatorio Astronomico di Brera (INAF), via Brera 28, I-20121 Milano (Italy); Bechtol, K. [Kavli Institute for Cosmological Physics, Chicago, IL 60637 (United States); Boggs, S.; Craig, W. W.; Krivonos, R. [U.C. Berkeley Space Sciences Laboratory, Berkeley, CA (United States); Christensen, F. E. [National Space Institute, Technical University of Denmark, DK-2100 Copenhagen (Denmark); Hailey, C. J. [Columbia University, New York, NY (United States); Harrison, F. A. [Caltech Division of Physics, Mathematics and Astronomy, Pasadena, CA (United States); Maccarone, T. J. [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-02-20

    We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ∼45 keV. Fitting the 3-40 keV spectrum reveals a column density of N {sub H} ∼ 4 × 10{sup 24} cm{sup –2}, characteristic of a Compton-thick active galactic nucleus (AGN), and a 10-30 keV luminosity of 1.2 × 10{sup 43} erg s{sup –1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus also thought to harbor an AGN, as well as X-ray binaries, contribute ≲ 10% to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: (1) any AGN in Arp 299-A must be heavily obscured (N {sub H} > 10{sup 24} cm{sup –2}) or have a much lower luminosity than Arp 299-B and (2) the extranuclear X-ray binaries have spectra that cut-off above ∼10 keV. Such soft spectra are characteristic of ultraluminous X-ray sources observed to date by NuSTAR.

  3. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    International Nuclear Information System (INIS)

    Young, C.A.; Arndt, M.B.; Bennett, K.; Winkler, C.; Connors, A.; Debrunner, H.; Diehl, R.; Rank, G.; Schoenfelder, V.; McConnell, M.; Miller, R.S.; Ryan, J.M.

    2001-01-01

    The 'Pre-SMM' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE

  4. Development of a CZT spectroscopic 3D imager prototype for hard X ray astronomy

    DEFF Research Database (Denmark)

    Auricchio, N.; Caroli, E.; Basili, A.

    2013-01-01

    The development of focusing optics based on wide band Laue lenses operating from ∼60 keV up to several hundreds of keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best its intrinsic capabiliti...

  5. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  6. Design and development of the multilayer optics for the new hard x-ray mission

    Science.gov (United States)

    Pareschi, G.; Basso, S.; Citterio, O.; Spiga, D.; Tagliaferri, G.; Civitani, M.; Raimondi, L.; Sironi, G.; Cotroneo, V.; Negri, B.; Parodi, Giancarlo; Martelli, F.; Borghi, G.; Orlandi, A.; Vernani, D.; Valsecchi, G.; Binda, R.; Romaine, S.; Gorenstein, P.; Attinà, P.

    2017-11-01

    The New Hard X-ray Mission (NHXM) project will be operated by 2017 and is currently undergoing a Phase B study, under the coordination of the Italian Space Agency (ASI). The project is being proposed by an international team in the context of the ESA Call CV M3 as a Small Mission program, with a large Italian participation. It is based on 4 hard X-ray optics modules, each formed by 60 evenly spaced multilayer coated Wolter I mirror shells. An extensible bench is used to reach the 10 m focal length. The Wolter I monolithic substrates with multilayer coating are produced in NiCo by electroforming replication. Three of the mirror modules will host in the focal plane a hybrid a detector system (a soft X-ray Si DEPFET array plus a high energy CdTe detector). The detector of the fourth telescope will be a photoelectric polarimeter with imaging capabilities, operating from 2 up to 35 keV. The total on axis effective area of the three telescopes at 1 keV and 30 kev is of 1500 cm2 and 350 cm2 respectively, with an angular resolution of 20 arcsec HEW at 30 keV. In this paper we report on the design and development of the multilayer coated X-ray mirrors based on NiCo shells.

  7. Investigation of pulse shape analyzers for phoswich detectors in space-borne hard X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, J A.M.; Overtoom, J M [Huygens Lab., Leiden (Netherlands). Cosmic Ray Working Group

    1979-12-01

    A low-background telescope for hard X-ray astronomy (15-250 keV), comprising arrays of NaI(Tl)/CsI(Na) phoswiches as photon collectors, was recently developed. The background rejection efficiency of such a telescope, and hence the minimum source in a given time, critically depends on the performance of the phoswich pulse shape analyzer (PSA) in a space radiation environment. Results from theoretical and experimental work on analyzer configurations based on zero-crossing detection are presented. This led to the selection of an optimum configuration for space application. The in-situ performance of this analyzer was evaluated in a balloon-borne hard X-ray experiment, showing excellent discrimination efficiency throughout the entire energy regime.

  8. SuperAGILE: The hard X-ray imager for the AGILE space mission

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Soffitta, P.; Del Monte, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Tavani, M.; Argan, A.

    2007-01-01

    SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 sr. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV-50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23rd April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations

  9. A MODEL FOR THE CORRELATION OF HARD X-RAY INDEX WITH EDDINGTON RATIO IN BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    Qiao, Erlin; Liu, B. F.

    2013-01-01

    Observations show that there is a positive correlation between the Eddington ratio λ and hard X-ray index Γ for λ ∼> 0.01, and there is an anti-correlation between λ and Γ for λ ∼ bol /L Edd ). In this work, we theoretically investigate the correlation between Γ and λ within the framework of a disk-corona model. We improve the model by taking into account all cooling processes, including synchrotron and self-Compton radiations in the corona, Comptonization of the soft photons from the underlying accretion disk, and the bremsstrahlung radiations. Presuming that the coronal flow above the disk can reach up to the 0.1 Eddington rate at the outer region, we calculate the structure of the two-phase accretion flows and the emergent spectra for accretion rates from 0.003 to 0.1. We find that at accretion rates larger than bsim0.01 Eddington rate, a fraction of coronal gas condenses into the disk and an inner disk can be sustained by condensation. In this case, the X-ray emission is dominated by the scattering of the soft photon from the underlying disk in the corona. The emission from the inner disk and corona can produce the positive correlation between λ and Γ. While at accretion rates lower than bsim0.01 Eddington accretion rate, the inner disk vanishes completely by evaporation, and the accretion is dominated by advection-dominated accretion flows (ADAFs), in which the X-ray emission is produced by the Comptonization of the synchrotron and bremsstrahlung photons of ADAF itself. The emission from ADAFs can produce the anti-correlation between λ and Γ. We show that our model can roughly explain the observed evolution of Γ 3-25keV with L 0.5-25keV /L Edd for the black hole X-ray transient H1743–322 in the decay of 2003 from the thermal-dominated state to low/hard state.

  10. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    Science.gov (United States)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  11. Accelerated gradient methods for the x-ray imaging of solar flares

    Science.gov (United States)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  12. Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127

    NARCIS (Netherlands)

    Cassatella, P.; Uttley, P.; Maccarone, T.

    2012-01-01

    Recent XMM-Newton studies of X-ray variability in the hard states of black hole X-ray binaries (BHXRBs) indicate that the variability is generated in the ‘standard’ optically thick accretion disc that is responsible for the multi-colour blackbody emission. The variability originates in the disc as

  13. 44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    Science.gov (United States)

    Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.

    2009-05-01

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  14. 44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    International Nuclear Information System (INIS)

    Renaud, M.; Terrier, R.; Lebrun, F.; Trap, G.; Decourchelle, A.; Vink, J.

    2009-01-01

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44 Tiγ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  15. Hard X-ray synchrotron light source for industrial and materials research applications

    International Nuclear Information System (INIS)

    Lehr, H.; Ehrfeld, W.; Moser, H.O.; Schmidt, M.; Herminghaus, H.

    1992-01-01

    The requirements for industrial production or for an industry-related analytical environment is demonstrated for the case of the proposed hard X-ray synchrotron light source. The source is intended to provide radiation mainly for deep X-ray lithography as part of the LIGA-process in microfabrication, and for analytical and diagnostic purposes in materials research and microtechnology. It offers up to 48 bending magnet beamlines with a characteristic wavelength of 2 A. An electron energy of 2.5 GeV and normal conducting magnets will be used. A FODO lattice with a beam emittance of 3x10 -7 m rad and four dispersion-free straight sections to accommodate insertion devices, injection elements and RF structures has been designed. (R.P.) 5 refs.; 4 figs.; 1 tab

  16. Accretion Properties of a Sample of Hard X-Ray (<60 keV) Selected Seyfert 1 Galaxies

    Science.gov (United States)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2009-02-01

    We examine the accretion properties in a sample of 42 hard (3-60 keV) X-ray selected nearby broad-line active galactic nuclei (AGNs). The energy range in the sample is harder than that usually used in similar previous studies. These AGNs are mainly complied from the RXTE All Sky Survey, and complemented by the released INTEGRAL AGN catalog. The black hole masses, bolometric luminosities of AGN, and Eddington ratios are derived from their optical spectra in terms of the broad Hβ emission line. The tight correlation between the hard X-ray (3-20 keV) and bolometric/line luminosity is well identified in our sample. Also identified is a strong inverse Baldwin relationship of the Hβ emission line. In addition, all of these hard X-ray AGNs are biased toward luminous objects with a high Eddington ratio (mostly between 0.01 and 0.1) and a low column density (Simbol-X, and NeXT. Finally, the correlation between RFe (= optical Fe II/Hβ) and disk temperature as assessed by T vprop (L/L Edd)M -1 BH leads us to suggest that the strength of the Fe II emission is mainly determined by the shape of the ionizing spectrum.

  17. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  18. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Kewish, C. M.; Ribbens, M.; Moreno, T.; Polack, F.; Baranton, G.; Desjardins, K.; Samama, J. P.

    2013-10-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5-20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper.

  19. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    International Nuclear Information System (INIS)

    Somogyi, A; Kewish, C M; Ribbens, M; Moreno, T; Polack, F; Baranton, G; Desjardins, K; Samama, J P

    2013-01-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5–20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper

  20. The energetic relationship among geoeffective solar flares, associated CMEs and SEPs

    International Nuclear Information System (INIS)

    Bhatt Nipa J; Jain Rajmal; Awasthi Arun Kumar

    2013-01-01

    Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r ∼ 0.79) between the hard X-ray (HXR) spectral index (before flare-peak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r ∼ 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r ∼ 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics

  1. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is n......The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material...... and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity...... of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario....

  2. FLARE RIBBON ENERGETICS IN THE EARLY PHASE OF AN SDO FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L.; Hannah, I. G.; Hudson, H. S. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Innes, D. E. [Max Planck Institute for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

    2013-07-10

    The sites of chromospheric excitation during solar flares are marked by extended extreme ultraviolet ribbons and hard X-ray (HXR) footpoints. The standard interpretation is that these are the result of heating and bremsstrahlung emission from non-thermal electrons precipitating from the corona. We examine this picture using multi-wavelength observations of the early phase of an M-class flare SOL2010-08-07T18:24. We aim to determine the properties of the heated plasma in the flare ribbons, and to understand the partition of the power input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIA, and RHESSI, we measure the temperature, emission measure (EM), and differential emission measure of the flare ribbons, and deduce approximate density values. The non-thermal EM, and the collisional thick target energy input to the ribbons are obtained from RHESSI using standard methods. We deduce the existence of a substantial amount of plasma at 10 MK in the flare ribbons, during the pre-impulsive and early-impulsive phase of the flare. The average column EM of this hot component is a few times 10{sup 28} cm{sup -5}, and we can calculate that its predicted conductive losses dominate its measured radiative losses. If the power input to the hot ribbon plasma is due to collisional energy deposition by an electron beam from the corona then a low-energy cutoff of {approx}5 keV is necessary to balance the conductive losses, implying a very large electron energy content. Independent of the standard collisional thick-target electron beam interpretation, the observed non-thermal X-rays can be provided if one electron in 10{sup 3}-10{sup 4} in the 10 MK (1 keV) ribbon plasma has an energy above 10 keV. We speculate that this could arise if a non-thermal tail is generated in the ribbon plasma which is being heated by other means, for example, by waves or turbulence.

  3. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    International Nuclear Information System (INIS)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms

  4. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  5. Energy storage and deposition in a solar flare

    Science.gov (United States)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  6. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  7. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  8. Swift X-ray monitoring of stellar coronal variability

    Science.gov (United States)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  9. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  10. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  11. The soft X-ray telescope for the SOLAR-A mission

    Science.gov (United States)

    Tsuneta, S.; Acton, L.; Bruner, M.; Lemen, J.; Brown, W.; Caravalho, R.; Catura, R.; Freeland, S.; Jurcevich, B.; Owens, J.

    1991-01-01

    The Soft X-ray Telescope (SXT) of the SOLAR-A mission is designed to produce X-ray movies of flares with excellent angular and time resolution as well as full-disk X-ray images for general studies. A selection of thin metal filters provide a measure of temperature discrimination and aid in obtaining the wide dynamic range required for solar observing. The co-aligned SXT aspect telescope will yield optical images for aspect reference, white-light flare and sunspot studies, and, possibly, helioseismology. This paper describes the capabilities and characteristics of the SXT for scientific observing.

  12. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    Science.gov (United States)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  13. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    Science.gov (United States)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  14. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  15. Stellar and solar X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Novick, R [Columbia Univ., New York (USA)

    1975-12-01

    The scientific motivation for X-ray polarimetry is discussed with particular emphasis on the information that might be obtained on the binary X-ray pulsars in addition to a number of other classes of objects including solar flares. Detailed discussions are given for Thomson-scattering and Bragg-crystal polarimeters with numerical estimates for the sensitivity of various existing and proposed instruments.

  16. Measurements of hard cosmic X-rays with special reference to burst phenomena

    International Nuclear Information System (INIS)

    Mills, J.S.

    1978-06-01

    The bulk of this work is concerned with the development and subsequent flights of two balloon-borne gamma-burst detectors. The first was a 1 m 2 device which accumulated a total of 13 1/2 hours flying time at a latitude of 40 0 . The second was a large 7 m 2 detector which was flown from Alice Springs, N. Australia. Both detectors were sensitive to 50 keV to 2 MeV X-rays. The results of these flights are discussed with particular reference to the origin of gamma-bursts. The nature of X-ray bursts is also discussed, together with the results of observations by Experiment F on Ariel V, of the region of the sky centred on the rapid burster MXB1730-335. The last chapter is concerned with the development of a large area hard X-ray detector. This device is designed to be built in modular form and have a total collecting area up to 1 m 2 . It is sensitive to X-rays in the range 20 to 200 keV and is collimated by a tantalum honeycomb which has a field of view of 2 0 FWHM. A small version of this detector was flown on the same platform as the large burst detector. (author)

  17. XMM-Newton Detection of Hard X-Ray Emission in the Nitrogen-Type Wolf-Rayet Star WR 110

    Science.gov (United States)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner

    2002-06-01

    We have used the excellent sensitivity of XMM-Newton to obtain the first high-quality X-ray spectrum of a Wolf-Rayet (W-R) star that is not known to be a member of a binary system. Our target, the nitrogen-type star WR 110 (HD 165688), was also observed and detected with the Very Large Array at four different frequencies. The radio flux density increases with frequency according to a power law Sν~ν+0.64+/-0.10, in very good agreement with the behavior expected for free-free wind emission. The radio data give an ionized mass-loss rate M=4.9×10-5 Msolar yr-1 for an assumed spherical constant-velocity wind. The undispersed CCD X-ray spectra reveal strong emission lines from He-like ions of Mg, Si, and S. The emission measure distribution shows a dominant contribution from cool plasma with a characteristic temperature kTcool~0.5 keV (~6 MK). Little or no excess absorption of this cool component above the value expected from the visual extinction is present. We conclude that the bulk of the cool plasma detected by XMM-Newton lies at hundreds of stellar radii or more if the wind is approximately spherical and homogeneous, but it could lie closer to the star if the wind is clumped. If the cool plasma is due to instability-driven wind shocks, then typical shock velocities are vs~340-550 km s-1 and the average filling factor of X-ray-emitting gas in the wind is no larger than f~10-6. A surprising result is the unambiguous detection of a hard X-ray component that is clearly seen in the hard-band images and the spectra. This hard component accounts for about half of the observed flux and can be acceptably fitted by a hot, optically thin thermal plasma or a power-law model. If the emission is thermal, then a temperature kThot>=3 keV is derived. Such high temperatures are not predicted by current instability-driven wind shock models, and a different mechanism is thus required to explain the hard X-rays. We examine several possible mechanisms and show that the hard emission

  18. Carbon-based Fresnel optics for hard x-ray astronomy.

    Science.gov (United States)

    Braig, Christoph; Zizak, Ivo

    2018-03-10

    We investigate the potential of large-scale diffractive-refractive normal-incidence transmission lenses for the development of space-based hard x-ray telescopes with an angular resolution in the range of (10 -6 -10 -3 )  arcsec over a field of view that is restricted by the available detector size. Coherently stepped achromatic lenses with diameters up to 5 m for compact apertures and 13 m in the case of segmentation provide an access to spectrally resolved imaging within keV-wide bands around the design energy between 10 and 30 keV. Within an integration time of 10 6   s, a photon-limited 5σ sensitivity down to (10 -9 -10 -7 )  s -1  cm -2  keV -1 can be achieved depending on the specific design. An appropriate fabrication strategy, feasible nowadays with micro-optical technologies, is considered and relies on the availability of high-purity carbon or polymer membranes. X-ray fluorescence measurements of various commercially available carbon-based materials prove for most of them the existence of a virtually negligible contamination by critical trace elements such as transition metals on the ppm level.

  19. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    Science.gov (United States)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  20. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    Science.gov (United States)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.