WorldWideScience

Sample records for hard thermal loop

  1. Dimensional Reduction, Hard Thermal Loops and the Renormalization Group

    CERN Document Server

    Stephens, C R; Hess, P O; Astorga, F; Weber, Axel; Hess, Peter O.; Astorga, Francisco

    2004-01-01

    We study the realization of dimensional reduction and the validity of the hard thermal loop expansion for lambda phi^4 theory at finite temperature, using an environmentally friendly finite-temperature renormalization group with a fiducial temperature as flow parameter. The one-loop renormalization group allows for a consistent description of the system at low and high temperatures, and in particular of the phase transition. The main results are that dimensional reduction applies, apart from a range of temperatures around the phase transition, at high temperatures (compared to the zero temperature mass) only for sufficiently small coupling constants, while the HTL expansion is valid below (and rather far from) the phase transition, and, again, at high temperatures only in the case of sufficiently small coupling constants. We emphasize that close to the critical temperature, physics is completely dominated by thermal fluctuations that are not resummed in the hard thermal loop approach and where universal quant...

  2. Effective action for hard thermal loops in gravitational fields

    Directory of Open Access Journals (Sweden)

    R.R. Francisco

    2016-05-01

    Full Text Available We examine, through a Boltzmann equation approach, the generating action of hard thermal loops in the background of gravitational fields. Using the gauge and Weyl invariance of the theory at high temperature, we derive an explicit closed-form expression for the effective action.

  3. Quasiparticles in Leptogenesis - A hard-thermal-loop study

    CERN Document Server

    Kie\\ssig, Clemens Paul

    2011-01-01

    We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed propagators in the imaginary time formalism of thermal field theory. We perform our analysis in a leptogenesis toy model with three right-handed heavy neutrinos $N_1$, $N_2$ and $N_3$. We consider decays and inverse decays and work in the hierarchical limit where $M_2 \\gg M_1$. We neglect flavour effects and assume that the temperatures are much smaller than $M_2$ and $M_3$. We pay special attention to the influence of fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction, for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop lepton propagators with zero-temperature propagators, where we replace the zero-temperature mass by the thermal mass of the leptons $m_\\ell(T)$ in one case and the asymptotic mass of the positive-helicity mode ...

  4. Hard-Thermal-Loop QCD thermodynamics and quark number susceptibility

    Directory of Open Access Journals (Sweden)

    Mogliacci Sylvain

    2014-04-01

    Full Text Available The weak-coupling expansion of the QCD pressure is known up to the order g6 log g. However, at experimentally relevant temperatures, the corresponding series is poorly convergent. In this proceedings, we discuss at which extent the gauge-invariant resummation scheme, Hard-Thermal-Loop perturbation theory (HTLpt, improves the apparent convergence. We first present HTLpt results for QCD thermodynamic functions up to three-loop order at vanishing chemical potential. Then, we report a preliminary HTLpt result of one-loop quark number susceptibility, probing the finite density equation of state. Our results are consistent with lattice data down to 2 − 3Tc, reinforcing the weakly-coupled quasiparticle picture in the intermediate coupling regime.

  5. A brief overview of hard-thermal-loop perturbation theory

    CERN Document Server

    Su, Nan

    2012-01-01

    The poor convergence of quantum field theory at finite temperature has been one of the main obstacles in the practical applications of thermal QCD for decades. Here we briefly review the progress of hard-thermal-loop perturbation theory (HTLpt) in reorganizing the perturbative expansion in order to improve the convergence. The quantum mechanical anharmonic oscillator is used as a simple example to show the breakdown of weak-coupling expansion, and variational perturbation theory is introduced as an effective resummation scheme for divergent weak-coupling expansions. We discuss HTLpt thermodynamic calculations for QED, pure-glue QCD, and QCD with N_f=3 up to three-loop order. The results suggest that HTLpt provides a systematic framework that can be used to calculate both static and dynamic quantities for temperatures relevant at LHC.

  6. A Brief Overview of Hard-Thermal-Loop Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    SU Nan

    2012-01-01

    The poor convergence of quantum field theory at finite temperature has been one of the main obstacles in the practical applications of thermal QCD for decades. Here we briefly review the progress of hard-thermal-loop perturbation theory (HTLpt) in reorganizing the perturbative expansion in order to improve the convergence. The quantum mechanical anharmonic oscillator is used as a simple example to show the breakdown of weak-coupling expansion, and variational perturbation theory is introduced as an effective resummation scheme for divergent weak-coupling expansions. We discuss HTLpt thermodynamic calculations for QED, pure-glue QCD, and QCD with Nf = 3 up to three-loop order. The results suggest that HTLpt provides a systematic framework that can be used to calculate both static and dynamic quantities for temperatures relevant at LHC.

  7. Quasiparticles in leptogenesis. A hard-thermal-loop study

    Energy Technology Data Exchange (ETDEWEB)

    Kiessig, Clemens Paul

    2011-06-29

    We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed propagators in the imaginary time formalism of thermal field theory. We perform our analysis in a leptogenesis toy model with three right-handed heavy neutrinos N{sub 1}, N{sub 2} and N{sub 3}. We consider decays and inverse decays and work in the hierarchical limit where the mass of N{sub 2} is assumed to be much larger than the mass of N{sub 1}, that is M{sub 2} >> M{sub 1}. We neglect flavour effects and assume that the temperatures are much smaller than M{sub 2} and M{sub 3}. We pay special attention to the influence of fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction, for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop lepton propagators with zero-temperature propagators, where we replace the zero-temperature mass by the thermal mass of the leptons m{sub l}(T) in one case and the asymptotic mass of the positive-helicity mode {radical}(2)m{sub l}(T) in the other case. We calculate all relevant decay rates and CP-asymmetries and solve the corresponding Boltzmann equations we derived. We compare the final lepton asymmetry of the four thermal cases and the vacuum case for three different initial neutrino abundances; zero, thermal and dominant abundance. The final asymmetries of the thermal cases differ considerably from the vacuum case and from each other in the weak washout regime for zero abundance and in the intermediate regime for dominant abundance. In the strong washout regime, where no influences from thermal corrections are commonly expected, the final lepton asymmetry can be enhanced by a factor of two by hiding part of the lepton asymmetry in the quasi-sterile minus-mode in the case of strongly interacting lepton modes. (orig.)

  8. Improved hard-thermal-loop effective action for hot QED and QCD

    CERN Document Server

    Flechsig, F; Flechsig, Fritjof; Rebhan, Anton K

    1995-01-01

    The conventional results for hard thermal loops, which are the building blocks of resummed perturbation theory in thermal field theories, have collinear singularities when external momenta are light-like. It is shown that by taking into account asymptotic thermal masses these singularities are removed. The thus improved hard thermal loops can be summarized by compact gauge-invariant effective actions, generalizing the ones found by Taylor and Wong, and by Braaten and Pisarski.

  9. OSEFT or how to go beyond hard thermal loops

    CERN Document Server

    Manuel, Cristina; Stetina, Stephan

    2016-01-01

    We show that effective field theory techniques can be applied in the high temperature $T$ regime of plasmas to improve the accuracy of the physics of the hard scales (or scales of order $T$), and as a by-product, also that of the soft scales (or scales of order $gT$). At leading order in the coupling constant the hard scales of the plasma can be viewed as on-shell classical particles. Based on this observation, and without any reference to the state of the system, we derive an effective field theory describing the quantum fluctuations around an on-shell fermion with energy $p$, described as a set of high dimension operators over the on-shell energy $p$. When applied to systems close to thermal equilibrium, where for most on-shell particles $p \\sim T$, we show that the on-shell effective field theory (OSEFT) properly describes the HTL photon polarization tensor of QED, and its 1/T corrections. For the soft scales the first non-vanishing power correction turns out to be a perturbative correction to the HTL resu...

  10. Viscosity to entropy ratio of QGP in relativistic heavy ion collision: Hard thermal loop corrections

    Science.gov (United States)

    Pari, Sharareh Mehrabi; Javidan, Kurosh; Shahri, Fatemeh Taghavi

    2016-06-01

    In this work, we report on our computation results for the best value of the shear viscosity to entropy ratio of quark-gluon plasma produced in the relativistic Au-Au collisions at s NN = 200GeV. Time evolution of heavy quarks distribution functions is calculated by solving the Fokker-Planck evolution equation using the new technique: Iterative Laplace transform method. We compute the drag and diffusion coefficients by considering the hard thermal loop corrections and also temperature dependence running strong coupling, up to complete interactions of leading order.

  11. Some Applications of Hard Thermal Loop Perturbation Theory in Quark Gluon Plasma

    CERN Document Server

    Haque, Najmul

    2014-01-01

    This thesis is mainly devoted to the study of thermodynamics for quantum Chromodynamics. In this thesis I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to study the thermodynamics of QCD in leading-order, next-to-leading-order and next-to-next-to-leading order at finite temperature and finite chemical potential. I also discuss about various order diagonal and off-diagonale quark number susceptibilities in leading order as well as beyond leading order. For all the observables, I compare our results with available lattice QCD data and we find good agreement. Along-with the computation of thermodynamic quantities of hot and dense matter, I also discuss about low mass dilepton rate from hot and dense medium using both perturbative and non-perturbative models and compare them with those from lattice gauge theory and in-medium hadron gas.

  12. Chiral phase transitions in quantum chromodynamics at finite temperature: Hard-thermal-loop resummed Dyson–Schwinger equation in the real time formalism

    Indian Academy of Sciences (India)

    Hisao Nakkagawa; Hiroshi Yokota; Koji Yoshida; Yuko Fueki

    2003-05-01

    Chiral phase transition in thermal QCD is studied by using the Dyson–Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.

  13. Hard Loops, Soft Loops, and High Density Effective Field Theory

    CERN Document Server

    Schäfer, T

    2003-01-01

    We study several issues related to the use of effective field theories in QCD at large baryon density. We show that the power counting is complicated by the appearance of two scales inside loop integrals. Hard dense loops involve the large scale $mu^2$ and lead to phenomena such as screening and damping at the scale $gmu$. Soft loops only involve small scales and lead to superfluidity and non-Fermi liquid behavior at exponentially small scales. Four-fermion operators in the effective theory are suppressed by powers of $1/mu$, but they get enhanced by hard loops. As a consequence their contribution to the pairing gap is only suppressed by powers of the coupling constant, and not powers of $1/mu$. We determine the coefficients of four-fermion operators in the effective theory by matching quark-quark scattering amplitudes. Finally, we introduce a perturbative scheme for computing corrections to the gap parameter in the superfluid phase

  14. Thermal fluctuations in loop cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Singh, Parampreet

    2007-01-01

    Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...

  15. Hard photon production from unsaturated quark-gluon plasma at two-loop level

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D. E-mail: ddutta@apsara.barc.ernet.in; Sastry, S.V.S.; Mohanty, A.K.; Kumar, K

    2002-11-18

    The hard photon production from bremsstrahlung and annihilation with scattering that arise at two-loop level are estimated for a chemically non-equilibrated quark-gluon plasma in the framework of Hard Thermal Loop (HTL) resummed effective field theory. The rate of photon production is found to be suppressed due to unsaturated phase space compared to equilibrated plasma. For an unsaturated plasma, unlike the effective one-loop case, the reduction in the effective two-loop processes is found to be independent of gluon fugacity, due to an additional collinear enhancement arising from the decrease in thermal quark mass but strongly depends on quark and antiquark fugacities. It is also found that the photon production is dominated by bremsstrahlung mechanism, since the phase space suppression is higher for annihilation with scattering, in contrast to the equilibrated plasma where annihilation with scattering dominates the photon production.

  16. High Temperature Sodium Thermal Convection Test Loop

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A project for the evaluation of compatibility characteristic of structural materials used in China experimental fast reactor(CEFR) has been in operation. The conditions which these structural materials contact with liquid sodium in reactor can be simulated by the tests in high temperature sodium thermal convection test loop. The main aims of designing and constructing the thermal convection test loop is for the corrosion test of CEFR materials, and the objective is to obtain the corrosion data of domestic materials.The main features of the test loop are shown in Fig.1. The primary components of the loop

  17. Hard Photon production from unsaturated quark gluon plasma at two loop level

    CERN Document Server

    Dutta, D; Mohanty, A K; Kumar, K; Choudhury, R K

    2002-01-01

    The hard photon productions from bremsstrahlung and annihilation with scattering that arise at two loop level are estimated from a chemically non-equilibrated quark gluon plasma using the frame work of thermal field theory. Although, the rate of photon production is suppressed due to unsaturated phase space, the above suppression is relatively smaller than expected due to an additional collinear enhancement (arise due to decrease in thermal quark mass) as compared to it's equilibrium counterpart. Interestingly, unlike the one loop case, the reduction in the two loop processes are found to be independent of gluon chemical poential, but strongly depends on quark fugacity. It is also found that, since the phase space suppression is highest for annihilation with scattering, the photon production is entirely dominated by bremsstrahlung mechanism at all energies. This is to be contrasted with the case of the equilibrated plasma where annihilation with scattering dominates the photon production particularly at highe...

  18. The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation

    CERN Document Server

    Jiang, Yu; Huang, Shi-song; Sun, Wei-min; Zong, Hong-shi

    2010-01-01

    Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \\textbf{D 78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that the pressure under HDL approximation is generally smaller than the perturbative result. In addition, we also calculate the quark number susceptibility (QNS) at finite temperature and finite chemical potential under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results with the corresponding ones in the previous literature.

  19. Effective Two-loop Thermodynamic Potential with Fermions in the real-time formalism of thermal field theory

    CERN Document Server

    Xin, W; Xin, Wang; Jiarong, Li

    2000-01-01

    Within the real-time formalism (RTF) of thermal field theory,we apply the hard thermal loop (HTL) resummation technique to calculating effective two-loop thermodynamic potential in quark-gluon plasma (QGP) and its renormalization. The result with collective effects is obtained, which is valid for an arbitrary number of quark flavors with masses.

  20. Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops

    CERN Document Server

    Kontar, E P; Emslie, A G; Vilmer, N

    2013-01-01

    Recent observations from {\\em RHESSI} have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high energy electrons are confined to the coronal region of the source, we consider turbulent pitch angle scattering of fast electrons off low frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop and ...

  1. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  2. A reconnection-driven model of the hard X-ray loop-top source from flare 2004-Feb-26

    CERN Document Server

    Longcope, Dana; Brewer, Jasmine

    2016-01-01

    A compact X-class flare on 2004-Feb-26 showed a concentrated source of hard X-rays at the tops of the flare's loops. This was analyzed in previous work (Longcope et al. 2010), and interpreted as plasma heated and compressed by slow magnetosonic shocks generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, bu...

  3. Hard matching for boosted tops at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Andre H. [Vienna Univ. (Austria). Faculty of Physics; Vienna Univ. (Austria). Erwin Schroeder International Institute for Mathematical Physics; Pathak, Aditya; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Pietrulewicz, Piotr [DESY Hamburg (Germany). Theory Group

    2015-08-15

    Cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e{sup +}e{sup -} collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ ≅ m{sub t}. Our extraction also yields the final ingredients needed to carry out logarithmic resummation at next-to-next-to-leading logarithmic order (or N3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O(α{sup 2}{sub s}) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ≅m{sub t}.

  4. Birhythmicity and Hard Excitation from Coupled Synthetic Feedback Loops

    Directory of Open Access Journals (Sweden)

    Aimin Chen

    2014-01-01

    Full Text Available Synthetic biology opens up the possibility of creating circuits that would not survive in the natural world and studying their behaviors in living cells, expanding our notion of biology. Based on this, we analyze on a synthetic biological system the effect of coupling between two instability-generating mechanisms. The systems considered are two topologically equivalent synthetic networks. In addition to simple periodic oscillations and stable steady state, the system can exhibit a variety of new modes of dynamic behavior: coexistence between two stable periodic regimes (birhythmicity and coexistence of a stable periodic regime with a stable steady state (hard excitation. Birhythmicity and hard excitation have been proved to exist in biochemical networks. Through bifurcation analysis on these two synthetic cellular networks, we analyze the function of network structure for the collapse and revival of birhythmicity and hard excitation with the variation of parameters. The results have illustrated that the bifurcation space can be divided into four subspaces for which the dynamical behaviors of the system are generically distinct. Our analysis corroborates the results obtained by numerical simulation of the dynamics.

  5. Nuclear Thermal and Blast Hardness Validation Test

    Science.gov (United States)

    2008-11-03

    testing and subassemblies, components, and coupons are used to conduct thermal testing . Test coupons must be representative of the exposed area on...enclosure. 3.2.2 Data instrumentation for the thermal test should include thermocouples to measure the free field, test item (usually coupons...applicable, and perform final checkouts. f. Perform the thermal test and record data and video of the test item response. g. Once it is safe to

  6. Thermal Conductivity Designed Hard Protective Thin Films

    Science.gov (United States)

    2014-05-01

    University of Leoben. After his PhD in 2001 on Materials Science Aspects of Nanocrystalline PVD Hard Coatings in collaboration with the West Bohemian...Vienna University of Technology) Materials Science and Technology Karlsplatz 13 Wien (Vienna) 1040, AUSTRIA EOARD Grant 13-2147 Report Date: May...University of Technology) Materials Science and Technology Karlsplatz 13 Wien (Vienna) 1040, AUSTRIA 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9

  7. Temporal behaviour of the thermal model of hard X-ray bursts

    Science.gov (United States)

    Mackinnon, A. L.

    1985-01-01

    A simple, analytic model is presented of a hot, thermal hard X-ray source, continuously heated, bounded by ion-acoustic conduction fronts, and expanding in a loop. The model is used to investigate the assumption that the 'rise time' of the X-ray emission is approximately given by the loop length divided by the ion-sound speed appropriate to the peak temperature. It is found that a freely-expanding source does not behave in this way; instead, the rise time is symptomatic of the timescale for primary energy release. If the energy release rate does not fall significantly before the source fills the loop, however, then this assumption may be approximately satisfied, if a condition on the temporal behavior of the energy release is satisfied. Finally, some remarks on the relative timing of temperature and emission measure peaks are made, and possible further applications mentioned of the results presented herein.

  8. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  9. Gravitational collapse and thermalization in the hard wall model

    CERN Document Server

    Craps, Ben; Rosen, Christopher; Taliotis, Anastasios; Vanhoof, Joris; Zhang, Hongbao

    2014-01-01

    We study a simple example of holographic thermalization in a confining field theory: the homogeneous injection of energy in the hard wall model. Working in an amplitude expansion, we find black brane formation for sufficiently fast energy injection and a scattering wave solution for sufficiently slow injection. We comment on our expectations for more sophisticated holographic QCD models.

  10. Corrosion of alloy 718 in a mercury thermal convection loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S.J.; DiStefano, J.R.; Manneschmidt, E.T.

    1999-12-01

    Two thermal convection loops (TCLs) fabricated from annealed alloy 718 continuously circulated mercury (Hg) with 1000 wppm gallium (Ga), respectively, for about 5000 h, duplicating previous TCL tests for annealed 316L. In each case, the maximum loop temperature was 305C, the minimum temperature was 242C, and the Hg flow rate was approximately 1.2 m/min. Unlike the 316L exposed to Hg, which above about 260C exhibited a thin, porous surface layer depleted in Ni and Cr, the alloy 718 coupons revealed essentially no wetting and, therefore, no interaction with that Hg at any temperature. Alloy 718 coupons suspended in the loops revealed inconsequentially small weight changes, and both the coupons and loop tubing exhibited no detectable metallographic evidence of attack.

  11. Time dependence of hysteresis loop displacement in hard-soft magnetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Montserrat [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)]. E-mail: rivas@uniovi.es; Garcia, Jose A. [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Angeles Cerdeira, M. [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Fal-Miyar, Vanessa [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Tejedor, Marcos [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2006-09-15

    Time dependence of the hysteresis loop asymmetry observed in partially crystallized Co{sub 66}Si{sub 16}B{sub 12}Fe{sub 4}Mo{sub 2}is here analyzed at room temperature. The results are related to a magnetic aftereffect occurring in the hard crystallites embedded in the residual soft matrix. The coercive field is found to be constant with time, which is explained in terms of the dipolar interaction theory.

  12. Hard X-ray and microwave sources located around the apex of a solar flare loop

    Science.gov (United States)

    Masuda, S.; Shimojo, M.; Watanabe, K.; Minoshima, T.; Yaji, K.

    2010-12-01

    The apex of a flare loop is one of important regions to understand particle acceleration in solar flares, under the framework of the flare model based on magnetic reconnection. At that portion, nonthermal emissions are observed in hard X-rays and microwave. These two emissions are originated from electrons accelerated/energized in different energy ranges. Hard X-rays (~ 50 - 100 keV ) are emitted by relatively lower-energy (~ 100 keV) accelerated electrons. On the other hand, microwaves (17 GHz) are emitted by relatively higher-energy (~ 1 MeV) electrons. The locations (heights) of these two emitting regions impose considerable constraints on the acceleration/transport/loss processes of electrons in solar flares. To compare hard X-ray and microwave sources, we chose twenty-three events among all events detected by Nobeyama Radio Heliograph (NoRH) during the almost whole period of its operation (1992 - 2008). The criteria are (1) limb event, (2) simultaneous observation with Yohkoh/HXT or RHESSI, (3) enough number of photons in the energy range of 33 - 53 keV, and (4) microwave source large enough to resolve the flare loop into footpoint and looptop sources. However, only seven events among them can be used for this study. The remaining sixteen events are displaced from the list due to no hard X-ray looptop source, too complex structure of multiple loops, and so force. Among the seven events, six events show that the looptop hard X-ray source is located at a higher altitude than the looptop microwave source. This result suggests that lower-energy accelerated electrons (~ 100 keV) are located at a higher altitude than higher-energy (~ 1 MeV) electrons. What makes this height difference? We discuss the cause of it from various kinds of viewpoints, e.g. emission mechanism, trapping effect, transport process, loss process.

  13. Loop Heat Pipe with Thermal Control Valve for Passive Variable Thermal Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loop heat pipes (LHPs) can provide variable thermal conductance needed to maintain electronics and batteries on Lunar/Martian rovers/landers within desired...

  14. Understanding the role of thermal fluctuations in DNA looping

    Science.gov (United States)

    Wilson, David P.; Lillian, Todd; Goyal, Sachin; Tkachenko, Alexei V.; Perkins, Noel C.; Meiners, Jens-Christian

    2007-06-01

    Protein-mediated DNA loop formation is an important biological process that regulates key functions such as transcription. We present a mechanical model for these DNA-protein complexes that can take effects of the DNA sequence such induced curvature into account. This model provides the equilibrium shape and elastic energy of the DNA loop, using boundary conditions from the protein crystal structure. We then construct a Hamiltonian for small perturbations of the DNA around the equilibrium shape, which in turn allows us to calculate the eigenmodes and the entropic contributions of the thermal fluctuations to the free energy of the DNA loop. Here we present computations related to the short wild-type lactose repressor loop of Escheria coli (E. coli), and find that the entropic contributions are significant and amount to up to 3.9 k BT of the free energy. We also show that this entropic contribution from the stiffening of the DNA loop depends strongly on the phase angle between the two operator sites, which adds to the known phasing effect of the elastic energy of the loop.

  15. Thermal stability of Al-Cr-N hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria) and IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: herbert.willmann@unileoben.ac.at; Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Persson, P.O.A. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); FEI Company, 5651 GG Eindhoven (Netherlands); Reiter, A.E. [Balzers Ltd., 9496 Balzers (Liechtenstein); Hultman, L. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Mitterer, C. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Christian Doppler Laboratory for Advanced Hard Coatings, University of Leoben, 8700 Leoben (Austria)

    2006-06-15

    Heat treatment of arc-evaporated cubic Al{sub 0.7}Cr{sub 0.3}N hard coatings in Ar up to 1450 deg. C causes precipitation of AlN. The Cr-enriched matrix transforms into Cr via Cr{sub 2}N under N{sub 2} release. These reactions are investigated by simultaneous thermal analysis, mass spectrometry, X-ray diffraction, and analytical transmission electron microscopy.

  16. Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations

    CERN Document Server

    Bian, N; McKinnon, A

    2011-01-01

    A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use \\emph{Ramaty High Energy Solar Spectroscopic Imager (RHESSI)} observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.} {We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number $K$ as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.} {Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is ...

  17. Hard Thermal Photon Production in Relativistic Heavy Ion Collisions

    CERN Document Server

    Steffen, F D; Steffen, Frank D.; Thoma, Markus H.

    2001-01-01

    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.

  18. Hard thermal photon production in relativistic heavy ion collisions

    Science.gov (United States)

    Steffen, F. D.; Thoma, M. H.

    2001-06-01

    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.

  19. THERMAL STRUCTURE OF CORONAL LOOPS AS SEEN WITH NORIKURA CORONAGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Singh, Jagdev [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India); Ichimoto, K., E-mail: krishna@iiap.res.in [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8417 (Japan)

    2013-03-10

    The thermal structure of a coronal loop, both along and across the loop, is vital in determining the exact plasma heating mechanism. High-resolution spectroscopic observations of the off-limb corona were made using the 25 cm Norikura coronagraph, located at Norikura, Japan. Observations on a number of days were made simultaneously in four forbidden iron emission lines, namely, the [Fe XI] 7892 A line, the [Fe XIII] 10747 A and 10798 A lines, and the [Fe XIV] 5303 A line and on some days made only in the [Fe XI] 7892 A and [Fe X] 6374 A lines. Using temperature sensitive emission line ratios [Fe XIV] 5303 A/[Fe XIII] 10747 A and [Fe XI] 7892 A/[Fe X] 6374 A, we compute the electron temperatures along 18 different loop structures observed on different days. We find a significant negative temperature gradient in all of the structures observed in Fe XIV and Fe XIII and a positive temperature gradient in the structures observed in Fe XI and Fe X. Combining these results with the previous investigations by Singh and his collaborators, we infer that the loop tops, in general, appear hotter when observed in colder lines and colder when observed in relatively hotter lines as compared to their coronal foot points. We suggest that this contrasting trend observed in the temperature variation along the loop structures can be explained by a gradual interaction of different temperature plasma. The exact mechanism responsible for this interaction must be investigated further and has the potential to constrain loop heating models.

  20. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...... transformation sequence of c-to-alpha -to-beta -Si3N4 phases....

  1. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    Science.gov (United States)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  2. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  3. Fermi acceleration at fast shock in a solar flare and impulsive loop-top hard X-ray source

    CERN Document Server

    Tsuneta, S; Tsuneta, Saku; Naito, Tsuguya

    1998-01-01

    We propose that non-thermal electrons are efficiently accelerated by first-order Fermi process at the fast shock, as a natural consequence of the new magnetohydrodynamic picture of the flaring region revealed with Yohkoh. An oblique fast shock is naturally formed below the reconnection site, and boosts the acceleration to significantly decrease the injection energy. The slow shocks attached to the reconnection X-point heat the plasma up to 10--20 MK, exceeding the injection energy. The combination of the oblique shock configuration and the pre-heating by the slow shock allows bulk electron acceleration from the thermal pool. The accelerated electrons are trapped between the two slow shocks due to the magnetic mirror downstream of the fast shock, thus explaining the impulsive loop-top hard X-ray source discovered with Yohkoh. Acceleration time scale is ~ 0.3--0.6 s, which is consistent with the time scale of impulsive bursts. When these electrons stream away from the region enclosed by the fast shock and the s...

  4. The equation of state of QCD under hard-dense-loop approximation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the method proposed by Zong et al.,we calculate the equation of state(EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop(HDL) approximation.A comparison between the EOS under HDL approximation and the cold,perturbative EOS of QCD proposed by Fraga,Pisarski and Schaffner-Bielich is made.It is found that when μ is less than 4.7 GeV,the pressure density calculated using HDL approximation is much larger than that calculated using pertur-bation theory.This enhancement of the obtained pressure density with respect to that of perturbation theory can be regarded as a possible explanation for the strong coupled QGP.It is also expected that the obtained EOS can be applied in the study of neutron stars.

  5. The equation of state of QCD under hard-dense-loop approximation

    Science.gov (United States)

    Sun, Weimin; Jiang, Yu; Zong, Hongshi

    2009-10-01

    Based on the method proposed by Zong et al., we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that when µ is less than 4.7 GeV, the pressure density calculated using HDL approximation is much larger than that calculated using perturbation theory. This enhancement of the obtained pressure density with respect to that of perturbation theory can be regarded as a possible explanation for the strong coupled QGP. It is also expected that the obtained EOS can be applied in the study of neutron stars.

  6. Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology

    Science.gov (United States)

    2007-02-01

    HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results

  7. Thermal test results of the two-phase thermal bus technology demonstration loop

    Science.gov (United States)

    Edelstein, Fred; Liandris, Maria; Rankin, J. Gary

    1987-01-01

    A two-phase heat transport system, the Thermal Bus Technology Demonstrator, has been built and tested for NASA Johnson Space Center for application on Space Station. The loop is a separated two-phase system that uses evaporator flow control valves and liquid condenser flooding to achieve temperature control. Both ambient and thermal vacuum tests have been completed in NASA's Chamber A, initially using Freon-11 and then ammonia as the working fluid. Overall, the tests were quite successful, with the bus achieving all major test objectives, including operation at 19.5 kW and set points at 35 F (1.7 C), 70 F (21.1 C) and 104 F (40.0 C), load sharing, asymmetrical heating and isothermality around the loop. Low plate to vapor temperature drops were obtained for the monogroove cold plate using ammonia and are indicative of the high evaporative film coefficients obtainable with this design.

  8. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    Science.gov (United States)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  9. Early Results from a Multi-Thermal Model for the Cooling of Post-Flare Loops

    Science.gov (United States)

    Reeves, K. K.; Warren, H. P.

    2002-01-01

    We have developed a multi-thermal model for the cooling of post-flare loops. The model consists of an arcade of many nested loops that reconnect and begin cooling at slightly different times, and have different cooling profiles because of the different loop lengths across the arcade. Cooling due to both conductive and radiative processes is taken into account. The free parameters in the model include initial temperature and density in the loop, loop width and the initial loop length. The results from the model are then compared to TRACE and SXT observations. Our many-loop model does a much better job of predicting the SXT and TRACE light curves than a similar model with only one loop.

  10. Origin of Thermal and Non-Thermal Hard X-ray Emission from the Galactic Center

    CERN Document Server

    Dogiel, Vladimir; Yuasa, Takayuki; Prokhorov, Dmitrii; Cheng, Kwong-Sang; Bamba, Aya; Inoue, Hajime; Ko, Chung-Ming; Kokubun, Motohide; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakazawa, Kazuhiro; Yamasaki, Noriko Y

    2009-01-01

    We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^\\ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.

  11. Dependence of Hardness of Silicate Glasses on Composition and Thermal History

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    composition on hardness of silicate glasses. E-glasses of different compositions are subjected to various degrees of annealing to obtain various fictive temperatures in the glasses. It is found that hardness decreases with the fictive temperature. Addition of Na2O to a SiO2-Al2O3-Na2O glass system causes......The prediction of hardness is possible for crystalline materials, but so far not possible for glasses. In this work, several important factors that should be used for predicting the hardness of glasses are discussed. To do so, we have studied the influences of thermal history and chemical...... a decrease in hardness. However, hardness cannot solely be determined from the degree of polymerisation of the glass network. It is also determined by the effect of ionic radius on hardness. However, this effect has opposite trend for alkali and alkaline earth ions. The hardness increases with ionic radius...

  12. Unravelling the components of a multi-thermal coronal loop using magnetohydrodynamic seismology

    CERN Document Server

    Prasad, S Krishna; Klimchuk, J A; Banerjee, D

    2016-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multi-thermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multi-thermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  13. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  14. Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop

    Science.gov (United States)

    Le, Hung; Hill, Charles; Stephan, Ryan A.

    2010-01-01

    Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes

  15. Loop heat pipe for thermal conditions supplying systems for elements of radio electronic equipment

    Directory of Open Access Journals (Sweden)

    Khayrnasov S. М.

    2010-06-01

    Full Text Available The loop heat pipe design presented in the article provides the transmission of thermal flow up to 105 W when working in temperature range of 20—90°C and on any space orientation.

  16. Effect of Thermal and Ultrasound Treatments on Vegetal Biomass from Hard Seed Germination

    Directory of Open Access Journals (Sweden)

    Ilie toth

    2013-05-01

    Full Text Available The paper points out the combined effect of thermal and ultrasound treatments on vegetal biomass from hard seed germination. Exposing hard seeds to temperatures of -30°C for 72 h and then treating them with ultrasounds increased the amount of biomass of the germs with 75.4% compared to the control variant (not treated.

  17. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    Energy Technology Data Exchange (ETDEWEB)

    Galle, G.; Degert, J.; Freysz, E. [Universite de Bordeaux, LOMA, UMR-CNRS 5798, 351 cours de la Liberation, 33405 Talence Cedex (France); Etrillard, C.; Letard, J.-F. [CNRS, Universite de Bordeaux, ICMCB, UPR CNRS 9048, 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex (France); Guillaume, F. [Universite de Bordeaux, ISM, UMR CNRS 5255, 351 cours de la Liberation, 33405 Talence Cedex (France)

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  18. Thermal behaviour analysis on ITER component cooling water system loop 2B

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: guobin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dell’Orco, Giovanni; Liliana, Teodoros; Tao, Jun [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Yang, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-11-15

    Highlights: • Thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. • The cooling water temperature profile at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained. • Operation behaviour of the main heat exchanger for CCWS-2B has been depicted. - Abstract: ITER cooling water system is composed by several cooling loops, the primary heat transfer loops that form the Tokamak Cooling Water System (TCWS), the secondary heat transfer loops that form the Component Cooling Water System (CCWS) and the Chilled Water System (CHWS) and a tertiary heat transfer loop which is the Heat Rejection System (HRS). The CCWS is further divided into CCWS-1, CCWS-2A, CCWS-2B, CCWS-2C, CCWS-2D depending on the water chemistry needs of clients and wetted area material. The component cooling water system loop 2B (CCWS-2B) has the function to remove heat load from coil power supply component, Neutral Beam Injectors (NBIs) system component and diagnostic system which are located in different buildings. As the total number of the client connections for the loop is a few hundreds, simplified thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. The curve of the cooling water temperature at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained and the cooling water flow rate can meet the thermal removal requirement of client was also confirmed from this analysis. In addition, operation behaviour of the main heat exchanger for CCWS-2B in this thermal analysis was depicted for main heat exchanger selection purposes. This study has been carried out with the AFT Fathom code.

  19. Hard and thermal probes of QGP from the perspective of lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Heng-Tong

    2014-12-15

    In this talk I review the current status of lattice QCD results on the hard and thermal probes of QGP, including jet quenching parameters, the melting of quarkonia and open heavy flavors, thermal photon/dilepton rates, electrical conductivity as well as heavy quark diffusion coefficients.

  20. THERMAL NON-EQUILIBRIUM REVISITED: A HEATING MODEL FOR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Mok, Yung, E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: amy.r.winebarger@nasa.gov, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, 4129 Reines Hall, Irvine, CA 92697 (United States)

    2013-08-20

    The location and frequency of events that heat the million-degree corona are still a matter of debate. One potential heating scenario is that the energy release is effectively steady and highly localized at the footpoints of coronal structures. Such an energy deposition drives thermal non-equilibrium solutions in the hydrodynamic equations in longer loops. This heating scenario was considered and discarded by Klimchuk et al. on the basis of their one-dimensional simulations as incapable of reproducing observational characteristics of loops. In this paper, we use three-dimensional simulations to generate synthetic emission images, from which we select and analyze six loops. The main differences between our model and that of Klimchuk et al. concern (1) dimensionality, (2) resolution, (3) geometrical properties of the loops, (4) heating function, and (5) radiative function. We find evidence, in this small set of simulated loops, that the evolution of the light curves, the variation of temperature along the loops, the density profile, and the absence of small-scale structures are compatible with the characteristics of observed loops. We conclude that quasi-steady footpoint heating that drives thermal non-equilibrium solutions cannot yet be ruled out as a viable heating scenario for EUV loops.

  1. Limitation of hardness from thermal water by means of nanofiltration.

    Science.gov (United States)

    Tonko, Csilla Maria; Kiraly, Andras; Mizsey, Peter; Patzay, Gyorgy; Csefalvay, Edit

    2013-01-01

    Geothermal conditions are extremely favourable in Hungary. Thermal water is accessible in 70% of the territory of the country, with a lowest temperature of 30°C. For energetic purposes, it can be utilized in two different ways: for supplying heat or generating electricity. In relation to utilization, one of the most serious problems derives from the chemical composition of thermal water. The present paper investigates the opportunities of preventing scaling by nanofiltration. Experiments were performed on a Thin Film NF DK membrane, thermostated at 50°C and at a pressure of 3.5 MPa with four different samples (from four Hungarian cities - Eger, Mezőkövesd, Bogács, Miskolc-Tapolca) using batch plant. Reproducibility of experiments was also investigated using water samples from Komárom at 50 and 60°C. The results showed that NF DK could achieve high retention of divalent ions. The results of the second phase of the experiments proved that water flux and rejections were very stable. After filtration, the scaling properties of thermal water were simulated with the help of chemical equilibrium modelling software, called Visual MINTEQ 3.0. The results of the permeate samples prove that nanofiltration is a successful process in preventing scaling of thermal water for further use.

  2. Development of thermally formed glass optics for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Craig, W.W.; Hailey, C.J.; Jimenez-Garate, M.

    2000-01-01

    The next major observational advance in hard X-ray/soft gamma-ray astrophysics will come with the implementation of telescopes capable of focusing 10-200 keV radiation. Focusing allows high signal-to-noise imaging and spectroscopic observations of many sources in this band for the first time. The...... report on new, thermally-formed glass micro-sheet optics capable of meeting the requirements of the next-generation of astronomical hard X-ray telescopes....

  3. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    Science.gov (United States)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  4. Closed loop simulations of the thermal experiments in LISA Pathfinder

    CERN Document Server

    Gibert, Ferran; Karnesis, Nikolaos; Díaz-Aguiló, Marc; Mateos, Ignacio; Lobo, Alberto; Gesa, Lluís; Martín, Víctor; Lloro, Ivan

    2013-01-01

    The thermal experiments to be carried out onboard LISA Pathfinder (LPF) will provide essential information of the dependences of the instrument with respect to temperature variations. These thermal experiments must be modelled and simulated both to be validated for mission operations purposes and also to develop a data analysis tool able to characterise the temperature noise contribution to the instrument performance. Here we will present the models developed and the simulated signals for some of the experiments together with the corresponding interferometer readouts, the latter being computed by combining the thermal models with the global LTP (LISA Technology Package) simulator of the LTP Data Analysis team.

  5. A numerical study of the thermal stability of low-lying coronal loops

    Science.gov (United States)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1986-01-01

    The nonlinear evolution of loops that are subjected to a variety of small but finite perturbations was studied. Only the low-lying loops are considered. The analysis was performed numerically using a one-dimensional hydrodynamical model developed at the Naval Research Laboratory. The computer codes solve the time-dependent equations for mass, momentum, and energy transport. The primary interest is the active region filaments, hence a geometry appropriate to those structures was considered. The static solutions were subjected to a moderate sized perturbation and allowed to evolve. The results suggest that both hot and cool loops of the geometry considered are thermally stable against amplitude perturbations of all kinds.

  6. Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    Directory of Open Access Journals (Sweden)

    Joanna McFarlane

    2014-01-01

    Full Text Available Because polyaromatic hydrocarbons show high thermal stability, an example of these compounds, phenylnaphthalene, was tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 ℃ indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. This would indicate that the internal channels of cooler components of trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades to be used in a loop at temperatures significantly greater than the current 400 ℃ maximum for organic fluids. Similar degradation pathways may occur with other organic materials. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of 60% could be achieved using a high efficiency collector and 12 h thermal energy storage when run at a field outlet temperature of 550 ℃.

  7. The impact of manufacturing process on the content of hard triglycerides, hardness and thermal properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Šoronja-Simović Dragana M.

    2012-01-01

    Full Text Available The rheological and physical properties of the chocolate mass depend on the ingredient composition as well as the manufacturing process. For the purpose of this work, a milk chocolate mass of identical composition and raw materials was manufactured by using the two different manufacturing processes: a standard manufacturing process (SM in five-roller mills including conching, and an unconventional manufacturing process in a ball mill (R1. The quality of both milk chocolate masses was examined by the comparison of thermal (differential scanning calorimetry analysis, textural properties (texture analysis, and the content of hard triglycerides (nuclear magnetic resonance spectroscopy. The main goal of this work was to determine whether chocolate can be produced in a ball mill, using the manufacturing process which results in significant savings, without causing drastic changes to the chocolate physical properties. The new manufacturing process rationalises the standard method by combining two phases, namely conching, and refining into a single one. This results in reduced initial and maintenance costs, as well as costs of workforce and fuel, etc. The results have shown that the new chocolate manufacturing process has a positive impact on texture and thermal properties, while the content of hard triglycerides remains the same.

  8. Thermal-hydraulic instabilities in natural circulation flow loops under supercritical conditions

    Science.gov (United States)

    Jain, Rachna

    In recent years, a growing interest has been generated in investigating the thermal hydraulics and flow stability phenomenon in supercritical natural circulation loops. These flow conditions are relevant to some of the innovative passive safety designs proposed for the Gen-IV Supercritical Water Reactor (SCWR) concepts. A computational model has been developed at UW Madison which provides a good basic simulation tool for the steady state and transient analysis of one dimensional natural circulation flow, and can be applied to conduct stability analysis. Several modifications and improvements were incorporated in an earlier numerical scheme before applying it to investigate the transient behavior of two experimental loops, namely, the supercritical water loop at UW-Madison and the supercritical carbon-dioxide (SCCO2) loop at Argonne National Laboratories. Although the model predicted development of instabilities for both SCW and SCCO2 loop which agrees with some previous work, the experiments conducted at SCCO2 loop exhibited stable behavior under similar conditions. To distinguish between numerical effects and physical processes, a linear stability approach has also been developed to investigate the stability characteristics associated with the natural circulation loop systems for various inlet conditions, input powers and geometries. The linear stability results for the SCW and SCCO2 loops exhibited differences with the corresponding transient simulations. This linear model also predicted the presence of instability in the SCCO 2 loop for certain high input powers contradictory to the experimental findings. Dimensionless parameters were proposed which would generalize the stability characteristics of the natural circulation flow loops under supercritical conditions.

  9. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  10. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  11. Constraints on the time scale of nuclear breakup from thermal hard-photon emission

    NARCIS (Netherlands)

    Ortega, R.; d' Enterria, D.; Martinez, G.; Baiborodin, D.; Delagrange, H.; Diaz, J.; Fernandez, F.; Löhner, H.; Matulewicz, T.; Ostendorf, R.W.; Schadmand, S.; Schutz, Y.; Tlusty, P.; Turrisi, R.; Wagner, V.; Wilschut, H.W.E.M.; Yahlali, N.

    2006-01-01

    Measured hard-photon multiplicities from second-chance nucleon-nucleon collisions are used in combination with a kinetic thermal model to estimate the breakup times of excited nuclear systems produced in nucleus-nucleus reactions at intermediate energies. The obtained nuclear breakup time for the (1

  12. Hard X-rays from NGC 4151: A thermal origin?

    Science.gov (United States)

    Titarchuk, Lev; Mastichiadis, Apostolos

    1994-01-01

    We present a model for explaining the recent combined X-ray and low-energy gamma-ray observations of the Seyfert galaxy NGC 4151. According to this model, soft photons become Comptonized in a hot spot producing simultaneously the low-energy power law as observed by Ginga and the high-energy cutoff observed by the Oriented Scintillation Spectrometer Experiment (OSSE). Implementing recently developed theoretical calculations toward a generalized theory of Comptonization, we were able to find fits to the observations using only two parameters which characterize the physical quantities of the emission region: the plasma cloud optical depth and its temperature. We find that there is no need for additional nonthermal, reflection, or higher temperature thermal components to fit the aforementioned OSSE and Ginga observations. We derive in addition the size of the photon region and the temperature of the upscattered soft photons. We should emphasize, also, that any attempt at fitting only the high-energy parts of the spectrum (photon energies greater than 60 keV) by the Sunyaev & Titarchuk (1980) nonrelativistic Comptonization model leads to an underestimate of the Comptonization parameter y (or, equivalently, to an overestimation of the X-ray power-law spectral slope) and leads, as a result, to incorrect proportions between the low-energy and high-energy parts of the spectrum.

  13. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extending an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.

  14. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Science.gov (United States)

    Froment, C.; Auchère, F.; Aulanier, G.; Mikić, Z.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  15. Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop

    CERN Document Server

    Kontar, E P; MacKinnon, A L

    2008-01-01

    A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density.Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution ($\\sim 0.2"$) for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with unprecedented vertical resolution of $\\sim$ 150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km. Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around $140\\pm 30$ km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of m...

  16. Thermal and non-thermal emission from reconnecting twisted coronal loops

    CERN Document Server

    Pinto, R; Browning, P K; Vilmer, N

    2016-01-01

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  17. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Ning Xianwen

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  18. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Institute of Scientific and Technical Information of China (English)

    Ning Xianwen; Wang Yuying; Zhang Jiaxun; Liu Dongxiao

    2015-01-01

    Thermal vacuum test is widely used for the ground validation of spacecraft thermal con-trol system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the nor-mal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC) array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indi-cate that the proposed equivalent ground thermal test method can simulate the heat rejection per-formance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 ?C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large space-craft which employs single-phase fluid loop radiator as thermal control approach.

  19. Thermal Changes in the Hard Dental Tissue at Diode Laser Root Canal Treatment

    Directory of Open Access Journals (Sweden)

    Uzunov Ts.

    2014-12-01

    Full Text Available The laser coagulation at the apical part of the root canal after vital extirpation is a proper method of preventing complications such as pain, bleeding, remaining vital pulp. The aim of the present survey is to register the thermal changes that occur on the tooth surfaces during laser treatment of the root canal after vital extirpation. An in vitro study of 30 extracted teeth has been conducted. The teeth have been prepared with ProTaper nickel-titanium machine tools and wiped dry. During the course of laser treatment of root canals with a diode laser DenLase temperatures, changes of the surface of the hard dental tissues have been recorded with infrared camera FLIR T330. The captured thermal images have been processed with software product Flir Reporter Pro 9. In conclusion, temperature changes in hard dental tissues at diode laser treatment of the root canal are biocompatible.

  20. Thermal stability of sputtered nanocrystalline hard coatings; Thermische Stabilitaet gesputterter nanokristalliner Hartstoffschichten

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, H.; Mayrhofer, P.H.; Mitterer, C. [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniversitaet Leoben, Leoben (Austria); Beschliesser, M. [Materials Center Leoben, Leoben (Austria)

    2004-08-01

    This article deals with the thermal stability of magnetron sputtered hard coatings, i.e. their resistance against oxidation and recrystallization, depending on their chemical compositions. The oxidation behaviour of films in the chromium-nitrogen system was studied by thermogravimetric measurements at different temperatures. Dynamic differential scanning calorimetry was employed to characterize the recrystallization behaviour and the succeeding grain growth. The investigated samples were multiphase nanocrystalline coatings within the titanium-boron-nitrogen system. In addition, the film structures and grain sizes prior to and after the thermal analysis were investigated by means of X-ray diffraction (XRD). (orig.)

  1. Effect of thermal exposure on microstructure and nano-hardness of broached Inconel 718

    Directory of Open Access Journals (Sweden)

    Chen Zhe

    2014-01-01

    Full Text Available Inconel 718 is a high strength, heat resistant superalloy that is used extensively for components in hot sections of gas turbine engines. This paper presents an experimental study on the thermal stability of broached Inconel 718 in terms of microstructure and nano-hardness. The broaching process used in this study is similar to that used in gas turbine industries for machining fir-tree root fixings on turbine discs. Severe plastic deformation was found under the broached surface. The plastic deformation induces a work-hardened layer in the subsurface region with a thickness of ∼50 μm. Thermal exposure was conducted at two temperatures, 550 ∘C and 650 ∘C respectively, for 300 h. Recrystallization occurs in the surface layer during thermal exposure at 550 ∘C and α-Cr precipitates as a consequence of the growth of recrystallized δ phases. More recrystallized grains with a larger size form in the surface layer and the α-Cr not only precipitates in the surface layer, but also in the sub-surface region when the thermal exposure temperature goes up to 650 ∘C. The thermal exposure leads to an increase in nano-hardness both in the work-hardened layer and in the bulk material due to the coarsening of the main strengthening phase γ′′.

  2. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. III. COMPARISON OF ZERO-DIMENSIONAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston TX 77005 (United Kingdom); Klimchuk, J. A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2012-10-10

    Zero-dimensional (0D) hydrodynamic models provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region, and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some or, in the case of the Enthalpy-based Thermal Evolution of Loops model, all stages of the loop evolution. Empirical models can have significant difficulties in obtaining accurate behavior due to invocation of assumptions incompatible with the correct exchange of mass and energy between corona, transition region, and chromosphere.

  3. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: p.cargill@imperial.ac.uk [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  4. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    OpenAIRE

    Andersson, Peter; Bjelkenstedt, Tom; Andersson Sundén, Erik; Sjöstrand, Henrik; Jacobsson, Staffan

    2015-01-01

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using twophase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron t...

  5. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Khaitlina, Sofia Yu; Levitsky, Dmitrii I

    2010-09-01

    Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. © 2010 The Authors Journal compilation © 2010 FEBS.

  6. Effects of thermal aging on microstructure and hardness of China low activation martensitic steel welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui (China); Xu, Gang, E-mail: gang.xu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-08-15

    Highlights: • The hardness of HAZ and WM decreases obviously after aging. • The precipitation of the Laves-phase in BM is similar to that in HAZ. • M{sub 23}C{sub 6} particles are conducive to the nucleation of Laves-phase. • Ta may have a role to retard the early precipitation of the Laves-phase. - Abstract: The aim of this paper is to investigate the microstructure evolution and the change in hardness distribution of China low activation martensitic steel welded joints after thermal aging at 550 °C for 6000 h. The joint was processed by electron beam welding. Compared to the base metal (BM) and heat affected zone (HAZ), Laves-phase was not formed in weld metal (WM) in the as-aged condition due to the higher tantalum content and less precipitation in WM before aging. The dislocation density decreased in HAZ and WM after aging for 6000 h. The property results showed that hardness of WM and HAZ was decreased significantly after aging for 6000 h due to the weakening of solution strengthening and dislocations strengthening. However, the change in the hardness of the base metal by aging remained at a minor level.

  7. Thermal Analysis of Post-eruption Loops from 80,000 to 1.6 million K

    Science.gov (United States)

    Kucera, T.; Landi, E.

    2006-01-01

    We analyze the thermal properties of a set of post eruptive loops which appeared after a prominence eruption on April 30, 2004. The event was observed by TRACE and SOHO/SUMER. The SUMER data was taken from a single slit location with a 90 second cadence and included a number of lines spanning the temperature range 80,000 to 1.6 million K. We perform a differential emission measure analysis of the loops in order to study their thermal evolution.

  8. Development of thermally formed glass optics for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Craig, W.W.; Hailey, C.J.; Jimenez-Garate, M.

    2000-01-01

    The next major observational advance in hard X-ray/soft gamma-ray astrophysics will come with the implementation of telescopes capable of focusing 10-200 keV radiation. Focusing allows high signal-to-noise imaging and spectroscopic observations of many sources in this band for the first time....... The recent development of depth-graded multilayer coatings has made the design of telescopes for this bandpass practical, however the ability to manufacture inexpensive substrates with appropriate surface quality and figure to achieve sub-arcminute performance has remained an elusive goal. In this paper, we...... report on new, thermally-formed glass micro-sheet optics capable of meeting the requirements of the next-generation of astronomical hard X-ray telescopes....

  9. Study of Selected Properties of Thermally Sprayed Coatings Containing WC and WB Hard Particles

    Directory of Open Access Journals (Sweden)

    Brezinová Janette

    2016-12-01

    Full Text Available The paper presents results of research of the essential characteristics of two kinds of advanced coatings applied by HVOF technology. One studied coating: WB-WC-Co (60-30-10% contains two types of hard particles (WC and WB, the second coating is eco-friendly alternative to the previously used WC-based coatings, called “green carbides” with the composition WC-FeCrAl (85-15%. In green carbides coating the heavy metals (Co, Ni, NiCr forming the binding matrix in conventional wear-resistant coatings are replaced by more environmentally friendly matrix based on FeCrAl alloy. On the coatings was carried out: metallographic analysis, measurement of thickness, micro-hardness, adhesion, resistance to thermal cyclic loading and adhesive wear resistance (pin-on-disk test. One thermal cycle consisted of heating the coatings to 600°C, dwell for 10 minutes, and subsequently cooling on the still air. The number of thermal cycles: 10. The base material was stainless steel AISI 316L, pretreatment prior to application of the coating: blasting with white corundum, application device JP-5000.

  10. Loop Heat Pipe with Thermal Control Valve for Passive Variable Thermal Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Lunar Landers and Rovers will require variable thermal links that can reject heat during daytime, and passively shut-off during lunar night. During the long...

  11. Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    Science.gov (United States)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-08-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  12. Thermal Non-Equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    CERN Document Server

    Auchère, F; Bocchialini, K; Buchlin, E; Solomon, J

    2016-01-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  13. Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Baker, Charles; Ku, Jentung

    2000-01-01

    In this paper, experimental work performed on a breadboard Loop Heat Pipe (LHP) is presented. The test article was built by DCI for the Geoscience Laser Altimeter System (GLAS) instrument on the ICESat spacecraft. The thermal system requirements of GLAS have shown that ammonia cannot be used as the working fluid in this LHP because GLAS radiators could cool to well below the freezing point of ammonia. As a result, propylene was proposed as an alternative LHP working fluid since it has a lower freezing point than ammonia. Both working fluids were tested in the same LHP following a similar test plan in ambient conditions. The thermal performance characteristics of ammonia and propylene LHP's were then compared. In general, the propylene LHP required slightly less startup superheat 5nd less control heater power than the ammonia LHP, The thermal conductance values for the propylene LHP were also lower than the ammonia LHP. Later, the propylene LHP was tested in a thermal vacuum chamber. These tests demonstrated that propylene could meet the GLAS thermal design requirements. Design guidelines were proposed for the next flight-like Development Model (DM) LHP for thermal control of the GLAS instrument.

  14. Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  15. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer

    Indian Academy of Sciences (India)

    Sangita Rajvaidya; R Bajpai; A K Bajpai

    2005-10-01

    The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile. Various compositions of gluteraldehyde crosslinked gelatin and N,N′-methylene-bis-acrylamide crosslinked PAN were characterized by SEM and DSC techniques. The IPNs were also thermally pretreated by the annealing process. The effects of annealing temperature on the microhardness of IPNs were studied using the Vickers method. SEM indicates the homogeneous morphological features for IPN. The role of gelatin, AN and crosslinker on the developed hard biopolymer has been described with the help of DSC thermograms and microhardness measurements of annealed specimens and good correlation is observed.

  16. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    Science.gov (United States)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  17. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    Science.gov (United States)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  18. Evaluation of GLAS Demonstration Model Loop Heat Pipe Thermal Vacuum Performance with Various Fluid Charges

    Science.gov (United States)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser a radiator, the other will transport 190 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. This along with some non-ideal flight design compromises, such as a less than ideal charge level for this design concept with a symmetrical secondary wick, lead to inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. This presentation focuses on identifying; the sources of the flight test difficulties by modifying the charge and test setup of the successfully tested Development Model Loop Heat Pipe (DM LHP). While very similar to the flight design, the DM L14P did have several significant difference in design and method of testing. These differences were evaluated for affect on performance by conforming the DM LHP to look more like the flight units. The major difference that was evaluated was the relative fill level of the working fluid within the concentrically design LHP compensation chamber. Other differences were also assessed through performance testing including starter heater size and "hot biasing" of major interior components. Performance was assessed with respect to startup, low power operation, conductance, and control heater power. The results of the testing showed that performance improves as initial charge increases, and when the starter heater is made smaller. The "hot biasing" of the major components did not appear to have a detrimental effect. As a result of test results of the DM LHP, modifications are being made to the flight units to increase the fluid charge and increase the watt-density of the starter heater.

  19. Parametric Characterization on the Thermal Performance of a Closed Loop Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    sreenivasa Rao

    2016-01-01

    Full Text Available Recently closed loop pulsating heat pipes have been receiving much attention because of their potential applications in high heat flux micro-electronic systems. They work by self thermal driven oscillation without any mechanical parts. Though they are simple in structure, understanding of the heat transfer mechanism is highly complex having a strong thermo- hydro dynamic coupling governing their performance. In this paper, an experimental study on a closed loop PHP with a single turn has been conducted there by providing vital information regarding parameter dependence on its performance. The PHP is made of brass tube having an internal diameter of 2 mm and outer diameter of 3 mm. The parametric characterization has been done for the variation in internal diameter, fill ratio, working fluid and orientation of the device. The working fluids Acetone, Methanol, Ethanol and Propanol are considered for experimentation with volumetric filling ratios of 50%, 60%, 70% and 80%. Input heat power of 7 to 12 W is varied at the evaporator section. The CLPHP is also verified for its thermal performance at 00, 300 and 600 orientations. The transient and steady state experiments are conducted and operating temperatures are measured using K- type thermocouples. The results highlighted that the thermal performance of a PHPis strongly influenced by change in fill ratios, orientation and heat input. 80% fill ratio yields an effective heat transfer rate for a horizontal mode of operation. Appreciable fluid movement and better heat transfer rate are observed for the 300 orientation of PHP operation. Acetone exhibits better heat transport capability compared to other working fluids in all orientations.

  20. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Science.gov (United States)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  1. Parametric Influence on Thermal Performance of Flat Plate Closed Loop Pulsating Heat Pipes

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-hai; KHANDEKAR Sameer; GROLL Manfred

    2006-01-01

    This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm2, 165 mm long) machined directly on an aluminum plate(180× 120×3mm3 ), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general,increasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.

  2. Thermal and enzymatic treatment of digested manure fibers in the re-injection loop concept to increase biogas yields

    DEFF Research Database (Denmark)

    Escobar, Esperanza Jurado; Uellendahl, Hinrich Wilhelm; Njoku, Stephen Ikechukwu

    2015-01-01

    treatment of the digested manure fibers (DMF) in combination with the re-injection loop concept were tested. Thermal treatment of DMF at 105oC showed an increase of the specific methane yield of DMF by 65% while no siginificant effect was observed for enzymatic treatment of DMF for 1 h prior......The re-injection loop concept proposes the recirculation of lignocellulosic organic matter after a first cycle of anaerobic digestion in order to increase the conversion into biogas. This re-circulation can potentially increase the methane yield up to 20%. In this study thermal and enzymatic...

  3. POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F. [Dipartimento di Fisica, Universita degli Studi di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

    2012-02-10

    In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below {approx}2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with the Solar Dynamics Observatory/Extreme ultraviolet Variability Experiment.

  4. Evidence of Non-Thermal Particles in Coronal Loops Heated Impulsively by Nanoflares

    CERN Document Server

    Testa, Paola; Allred, Joel; Carlsson, Mats; Reale, Fabio; Daw, Adrian; Hansteen, Viggo; Martinez-Sykora, Juan; Liu, Wei; DeLuca, Ed; Golub, Leon; McKillop, Sean; Reeves, Kathy; Saar, Steve; Tian, Hui; Lemen, Jim; Title, Alan; Boerner, Paul; Hurlburt, Neal; Tarbell, Ted; Wuelser, J P; Kleint, Lucia; Kankelborg, Charles; Jaeggli, Sarah

    2014-01-01

    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "coronal nanoflares". The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.

  5. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  6. Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture

    KAUST Repository

    Iloeje, Chukwunwike

    2015-04-01

    © 2015 Elsevier Ltd. A number of CO2 capture-enabled power generation technologies have been proposed to address the negative environmental impact of CO2 emission. One important barrier to adopting these technologies is the associated energy penalty. Chemical-looping Combustion (CLC) is an oxy-combustion technology that can significantly lower this penalty. It utilizes an oxygen carrier to transfer oxygen from air/oxidizing stream in an oxidation reactor to the fuel in a reduction reactor. Conventional CLC reactor designs employ two separate reactors, with metal/metal oxide particles circulating pneumatically in-between. One of the key limitations of these designs is the entropy generation due to reactor temperature difference, which lowers the cycle efficiency. Zhao et al. (Zhao et al., 2014; Zhao and Ghoniem, 2014) proposed a new CLC rotary reactor design, which overcomes this limitation. This reactor consists of a single rotating wheel with micro-channels designed to maintain thermal equilibrium between the fuel and air sides. This study uses three thermodynamic models of increasing fidelity to demonstrate that the internal thermal coupling in the rotary CLC reactor creates the potential for improved cycle efficiency. A theoretical availability model and an ideal thermodynamic cycle model are used to define the efficiency limits of CLC systems, illustrate the impact of reactor thermal coupling and discuss relevant criteria. An Aspen Plus® model of a regenerative CLC cycle is then used to show that this thermal coupling raises the cycle efficiency by up to 2% points. A parametric study shows that efficiency varies inversely with pressure, with a maximum of 51% at 3bar, 1000C and 60% at 4bar, 1400C. The efficiency increases with CO2 fraction at high pressure ratios but exhibits a slight inverse dependence at low pressure ratios. The parametric study shows that for low purge steam demand, steam generation improves exhaust heat recovery and increases efficiency

  7. Effect of flour polymeric proteins on dough thermal properties and breadmaking characteristics for hard red spring wheat genotypes

    Science.gov (United States)

    The aim of this research was to investigate the effect of variation of flour polymeric proteins on rheological properties of dough under continuous mixing and thermal treatment for hard red spring (HRS) wheat genotypes grown in North Dakota, USA. Flour polymeric proteins were analyzed by size exclus...

  8. Thin films of spin-crossover coordination polymers with large thermal hysteresis loops prepared by nanoparticle spin coating.

    Science.gov (United States)

    Tanaka, Daisuke; Aketa, Naoki; Tanaka, Hirofumi; Tamaki, Takashi; Inose, Tomoko; Akai, Tomoki; Toyama, Hirotaka; Sakata, Osami; Tajiri, Hiroo; Ogawa, Takuji

    2014-09-11

    This communication describes the synthesis of spin-crossover nanoparticles, which can disperse in various organic solvents without an excess amount of surfactants. The nanoparticles form homogeneous thin films on substrates by spin coating. The films show abrupt spin transitions with large thermal hysteresis loops.

  9. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements; PETER Loop. Multifunktionsversuchstand zur thermohydraulischen Untersuchung von DWR Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Ganzmann, I.; Hille, D.; Staude, U. [AREVA NP GmbH (Germany). Materials, Fluid-Structure Interaction, Plant Life Management NTCM-G

    2009-07-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  10. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  11. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G. [and others

    1994-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

  12. Some applications of thermal field theory to quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa

    2006-04-01

    We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions.

  13. Advanced neutron source reactor thermal-hydraulic test loop facility description

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  14. A Suzaku Search for Non-thermal Emission at Hard X-ray Energies in the Coma Cluster

    CERN Document Server

    Wik, Daniel R; Finoguenov, Alexis; Matsushita, Kyoko; Nakazawa, Kazuhiro; Clarke, Tracy E

    2009-01-01

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the ICM at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial (Fusco-Femiano et al. 2004; Rossetti & Molendi 2004). We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its non-thermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and non-thermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field (Schuecker et al. 2004). We fail to find statistically significant evidence for non-thermal emission in the spectra, which are better described by only a single or multi-temperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on t...

  15. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  16. Unravelling the Components of a Multi-thermal Coronal Loop using Magnetohydrodynamic Seismology

    Science.gov (United States)

    Krishna Prasad, S.; Jess, D. B.; Klimchuk, J. A.; Banerjee, D.

    2017-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  17. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    Science.gov (United States)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  18. Dynamics and control designs for internal thermally coupled distillation columns with different purities, Part 1: Open loop dynamic behaviors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The open loop dynamic behaviors of internal thermally coupled distillation column with four different purities (low-,moderate-, high- and very high-purity) are studied. These dynamic behaviors are characterized by strong asymmetric non-linearity, high sensitivity to operation conditions change and distinct inverse response. With the increase of purity, these dynamic behaviors are intensified and become more complex, which easily lead to the mismatch between linear model and plant and also change the relationship between manipulated and controlled variables.

  19. Development of a Thermal Control System with Mechanically Pumped CO2 Two-Phase Loops for the AMS-02 Tracker on the ISS

    CERN Document Server

    Alberti, G; Ambrosi, G; Bardet, M; Battiston, R; Borsini, S; Cao, J F; Chen, Y; van Es, J; Gargiulo, C; Guo, K H; Guo, L; He, Z H; Huang, Z C; Koutsenko, V; Laudi, E; Lebedev, A; Lee, S C; Li, T X; Lin, Y L; Lv, S S; Menichelli, M; Miao, J Y; Mo, D C; Ni, J Q; Pauw, A; Qi, X M; Shue, G M; Sun, D J; Sun, X H; Tang, C P; Verlaat, B; Wang, Z X; Weng, Z L; Xiao, W J; Xu, N S; Yang, F K; Yeh, C C; Zhang, Z; Zwartbol, T

    2013-01-01

    To provide a stable thermal environment for the AMS-Tracker, a thermal control system based on mechanically pumped CO2 two-phase loops was developed. It has been operating reliably in space since May 19, 2011. In this article, we summarize the design, construction, tests, and performance of the AMS-Tracker thermal control system (AMS-TTCS).

  20. Experimental investigations with a carbonate looping test facility with 1 MW thermal power; Experimentelle Untersuchungen an einer Carbonate Looping Versuchsanlage mit 1 MW thermischer Leistung

    Energy Technology Data Exchange (ETDEWEB)

    Galloy, Alexander

    2014-02-20

    Carbonate looping is a process for separation of CO{sub 2} from flue gases of fossil-fired power plants. For further examination of this process a test facility with a thermal power of 1 MW has been designed, erected, commissioned and operated. This plant was operated for several hundred hours in different modes. CO{sub 2} could be separated from a synthetic flue gas. Separation was possible within continuous and discontinuous mode of operation. Within this work the state of the art, the test facility and measurement results e.g. temperature curves, pressure curves and gas concentrations are presented. Additionally, the influence of these parameters on the CO{sub 2} separation is discussed.

  1. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2017-01-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  2. The influence of oxygen contamination on the thermal stability and hardness of nanocrystalline Ni–W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, Christopher J., E-mail: cjm312@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Yin, Denise [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Cantwell, Patrick R. [Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States); Harmer, Martin P. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-05-10

    Nanocrystalline Ni–W alloys are reported in the literature to be stabilized against high temperature grain growth by W-segregation at the grain boundaries. However, alternative thermal stability mechanisms have been insufficiently investigated, especially in the presence of impurities. This study explored the influence of oxygen impurities on the thermal stability and mechanical properties of electrodeposited Ni-23 at% W with aberration-corrected scanning transmission electron microscopy (STEM) and nanoindentation hardness testing. The primary finding of this study was that nanoscale oxides were of sufficient size and volume fraction to inhibit grain growth. The oxide particles were predominantly located on grain boundaries and triple points, which strongly suggests that a particle drag mechanism was active during annealing. In addition, W-segregation was observed at the oxide/Ni(W) interfaces rather than the presumed Ni(W) grain boundaries, further supporting the argument that alternative mechanisms are responsible for thermal stability in these alloys. Lastly, alloys with nanoscale oxides exhibited a higher hardness compared to similar alloys without oxides, suggesting that the particles are widely advantageous. Overall, this work demonstrates that impurity oxide particles can limit grain growth, and alternative mechanisms may be responsible for Ni–W thermal stability.

  3. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

    Science.gov (United States)

    Ding, Yingchun; Chen, Min; Wu, Wenjuan; Xu, Ming

    2016-09-01

    Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

  4. The influence of hard segment content on mechanical and thermal properties of polycarbonate-based polyurethane materials

    Directory of Open Access Journals (Sweden)

    Budinski-Simendić Jaroslava

    2012-01-01

    Full Text Available Aliphatic segmented polyurethanes were prepared by one-step procedure in catalytic reaction between polycarbonate diol, hexamethylene-diisocyanate and 1,4-butandiol (as chain extender. The hard segment content TS was varied (17, 24, 30 and 42 wt. % by changing the ratio of starting compounds. The soft segment is made from flexible aliphatic polycarbonate diol, while hard segments consist of chain extender and diisocyanate component. In order to study the hydrogen bonding formation and phase separation, Fourier transform infrared spectroscopy (FT-IR was used. Wide angle X-ray scattering (WAXS was performed to determine a degree of crystallinity and to investigate the phase behavior of prepared elastomers. The effect of TS content on mechanical properties (tensile strength, elongation at break and hardness was tested. Thermal behavior of prepared novel polycarbonate-based polyurethanes was investigated using differential scanning callorimetry (DSC. It was determined that the elastomer which contains the highest amount of urethane groups in its structure (TS content of 42 wt. % exhibits the most pronounced phase separation and the highest degree of crystallinity. All prepared polyurethanes exhibit high elongation at break (over 700%. The glass transition temperature Tg of prepared samples was in the temperature region from −39 to −36°C, and it was found to be slightly influenced by the soft segment content. The enthalpy of chain segments relaxation in diffused region between hard and soft domains (detected in the temperature range from 35 to 55 °C was decreased with the increase of hard segment content. The multiple melting of hard segments (connected with the dissruption of physical crosslinks appeared above 100 °C. It was found that the melting enthalpy linearly increases with the increase of urethane group content. Sample with 42 wt. % of TS has the highest value of melting enthalpy (41.5 J/g.

  5. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    Science.gov (United States)

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  6. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Directory of Open Access Journals (Sweden)

    Rohit Kumar

    Full Text Available Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH and transition temperature (ΔT, showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have

  7. The soft and hard X-rays thermal emission from star cluster winds with a supernova explosion

    CERN Document Server

    Castellanos-Ramirez, A; Esquivel, A; Toledo-Roy, J C; Olivares, J; Velazquez, P F

    2015-01-01

    Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.

  8. Comparative of the Tribological Performance of Hydraulic Cylinders Coated by the Process of Thermal Spray HVOF and Hard Chrome Plating

    Directory of Open Access Journals (Sweden)

    R.M. Castro

    2014-03-01

    Full Text Available Due to the necessity of obtaining a surface that is resistant to wear and oxidation, hydraulic cylinders are typically coated with hard chrome through the process of electroplating process. However, this type of coating shows an increase of the area to support sealing elements, which interferes directly in the lubrication of the rod, causing damage to the seal components and bringing oil leakage. Another disadvantage in using the electroplated hard chromium process is the presence of high level hexavalent chromium Cr+6 which is not only carcinogenic, but also extremely contaminating to the environment. Currently, the alternative process of high-speed thermal spraying (HVOF - High Velocity Oxy-Fuel, uses composite materials (metal-ceramic possessing low wear rates. Research has shown that some mechanical properties are changed positively with the thermal spray process in industrial applications. It is evident that a coating based on WC has upper characteristics as: wear resistance, low friction coefficient, with respect to hard chrome coatings. These characteristics were analyzed by optical microscopy, roughness measurements and wear test.

  9. Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state

    CERN Document Server

    Castro, M; Braga, J; Maiolino, T; Pottschmidt, K; Wilms, J

    2014-01-01

    Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with $kT$\\thinspace$\\sim 50${\\thinspace}keV and optical depth around 1. Previous spectral studies of 1E{\\thinspace}1740.7$-$2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{\\thinspace}1740.7$-$1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modele...

  10. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-12-15

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  11. Thermal performance of a top heat mode closed-loop oscillating heat pipe with a check valve (THMCLOHP/CV)

    Science.gov (United States)

    Bhuwakietkumjohn, N.; Parametthanuwat, T.

    2015-05-01

    The aim of this research is to investigate the heat transfer characteristics of a top heat mode closed-looped oscillating heat pipe with check valves (THMCLOHP/CV). Ethanol is used as a working fluid with filling ratios of 30, 50, and 80% of the total volume of the tube. The THMCLOHP/CV is made of a copper tube with an inside diameter of 2.03 mm. The angle of inclination is 90° from the horizontal axis with 40 turns, two check valves, and an evaporator length of 50, 100, and 150 mm. The operating temperatures are 44 and 55°C. It is found that the thermal resistance decreases significantly as the working temperature is increased. Thus, the evaporator length affects the thermal resistance of the THMCLOHP/CV. The presence of the THMCLOHP/CV is clearly demonstrated to contribute to thermal performance improvement.

  12. Scale-up of thermally dried kefir production as starter culture for hard-type cheese making: an economic evaluation.

    Science.gov (United States)

    Koutinas, Athanasios A; Bekatorou, Argyro; Katechaki, Eleftheria; Dimitrellou, Dimitra; Kopsahelis, Nikolaos; Papapostolou, Harris; Panas, Panayiotis; Sideris, Kostas; Kallis, Mihalis; Bosnea, Loulouda A; Koliopoulos, Dionisis; Sotiropoulos, Panayiotis; Panteli, Ageliki; Kourkoutas, Yiannis; Kanellaki, Maria; Soupioni, Magdalini

    2010-03-01

    This paper concerns the effect of thermal-drying methodology on the investment cost for dried kefir cells production in order to be used as starter culture in cheese manufacturing. Kefir cells were produced at pilot plant scale using a 250-L bioreactor and whey as the main substrate. Kefir cells were subsequently dried in a thermal dryer at 38 degrees C and used as a starter culture in industrial-scale production of hard-type cheeses. The use of thermally dried kefir as starter culture accelerated ripening of cheeses by increasing both lipolysis and fermentation rate as indicated by the ethanol, lactic acid, and glycerol formation. Additionally, it reduced coliforms and enterobacteria as ripening proceeded. This constituted the basis of developing an economic study in which industrial-scale production of thermally dried kefir starter culture is discussed. The industrial design involved a three-step process using three bioreactors of 100, 3,000, and 30,000 L for a plant capacity of 300 kg of thermally dried kefir culture per day. The cost of investment was estimated at 238,000 euro, which is the 46% of the corresponding cost using freeze-drying methodology. Production cost was estimated at 4.9 euro/kg of kefir biomass for a 300-kg/day plant capacity, which is the same as with the corresponding cost of freeze-dried cells. However, the estimated added value is up to 10.8 x 10(9) euro within the European Union.

  13. Thermally-dried free and immobilized kefir cells as starter culture in hard-type cheese production.

    Science.gov (United States)

    Katechaki, Eleftheria; Panas, Panayiotis; Kourkoutas, Yiannis; Koliopoulos, Dionisis; Koutinas, Athanasios A

    2009-07-01

    In an attempt to seek for suitable dried cultures, thermally-dried kefir was employed as starter in hard-type cheese production and tested in cheeses ripened at 5, 18 and 22 degrees C. Both free and immobilised on casein kefir cells were used and compared to cheese made without starter culture. Cheese products made with free cells of kefir culture were characterized by longer preservation time, improved aroma, taste, texture characteristics and increased degree of openness. Volatile profiles obtained by GC/MS analysis revealed a 216% increase in total concentration of esters, organic acids, alcohols and carbonyl compounds between cheeses prepared with and without kefir culture.

  14. Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability.

    Science.gov (United States)

    Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-08-28

    Smooth, transparent, and extremely hard zirconia (ZrO2)-based inorganic-organic hybrid films showing excellent dynamic oleophobicity, thermal durability, and hydrolytic stability were successfully prepared through a simple combination of zirconium tetrapropoxide (Zr(O(CH2)2CH3)4) with stearic acids. In this study, we have particularly focused on the effects of stearic acid molecular architecture (linear-stearic acid (LSA) and branched-stearic acid (BSA)) on surface physical/chemical properties. Although, in each case, the resulting hybrid (Zr:LSA and Zr:BSA) films achieved by a simple spin-coating method were highly smooth and transparent, the final surface properties were markedly dependent on their molecular architectures. Thanks to the thermal stability of BSA, our Zr:BSA hybrid films displayed a greatly improved thermal effective range (maximum of 200 °C), while for Zr:LSA hybrid films, serious thermal damage to surface dewetting behavior was observed at less than 150 °C. The hardness of the Zr:BSA hybrid films were markedly increased by curing at 200 °C for 1 h (from 1.95 GPa to 3.03 GPa), while maintaining their dynamic dewettability toward n-hexadecane, when compared with Zr:LSA hybrid films (0.95-1.19 GPa). Small volume n-hexadecane droplets (5 μL) were easily set in motion, sliding across and off our best Zr:BSA hybrid film surfaces at low substrate tilt angles (<10°) without pinning. Moreover, they also showed thermoresponsive dynamic dewetting behavior, reasonable resistance to hydrolysis in an aqueous environment, and antifingerprint properties.

  15. Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Robbie, Malcolm G.

    2010-01-01

    Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop.

  16. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  17. Three loop HTL perturbation theory at finite temperature and chemical potential

    CERN Document Server

    Strickland, Michael; Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G; Su, Nan

    2014-01-01

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  18. Non-thermal hard X-ray emission in galaxy clusters observed with the BeppoSAX PDS

    CERN Document Server

    Nevalainen, J; Bonamente, M; Colafrancesco, S

    2004-01-01

    We study the X-ray emission in a sample of galaxy clusters using the BeppoSAX PDS instrument in the 20 -- 80 keV energy band. The non-thermal hard X-ray cluster emission (HXR) is detected at a 2 sigma level in 50% of the non-significantly AGN-contaminated clusters: A2142, A2199, A2256, A3376, Coma, Ophiuchus and Virgo. The data are consistent with a scenario whereby relaxed clusters have no hard X-ray component of non-thermal origin, whereas merger clusters do, with a 20-80 keV luminosity of 10^(43-44) erg/s. The co-added spectrum of the above clusters indicates a power-law spectrum for the HXR with a photon index of 2.8+0.3-0.4 in the 12-115 keV band, and we find indication that it has extended distribution. These indications argue against significant contamination from obscured AGN, which have harder spectra and centrally concentrated distribution. These results are supportive of the assumption of the merger shock acceleration of electrons in clusters. Assuming that the Cosmic Microwave Background photons e...

  19. Inhomogeneous hard-core bosonic mixture with checkerboard supersolid phase: Quantum and thermal phase diagram

    Science.gov (United States)

    Heydarinasab, F.; Abouie, J.

    2017-09-01

    We introduce an inhomogeneous bosonic mixture composed of two kinds of hard-core and semi-hard-core bosons with different nilpotency conditions and demonstrate that in contrast with the standard hard-core Bose-Hubbard model, our bosonic mixture with nearest- and next-nearest-neighbor interactions on a square lattice develops the checkerboard supersolid phase characterized by the simultaneous superfluid and checkerboard solid orders. Our bosonic mixture is created from a two-orbital Bose-Hubbard model including two kinds of bosons: a single-orbital boson and a two-orbital boson. By mapping the bosonic mixture to an anisotropic inhomogeneous spin model in the presence of a magnetic field, we study the ground-state phase diagram of the model by means of cluster mean field theory and linear spin-wave theory and show that various phases such as solid, superfluid, supersolid, and Mott insulator appear in the phase diagram of the mixture. Competition between the interactions and magnetic field causes the mixture to undergo different kinds of first- and second-order phase transitions. By studying the behavior of the spin-wave excitations, we find the reasons of all first- and second-order phase transitions. We also obtain the temperature phase diagram of the system using cluster mean field theory. We show that the checkerboard supersolid phase persists at finite temperature comparable with the interaction energies of bosons.

  20. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, P. F.; Rodriguez-Gonzalez, A.; Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico); Rosado, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-248, 04510 D.F. (Mexico); Reyes-Iturbide, J., E-mail: pablo@nucleares.unam.mx, E-mail: ary@nucleares.unam.mx, E-mail: esquivel@nucleares.unam.mx, E-mail: margarit@astro.unam.mx [LATO-DCET/Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-000 Ilheus, BA (Brazil)

    2013-04-10

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  1. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries

    Science.gov (United States)

    Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang

    2015-10-01

    The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.

  2. Rectified Continuous Flow Loop for Thermal Control of Large Deployable Structures and Distributed Loads Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future instruments and platforms for NASA's Earth Science Enterprises will require increasingly sophisticated thermal control technology, and cryogenic applications...

  3. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    Science.gov (United States)

    Bian, Nicolas H.; Watters, Jonathan M.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-12-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path {λ }T associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of 107 K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of {λ }T to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  4. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    CERN Document Server

    Bian, Nicolas H; Kontar, Eduard P; Emslie, A Gordon

    2016-01-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path $\\lambda_T$ associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of $10^7$~K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of $\\lambda_T$ to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  5. Thermal decomposition routes of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W.; Neidhardt, J. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria); Sartory, B. [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)], E-mail: paul.mayrhofer@unileoben.ac.at; Mitterer, C. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)

    2008-11-28

    This study presents a comparison of the thermal decomposition of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering. Structural changes in the coating material were determined by in-situ high-temperature X-ray diffraction and correlated to the results of simultaneous thermal analysis. Annealing temperatures up to 1440 deg. C in Ar and a variation in heating rates gave insights to the different decomposition kinetics for the material deposited by reactive arc evaporation and magnetron sputtering. Both single-phase CrN coatings start to decompose above 925 deg. C under release of nitrogen in two major reaction steps to pure Cr via the intermediate step of Cr{sub 2}N. While the kinetics for the first decomposition reaction from CrN to Cr{sub 2}N is different for both samples, the second step from Cr{sub 2}N into Cr is similar. This behavior can be understood considering the differences in structure, composition, and morphology of both as-deposited coatings and their evolution during thermal analysis.

  6. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostic

    CERN Document Server

    Brown, John C

    2007-01-01

    Context. Flare Hard X-Rays (HXRs) from non-thermal electrons are commonly treated as solely bremsstrahlung (f-f), recombination (f-b) being neglected. This assumption is shown to be substantially in error, especially in hot sources, mainly due to recombination onto Fe ions. Aims. We analyse the effects of including non-thermal recombination onto heavy elements on HXR spectra and electron diagnostics. Methods. Using Kramers hydrogenic cross sections with effective Z, we calculate f-f and f-b spectra for power-law electron spectra, in both thin and thick target limits, and for Maxwellians, with summation over all important ions. Results. We find that non-thermal electron recombination, especially onto Fe, must, in general, be included together with f-f, for reliable spectral interpretation, when the HXR source is hot. f-b contribution is largest when the electron spectral index is large, and any low energy cut-off small. f-b spectra recombination edges mean a cut-off in F(E) appears as a HXR feature at Photon e...

  7. Thermal properties of an impurity immersed in a granular gas of rough hard spheres

    Directory of Open Access Journals (Sweden)

    Vega Reyes Francisco

    2017-01-01

    Full Text Available We study in this work the dynamics of a granular impurity immersed in a low-density granular gas of identical particles. For description of the kinetics of the granular gas and the impurity particles we use the rough hard sphere collisional model. We take into account the effects of non-conservation of energy upon particle collision. We find an (approximate analytical solution of the pertinent kinetic equations for the single-particle velocity distribution functions that reproduces reasonably well the properties of translational/rotational energy non-equipartition. We assess the accuracy of the theoretical solution by comparing with computer simulations. For this, we use two independent computer data sets, from molecular dynamics (MD and from Direct Simulation Monte Carlo method (DSMC. Both approach well, with different degrees, the kinetic theory within a reasonable range of parameter values.

  8. Thermal properties of an impurity immersed in a granular gas of rough hard spheres

    Science.gov (United States)

    Vega Reyes, Francisco; Lasanta, Antonio; Santos, Andrés; Garzó, Vicente

    2017-06-01

    We study in this work the dynamics of a granular impurity immersed in a low-density granular gas of identical particles. For description of the kinetics of the granular gas and the impurity particles we use the rough hard sphere collisional model. We take into account the effects of non-conservation of energy upon particle collision. We find an (approximate) analytical solution of the pertinent kinetic equations for the single-particle velocity distribution functions that reproduces reasonably well the properties of translational/rotational energy non-equipartition. We assess the accuracy of the theoretical solution by comparing with computer simulations. For this, we use two independent computer data sets, from molecular dynamics (MD) and from Direct Simulation Monte Carlo method (DSMC). Both approach well, with different degrees, the kinetic theory within a reasonable range of parameter values.

  9. Mass transfer in a 1370 C (2500 F) lithium thermal convection loop

    Science.gov (United States)

    Scheuermann, C. M.

    1974-01-01

    Experimental results from a test to evaluate interstitial element mass transfer effects on T-111, ASTAR 811C, and ASTAR 1211C after 5000 hours in flowing lithium at 1370 C (2500 F) are presented. No gross corrosion effects were observed. However, hafnium and nitrogen transfer to cooler regions within the loop were noted. Oxygen was in general removed from test specimens, but there was no evidence to indicate that it was a major factor in the mass transfer process. Carbon and hydrogen transfer were not detected.

  10. Copper and thermal perturbations on the early life processes of the hard coral Platygyra acuta

    Science.gov (United States)

    Kwok, C. K.; Lam, K. Y.; Leung, S. M.; Chui, A. P. Y.; Ang, P. O.

    2016-09-01

    Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality, swimming ability, metamorphosis and growth of juvenile recruits) of the massive coral Platygyra acuta in Hong Kong. In the first four experiments, coral gametes and larvae were exposed to different Cu doses (0-200 μg L-1, apart from the fertilization assay in which 0-1000 μg L-1 was used) and temperature treatments (ambient and ambient +2 or +3 °C as a thermal stress treatment) following a factorial experimental design. Exposure time was 5 h for the fertilization assay and 48 h for the other experiments. The last experiment on growth of coral recruits was conducted over 56 d with 0-80 μg L-1 Cu used. Cu significantly reduced percent fertilization success, percentage of active swimming larvae and larval survivorship (EC50s, the half maximal effective concentrations, for percent fertilization success and percentage of active swimming larvae were 92-145 and 45-47 μg L-1 respectively. While LC50, the lethal concentration that kills 50% of the population, was 101-110 μg L-1), while growth of coral recruits was not affected at 80 μg L-1 Cu for 56 d. No settling cues were used in the settlement experiment. In their absence, percent metamorphosis increased with Cu doses, in sharp contrast to earlier findings. Settlement and metamorphosis may thus be strategies for coral larvae to escape from Cu toxicity. Thermal treatment did not significantly affect any experimental end points. This is likely because the thermal regimes used in the experiments were within the range experienced by local corals. The high variability in Cu toxicities indicates differential susceptibilities of the various life-history stages/processes of P

  11. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena [Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Davila, Joseph M., E-mail: tongjiang.wang@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770 (United States)

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  12. Systematics of High Temperature Perturbation Theory: The Two-Loop Electron Self-Energy in QED

    CERN Document Server

    Mottola, Emil; 10.1103/PhysRevD.81.025014

    2010-01-01

    In order to investigate the systematics of the loop expansion in high temperature gauge theories beyond the leading order hard thermal loop (HTL) approximation, we calculate the two-loop electron proper self-energy in high temperature QED. The two-loop bubble diagram contains a linear infrared divergence. Even if regulated with a non-zero photon mass M of order of the Debye mass, this infrared sensitivity implies that the two-loop self-energy contributes terms to the fermion dispersion relation that are comparable to or even larger than the next-to-leading-order (NLO) contributions at one-loop. Additional evidence for the necessity of a systematic restructuring of the loop expansion comes from the explicit gauge parameter dependence of the fermion damping rate at both one and two-loops. The leading terms in the high temperature expansion of the two-loop self-energy for all topologies arise from an explicit hard-soft factorization pattern, in which one of the loop integrals is hard, nested inside a second loop...

  13. Rise time reduction of thermal actuators operated in air and water through optimized pre-shaped open-loop driving

    Science.gov (United States)

    Larsen, T.; Doll, J. C.; Loizeau, F.; Hosseini, N.; Peng, A. W.; Fantner, G. E.; Ricci, A. J.; Pruitt, B. L.

    2017-04-01

    Electrothermal actuators have many advantages compared to other actuators used in micro-electro-mechanical systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.

  14. Thermal Phenomena in the Friction Process of the TG15 - Hard Anodic Coating Couple

    Directory of Open Access Journals (Sweden)

    Służałek G.

    2016-09-01

    Full Text Available The paper presents a one-dimensional model of heat conduction in a couple consisting of a cylinder made of a sliding plastic material, TG15, and a cuboid made of alloy AW 6061 coated with a hard anodic coating, where the couple is heated with the heat generated during friction. TG15 is a composite material based on polytetrafluoroethylene (PTFE with a 15% graphite filler, used for piston rings in oil-free air-compressors. Measurement of temperature in the friction zone is extremely important for the understanding and analysis of the phenomena occurring therein. It is practically impossible to introduce a temperature sensor in such a place. Therefore, the interaction taking place in such a couple was modelled using numerical methods. In order to simplify and accelerate the calculations, a one-dimensional model and constant thermophysical parameters of the materials participating in friction were adopted. To solve the proposed model, the finite difference method was used (FDM. The resultant system of equations was solved by means of an explicit scheme.

  15. Closing the Loop - Utilization of Secondary Resources by Low Temperature Thermal Gasification

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape

    and drawbacks of low temperature gasification compared to anaerobic digestion and incineration are briefly discussed in this regard. Development and implementation of a method to screen for new fuel candidates for LT‐CFB gasification is conducted, and 22 new potential fuel candidates are characterized...... and compared to 4 previously proven LT‐CFB fuels. The investigated fuel candidates are categorized by their apparent suitability as LT‐CFB fuels and various positive characteristics as well as potentially problematic issues are discussed. The overall conclusion from the fuel screening is that in a Danish...... and corrosion of steel surfaces during thermal tests. The fuel screening also includes a screening of P fertilizer quality of ashes and chars produced from thermal treatment of the different fuels, and significant differences were identified between the P fertilizer quality of ashes and chars. The fuel...

  16. Multi-scale thermal stability of a hard thermoplastic protein-based material

    Science.gov (United States)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-01-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications. PMID:26387704

  17. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit

    2015-02-01

    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  18. Correlations to predict thermal performance affected by working fluid’s properties of vertical and horizontal closed-loop pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Sakulchangsatjatai Phrut

    2016-01-01

    Full Text Available Objectives of this paper are to investigate the effects of dimensionless numbers on the thermal performance, and to establish correlations to predict the thermal performance of the vertical and a horizontal closed-loop pulsating heat pipe. The heat pipes were made of long copper capillary tubes with 26 meandering turns and both the ends were connected together to form a loop. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with a constant filling ratio of 50% by total volume. The inlet temperature of the heating medium and the adiabatic section temperature were constantly controlled and maintained at 80°C and 50°C, respectively. The thermal performance was represented in terms of the Kutateladze number. It can be concluded that when the Prandtl number of the liquid working fluid, as well as the Karman number, increases, the thermal performance increases. On the other hand, when the Bond number, the Jacob number, and the Aspect ratio increase, the thermal performance decreases. These effects of the dimensionless numbers on the thermal performance are valid for both the heat pipes, except in the case of Bond number which has no effect on the thermal performance as far as the horizontal heat pipe is concerned. Moreover, correlations to predict thermal performance have been successfully established.

  19. A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop

    Institute of Scientific and Technical Information of China (English)

    Wang Yu-Tian; Wang Dong-Sheng; Ge Wen-Qian; Cui Li-Chao

    2006-01-01

    A sapphire fibre thermal probe with Cra+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform(FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.

  20. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    Science.gov (United States)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  1. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C. [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1996-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  2. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    Science.gov (United States)

    Souri, Dariush; Torkashvand, Ziba

    2016-12-01

    Three-component 40TeO2-(60-x)V2O5-xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness (H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness (H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability (T s = T cr - T x) and glass forming tendency (K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions (C V) and oxygen molar volume ( V_{O}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  3. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    Science.gov (United States)

    Souri, Dariush; Torkashvand, Ziba

    2017-04-01

    Three-component 40TeO2-(60- x)V2O5- xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness ( H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness ( H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability ( T s = T cr - T x) and glass forming tendency ( K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions ( C V) and oxygen molar volume ( V_{{O}}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  4. Observational Evidence for Loop-Loop Interaction

    Science.gov (United States)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  5. Development of a model for the thermal-hydraulic characterization of the He-FUS3 loop

    Energy Technology Data Exchange (ETDEWEB)

    Barone, G., E-mail: gianluca.barone@for.unipi.it [University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa (Italy); Coscarelli, E.; Forgione, N.; Martelli, D. [University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa (Italy); Del Nevo, A.; Tarantino, M.; Utili, M. [ENEA UTIS-TCI, CR Brasimone, Camugnano (Italy); Ricapito, I.; Calderoni, P. [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • RELAP5-3D model of He-FUS3 facility and turbo circulator (TC). • Cold and hot facility T/H numerical analysis for the TC operanting range. • Effect of the cold by-pass opening on the facility performances. - Abstract: He-FUS3 is a helium facility designed and realized by ENEA in order to test the thermal-mechanical properties of prototypical breeding blanket module assemblies of a DEMO reactor. The actual facility has been upgraded with a high performance turbo circulator and a water heat exchanger integrating the pre-existent air cooler. In addition, a new test section located in the loop hot zone has been settled down with the objective of investigating safety relevant transient conditions of “In-TBM” LOCA scenarios. A RELAP5-3D{sup ©} model has been developed to perform a set of preliminary simulations on the new He-FUS3 layout. Both cold and hot stationary conditions have been analyzed evaluating the turbo circulator performances for a wide range of helium flow rate. Outcomes have shown that RELAP5-3D{sup ©} is an effective tool in reproducing the most significant phenomena of He-FUS3 system, providing relevant insight supporting future experimental campaigns. The post-test analysis phase will be, of course, fundamental for the qualification of a consistent numerical model.

  6. Effect of Mercury Velocity on Corrosion of Type 316L Stainless Steel in a Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2001-03-23

    Two 316L thermal convection loops (TCLs) containing several types of 316L specimens circulated mercury continuously for 2000 h at a maximum temperature of 300 C. Each TCL was fitted with a venturi-shaped reduced section near the top of the hot leg for the purpose of locally increasing the Hg velocity. Results suggest that an increase in velocity from about 1.2 m/min (bulk flow) to about 5 mmin (reduced section) had no significant impact on compatibility of 316L with Hg. In addition, various surface treatments such as gold-plating, chemical etching, polishing, and steam cleaning resulted in little or no influence on compatibility of 316L with Hg when compared to nominal mill-annealed/surface-ground material. A sensitizing heat treatment also had little/no effect on compatibility of 316L with Hg for the bulk specimen, although intergranular attack was observed around the specimen holes in each case. It was determined that carburization of the hole area had occurred as a result of the specimen fabrication process potentially rendering the specimens susceptible to corrosion by Hg at these locations. To avoid sensitization-related compatibility issues for SNS components, selection of low carbon grades of stainless steel and control of the fabrication process is recommended.

  7. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  8. A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    CERN Document Server

    Longcope, D W; Carranza-Fulmer, T; Qiu, J; 10.1007/s11207-010-9635-z

    2011-01-01

    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localiz...

  9. Thermal single-gluon exchange potential for heavy quarkonium in the static limit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De, E-mail: yndxlyd@163.com

    2015-10-15

    The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential.

  10. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  11. Meson Screening Masses in Thermal QCD

    Directory of Open Access Journals (Sweden)

    Czerski Piotr

    2012-12-01

    Full Text Available The quark-gluon plasma (QGP excitations, corresponding to the scalar and pseudoscalar meson quantum numbers, for different temperatures are calculated. Analysis is performed in the Hard Thermal Loop (HTL Approximation and leads to a better understanding of the excitations of QGP in the deconfined phase and is also of relevance for lattice studies.

  12. Influence of Zr and nano-Y{sub 2}O{sub 3} additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@konya.edu.tr [Department of Metallurgical Engineering and Materials Science, Necmettin Erbakan University, Dere Aşıklar Mah. Demet Sokak, Meram, Konya 42140 (Turkey); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Scattergood, Ronald O.; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27695-7907 (United States)

    2014-12-05

    The motivation of this work was driven to improve the thermal stability in systems where polymorphic transformations can result in an additional driving force, upsetting the expected thermodynamic stability. In this study, Fe{sub 92}Ni{sub 8} alloys with Zr and nano-Y{sub 2}O{sub 3} additions were produced by ball milling and then annealed at high temperatures. Emphasis was placed on understanding the effects of dispersed nano-Y{sub 2}O{sub 3} particle additions and their effect on microstructural stability at and above the bcc-to-fcc transformation occurring at 700 °C in Fe–Ni systems. Results reveal that microstructural stability and hardness can be promoted by a combination of Zr and Y{sub 2}O{sub 3} additions, that being mostly effective for stability before and after phase transition, respectively. The mechanical strength of these alloys is achieved by a unique microstructure comprised a ultra-fine grain Fe base matrix, which contains dispersions of both nano-scale in-situ formed Zr base intermetallics and ex-situ added Y{sub 2}O{sub 3} secondary oxide phases. Both of these were found to be essential for a combination of high thermal stability and high mechanical strength properties. - Highlights: • Polymorphic transformations can limit the processing of nanostructured powders. • It causes a rapid grain growth and impairs the improved mechanical properties. • We aim to improve the hardness and thermal stability above the phase transformation. • Thermal stability is achieved by a combination of Zr and Y{sub 2}O{sub 3} additions. • Hardness is promoted by in-situ formed and ex-situ added secondary nano phases.

  13. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  14. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  15. Phase stability, elasticity, hardness and the minimum thermal conductivity of Si{sub 2}N{sub 2}O polymorphs from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ying-chun, E-mail: dyccqzx@cuit.edu.cn; Chen, Min; Wu, Wenjuan

    2014-09-15

    Some fundamental properties of Si{sub 2}N{sub 2}O polymorphs are calculated using first principles calculations based on density functional theory. The results indicate that orthorhombic-Si{sub 2}N{sub 2}O is the most stable phase at ambient conditions; it transforms into tetragonal-Si{sub 2}N{sub 2}O at a relatively low pressure (10 GPa). PBEsol predicts lattice constants and mechanical properties better than PBE, but PBE gives better phase transition parameters. The mechanical properties, such as bulk modulus, Young's modulus and shear modulus, are evaluated by the Voigt–Reuss–Hill approach. The tetragonal-Si{sub 2}N{sub 2}O exhibits larger mechanical moduli than other phases. The obtained Vickers hardness of Si{sub 2}N{sub 2}O structures shows that the hardness of tetragonal-Si{sub 2}N{sub 2}O is slightly higher than those of monoclinic and orthorhombic phases. The minimum thermal conductivities of Si{sub 2}N{sub 2}O polymorphs in crystalline and amorphous states are estimated, and we conclude that the thermal conductivities of amorphous Si{sub 2}N{sub 2}O phases are comparable to typical thermal barrier coatings.

  16. Hardness and microstructural response to thermal annealing of irradiated ASTM A533B class 1 plate steel

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, D.E. [SMS Concast, Inc., Pittsburgh, PA (United States); Kumar, A.S. [Univ. of Missouri, Rolla, MO (United States); Gelles, D.S.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Rosinski, S.T. [Electric Power Research Inst., Charlotte, NC (United States)

    1999-10-01

    Hardness measurements were used to determine the post-irradiation annealing response of A533B class 1 plate steel irradiated to a fluence of 1 {times} 10{sup 19} n/cm{sup 2} (E > 1 MeV) at 150 C. Rockwell hardness measurements indicated that the material had hardened by 6.6 points on the B scale after irradiation. The irradiation induced hardness increase was associated with a decrease in upper shelf energy from 63.4 J to 5-1.8 J and a temperature shift in the Charpy curve at the 41 J level from 115 C to 215 C. Specimens were annealed after irradiation at temperatures of 343 C (650 F), 399 C (750 F), and 454 C (850 F) for durations of up to one week (168 h). Hardness measurements were made to chart recovery of hardness as a function of time and temperature. Specimens annealed at the highest temperature 454 C recovered the fastest, fully recovering within 144 h. Specimens annealed at 399 C recovered completely within 168 h. Specimens annealed at the lowest temperature, 343 C recovered only {approximately}70% after 168 h of annealing. After neutron irradiation, a new feature of black spot damage was found to be superimposed on the unirradiated microstructure. The density of black spots was found to vary from 2.3 {times} 10{sup 15}/cm{sup 3} to 1.1 {times} 10{sup 16}/cm{sup 3} with an average diameter of 2.85 nm. Following annealing at 454 C for 24 h the black spot damage was completely annealed out. It was concluded that the black spot damage was responsible for 70% of the irradiation-induced hardness.

  17. The Effects of Thermal Treatment and Steam Addition on Integrated CuO/CaO Chemical Looping Combustion for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Alvaro Recio

    2016-04-01

    Full Text Available The combination of Chemical Looping Combustion (CLC with Calcium Looping (CaL using integrated pellets is an alternative CO2 capture process to the current amine-based sorbent processes, but the pellets lose sorption capacity over time. In this paper, the deactivation behavior of CaO, CuO and CuO/CaO integrated pellets used for multiple (16–20 cycles in a thermogravimetric analyzer was studied. The impact of thermal treatment and the presence of steam on the deactivation were also investigated. Nitrogen physisorption and scanning electron microscopy/energy-dispersive X-ray analysis were used to characterize the pellets. The analysis revealed significant migration of the copper to the surface of the composite pellets, which likely suppressed carbonation capacity by reducing the accessibility of the CaO. While thermal pre-treatment and steam addition enhanced the performance of the base CaO pellets, the former led to cracks in the pellets. In contrast, thermal pretreatment of the CuO/CaO composite pellets resulted in worse CLC and CaL performance.

  18. Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Najmul; Bandyopadhyay, Aritra [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology,N-7491 Trondheim (Norway); Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Strickland, Michael [Department of Physics, Kent State University,Kent, Ohio 44242 (United States); Su, Nan [Faculty of Physics, University of Bielefeld,D-33615 Bielefeld (Germany)

    2014-05-07

    We calculate the three-loop thermodynamic potential of QCD at finite temperature and chemical potential(s) using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The resulting analytic thermodynamic potential allows us to compute the pressure, energy density, and entropy density of the quark-gluon plasma. Using these we calculate the trace anomaly, speed of sound, and second-, fourth-, and sixth-order quark number susceptibilities. For all observables considered we find good agreement between our three-loop HTLpt calculations and available lattice data for temperatures above approximately 300 MeV.

  19. Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster.

    Science.gov (United States)

    Chorazy, Szymon; Podgajny, Robert; Nogaś, Wojciech; Nitek, Wojciech; Kozieł, Marcin; Rams, Michał; Juszyńska-Gałązka, Ewa; Żukrowski, Jan; Kapusta, Czesław; Nakabayashi, Koji; Fujimoto, Takashi; Ohkoshi, Shin-ichi; Sieklucka, Barbara

    2014-04-04

    A bimetallic pentadecanuclear cyanido-bridged {Fe9[W(CN)8]6 (MeOH)24}·xMeOH cluster of an Fe(II/III)-W(IV/V) mixed valence nature, reveals a reversible single-crystal-to-single-crystal transformation, concomitant with metal-to-metal charge transfer between Fe and W ions. The dominance of (HS)Fe(II)-NC-W(V) units at a high temperature, and (HS)Fe(III)-NC-W(IV) units at a low temperature, leads to an unprecedented reversed thermal hysteresis loop in magnetic measurements.

  20. Thermal stability and long term hydrogen/deuterium release from soft to hard amorphous carbon layers analyzed using in-situ Raman spectroscopy. Comparison with Tore Supra deposits

    CERN Document Server

    Pardanaud, C; Giacometti, G; Mellet, N; Pégourié, B; Roubin, P

    2015-01-01

    The thermal stability of 200 nm thick plasma enhanced chemical vapor deposited a-C:H and a-C:D layers ranging from soft to hard layers has been studied and compared to that of deposits collected on the Tore Supra tokamak plasma facing components by means of in-situ Raman spectroscopy. Linear ramp heating and long term isotherms (from several minutes to 21 days) have been performed and correlations between spectrometric parameters have been found. The information obtained on the sp 2 clustering has been investigated by comparing the G band shift and the 514 nm photon absorption evolution due to the thermal treatment of the layer. The effects of isotopic substitution have also been investigated.

  1. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.

  2. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs.

  3. First Hard X-Ray Detection of the Non-Thermal Emission Around the Arches Cluster: Morphology and Spectral Studies With NuSTAR

    Science.gov (United States)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, JaeSub; Madsen, Kristin K.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Zhang, William W.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)

  4. First hard x-ray detection of the non-thermal emission around the arches cluster: Morphology and spectral studies with NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Roman A.; Tomsick, John A.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Craig, William W. [Space Science Lab, University of California, Berkeley, CA 94720 (United States); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Catlica de Chile, Casilla 306, Santiago 22 (Chile); Baganoff, Frederick K. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Christensen, Finn E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, Charles J.; Mori, Kaya; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hong, JaeSub [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: krivonos@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-02-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Kα line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenarioþ.

  5. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    CERN Document Server

    Krivonos, Roman A; Bauer, Franz E; Baganoff, Frederick K; Barriere, Nicolas M; Bodaghee, Arash; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Hailey, Charles J; Harrison, Fiona A; Hong, JaeSub; Madsen, Kristin K; Mori, Kaya; Nynka, Melania; Stern, Daniel; Zhang, William W

    2013-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K_alpha line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agre...

  6. The Possibilities of Fission Material Reproduction Increase in Thermal Reactor with the Assemblies with a Hard Neutron Spectrum

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2011-01-01

    The possibility of additional neutron source development with the use of fast neutrons with an energy distribution close to the fission spectrum in the major part of thermal reactor core is researched in this paper.

  7. Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)

    2016-10-15

    The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

  8. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    Science.gov (United States)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  9. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  10. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  11. Effect of working fluids and internal diameters on thermal performance of vertical and horizontal closed-loop pulsating heat pipes with multiple heat sources

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2016-01-01

    Full Text Available Some electrical applications have a number of heat sources. The closed-loop pulsating heat pipe (CLPHP is applied to transfer heat from these devices. Since the CLPHP primarily transfers heat by means of the working fluid’s phase change in a capillary tube, the thermal performance of the CLPHP significantly depends on the working fluid type and the tube’s internal diameter. In order to provide the fundamental information for manufacturers of heat exchangers, this study on the effect of working fluids and internal diameters has been conducted. Three electrical plate heaters were installed on the CLPHP as the heat sources. The experiments were conducted by varying the working fluid to be R123, ethanol, and water, and the internal diameter to be 1.0 mm, 1.5 mm, and 2.0 mm. For each set of the same working fluid and internal diameter, the input heat fluxes of the heat sources were also made to vary within six different patterns. It can be concluded that when the latent heat of evaporation increases - in the case of vertical CLPHP - and when the dynamic viscosity of the liquid increases - in the case of horizontal CLPHP - the thermal performance decreases. Moreover, when the internal diameter increases, the thermal performance increases for both of vertical and horizontal CLPHPs.

  12. Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves

    CERN Document Server

    Wang, Tongjiang; Sun, Xudong; Provornikova, Elena; Davila, Joseph M

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) is presented. A time sequence of 131 A images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ~12 min and a decay time of ~9 min. The measured phase speed of 500$\\pm$50 km/s matches the sound speed in the heated loop of ~10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet (EUV) channels, and find that they are nearly in phase.The measured polytropic index from the temperature and density perturbations is 1.64$\\pm$0.08 close to the adiabatic index ...

  13. Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol

    Science.gov (United States)

    Rahman, Md. Lutfor; Chowdhury, Mehrin; Islam, Nawshad Arslan; Mufti, Sayed Muhammad; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

  14. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.

    2014-06-15

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark. Re-connection of an isolated loop

    Energy Technology Data Exchange (ETDEWEB)

    Kotsarev, Alexander; Lizorkin, Mikhail [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Bencik, Marek; Hadek, Jan [UJV Rez, a.s., Rez (Czech Republic); Kozmenkov, Yaroslav; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2016-09-15

    The 7th AER dynamic benchmark is a continuation of the efforts to validate the codes systematically for the estimation of the transient behavior of VVER type nuclear power plants. The main part of the benchmark is the simulation of the re-connection of an isolated circulation loop with low temperature in a VVER-440 plant. This benchmark was calculated by the National Research Centre ''Kurchatov Institute'' (with the code ATHLET/BIPR-VVER), UJV Rez (with the code RELAP5-3D {sup copyright}) and HZDR (with the code DYN3D/ATHLET). The paper gives an overview of the behavior of the main thermal hydraulic and neutron kinetic parameters in the provided solutions.

  16. The features of ceramic materials structure formation when using hard-melting wastes of thermal power stations in charge stock

    Science.gov (United States)

    Skripnikova, Nelli; Yuriev, Ivan; Lutsenko, Alexander; Litvinova, Viktoriya

    2016-01-01

    The paper presents the analysis of aluminum silicate waste generated by thermal power station of the city of Seversk, Tomsk region, Russia. The chemical compositions of aluminum silicate waste are detected and the efficient mixture compositions with the addition of aluminum silicate waste are suggested herein. Ceramic brick structure formation is studied in this paper using X-ray phase and SEM analyses. It is identified that the formed vitreous phase facilitates such strengthening structural modifications as sintering out of pores and shrinkage of unmelted aluminum silicate particles with the following formation of a monolithic product.

  17. Enhancement of the Thermal Stability and Mechanical Hardness of Zr-Al-Co Amorphous Alloys by Ag Addition

    Science.gov (United States)

    Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping

    2016-05-01

    The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.

  18. Analysis on Residual Stress in Electron Beam-Physical Vapor Deposited Thermal Barrier Coating using Hard Synchrotron X-Rays

    OpenAIRE

    鈴木, 賢治; 松本, 一秀; 久保, 貴博; 町屋, 修太郎; 田中, 啓介; 秋庭, 義明; SUZUKI, Kenji; MATSUMOTO, Kazuhide; Kubo, Takahiro; Machiya, Syutaro; Tanaka, Keisuke; Akiniwa, Yoshiaki

    2005-01-01

    The distribution of the residual stress in the thermal barrier coating, which was made by an electron beam-physical vapor deposition (EB-PVD) method, was determined using X-ray stress measurements. As the bond coating, NiCoCrAlY was low-pressure plasma sprayed on the substrate of austenitic stainless steel. The 8 mass% Y_2O_3-ZrO_2 was coated on the bond coating using the EB-PVD method as the top coating. The top coating had the preferred orientation with the axis direction perpendicular to ...

  19. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  20. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    Science.gov (United States)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  1. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  2. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Boukheddaden, Kamel, E-mail: kbo@physique.uvsq.fr [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Sy, Mouhamadou; Paez-Espejo, Miguel [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Slimani, Ahmed [Laboratoire des matériaux ferroélectriques, Département de Physique, Faculté des Sciences de Sfax, Route de la Soukra km 3.5 BP 1171, 3018 Sfax (Tunisia); Varret, François [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France)

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)–high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)_2}{sub 2}(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  3. In vivo argon laser vascular welding using thermal feedback: open and closed loop patency and collagen crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., LLNL

    1997-02-28

    An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 {micro}m optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 C using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

  4. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    Science.gov (United States)

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass(®) and Pyrex.

  5. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels

    Science.gov (United States)

    Shi, Weixiu; Pan, Lisheng

    2017-02-01

    Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels (POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%‒70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs - the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer ( dry burning ) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.

  6. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S J

    2001-09-25

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  7. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S.J.

    2000-10-17

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  8. Examination of Compatibility of Potentially Cavitation-Resistant Modifications of Type 316LN Stainless Steel with Mercury in a Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-08-29

    A 316L stainless steel thermal convection loop (TCL) containing a variety of stainless steel coupons circulated mercury for 2000 h. The TCL conditions included a maximum temperature of 307 C, a maximum temperature gradient of 90 C, and a Hg velocity of about 1.4 m/min. In addition to mill-annealed/surface-ground 316LN coupons serving as the baseline material, other coupons included 316LN that was 50% cold-worked, 316LN that was given a proprietary surface hardening treatment termed ''kolsterizing,'' and Nitronic 60. The purpose of this test was to examine Hg compatibility with these modest variations of annealed 31 6LN stainless steel that are considered potential improvements over annealed 31 6LN for cavitation-erosion resistance in the Spallation Neutron Source (SNS) target containment system. The results indicated negligible weight change for each coupon type, no significant indication of attack or surface roughening, and generally no interaction with Hg.

  9. Dynamics and control designs for internal thermally coupled distillation columns with different purities, Part 2: close loop analysis and control designs

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu; LIU Xinggao; CHU Jian

    2006-01-01

    Interaction between overhead and bottom composition loops of internal thermally coupled distillation columns (ITCDIC)with four purities are analyzed by means of relative gain array, condition number and singular value decomposition, which indicates that high- and very high-purity ITCDIC are well coupled and ill-conditioned systems with severe gain directionality problem. Based on the above dynamic behaviors, suitable control schemes of four different purity systems are studied. In low-purity system, internal model control (IMC) is better than decentralized proportion integral differential (D-PID) control in terms of response speed and remaining errors. Inmoderate-purity system, D-PID can effectively reject large load disturbances while IMC fails due to severe mismatch between model and plant. In high-purity system, neither IMC nor D-PID can provide satisfactory control so that modified IMC and multivariable PID with singular value decomposition scheme are presented respectively to improve control performances. Finally, in very high-purity systems, the combined feed-forward and feedback control scheme is proposed to deal with extremely sluggish responses to load disturbances.

  10. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    Science.gov (United States)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  11. SCWR-FQT回路的热工物理耦合分析%Coupled thermal-physics analysis of SC WR-FQT loop

    Institute of Scientific and Technical Information of China (English)

    汪子迪; 曹臻; 刘晓晶; 程旭

    2016-01-01

    中欧核能合作研究项目超临界水堆燃料验证实验(SCWR-FQT)的主要研究内容为在超临界水环境下对一个小型燃料组件进行堆内性能分析和验证。本文应用修过后的系统程序 ATHLET-SC 对该实验回路进行建模,同时结合堆芯中子物理的计算结果,对由于压力管进口管破裂形成的失水事故进行热工水力和中子物理的耦合分析,并讨论了物理耦合中停堆棒的负反应性、冷却剂温度系数等参数对结果的影响。计算结果表明,进行了中子物理耦合的结果得到的最高包壳温度比未进行中子耦合的结果要低15℃,同时停堆棒引入的负反应性是该事故过程中影响燃料棒最高包壳温度的一个主要因素。%The main purpose of the Sino-Euro corporation proj ect Supercritical Water Reactor Fuel Qualification Test (SCWR-FQT)is to analyze and verify a supercritical water-cooled experiment loop containing a small scale fuel assembly. The modified system code ATHLET-SC was applied to model this loop and perform the coupled thermal-hydraulics and neutron-physics calculation analysis of the loss of coolant accident induced by the coolant inlet pipe break with neutron data. The effects of some important parameters such as external reactivity, reactivity coefficient for fluid temperature are also investigated in this paper. The results indicate that the peaking cladding temperature of the coupled calculation is 1 5 ℃ lower than the uncoupled calculation. And the external reactivity caused by the shut-down rods is a main factor affecting the peaking cladding temperature during the accident.

  12. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  13. Reversible hysteresis loop tuning

    Science.gov (United States)

    Berger, A.; Binek, Ch.; Margulies, D. T.; Moser, A.; Fullerton, E. E.

    2006-02-01

    We utilize antiferromagnetically coupled bilayer structures to magnetically tune hysteresis loop properties. Key element of this approach is the non-overlapping switching field distribution of the two magnetic layers that make up the system: a hard magnetic CoPtCrB layer (HL) and a soft magnetic CoCr layer (SL). Both layers are coupled antiferromagnetically through an only 0.6-nm-thick Ru interlayer. The non-overlapping switching field distribution allows the measurement of magnetization reversal in the SL at low fields while keeping the magnetization state of the HL unperturbed. Applying an appropriate high field or high field sequence changes the magnetic state of the HL, which then influences the SL magnetization reversal due to the interlayer coupling. In this way, the position and shape of the SL hysteresis loop can be changed or tuned in a fully reversible and highly effective manner. Here, we study specifically how the SL hysteresis loop characteristics change as we move the HL through an entire high field hysteresis loop sequence.

  14. 莲子热加工及其贮藏过程中硬度变化规律的研究%Changes of Lotus-seed Hardness During Thermal Processing and Storage

    Institute of Scientific and Technical Information of China (English)

    杜艳芳; 曾绍校; 郭泽镔; 郑宝东; 梁亦亘; 吴萍萍

    2012-01-01

    为进一步开发莲子深加工产品,对比研究干莲和鲜莲在不同热加工处理及其贮藏过程中硬度的变化.结果表明:热加工过程中莲子的硬度逐渐降低,降幅随着热加工温度的升高而增大;鲜莲最长热加工时间为12 min,干莲则为25 min,同时为保证莲子的充分熟化,热加工温度需达到90℃以上;在贮藏过程中,熟化莲子的硬度在7d内迅速增大,而后处于较平稳状态,干莲硬度均大于鲜莲,为鲜莲的1.4~1.6倍;冷热激变处理可使鲜莲在贮藏过程中硬度的增幅降低(由99.11%降低55.58%),并保持较好的表观结构,在某种程度上有利于莲子产品的深加工.%The hardness of dried lotus-seed and fresh lotus-seed during thermal processing and storage was comparatively investigated in this paper. The results showed that the hardness of lotus-seed was decreased, and the decreasing degree was greater with the increasing temperature during thermal processing. The fresh lotus-seed could bear 12-minutes thermal processing at most, while it was 25minutes when it turned to dried lotus-seed. In addition, in order to make sure lotus seed became fully curing, the temperature of thermal processing should be 90 ℃ at least. In the storage of lotus-seed after thermal processing, the hardness was gradually increased during the first 7 days and then hold steady. And the hardness of dried lotus-seed was all higher than fresh lotus-seed which was 1.4 to 1.6 times than that of fresh lotus-seed. The cataclysmic hot and cold made the changes of hardness of fresh lotus-seed relatively stable (from 99.11% down to 55.58%) and kekt a better structure, which was beneficial to the deep processing of lotus-seed.

  15. Effects of irradiance, wavelength, and thermal emission of different light curing units on the Knoop and Vickers hardness of a composite resin.

    Science.gov (United States)

    Torno, Vladja; Soares, Paulo; Martin, Juliana M H; Mazur, Rui F; Souza, Evelise M; Vieira, Sérgio

    2008-04-01

    The aim of this study was to evaluate the effects of irradiance, light emission wavelength, and heating of different light curing units on the Knoop and Vickers hardness of a hybrid composite resin. The specimens were irradiated during 40 s with ten different light curing units, LEDs, and halogen lights. The spectral emission of each light curing unit was assessed by a spectrometer, the irradiance was measured by two commercial radiometers, and the heating measured with a thermocouple. After 48 h of storage in a dark recipient under a 100% humidity condition, the Knoop and Vickers hardness tests were carried out. The hardness results were analyzed by ANOVA, and Tukey HSD test (p surface hardness of the composite resin depends not only on the irradiance, but strongly on the emission wavelength and heating of the light curing units. It was observed, a linear correlation between the conversion degree and radiant exposure. In addition, it is suggested that the well known base to top surface hardness ratio convention of 80-90% is not appropriate to evaluate curing efficiency of composites, since the top surface is not always sufficiently polymerized.

  16. Modification of surface hardness for dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound by using energetic ion beam and subsequent thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, H., E-mail: su110040@edu.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Hashimoto, A.; Kaneno, Y. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Semboshi, S. [Kansai-Center, Institute for Materials Research, Tohoku University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Okamoto, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-02-15

    Dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound with the ordered structure was irradiated with 16 MeV Au{sup 5+} ions at room temperature. The observation by a transmission electron microscope has revealed that the lattice structure of this intermetallic compound changes from the ordered structure to the disordered A1 (fcc) structure by the ion irradiation, which accompanies a remarkable decrease in the surface hardness. The annealing treatment at elevated temperatures for the irradiated specimen induces the recovery of surface hardness. The present experimental result shows that the combination of energetic ion irradiation and the thermal treatment could be a means of modification for the workability of dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound.

  17. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  18. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  19. Axino dark matter from thermal production

    CERN Document Server

    Brandenburg, Arnd; Brandenburg, Arnd; Steffen, Frank Daniel

    2004-01-01

    The axino is a promising candidate for dark matter in the Universe. It is electrically and color neutral, very weakly interacting, and could be - as assumed in this study - the lightest supersymmetric particle, which is stable for unbroken R-parity. In supersymmetric extensions of the standard model, in which the strong CP problem is solved via the Peccei-Quinn mechanism, the axino arises naturally as the fermionic superpartner of the axion. We compute the thermal production rate of axinos in supersymmetric QCD. Using hard thermal loop resummation, we obtain a finite result in a gauge-invariant way, which takes into account Debye screening in the hot quark-gluon-squark-gluino plasma. The relic axino abundance from thermal scatterings after inflation is evaluated. We find that thermally produced axinos could provide the dominant part of cold dark matter, for example, for an axino mass of 100 keV and a reheating temperature of 10^6 GeV.

  20. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion bombardment

  1. Thermopile detector radiation hard readout

    Science.gov (United States)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  2. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  3. Miocrowave spectral imaging, H-alpha and hard X-ray observations of a solar limb flare

    Science.gov (United States)

    Wang, H.; Gary, D. E.; Lim, J.; Schwartz, R. A.

    1994-01-01

    value only at the footpoint. At the loop top, the emission may be thermal gyrosynchrotron with a temperature of 3.5 x 10(exp 7) K, which is likely to correspond to the superhot component seen in the hard X-ray emission.

  4. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  5. Three-loop HTLpt thermodynamics at finite temperature and isospin chemical potential

    CERN Document Server

    Andersen, Jens O; Mustafa, Munshi G; Strickland, Michael

    2015-01-01

    In a previous paper (JHEP {\\bf 05} (2014) 27), we calculated the three-loop thermodynamic potential of QCD at finite temperature $T$ and quark chemical potentials $\\mu_q$ using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and isospin chemical potential $\\mu_I$. We calculate the pressure, energy density, and entropy density, the trace anomaly, and the speed of sound at zero and nonzero $\\mu_I$. The second, fourth, and sixth-order isospin susceptibilities are calculated at zero $\\mu_I$. Our results can be directly compared to lattice QCD without Taylor expansions around $\\mu_q=0$ since QCD has no sign problem at finite isospin chemical potential.

  6. Radiation Hardness Assurance (RHA) Guideline

    Science.gov (United States)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

  7. Development of Thermal-Hydraulic Steady-State Analysis Program for Primary Loop of China Experimental Fast Reactor%中国实验快堆一回路热工水力稳态计算程序开发

    Institute of Scientific and Technical Information of China (English)

    饶彧先; 崔满满; 郭赟

    2012-01-01

    针对中国实验快堆(CEFR)的具体结构和稳态运行特点,利用Fortran语言开发了CEFR一回路热工水力稳态计算程序.重点开发了有关钠的多种物性的子程序、适应不同工况的钠的流动与换热计算子程序,并对关系式进行了对比分析,最后建立了稳态计算模型并开发了程序.在此基础上,对CEFR的一回路系统在满功率下的稳态热工水力特性进行了计算分析,所获得的结果同设计参数吻合,证明了所开发的子程序及稳态程序的正确性.%According to the characteristics of structure and steady-state for primary loop of China Experimental Fast Reactor (CEFR), a thermal-hydraulic steady-state analysis program was developed by using Fortran language. This paper focused on the development of a set of subroutine of physical properties of sodium and the sodium flow and heat transfer correlations for different operation conditions. And the difference among these correlations was compared. The calculation program was developed based on the steady model. At last, the thermal-hydraulic characteristics of steady-state of the primary loop of CEFR at full power were calculated. The calculation results are consistent with the design parameters and the correctness of the developed subroutines and steady-state calculation program was proved.

  8. A Case Study of MgB2 and HTS Magnets Being Cooled and Cooled Down using a Hydrogen Thermal-siphon Cooling-loop with Coolers

    Science.gov (United States)

    Green, Michael A.

    When one fabricates a magnet using MgB2 or HTS conductors, the operating temperature of the magnet can be increased into the temperature range from about 15 to 30 K. This temperature range is between the triple-point (13.8 K) and the critical point of para-hydrogen (32.3 K). Hydrogen has excellent heat transfer properties both as a liquid and as a gas at low temperature. The heat of vaporization of hydrogen is larger than any cryogenic fluid. In addition, the specific heat of the liquid and the gas is higher than any cryogenic fluid. Hydrogen may be the best fluid to use to connect a magnet operating between 15 and 30 K with a source of refrigeration. This paper compares magnet cooling at 20 K using helium and hydrogen. A safe completely passive cooling loop is discussed in this paper.

  9. Improvement of Thermal Stability via Outer-Loop Ion Pair Interaction of Mutated T1 Lipase from Geobacillus zalihae Strain T1

    Directory of Open Access Journals (Sweden)

    Mahiran Basri

    2012-01-01

    Full Text Available Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The Tm for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher Tm as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.

  10. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    Science.gov (United States)

    Tang, K.; Choy, V.; Chopra, R.; Bronskill, M. J.

    2007-05-01

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 °C isotherm generated during heating with an average distance error of 0.9 mm ± 0.4 mm (n = 6) in turkey breasts, 1.4 mm ± 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm ± 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 × 3 × 10 mm for the control point, and a temperature uncertainty of approximately 1 °C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment

  11. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Choy, V [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Chopra, R [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Bronskill, M J [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada)

    2007-05-21

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 deg. C isotherm generated during heating with an average distance error of 0.9 mm {+-} 0.4 mm (n = 6) in turkey breasts, 1.4 mm {+-} 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm {+-} 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 x 3 x 10 mm for the control point, and a temperature uncertainty of approximately 1 deg. C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of

  12. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  13. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, penamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  14. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.;

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material...... that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology...

  15. Thermal-hydraulic analysis of transients in the HELIOS loop including a CICC section representative of the JT-60SA Central Solenoid

    Science.gov (United States)

    Carli, S.; Bonifetto, R.; Hoa, C.; Savoldi, L.; Zanino, R.

    2015-12-01

    The HELIOS facility at CEA Grenoble is a supercritical helium (SHe) loop which is being used to investigate the effects on the cryogenic cooling system of the pulsed heat loads which are typical of superconducting tokamak operation. In the standard configuration, the magnet heat load is simulated by electrical heaters wrapped around a section of cryoline. In the present work, the resistively heated section is substituted in the HELIOS model of the 4C code, already validated for the standard configuration of HELIOS, by a sub-size winding structure made of JT-60SA Cable-In-Conduit Conductors (CICCs). The new model is then used to highlight the differences in the circuit behaviour when the heated pipe is substituted by an actual magnet wound with CICCs, checking the representativeness of the control strategies developed for the present HELIOS configuration. The use of CICCs will be shown to produce an intrinsic smoothing of the temperature profiles which is not affecting the capability of the control strategies to smooth the heat loads to the cryoplant.

  16. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  17. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  18. Suppression of parallel transport in turbulent magnetized plasmas and its impact on non-thermal and thermal aspects of solar flares

    CERN Document Server

    Bian, Nicolas H; Emslie, A Gordon

    2016-01-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent {\\em RHESSI} observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We...

  19. NANOCOMPOSITE COATINGS WITH ENHANCED HARDNESS

    Institute of Scientific and Technical Information of China (English)

    J. Musil

    2005-01-01

    The article reviews the present state of the art in the magnetron sputtering of hart and superhard nanocomposite coatings. It is shown that there are (1) two groups of hard and superhard nanocomposites: (i) nc-MN/hard phase and (ii) nc-MN/soft phase, (2) three possible origins of the enhanced hardness: (i) dislocation-dominated plastic deformation, (ii) cohesive forces between atoms and (iii) nanostructure of materials, and (3) huge differences in the microstructure of single- and two-phase films. A main attention is devoted to the formation of nanocrystalline and/or X-ray amorphous films. Such films are created in a vicinity of transitions between (i)crystalline and amorphous phases, (ii) two crystalline phases of different chemical composition or (iii) two different preferred orientations of grains of the sane material from which the coating is composed. The existence of the last transition makes it possible to explain the enhanced hardness in single-phase films. The thermal stability and oxidation resistance of hard nanocomposite films is also shortly discussed.

  20. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1981-03-01

    Two loops making up the facility, using either air or liquid as the thermal transport fluid, are described. These loops will be capable of cycling residential-size thermal energy storage units through conditions simulating solar or off-peak electricity applications to evaluate the unit's performance. Construction of the liquid cycling loop was completed, and testing of thermal stratification techniques for hot and cold water is reported.

  1. Thermal management systems and methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  2. Capillary fluid loop developments in Astrium

    Energy Technology Data Exchange (ETDEWEB)

    Figus, C.; Ounougha, L.; Bonzom, P. [Astrium SAS, Toulouse (France); Supper, W. [ESA/ESTEC, Noordwijk (Netherlands); Puillet, C. [CNES, Toulouse (France)

    2003-06-01

    Over the past decade, Astrium has been involved in the development of capillary pumped fluid loops. In the frame of the French technological demonstrator spacecraft called STENTOR, Astrium has gained experience on capillary fluid loop design and manufacturing. After the STENTOR cylindrical evaporator type was successfully tested and qualified, Astrium has developed miniaturised fluid loops for thermal dissipation of electronic devices. For such applications, the use of a flat shape evaporator is very promising, limiting the volume and the mass of the thermal hardware. Both technologies have been submitted to a comprehensive one-g test program and will be flight-tested in the near future. Through a comparative of the reached performances, some main advantages and drawbacks of each design are listed and a definition of what should be the next generation of Astrium fluid loops is given. (author)

  3. Coronal Loops: Observations and Modeling of Confined Plasma

    Directory of Open Access Journals (Sweden)

    Fabio Reale

    2014-07-01

    Full Text Available Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC and impulsive (DC heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  4. The finite Bruck Loops

    CERN Document Server

    Baumeister, Barbara

    2009-01-01

    We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop $X$ is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups $PSL_2(q)$, $q= 9$ or $q \\geq 5$ a Fermat prime. The latter possibillity does occur as is shown in [Nag1, BS]. As corollaries we obtain versions of Sylow's, Lagrange's and Hall's Theorems for loops.

  5. An overstoichiometric Nd–Fe–B hard magnetic material

    Directory of Open Access Journals (Sweden)

    TOMÁŠ ŽÁK

    2010-09-01

    Full Text Available A commercial Nd-rich Nd–Fe–B-based hard magnetic material was studied. The obtained results were compared before and after recording of the thermomagnetic curve up to 800 °C. The curve itself showed clearly besides Curie points of the Nd2Fe14B phase and α-Fe also another critical temperature. Mössbauer spectroscopic (MS phase analysis and X-ray diffraction analysis (XRD showed in addition to the commonly known phases Nd2Fe14B and NdFe4B4 also some paramagnetic and ferromagnetic iron atoms (MS and Fe17Nd2 intermetallics (XRD. During the exerted thermal treatment, the content of the Nd2Fe14B and NdFe4B4 phases remained almost unchanged, while iron atoms from remnant minor phases built a separate α-Fe phase. The XRD pattern also showed the presence of some minor Nd phase. The results of Squid magnetic measurements suggest a nanocrystalline decoupled structure of the Nd-rich alloy in the optimized magnetic state. Measurement of the magnetization loop showed, in spite of small changes in the phase composition, that magnetic properties of the quality material deteriorated during the thermal treatment.

  6. Thermodynamic hardness and the maximum hardness principle

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2017-08-01

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  7. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  8. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  9. 硬脆性材料在磨削过程中的热瞬态仿真分析%Transient thermal analysis for grinding fabrication of hard and brittle material

    Institute of Scientific and Technical Information of China (English)

    杨林; 谢晓光

    2014-01-01

    硬脆性材料在磨削过程中的加工质量和效率成为目前制约硬脆性材料应用的主要问题之一,如何在加工工艺环节提高生产效率和加工质量成为亟待解决的问题,制约问题解决的主要原因是加工效率在很大程度上会引起加工质量变差,在提高加工效率的同时保证良好的加工质量极其困难。主要从影响加工质量的因素之一磨削温度入手,以硬脆性材料中的碳化硅、氧化铝为例,利用有限元分析软件对硬脆性材料的磨削过程进行热瞬态分析,分析了在不同的磨削加工参数(砂轮转速、磨削深度和工件速度)即不同加工效率时大口径碳化硅工件和氧化铝工件的最高温度及其变化曲线,并横向对比了氧化铝材料和碳化硅材料在同等磨削加工参数时的磨削热状态。针对性地研究了硬脆性材料在磨削加工过程中的一些特性,为硬脆性材料的加工工艺提供参考。%One of the major problems that restricts the widely use of hard and brittle materials is the quality and efficiency of fabrication. To deal with this,improving fabricaiton efficiency and quality of hard and brittle materials needs to be quickly solved. To a large extent, high efficiency could imply the quality may get worse. Keeping up high efficiency and good quality seems to be contradictory in the meantime. Since the grinding thermal situation was one of the key elements that could affect the fabrica-tion quality, this article aims to analyze the thermal situation in the process of fabrication of carbon diox-ide and aluminum oxide by studying the relationships between grinding temperature and grinding parame-ters which include grinding wheel linear velocity, grinding depth and workpiece speed. In the meanwhile, it compared the thermal results between carbon dioxide and aluminum oxide in purpose of providing use-ful information and reference for fabrication.

  10. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  11. Comparison of energy expenditure and closed-loop performance of thermal and reactive distillation sequences coupled for biodiesel production; Comparacion de gasto energetico y desempeno a lazo cerrado de secuencias de destilacion reactiva y termicamente acopladas para produccion de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Jacob, J.L [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Vazquez-Ojeda, M; Segovia-Hernandez, J.G; Hernandez, S [Universidad de Guanajuato, Guanajuato, Guanajuato (Mexico); Maya-Yescas, R. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico)]. E-mail: rmayay@umich.mx

    2013-03-15

    Biodiesel is the common name for fatty acid methyl esters, obtained by esterification (basic catalysis) or trans-esterification (acid catalysis) of vegetable or animal oils with alcohols, and used as liquid fuel. Production involves the reaction, under mild conditions, between the oil and, typically, excess of methanol. Traditional production of biodiesel exhibits some handicaps, such as the shift of equilibrium to fatty acids by using excess of alcohol that must be separated and recycled. As alternative, it is possible to integrate reaction/separation operations into a single intensified unit, a reactive distillation column, followed by a second separation unit. These configurations exhibit several advantages such as shifting equilibrium in the reactive region and, because of the thermal integration with the second unit, energy savings during products separation. In order to design these production sequences taking advantage of steady state knowledge (energy savings) and considering dynamic performance, this work performs a controllability analysis for six possible configurations; open-loop control properties, evaluated by single value decomposition, are probed by implementing PI controllers to the system. The reactive distillation column coupled to a stripper, without reboilers, shows to be the best option in terms of closed-loop performance and energy savings. [Spanish] Biodiesel es el nombre comun dado a metil esteres de acidos grasos obtenidos por esterificacion (catalisis basica) o trans-esterificacion (catalisis acida) de aceites animales o vegetales con alcoholes, y usados como combustibles liquidos. Su produccion involucra la reaccion entre el aceite y, tipicamente, exceso de metanol a condiciones moderadas. La produccion tradicional de biodiesel exhibe algunas desventajas como el desplazamiento del equilibrio hacia acidos grasos debido al exceso de alcohol, que debe ser separado y reciclado. Alternativamente, es posible integrar las operaciones reaccion

  12. Distribution of heat flux by working fluid in loop heat pipe

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  13. Distribution of heat flux by working fluid in loop heat pipe

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2016-01-01

    Full Text Available The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  14. Thermal Production of Axinos in the Early Universe

    CERN Document Server

    Brandenburg, A; Brandenburg, Arnd; Steffen, Frank Daniel

    2004-01-01

    We compute the thermal axino production rate in supersymmetric QCD to leading order in the gauge coupling. Using hard thermal loop resummation and the Braaten-Yuan prescription, we obtain a finite result in a gauge-invariant way, which takes into account Debye screening in the hot quark-gluon-squark-gluino plasma. The relic axino density from thermal reactions in the early Universe is evaluated assuming the axino is the lightest supersymmetric particle and stable due to R-parity conservation. From the comparison with the WMAP results, we find that axinos could provide the dominant part of cold dark matter, for example, for an axino mass of 100 keV and a reheating temperature of 10^6 GeV.

  15. Supersymmetric Wilson loops at two loops

    CERN Document Server

    Bassetto, Antonio; Pucci, Fabrizio; Seminara, Domenico

    2008-01-01

    We study the quantum properties of certain BPS Wilson loops in ${\\cal N}=4$ supersymmetric Yang-Mills theory. They belong to a general family, introduced recently, in which the addition of particular scalar couplings endows generic loops on $S^3$ with a fraction of supersymmetry. When restricted to $S^2$, their quantum average has been further conjectured to be exactly computed by the matrix model governing the zero-instanton sector of YM$_2$ on the sphere. We perform a complete two-loop analysis on a class of cusped Wilson loops lying on a two-dimensional sphere, finding perfect agreement with the conjecture. The perturbative computation reproduces the matrix-model expectation through a highly non-trivial interplay between ladder diagrams and self-energies/vertex contributions, suggesting the existence of a localization procedure.

  16. Force distribution in a semiflexible loop

    CERN Document Server

    Waters, James T

    2016-01-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ring-like or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a novel simulation method termed "phase-space sampling", we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contribution...

  17. Energy release in driven twisted coronal loops

    CERN Document Server

    Bareford, M R; Browning, P K; Hood, A W

    2015-01-01

    In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of t...

  18. A magnetohydrodynamic theory of coronal loop transients

    Science.gov (United States)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  19. Probability current tornado loops in three-dimensional scattering

    CERN Document Server

    Exner, P; Exner, Pavel; Seba, Petr

    1998-01-01

    We consider scattering of a three-dimensional particle on a finite family of delta potentials. For some parameter values the scattering wavenctions exhibit nodal lines in the form of closed loops, which may touch but do not entangle. The corresponding probability current forms vortical singularities around these lines; if the scattered particle is charged, this gives rise to magnetic flux loops. The conclusions extend to scattering on hard obstacles or smooth potentials.

  20. Aircraft Thermal Management Using Loop Heat Pipes

    Science.gov (United States)

    2009-03-01

    properties versus temperature ( Incropera and DeWitt, 2002...determined as functions of temperature using data from Incropera and DeWitt (2002), as shown in Table 1.2. The adiabatic wall temperature is (White, 1988... Incropera and DeWitt, 2002). y = a0 + a1T + a2T2 + a3T3 (T in K) Property a0 a1 a2 A3 R2 cp (J/kg-K) 1.0187E+3 -6.9921E-2 -3.3333E-5 4.4444E-7

  1. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  2. Cosmic string loop shapes

    CERN Document Server

    Blanco-Pillado, Jose J; Shlaer, Benjamin

    2015-01-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  3. Coxeter-Chein Loops

    CERN Document Server

    Blok, Rieuwert J

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give amalgam presentations for Coxeter-Chein loops. This is to our knowledge the first such presentation for a Moufang loop.

  4. Four-loop lattice-regularized vacuum energy density of the three-dimensional SU(3) + adjoint Higgs theory

    CERN Document Server

    Di Renzo, F; Schröder, Y; Torrero, C

    2008-01-01

    The pressure of QCD admits at high temperatures a factorization into purely perturbative contributions from ``hard'' thermal momenta, and slowly convergent as well as non-perturbative contributions from ``soft'' thermal momenta. The latter can be related to various effective gluon condensates in a dimensionally reduced effective field theory, and measured there through lattice simulations. Practical measurements of one of the relevant condensates have suffered, however, from difficulties in extrapolating convincingly to the continuum limit. In order to gain insight on this problem, we employ Numerical Stochastic Perturbation Theory to estimate the problematic condensate up to 4-loop order in lattice perturbation theory. Our results seem to confirm the presence of ``large'' disretization effects, going like $a\\ln(1/a)$, where $a$ is the lattice spacing. For definite conclusions, however, it would be helpful to repeat the corresponding part of our study with standard lattice perturbation theory techniques.

  5. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  6. Coxeter-Chein Loops

    OpenAIRE

    Blok, Rieuwert J.; Gagola III, Stephen

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give am...

  7. Hardness Tester for Polyur

    Science.gov (United States)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  8. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  9. The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Directory of Open Access Journals (Sweden)

    Amir M. Ben-Amram

    2014-08-01

    Full Text Available Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems, and possibly indicates an even stronger lower bound (subject to open problems in VAS theory. The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.

  10. Nanotwinned diamond with unprecedented hardness and stability.

    Science.gov (United States)

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-12

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  11. What Controls DNA Looping?

    Directory of Open Access Journals (Sweden)

    Pamela J. Perez

    2014-08-01

    Full Text Available The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.

  12. AP1000主回路系统热工水力瞬态计算程序RETAC的开发%Development of Thermal-Hydraulic Transient Analysis Code RETAC for AP1000 Primary Loop

    Institute of Scientific and Technical Information of China (English)

    王伟伟; 苏光辉; 田文喜; 秋穗正

    2011-01-01

    A thermal-hydraulic microcomputer code (RETAC, Reactor Transient Analysis Code) for transient analysis of AP1000 primary loop was developed using FORTRAN language. The loss of flow accident (LOFA) was analyzed using RET AC. Transient characteristics of some main system parameters were obtained, including the maximum fuel temperature and MDNBR in the hot channel, pressure and water level in the pressurizer and steam generator secondary side. The results show that at the early stage of the loss of flow accident, the highest fuel central temperature and MDNBR in the hot channel do not exceed specified limits and meet the safety criteria. Modular programming technique was adopted for RET AC and it is convenient for further modification andapplication. It is expected that the present work is instructive to develop Chinese ownindependent software for the design and safety analysis of large scale PWR.%针对先进压水堆AP1000的具体结构和运行特点,采用FORTRAN程序设计语言,自主开发了用于AP1000主回路系统热工水力瞬态计算的微机型程序RETAC(REactor Transient Analysis Code).利用程序对AP1000失流事故进行分析,得到了堆芯燃料中心最高温度、最小偏离泡核沸腾比(MDN-BR)、稳压器压力、水位及蒸汽发生器二次侧压力、水位等主要系统参数的瞬态特性.分析结果表明,在失流事故初期阶段,堆芯热通道燃料中心最高温度和MDNBR不超出规定限值,满足安全准则要求.RETAC完全采用模块化编程,便于移植和二次开发,可为后续开发自主知识产权的大功率压水堆安全分析程序提供借鉴.

  13. Testing loop quantum cosmology

    Science.gov (United States)

    Wilson-Ewing, Edward

    2017-03-01

    Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.

  14. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    Science.gov (United States)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  15. Dynamic hardness of metals

    Science.gov (United States)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  16. Hardness and excitation energy

    Indian Academy of Sciences (India)

    Á Nagy

    2005-09-01

    The concept of the ensemble Kohn-Sham hardness is introduced. It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the limit → 0. It is proposed that the first excitation energy can be used as a reactivity index instead of the hardness.

  17. UV curable hard coatings on polyesters

    Science.gov (United States)

    Datashvili, Tea; Brostow, Witold; Kao, David

    2006-10-01

    UV curable, hard and transparent hybrid inorganic-organic coatings with covalent links between the inorganic and the organic networks were prepared using organically crosslinked heteropolysiloxanes based on the sol-gel process. The materials were applied onto polyester sheets and UV cured. The deposition was followed by a thermal treatment to improve mechanical properties of the coatings. High light transmission and the resulting thermophysical properties indicate the presence of a nanoscale hybrid composition. The coatings show excellent adhesion to polyesters even without using primers. Further mechanical characterization shows that the coatings provide high hardness and good abrasion resistance.

  18. Energetics of formation process of a <001> prismatic dislocation loop via the collision between two 1/2<111> loops in {alpha}-iron

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, K; Mori, H [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: arakawak@uhvem.osaka-u.ac.jp

    2009-05-01

    It has been proposed by Marian et al. [1] that a [001] interstitial-type dislocation loop can be formed in body-centered cubic iron via the collision between a 1/2[111] loop and 1/ 2[111] loop, which undergo one-dimensional glide diffusion, and the subsequent shear reaction. However, the formation of [001] loops through this reaction has not been reproduced by other works even though the two 1/2<111> loops collided with each other. In the present paper, the origin of the difficulty in this reaction is discussed within the framework of isotropic elasticity theory. The sign of the driving force for the reaction is heavily dependent on the reaction path. The two 1/2<111> loops colliding to form a [110] junction can transform to a single [001] loop when a shear loop generated within the 1/2[111] loop propagates in sync with the other shear loop within the 1/ 2[111] loop. However, unsynchronized motion of the two shear loops significantly suppresses the propagation of the shear loops, which might be caused by the thermal fluctuation at finite temperatures. This will be one of the origins of the difficulty in the formation of [001] loops through the collision between the two 1/2<111> loops.

  19. Quantitative Information Flow - Verification Hardness and Possibilities

    CERN Document Server

    Yasuoka, Hirotoshi

    2010-01-01

    Researchers have proposed formal definitions of quantitative information flow based on information theoretic notions such as the Shannon entropy, the min entropy, the guessing entropy, and channel capacity. This paper investigates the hardness and possibilities of precisely checking and inferring quantitative information flow according to such definitions. We prove that, even for just comparing two programs on which has the larger flow, none of the definitions is a k-safety property for any k, and therefore is not amenable to the self-composition technique that has been successfully applied to precisely checking non-interference. We also show a complexity theoretic gap with non-interference by proving that, for loop-free boolean programs whose non-interference is coNP-complete, the comparison problem is #P-hard for all of the definitions. For positive results, we show that universally quantifying the distribution in the comparison problem, that is, comparing two programs according to the entropy based definit...

  20. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  1. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Eriksen, Ole

    2003-01-01

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  2. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  3. Hard and Soft

    OpenAIRE

    Claes H. de Vreese; Boomgaarden, Hajo G.; Semetko, Holli A.

    2008-01-01

    Abstract Support for European integration is a function no longer only of `hard' economic and utilitarian predictors but also of `soft' predictors such as feelings of identity and attitudes towards immigrants. Focusing on the issue of the potential membership of Turkey in the European Union (EU), this study demonstrates that the importance of `soft' predictors outweighs the role of `hard' predictors in understanding public opinion about Turkish membership. The study draws on survey...

  4. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  5. Hardness amplification in nondeterministic logspace

    OpenAIRE

    Gupta, Sushmita

    2007-01-01

    A hard problem is one which cannot be easily computed by efficient algorithms. Hardness amplification is a procedure which takes as input a problem of mild hardness and returns a problem of higher hardness. This is closely related to the task of decoding certain error-correcting codes. We show amplification from mild average case hardness to higher average case hardness for nondeterministic logspace and worst-to-average amplification for nondeterministic linspace. Finally we explore possible ...

  6. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  7. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  8. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Science.gov (United States)

    Ageev, Dmitry

    2016-10-01

    The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  9. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Directory of Open Access Journals (Sweden)

    Ageev Dmitry

    2016-01-01

    Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  10. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    Science.gov (United States)

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  11. A loop quantum multiverse?

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  12. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  13. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  14. From Loops to Surfaces

    CERN Document Server

    Neuberger, H

    2010-01-01

    The generating function for all antisymmetric characters of a Wilson loop matrix in SU(N) Yang Mills theory is the partition function of a fermion living on the curve describing the loop. This generalizes to fermion subsystems living on higher dimensional submanifolds, for example, surfaces. This write-up also contains some extra background, in response to some questions raised during the oral presentation.

  15. Laser thermographic technologies for hard copy recording

    Science.gov (United States)

    Bessmel'tsev, Viktor P.; Baev, Sergej G.

    1995-04-01

    Methods of hard copies recording based on thermal interaction of the beam from CO2 or YAG lasers with various kinds of films on any substrates have been developed. The recording processes are single-step and require no additional development. Among them are: (1) Laser thermodestruction of thin mask layers or of a material surface on any kinds of substrates. (2) Laser thermochemical reactions of thermal decomposition of metal salts in solid state phase on a surface of various hygroscopic substrates. The laser recording devices using the methods, described above have been developed and are manufactured now; they allow one to record hard copies with a size of up to 27 X 31 inches, a resolution of 4000 dpi.

  16. Miniature loops in the solar corona

    CERN Document Server

    Barczynski, Krzysztof; Savage, Sabrina L

    2016-01-01

    Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniature versions of hot loops exist. These would have lengths of only 1 Mm barely protruding from the chromosphere and spanning across just one granule in the photosphere. Such short loops are well established at transition region temperatures (0.1 MK), and we investigate if such miniature loops also exist at coronal temperatures (>1 MK). We used extreme UV imaging (EUV) observations from the High-resolution Coronal Imager (Hi-C) at an unprecedented spatial resolution of 0.3" to 0.4". Together with EUV imaging and magnetogram data from the Solar Dynamics Observatory (SDO) and X-Ray Telescope (XRT) data from Hinode we investigated the spatial, temporal and thermal evolution of small loop-like structures in the solar corona above a plage region close to an active region and compared this ...

  17. Hawking radiation and secularly growing loop corrections

    CERN Document Server

    Akhmedov, Emil T; Popov, Fedor K

    2016-01-01

    We study the expectation value of the energy momentum tensor during thin shell collapse for a massive, real, scalar field theory. At tree-level, we find thermal, Hawking-type, behaviour for the energy flux. Using the Schwinger-Keldysh technique, we calculate two-loop corrections to the tree-level correlation functions and show that they exhibit secular growth, suggesting the breakdown of the perturbation theory.

  18. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  19. Magnetic confinement effects on the particle escape from the loop top in stochastic acceleration models for solar flares.

    Science.gov (United States)

    Effenberger, F.; Petrosian, V.

    2015-12-01

    Stochastic acceleration scenarios are among the most promising candidates to explain the high energies attained by particles in solar flares. Recent progress in the determination of fundamental acceleration parameters using novel techniques for the inversion of high resolution RHESSI hard X-ray spectra allows to determine non-thermal electron spectra at the loop top and foot points of a flare loop (Chen & Petrosian 2014). One outcome of this work is that the trapping and escape of the electrons is governed by wave particle scatterings and convergence of magnetic lines of force. Here, we present a computational study of the transport and escape processes of particles in the acceleration region. We employ a Fokker-Planck model, which includes pitch-angle scattering and magnetic mirroring in a non-uniform magnetic field. This allows to test analytical approximations for the particle escape times in the loop top region, which are helpful to constrain the key particle acceleration parameters. New perspectives will be given on how the insights gained from the analysis of the particle confinement will enable subsequent studies of a broader class of solar flares.

  20. Model for magnetostrictive performance in soft/hard coupled bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jianjun, Li, E-mail: ljj8081@gmail.com [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)

    2015-11-01

    A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.

  1. Session: Hard Rock Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  2. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  3. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    Wuhui Li; Fengzhang Ren; Juanhua Su; Zhanhong Ma; Ke Cao; Baohong Tian

    2011-07-01

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson’s ratio, a function of the radius of an atom () and the electron density at the atom interface (). The formula will not only be used to testify the critical grain size with stable dislocations, but also play an important role in the understanding of mechanical properties of nanocrystalline metals.

  4. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  5. Supernova 1987 A - The nebular loops and 'Napoleon's Hat'

    Science.gov (United States)

    Wang, L.; Wampler, E. J.

    1992-08-01

    We discuss observations of the circumstellar environment of SN 1987A that were obtained between August 1989 and January 1992 at ESO's New Technology Telescope. We find that the angular dimensions of the two nebular loops (Wampler et al., 1990) have not changed during this period. Therefore these loops are confined to a small region. The expansion velocity of the loops is less than about 40 km/s if the loops expanded with a uniform velocity from a common origin. This structure and velocity is hard to reproduce with existing wind interaction models. Our observations further suggest that the Napoleon's Hat nebula does not originate from the general background LMC dust, but from a bow shock dust whose origins are closely related to the stellar winds from the progenitor star of SN 1987A.

  6. Genetic Programming with Simple Loops

    Institute of Scientific and Technical Information of China (English)

    QI Yuesheng; WANG Baozhong; KANG Lishan

    1999-01-01

    A kind of loop function LoopN inGenetic Programming (GP) is proposed.Different from other forms of loopfunction, such as While-Do and Repeat-Until, LoopNtakes only oneargument as its loop body and makes its loop body simply run N times,soinfinite loops will never happen. The problem of how to avoid too manylayers ofloops in Genetic Programming is also solved. The advantage ofLoopN in GP is shown bythe computational results in solving the mowerproblem.

  7. Loop electrosurgical excisional procedure.

    Science.gov (United States)

    Mayeaux, E J; Harper, M B

    1993-02-01

    Loop electrosurgical excisional procedure, or LEEP, also known as loop diathermy treatment, loop excision of the transformation zone (LETZ), and large loop excision of the transformation zone (LLETZ), is a new technique for outpatient diagnosis and treatment of dysplastic cervical lesions. This procedure produces good specimens for cytologic evaluation, carries a low risk of affecting childbearing ability, and is likely to replace cryotherapy or laser treatment for cervical neoplasias. LEEP uses low-current, high-frequency electrical generators and thin stainless steel or tungsten loops to excise either lesions or the entire transformation zone. Complication rates are comparable to cryotherapy or laser treatment methods and include bleeding, incomplete removal of the lesion, and cervical stenosis. Compared with other methods, the advantages of LEEP include: removal of abnormal tissue in a manner permitting cytologic study, low cost, ease of acquiring necessary skills, and the ability to treat lesions with fewer visits. Patient acceptance of the procedure is high. Widespread use of LEEP by family physicians can be expected.

  8. Structural thermal model tests on exposed facility of Japanese experiment module for international space station `Alpha`. 1st Report. Static load/fluid loop performance test and modal survey; Kokusai uchu station `Alpha` JEM bakurobu no netsukozo model shiken. 1. Seikaju shiken, ryudo tokusei shiken oyoboi modal survey

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Nakao, K.; Ikami, T.; Arafune, K.; Nakahara, S. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1995-03-01

    Static load/fluid loop performance test and modal survey results among structural thermal model (STM) tests of an exposed facility are reported for the Japanese Experiment Module (JEM) mounted on the international space station `Alpha`. In the static load test, the strength and rigidity of STM were ascertained to be reasonable against the loads applied to the facility at launch and reentry, and the structural mathematical model was also reasonable based on the comparison between test and analytical results. In the fluid performance test to verify the fundamental fluid loop performance of the thermal control system for the exposed facility, the test results on pressure losses of STM which has a strong effect on the accuracy of coolant fluid distribution at each branch point, well agreed with analytical ones. In the modal survey to verify dynamic characteristics of the structural mathematical model, some appropriate modal parameters were obtained by modal analysis of test data, and the survey results also well agreed with analytical ones on the structural mathematical model. 1 ref., 10 figs., 2 tabs.

  9. CSI: Hard Drive

    Science.gov (United States)

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  10. Hard Probes at ATLAS

    CERN Document Server

    Citron, Z; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has measured several hard probe observables in Pb+Pb and p+Pb collisions at the LHC. These measurements include jets which show modification in the hot dense medium of heavy ion collisions as well as color neutral electro-weak bosons. Together, they elucidate the nature of heavy ion collisions.

  11. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  12. Budgeting in Hard Times.

    Science.gov (United States)

    Parrino, Frank M.

    2003-01-01

    Interviews with school board members and administrators produced a list of suggestions for balancing a budget in hard times. Among these are changing calendars and schedules to reduce heating and cooling costs; sharing personnel; rescheduling some extracurricular activities; and forming cooperative agreements with other districts. (MLF)

  13. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...

  14. Running in Hard Times

    Science.gov (United States)

    Berry, John N., III

    2009-01-01

    Roberta Stevens and Kent Oliver are campaigning hard for the presidency of the American Library Association (ALA). Stevens is outreach projects and partnerships officer at the Library of Congress. Oliver is executive director of the Stark County District Library in Canton, Ohio. They have debated, discussed, and posted web sites, Facebook pages,…

  15. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  16. Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    CERN Document Server

    Battaglia, Marina; Simões, Paulo J A

    2014-01-01

    Before the onset of a flare is observed in hard X-rays there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission suggesting that energy is being released and deposited into the corona and chromosphere already at this stage. This work analyses the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well observed flare with a prolonged pre-heating phase are analysed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minutes duration of the pre-heating phase we find no hint of accelerated electrons, neither in hard X-rays nor in microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to...

  17. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Upendra [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Joshi, Bhuwan; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria)

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  18. Quantum loop corrections of charged dS black hole

    CERN Document Server

    Naji, J

    2016-01-01

    In this paper, a charged black hole in de Sitter space considered and logarithmic corrected entropy used to study thermodynamics. Logarithmic corrections of entropy comes from thermal fluctuations which plays role of quantum loop corrections. In that case we are able to study the effect of quantum loop on the black hole thermodynamics and statistics. As black hole is a gravitational object, so it helps to obtain some information about the quantum gravity.

  19. Loops in Twistor Space

    CERN Document Server

    Bena, I; Kosower, D A; Roiban, R; Bena, Iosif; Bern, Zvi; Kosower, David A.; Roiban, Radu

    2004-01-01

    We elucidate the one-loop twistor-space structure corresponding to momentum-space MHV diagrams. We also discuss the infrared divergences, and argue that only a limited set of MHV diagrams contain them. We show how to introduce a twistor-space regulator corresponding to dimensional regularization for the infrared-divergent diagrams. We also evaluate explicitly the `holomorphic anomaly' pointed out by Cachazo, Svrcek, and Witten, and use the result to define modified differential operators which can be used to probe the twistor-space structure of one-loop amplitudes.

  20. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  1. Loop Quantum Gravity

    CERN Document Server

    Chiou, Dah-Wei

    2014-01-01

    This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the article, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  2. Progress of energy system with chemical-looping combustion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; HAN Tao

    2009-01-01

    Chemical-looping combustion with zero energy penalty of CO2 separation is a significant breakthrough in resolving energy and environment problems for power generation systems. This paper summarizes the research on energy systems with chemical-looping combustion conducted in recent years, discloses the underlying mechanism of energy release of chemical-looping combustion, describes the trends of the key technology development, and presents the proposed chemicaMooping combustion thermal cycles. This paper may provide a new direction to the synthesis of the next-generation energy system compatible with environment.

  3. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  4. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  5. Theory of hard photoproduction

    OpenAIRE

    Klasen, Michael

    2002-01-01

    The present theoretical knowledge about photons and hard photoproduction processes, i.e. the production of jets, light and heavy hadrons, quarkonia, and prompt photons in photon-photon and photon-hadron collisions, is reviewed. Virtual and polarized photons and prompt photon production in hadron collisions are also discussed. The most important leading and next-to-leading order QCD results are compiled in analytic form. A large variety of numerical predictions is compared to data from TRISTAN...

  6. SUPER HARD SURFACED POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Louis K [ORNL; Bhattacharya, R [UES, Incorporated, Dayton, OH; Blau, Peter Julian [ORNL; Clemons, Art [ORNL; Eberle, Cliff [ORNL; Evans, H B [UES, Incorporated, Dayton, OH; Janke, Christopher James [ORNL; Jolly, Brian C [ORNL; Lee, E H [Consultant, Milpitas, CA; Leonard, Keith J [ORNL; Trejo, Rosa M [ORNL; Rivard, John D [ORNL

    2010-01-01

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  7. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  8. Two-loop and n-loop eikonal vertex corrections

    OpenAIRE

    Kidonakis, Nikolaos

    2003-01-01

    I present calculations of two-loop vertex corrections with massive and massless partons in the eikonal approximation. I show that the $n$-loop result for the UV poles can be given in terms of the one-loop calculation.

  9. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  10. Local loop near-rings

    OpenAIRE

    Franetič, Damir

    2015-01-01

    We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.

  11. On the extended loop calculus

    CERN Document Server

    Griego, J R

    1995-01-01

    Some features of extended loops are considered. In particular, the behaviour under diffeomorphism transformations of the wavefunctions with support on the extended loop space are studied. The basis of a method to obtain analytical expressions of diffeomorphism invariants via extended loops are settled. Applications to knot theory and quantum gravity are considered.

  12. Closing global material loops

    DEFF Research Database (Denmark)

    Prosman, Ernst-Jan; Wæhrens, Brian Vejrum; Liotta, Giacomo

    2017-01-01

    Replacing virgin materials with waste materials, a practice known as Industrial Symbiosis (IS), has been identified as a key strategy for closing material loops. This article adopts a critical view on geographic proximity and external coordinators – two key enablers of IS. By ‘uncovering’ a case...... where both enablers are absent, this study seeks to explore firm-level challenges of IS. We adopt an exploratory case study approach at a cement manufacturer who engages in cross-border IS without the support of external coordinators. Our research presents insights into two key areas of IS: 1) setting...... for geographic proximity and external coordinators. In doing so, our insights into firm-level challenges of long-distance IS exchanges contribute to closing global material loops by increasing the number of potential circular pathways....

  13. Leptogenesis from loop effects in curved spacetime

    CERN Document Server

    McDonald, Jamie I

    2015-01-01

    We describe a new mechanism -- radiatively-induced gravitational leptogenesis -- for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrat...

  14. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  15. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  16. PAR Loop Schedule Review

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Jr.; W.F.

    1958-04-30

    The schedule for the installation of the PAR slurry loop experiment in the South Facility of the ORR has been reviewed and revised. The design, fabrications and Installation is approximately two weeks behind schedule at this time due to many factors; however, indications are that this time can be made up. Design is estimated to be 75% complete, fabrication 32% complete and installation 12% complete.

  17. Theory of hard photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2002-06-01

    The present theoretical knowledge about photons and hard photoproduction processes, i.e. the production of jets, light and heavy hadrons, quarkonia, and prompt photons in photon-photon and photon-hadron collisions, is reviewed. Virtual and polarized photons and prompt photon production in hadron collisions are also discussed. The most important leading and next-to-leading order QCD results are compiled in analytic form. A large variety of numerical predictions is compared to data from TRISTAN, LEP, and HERA and extended to future electron and muon colliders. The sources of all relevant results are collected in a rich bibliography. (orig.)

  18. Verification of Loop Diagnostics

    Science.gov (United States)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  19. Cosmic string loop microlensing

    Science.gov (United States)

    Bloomfield, Jolyon K.; Chernoff, David F.

    2014-06-01

    Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.

  20. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  1. One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, R. Keith [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kunszt, Zoltan [Institute for Theoretical Physics (Switzerland); Melnikov, Kirill [Johns Hopkins Univ., Baltimore, MD (United States); Zanderighi, Giulia [Rudolf Peierls Centre for Theoretical Physics (United Kingdom)

    2012-09-01

    The success of the experimental program at the Tevatron re-inforced the idea that precision physics at hadron colliders is desirable and, indeed, possible. The Tevatron data strongly suggests that one-loop computations in QCD describe hard scattering well. Extrapolating this observation to the LHC, we conclude that knowledge of many short-distance processes at next-to-leading order may be required to describe the physics of hard scattering. While the field of one-loop computations is quite mature, parton multiplicities in hard LHC events are so high that traditional computational techniques become inefficient. Recently new approaches based on unitarity have been developed for calculating one-loop scattering amplitudes in quantum field theory. These methods are especially suitable for the description of multi-particle processes in QCD and are amenable to numerical implementations. We present a systematic pedagogical description of both conceptual and technical aspects of the new methods.

  2. Hardness Awareness Seminar

    Science.gov (United States)

    1978-06-01

    coating . c. Designing the exposed surface with extra material which can burn-off without degrading the system performance. d. Placing special thermal...curtains or shields in the cockpit. These are to prevent injury to the crew and to prevent cockpit fires. e. Wearing of special photochromic lenses

  3. Longitudinal thermalization via the Chromo-Weibel instability

    Energy Technology Data Exchange (ETDEWEB)

    Attems, Maximilian [Frankfurt Institute for Advanced Studies (Germany)

    2014-07-01

    Non-Abelian instabilities play a crucial role in the non-equilibrium dynamics of a weakly coupled Quark-Gluon Plasma. In particular, it has been proposed that this collective phenomenon may be the mechanism behind the fast thermalization of the plasma in ultra-relativistic heavy ion collisions. In this context, I discuss recent advances in the understanding of the exponential growth and isotropization of soft unstable chromo-magnetic fields at short times which are produced by the Chromo-Weibel instabilities. The necessary momentum-space anisotropy that drives the instabilities is produced by the color-glass-condensate initial state. Using the discretized hard loop framework we simulate the 3D+3V real-time evolution of the soft gluonic fields in a longitudinally free streaming expanding background.

  4. Longitudinal thermalization via the chromo-Weibel instability

    CERN Document Server

    Attems, Maximilian; Strickland, Michael

    2013-01-01

    Non-Abelian plasma instabilities play an important role in the non-equilibrium dynamics of a weakly coupled quark-gluon plasma. Using the discretized hard loop framework we calculate the time evolution of soft gluonic fields in a longitudinally free streaming background. Extrapolating our results to energies probed in relativistic heavy-ion collisions we find a pressure anisotropy that persists for a few fm/c. However, the chromofields quickly develop a Boltzmann longitudi- nal energy spectrum, suggesting fast longitudinal thermalization of the quark gluon plasma even though it remains momentum-space anisotropic. In this proceedings contribution we review our recent numerical results, present new results for the scaling of the isotropization time with the initial current fluctuation amplitude, and present tests of the gauge invariance of the extracted longitudinal spectra.

  5. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  6. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  7. Geometry and Dynamics of Vortex Loops at Superfluid Phase Transitions

    Science.gov (United States)

    Williams, Gary A.

    2004-03-01

    The geometrical properties of thermally-excited vortex loops near a superfluid phase transition can be deduced from the dynamics of the transition. The frictional force on a loop is proportional to the total length of the vortex core, and hence depends on the fractal Hausdorff dimension DH of the random-walking core. By comparing the results for the loop dynamics with the dynamic-scaling predictions of Halperin and Hohenberg for the relaxation time, we find DH = (D+2)/2 = 2.5 in D = 3 dimensions, if the dynamic exponent is z = D/2. Computing the frequency-dependence of the superfluid density and comparing with the dynamic scaling of Fisher, Fisher, and Huse gives just the same value. Since Shenoy and co-workers have found precisely the same DH from a Flory-scaling analysis of the loop random walk, our results show that Shenoy's theory is exact if dynamic scaling is exact.

  8. Polarisation of microwave emission from reconnecting twisted coronal loops

    CERN Document Server

    Gordovskyy, Mykola; Kontar, Eduard

    2016-01-01

    Magnetic reconnection and particle acceleration due to the kink instability in twisted coronal loops can be a viable scenario for confined solar flares. Detailed investigation of this phenomenon requires reliable methods for observational detection of magnetic twist in solar flares, which may not be possible solely through extreme UV and soft X-ray thermal emission. The gradient of microwave polarisation across flaring loops can serve as one of the detection criteria. The aim of this study is to investigate the effect of magnetic twist in flaring coronal loops on the polarisation of gyro-synchrotron microwave emission, and determine whether microwave emission polarisation could provide a means for observational detection. We use time-dependent magnetohydrodynamic and test-particle models, developed using LARE3D and GCA codes to investigate twisted coronal loops relaxing following the kink-instability, and calculate synthetic microwave emission maps (I and V Stokes components) using GX simulator. It is found t...

  9. The Role of Entropic Effects on DNA Loop Formation

    Science.gov (United States)

    Wilson, David; Tkachenko, Alexei; Lillian, Todd; Perkins, Noel; Meiners, Jens Christian

    2009-03-01

    The formation of protein mediated DNA loops often regulates gene expression. Typically, a protein is simultaneously bound to two DNA operator sites. An example is the lactose repressor which binds to the Lac operon of E. coli. We characterize the mechanics of this system by calculating the free energy cost of loop formation. We construct a Hamiltonian that describes the change in DNA bending energy due to linear perturbations about the looped and open states, starting from a non-linear mechanical rod model that determines the shape and bending energy of the inter-operator DNA loop while capturing the intrinsic curvature and sequence-dependent elasticity of the DNA. The crystal structure of the LacI protein provides the boundary conditions for the DNA. We then calculate normal modes of the open and closed loops to account for the thermal fluctuations. The ratio of determinants of the two Hamiltonians yields the partition function, and the enthalphic and entropic cost of looping. This calculation goes beyond standard elastic energy models because it fully accounts for the substantial entropic differences between the two states. It also includes effects of sequence dependent curvature and stiffness and allows anisotropic variations in persistence length. From the free energy we then calculate the J-factor and ratio of loop lifetimes.

  10. A Generalized Theory of DNA Looping and Cyclization

    Science.gov (United States)

    Wilson, David; Lillian, Todd; Perkins, Noel; Tkachenko, Alexei; Meiners, Jens-Christian

    2010-03-01

    We have developed a semi-analytic method for calculating the Stockmayer Jacobson J-factor for protein mediated DNA loops. The formation of DNA loops on the order of a few persistence lengths is a key component in many biological regulatory functions. The binding of LacI protein within the Lac Operon of E.coli serves as the canonical example for loop regulated transcription. We use a non-linear rod model to determine the equilibrium shape of the inter-operator DNA loop under prescribed binding constraints while taking sequence-dependent curvature and elasticity into account. Then we construct a Hamiltonian that describes thermal fluctuations about the open and looped equilibrium states, yielding the entropic and enthalpic costs of loop formation. Our work demonstrates that even for short sequences of the order one persistence length, entropic terms contribute substantially to the J factor. We also show that entropic considerations are able to determine the most favorable binding topology. The J factor can be used to compare the relative loop lifetimes of various DNA sequences, making it a useful tool in sequence design. A corollary of this work is the computation of an effective torsional persistence length, which demonstrates how torsion bending coupling in a constrained geometry affects the conversion of writhe to twist.

  11. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus...

  12. Hard photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-07-01

    In view of possible photoproduction studies in ultra-peripheral heavy-ion collisions at the LHC, we briefly review the present theoretical understanding of photons and hard photoproduction processes at HERA, discussing the production of jets, light and heavy hadrons, quarkonia, and prompt photons. We address in particular the extraction of the strong coupling constant from photon structure function and inclusive jet measurements, the infrared safety and computing time of jet definitions, the sensitivity of di-jet cross sections on the parton densities in the photon, factorization breaking in diffractive di-jet production, the treatment of the heavy-quark mass in charm production, the relevance of the color-octet mechanism for quarkonium production, and isolation criteria for prompt photons. (author)

  13. Capillary Pump Loop (CPL) heat pipe development status report

    Science.gov (United States)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  14. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve...... the quality of that information by reusing the information given by the programmer for parallelization. We have implemented a prototype based on GCC into which we also add a new optimization pass. Our approach improves the amount of correctly classified dependencies resulting in 46% average improvement...

  15. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  16. Structural Dynamics of Human Telomeric G-Quadruplex Loops Studied by Molecular Dynamics Simulations

    Science.gov (United States)

    Zhu, Hong; Xiao, Shiyan; Liang, Haojun

    2013-01-01

    Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel) G-quadruplex. A series of molecular dynamics (MD) simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1) the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2) The TA base pair makes the adjacent G-quartet more stable than others. (3) For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4) The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5) For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0), as it has multiple conformations with similar free energies. PMID:23951152

  17. Structural dynamics of human telomeric G-quadruplex loops studied by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel G-quadruplex. A series of molecular dynamics (MD simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1 the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2 The TA base pair makes the adjacent G-quartet more stable than others. (3 For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4 The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5 For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0, as it has multiple conformations with similar free energies.

  18. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    Science.gov (United States)

    Liu, Wei

    2007-05-01

    The main theme of this dissertation is the investigation of the physics of acceleration and transport of particles in solar flares and their radiative signatures. The observational studies, using hard X-rays (HXRs) observed by RHESSI, concentrate on four flares, which support the classical magnetic reconnection model of flares in various ways. In the 11/03/2003 X3.9 flare, there is an upward motion of the loop-top source, accompanied by a systematic increase in the separation of the foot-point sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 M1.3 event exhibits rarely observed two coronal sources, with very similar spectra and their higher-energy emission being close together. This suggests that reconnection occurs between the two sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the two foot-points correlates with their mean magnetic field. The foot-points show asymmetric HXR fluxes, qualitatively consistent with the magnetic mirroring effect. The 11/13/2003 M1.7 flare reveals evidence of chromospheric evaporation directly imaged by RHESSI for the first time. The emission centroids move toward the loop-top, indicating a density increase in the loop. The theoretical modeling of this work combines the Stanford stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by electrons. I find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of thermal conduction are tested in the presence of hydrodynamic flows. I gratefully thank my adviser, Prof. Vahe' Petrosian, my collaborators, and funding support

  19. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. proposes to develop a hybrid cooling loop technology for space thermal control. The proposed technology combines the high heat...

  20. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a hybrid cooling loop and cold plate technology for space systems thermal management. The proposed...

  1. TEMPORAL AND SPATIAL ANALYSES OF SPECTRAL INDICES OF NONTHERMAL EMISSIONS DERIVED FROM HARD X-RAYS AND MICROWAVES

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan); Kiyohara, Junko; Takasaki, Hiroyuki [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan); Narukage, Noriyuki [Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency, Chuo, Sagamihara, Kanagawa, 229-8510 (Japan); Yokoyama, Takaaki [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Masuda, Satoshi [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601 (Japan); Shimojo, Masumi [National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588 (Japan); Nakajima, Hiroshi, E-mail: asai@kwasan.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano, 384-1305 (Japan)

    2013-02-15

    We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and microwaves. We analyzed 12 flares observed by the Hard X-Ray Telescope aboard Yohkoh, Nobeyama Radio Polarimeters, and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of HXRs and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap {Delta}{delta} between the electron spectral indices derived from HXRs {delta} {sub X} and those from microwaves {delta}{sub {mu}} ({Delta}{delta} = {delta} {sub X} - {delta}{sub {mu}}) of about 1.6. Furthermore, from the start to the peak times of the HXR bursts, the time profiles of the HXR spectral index {delta} {sub X} evolve synchronously with those of the microwave spectral index {delta}{sub {mu}}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index {delta}{sub {mu}} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.

  2. Graphene/elastomer composite-based photo-thermal nanopositioners

    National Research Council Canada - National Science Library

    Loomis, James; Fan, Xiaoming; Khosravi, Farhad; Xu, Peng; Fletcher, Micah; Cohn, Robert W; Panchapakesan, Balaji

    2013-01-01

    ...) with 120 nm resolution (feedback sensor limitation), and ~5 μm/s actuation speeds. A PID control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations...

  3. Transport properties of the Fermi hard-sphere system

    CERN Document Server

    Mecca, Angela; Benhar, Omar; Polls, Artur

    2015-01-01

    The transport properties of neutron star matter play an important role in a variety of astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy $\

  4. Process-microstructure-hardness relations of electrodeposited nickel layers

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2006-01-01

    and scanning electron microscopy and X-ray diffraction; the Vickers microhardness was measured in cross-sections. The present article is meant as a reference for forthcoming articles on the investigation of various strengthening mechanisms on the microstructure, hardness and thermal stability of Ni (alloy...

  5. Loop expansion and the bosonic representation of loop quantum gravity

    Science.gov (United States)

    Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.

    2016-10-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  6. Loop expansion and the bosonic representation of loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson

    2016-01-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  7. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  8. Numerical characterization of heat transfer in closed-loop vertical ground heat exchanger

    Institute of Scientific and Technical Information of China (English)

    Chulho; LEE; Hujeong; GIL; Hangseok; CHOI; Shin-Hyung; KANG

    2010-01-01

    A series of numerical analyses has been performed on the characteristics of heat transfer in a closed-loop vertical ground heat exchanger(U-loop).A 2-D finite element analysis was conducted to evaluate the temperature distribution over the cross section of the U-loop system involving high-density polyethylene(HDPE) pipe/grout/soil to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system,which is equipped with a thermally insulating lattice in order to reduce thermal interference between the inlet and outlet pipes.In addition,a 3-D finite volume analysis(FLUENT) was adopted to simulate the operation of the closed-loop vertical ground heat exchanger with the consideration of the effect of a distance between the inlet and outlet pipes,grout’s thermal properties,the effectiveness of the latticed HDPE pipe system,and the rate of circulation pump.It was observed that the thermal interference between the two strands of U-loop is of importance in enhancing efficiency of the ground heat exchanger.Consequently,it is recommended to modify the configuration of the conventional U-loop system by equipping the thermally insulating lattice between the two pipe strands.

  9. Surgical lasers and hard dental tissue.

    Science.gov (United States)

    Parker, S

    2007-04-28

    The cutting of dental hard tissue during restorative procedures presents considerable demands on the ability to selectively remove diseased carious tissue, obtain outline and retention form and maintain the integrity of supporting tooth tissue without structural weakening. In addition, the requirement to preserve healthy tissue and prevent further breakdown of the restoration places the choice of instrumentation and clinical technique as prime factors for the dental surgeon. The quest for an alternative treatment modality to the conventional dental turbine has been, essentially, patient-driven and has led to the development of various mechanical and chemical devices. The review of the literature has endorsed the beneficial effects of current laser machines. However utopian, there is additional evidence to support the development of ultra-short (nano- and femto-second) pulsed lasers that are stable in use and commercially viable, to deliver more efficient hard tissue ablation with less risk of collateral thermal damage. This paper explores the interaction of laser energy with dental hard tissues and bone and the integration of current laser wavelengths into restorative and surgical dentistry.

  10. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  11. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with

  12. Leptogenesis from loop effects in curved spacetime

    Science.gov (United States)

    McDonald, Jamie I.; Shore, Graham M.

    2016-04-01

    We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.

  13. Leptogenesis from loop effects in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2016-04-05

    We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.

  14. Propagating magnetohydrodynamics waves in coronal loops.

    Science.gov (United States)

    De Moortel, I

    2006-02-15

    High cadence Transition Region and Coronal Explorer (TRACE) observations show that outward propagating intensity disturbances are a common feature in large, quiescent coronal loops, close to active regions. An overview is given of measured parameters of such longitudinal oscillations in coronal loops. The observed oscillations are interpreted as propagating slow magnetoacoustic waves and are unlikely to be flare-driven. A strong correlation, between the loop position and the periodicity of the oscillations, provides evidence that the underlying oscillations can propagate through the transition region and into the corona. Both a one- and a two-dimensional theoretical model of slow magnetoacoustic waves are presented to explain the very short observed damping lengths. The results of these numerical simulations are compared with the TRACE observations and show that a combination of the area divergence and thermal conduction agrees well with the observed amplitude decay. Additionally, the usefulness of wavelet analysis is discussed, showing that care has to be taken when interpreting the results of wavelet analysis, and a good knowledge of all possible factors that might influence or distort the results is a necessity.

  15. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  16. Massive loop corrections for collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Yundin, Valery

    2012-02-01

    In this thesis we discuss the problem of evaluation of tensor integrals appearing in a typical one-loop Feynman diagram calculation. We present a computer library for the numerical evaluation of tensor integrals with up to 5 legs and arbitrary kinematics. The code implements algorithms based on the formalism which avoids the appearance of inverse Gram determinants in the reduction of pentagon diagrams. The Gram determinants of box integrals are isolated in the set of new basis integrals by using dimensional recurrence relations. These integrals are then evaluated by dimensional recurrence or expansion in small Gram determinant, which is improved by Pade extrapolation. A cache system allows reuse of identical building blocks and increases the efficiency. After describing the cross checks and accuracy tests, we show a sample application to the evaluation of five gluon helicity amplitudes, which is compared with the output of the program NGluon. In the last part the program is applied to the calculation of the one-loop virtual corrections to the muon pair production with hard photon emission. The computation method is explained, followed by a discussion of renormalization and pole structure. Finally, we present numerical results for differential cross sections with kinematics of the KLOE and BaBar detectors.

  17. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  18. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  19. Magnetic hysteresis loop technique as a tool for the evaluation of σ phase embrittlement in Fe-Cr alloys

    Science.gov (United States)

    Mohapatra, J. N.; Kamada, Y.; Murakami, T.; Echigoya, J.; Kikuchi, H.; Kobayashi, S.

    2013-02-01

    Fe-48 wt% Cr alloy was isothermally aged at 700 °C up to 250 h for the formation and growth of σ phase. Micro Vicker's hardness and magnetic hysteresis loop (MHL) measurements were carried out at various lengths of time by interrupting the test to observe the change in mechanical and magnetic properties respectively. A small volume fraction of σ phase did not produce any change in the hardness whereas a drastic decrease in remanence was found for its demagnetizing effect. The existence of σ phase was confirmed by transmission electron microscopy. The maximum induction of the alloy decreased with thermal ageing as the volume of ferrites decreased for the formation of non-magnetic σ phase. The volume fraction of σ phase was estimated from the maximum induction. The results showed that MHL technique can even detect 1% of σ phase in the alloy considering remanence as a measuring parameter. Hence MHL would be a powerful non-destructive evaluation technique for the evaluation of σ phase embrittlement in Fe-Cr alloys.

  20. Pseudo-scalar form factors at three loops in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Taushif [The Institute of Mathematical Sciences, IV Cross Road,CIT Campus, Chennai 600 113, Tamil Nadu (India); Gehrmann, Thomas [Department of Physics, University of Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Mathews, Prakash [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar,Kolkata 700 064, West Bengal (India); Rana, Narayan; Ravindran, V. [The Institute of Mathematical Sciences, IV Cross Road,CIT Campus, Chennai 600 113, Tamil Nadu (India)

    2015-11-24

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the ’t Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-loop form factor is an important ingredient to the precise prediction of the pseudo-scalar Higgs boson production cross section at hadron colliders. We discuss potential applications and derive the hard matching coefficient in soft-collinear effective theory.

  1. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  2. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  3. Measuring the Hardness of Minerals

    Science.gov (United States)

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  4. Why All the Hard Work?

    Institute of Scientific and Technical Information of China (English)

    VALERIE; SARTOR

    2011-01-01

    The stereotype of the hard working Chinese has been around for a long time in the West. As early a 1894, Arthur Smith, a missionary who spent 54 years in China, wrote book introducing the hard-working Chinese people to Americans. In his book Chinese Characteristics, Smith wrote about the dili

  5. Phase behavior of hard particles

    NARCIS (Netherlands)

    Duijneveldt, J.S. van; Lekkerkerker, H.N.W.

    1995-01-01

    The phase behavior of hard particles and mixtures thereof is reviewed. Special attention is given to a lattice model consisting of hard hexagons and points on a triangular lattice. This model appears to have two disordered phases and an ordered phase.

  6. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  7. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  8. Force distribution in a semiflexible loop

    Science.gov (United States)

    Waters, James T.; Kim, Harold D.

    2017-01-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ringlike or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a simulation method termed “phase-space sampling,” we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contributions to the forces, we find that the mean force acts in the direction of increasing extension not because of bending stress, but in spite of it. Furthermore, we obtain a distribution of constraint forces as a function of chain length, extension, and stiffness. Notably, increasing contour length decreases the average force, but the additional freedom allows fluctuations in the constraint force to increase. The force distribution is asymmetric and falls off less sharply than a Gaussian distribution. Our work exemplifies a system where large-amplitude fluctuations occur in a way unforeseen by a purely thermodynamic framework, and offers computational tools useful for efficient, unbiased simulation of a constrained system. PMID:27176436

  9. Dynamic PID loop control

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  10. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  11. Dynamic PID loop control

    CERN Document Server

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  12. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  13. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  14. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  15. Hard X-ray and Microwave Simulation of 2015-06-22 M6.6 flare

    Science.gov (United States)

    Kuroda, Natsuha; Wang, Haimin; Gary, Dale E.; Fleishman, Gregory D.; Nita, Gelu M.; Chen, Bin; Xu, Yan; Jing, Ju

    2016-05-01

    It is well known that the time profiles of the hard X-ray (HXR) emission and the microwave (MW) emission during the impulsive phase of the solar flare are well correlated, and this has led to the expectation that these emissions come from a common population of flare-accelerated electrons. However, the energy ranges of the electrons producing two emissions are believed to be different (below and above several hundred keV for HXR-producing and MW-producing electrons, respectively), and some studies have shown that the indices of their energy spectra may differ as well. To better understand the energy distributions of the electrons producing these emissions, we present realistic forward-fit simulations of the HXR and the MW emissions of 2015 June 22, M6.6 flare using the newly developed, IDL-based platform GX simulator. We use the 3D magnetic field model extrapolated from magnetogram data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), the images and the electron energy distribution parameters deduced from the photon spectrum from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the spatially integrated MW spectrum and the cross-correlated amplitude data from the Expanded Owens Valley Solar Array (EOVSA) to guide the modeling. We have observed a possible above the-loop-top HXR source in 20-25 keV image, well separated from the source seen in 6-12 keV that is typically interpreted as a thermal loop-top source. Therefore, we simulate the HXR emissions by combining two flux tubes at different heights: the lower loop dominated by thermal electrons and the higher loop dominated by nonthermal electrons. The MW and HXR emissions produced from the forward-fit model are compared with observations to investigate possible differences in the energy spectra of the HXR-producing and the MW-producing electrons and what they can tell us about particle acceleration.

  16. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    simulated numerically and together with the material carbon equivalent, austenization temperatures and the thermal history the simulations were used to estimate the resulting post weld hardness using the commercial FE code SORPAS. The hardness of the welds of dissimilar materials was estimated......In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  17. Phenomenology of loop quantum cosmology

    CERN Document Server

    Sakellariadou, Mairi

    2010-01-01

    After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.

  18. RCD+: Fast loop modeling server.

    Science.gov (United States)

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Improved code-tracking loop

    Science.gov (United States)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  20. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  1. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  2. Safe, Non-Corrosive Dielectric Fluid for Stagnating Radiator Thermal Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon proposes to develop a single-loop, non-toxic, stagnating active pumped loop thermal control design for NASA's Orion or Lunar Surface Access Module (LSAM)...

  3. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  4. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  5. Ion energy storage for post-flare loops

    Science.gov (United States)

    Hudson, H. S.

    1985-01-01

    Low-energy non-thermal protons may have long lifetimes in coronal loops with low density and high temperature. If energy were stored in such protons in the initial phases of a solar flare, it could be released slowly during the later phases. Within the present observational limits for post-flare loops, this mechanism should be considered in addition to a field-line reconnection theory of the Kopp and Pneuman type. The thin-target gamma ray emission from the trapped protons is below present limits, but more sensitive observations can test the hypothesis.

  6. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion

  7. Overview of Loop Heat Pipe Operation

    Science.gov (United States)

    Ku, Jentung

    1999-01-01

    Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and

  8. Thermodynamic signature of the dynamic glass transition in hard spheres.

    Science.gov (United States)

    Hermes, Michiel; Dijkstra, Marjolein

    2010-03-17

    We use extensive event-driven molecular dynamics simulations to study the thermodynamic, structural and dynamic properties of hard-sphere glasses. We determine the equation of state of the metastable fluid branch for hard spheres with a size polydispersity of 10%. Our results show a clear jump in the slope of the isothermal compressibility. The observation of a thermodynamic signature at the transition from a metastable fluid to a glassy state is analogous to the abrupt change in the specific heat or thermal expansion coefficient as observed for molecular liquids at the glass transition. The dynamic glass transition becomes more pronounced and shifts to higher densities for longer equilibration times.

  9. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  10. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  11. Modeling loop entropy.

    Science.gov (United States)

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  12. The loop gravity string

    CERN Document Server

    Freidel, Laurent; Pranzetti, Daniele

    2016-01-01

    In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...

  13. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  14. Hardness Measurement of (TiB2-TiAl)/TiAl Symmetrically Function Gradient Materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    (TiB2-TiAl)/TiAl symmetrically function gradient materials (FGM) were prepared by spark plasma sintering (SPS). Owing to the difference of the thermal expansion coefficients between TiB2 and TiAl, a compressive surface stress was introduced to the FGM by the thermal expansion mismatch. The hardness values of the uniform materials and the FGM were tested, respectively. For the FGM with a compressive surface stress, hardness is obviously superior to that of the uniform material.When the FGM was subjected to heat treatment,the hardness decreased due to a partial relaxation of the compressive surface stress.

  15. Observational Signatures of Coronal Loop Heating and Cooling Driven by Footpoint Shuffling

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Ugarte-Urra, I; Warren, H P; Rappazzo, A F; Velli, M

    2016-01-01

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50000 km length and axial magnetic field intensities ranging from 0.01...

  16. Unified approach to hard diffraction

    CERN Document Server

    Peschanski, R

    2001-01-01

    Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bj} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions.

  17. Radial propagators and Wilson loops

    CERN Document Server

    Leupold, S; Leupold, Stefan; Weigert, Heribert

    1996-01-01

    We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.

  18. Hard X-ray morphology of the X1.3 April 25, 2014 partially occulted limb solar flare

    CERN Document Server

    Effenberger, Frederic; Petrosian, Vahe

    2016-01-01

    At hard X-ray energies, the bright footpoint emission from solar flare loops often prevents a detailed analysis of the weaker loop-top source morphology due to the limited dynamic range available for X-ray imaging. Here, we study the X1.3 April 25, 2014 flare with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This partially occulted limb flare allows the analysis of the loop-top emission in isolation. We present results on the flare light curve at different energies, the source morphology from X-ray imaging and a detailed spectral analysis of the different source components by imaging spectroscopy. The loop-top source, a likely site of particle acceleration, shows a clear composition of different emission components. The results indicate the opportunities that detailed imaging of hard X-rays can provide to learn about particle acceleration, transport and heating processes in solar flares.

  19. Light-cone Wilson loop in classical lattice gauge theory

    CERN Document Server

    Laine, M

    2013-01-01

    The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

  20. Integrated closed-loop cavity of a tunable laser

    Science.gov (United States)

    Ren, M.; Cai, H.; Gu, Y. D.; Chin, L. K.; Radhakrishnan, K.; Ser, W.; Sun, H. D.; Liang, Q. X.; Kwong, D.-L.; Liu, A. Q.

    2016-10-01

    In this paper, a closed-loop cavity of a tunable laser integrated onto a silicon chip is demonstrated. The closed-loop cavity consists of a semiconductor optical amplifier chip, two separated micro-ring resonators, and a U-shaped waveguide sub-loop, enabling dominating lasing in the counterclockwise direction. The lasing wavelength is tuned by varying the effective refractive index of the thermal ring-resonators. It has achieved wide tuning range (55.4 nm), high spectral purity (50-dB side mode suppression ratio), ˜1-mW output power, and 36-dB counter-propagation power suppression ratio. The integrated tunable laser has high potential in applications such as optical network, optical sensing, and integrated optoelectronic systems.

  1. Design and Performance Evaluation of a Dual Antenna Joint Carrier Tracking Loop

    Directory of Open Access Journals (Sweden)

    Wenfei Guo

    2015-10-01

    Full Text Available In order to track the carrier phases of Global Navigation Satellite Systems (GNSS signals in signal degraded environments, a dual antenna joint carrier tracking loop is proposed and evaluated. This proposed tracking loop processes inputs from two antennas, namely the master antenna and the slave antenna. The master antenna captures signals in open-sky environments, while the slave antenna capture signals in degraded environments. In this architecture, a Phase Lock Loop (PLL is adopted as a master loop to track the carrier phase of the open-sky signals. The Doppler frequency estimated by this master loop is utilized to assist weak carrier tracking in the slave loop. As both antennas experience similar signal dynamics due to satellite motion and clock frequency variations, a much narrower loop bandwidth and possibly a longer coherent integration can be adopted to track the weak signals in slave channels, by utilizing the Doppler aid from master channels. PLL tracking performance is affected by the satellite/user dynamics, clock instability, and thermal noise. In this paper, their impacts on the proposed phase tracking loop are analyzed and verified by both simulation and field data. Theoretical analysis and experimental results show that the proposed loop structure can track degraded signals (i.e., 18 dB-Hz with a very narrow loop bandwidth (i.e., 0.5 Hz and a TCXO clock.

  2. Design and Performance Evaluation of a Dual Antenna Joint Carrier Tracking Loop.

    Science.gov (United States)

    Guo, Wenfei; Lin, Tao; Niu, Xiaoji; Shi, Chuang; Zhang, Hongping

    2015-10-01

    In order to track the carrier phases of Global Navigation Satellite Systems (GNSS) signals in signal degraded environments, a dual antenna joint carrier tracking loop is proposed and evaluated. This proposed tracking loop processes inputs from two antennas, namely the master antenna and the slave antenna. The master antenna captures signals in open-sky environments, while the slave antenna capture signals in degraded environments. In this architecture, a Phase Lock Loop (PLL) is adopted as a master loop to track the carrier phase of the open-sky signals. The Doppler frequency estimated by this master loop is utilized to assist weak carrier tracking in the slave loop. As both antennas experience similar signal dynamics due to satellite motion and clock frequency variations, a much narrower loop bandwidth and possibly a longer coherent integration can be adopted to track the weak signals in slave channels, by utilizing the Doppler aid from master channels. PLL tracking performance is affected by the satellite/user dynamics, clock instability, and thermal noise. In this paper, their impacts on the proposed phase tracking loop are analyzed and verified by both simulation and field data. Theoretical analysis and experimental results show that the proposed loop structure can track degraded signals (i.e., 18 dB-Hz) with a very narrow loop bandwidth (i.e., 0.5 Hz) and a TCXO clock.

  3. Analysis of heat transfer of loop heat pipe used to cool high power LED

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel loop heat pipe(LHP)cooling device for high power LED is developed.The thermal capabilities, including startup performance,temperature uniformity and thermal resistance of the loop heat pipe under different heat loads and incline angles have been investigated experimentally.The obtained results indicate that the thermal resistance of the heat pipe heat sink is in the range of 0.19―3.1 K/W,the temperature uniformity in the evaporator is controlled within 1.5℃,and the junction temperature of high power LED can be controlled steadily under 100℃for a heat load of 100 W.

  4. Product Integrals and Wilson loops

    CERN Document Server

    Karp, R L

    2001-01-01

    Using product integrals we review the unambiguous mathematical representation of Wilson line and Wilson loop operators, including their behavior under gauge transformations and the non-abelian Stokes theorem. Interesting consistency conditions among Wilson lines are also presented.

  5. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  6. Holographic thermalization in noncommutative geometry

    CERN Document Server

    Zeng, Xiao-Xiong; Liu, Wen-Biao

    2014-01-01

    Gravitational collapse of a dust shell in noncommutative geometry is probed by the renormalized geodesic length and minimal area surface, which are dual to the two-point correlation function and expectation value of Wilson loop in the dual conformal field theory. For the spacetime without a horizon, we find the shell will not collapse all the time but will stop in a stable state. For the spacetime with a horizon, we investigate how the noncommutative parameter affects the thermalization process in detail. From the numeric results, we find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. From the fitted functions of the thermalization curve, we find for both thermalization probes, there is a phase transition point during the thermalization process, which divides the thermalization into an acceleration phase and a deceleration phase. During the acceleration phase, the acceleration is found to ...

  7. Hard Carbon Films Deposited under Various Atmospheres

    Science.gov (United States)

    Wei, M.-K.; Chen, S.-C.; Wu, T. C.; Lee, Sanboh

    1998-03-01

    Using a carbon target ablated with an XeCl-excimer laser under various gas atmospheres at different pressures, hard carbon was deposited on silicon, iron and tungsten carbide substrates. The hardness, friction coefficient, and wear rate of the film against steel are better than pure substrate material, respectively, so that it has potential to be used as a protective coating for micromechanical elements. The influences of gas pressure, gas atmosphere, and power density of laser irradiation on the thermal stability of film were analyzed by means of Raman-spectroscope, time-of-flight method, and optical emission spectrum. It was found that the film deposited under higher pressure has less diamond-like character. The film deposited under rest gas or argon atmosphere was very unstable and looked like a little graphite-like character. The film deposited at high vacuum (10-5 mbar rest gas) was the most stable and looked like the most diamond-like character. The film deposited at higher power density was more diamond-like than that at lower power density.

  8. White Layer of Hard Turned Surface by Sharp CBN Tool

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-ping; SONG He-chuan; C.Richard Liu

    2005-01-01

    White layers in hard turned surfaces were identified and measured as a function of turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.

  9. Continuous smearing of Wilson Loops

    CERN Document Server

    Lohmayer, Robert

    2011-01-01

    Continuum smearing was introduced in section 4.1 of JHEP03, 064 (2006) as a meaningful continuum analogue of the well known set of lattice techniques by the same name. Here we apply continuous smearing in continuous space-time to Wilson loops in order to clarify what it does in the context of field theory and also in the context of the loop calculus of the Makeenko-Migdal equation.

  10. The Projectile inside the Loop

    OpenAIRE

    Varieschi, Gabriele U.

    2005-01-01

    In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.

  11. Introduction to Loop Quantum Gravity

    OpenAIRE

    Mercuri, Simone

    2010-01-01

    The questions I have been asked during the 5th International School on Field Theory and Gravitation, have compelled me to give an account of the premises that I consider important for a beginner's approach to Loop Quantum Gravity. After a description of some general arguments and an introduction to the canonical theory of gravity, I review the background independent approach to quantum gravity, giving only a brief survey of Loop Quantum Gravity.

  12. Bifurcations of nontwisted heteroclinic loop

    Institute of Scientific and Technical Information of China (English)

    田清平; 朱德明

    2000-01-01

    Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and bifurcation surfaces of the two-fold periodic orbit are also obtained. At last, these bifurcation results are applied to the fine heteroclinic loop for the planar system, which leads to some new and interesting results.

  13. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    Science.gov (United States)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  14. Primary loop simulation of the SP-100 space nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F., E-mail: eduardo@ieav.cta.b, E-mail: fbraz@ieav.cta.b, E-mail: guimarae@ieav.cta.b [Instituto de Estudos Avancados (IEAv/DCTA) Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  15. Black holes in loop quantum gravity.

    Science.gov (United States)

    Perez, Alejandro

    2017-07-11

    This is a review of the results on black hole physics in the framework of loop quantum gravity. The key feature underlying the results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields and specially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads also to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program. This review reports its achievements and open questions in a pedagogical manner with an emphasis on quantum aspects of black hole physics. . © 2017 IOP Publishing Ltd.

  16. FINITE ELEMENT METHOD ANALYSIS OF PIPE MATERIAL TEMPERATURE CHANGES INFLUENCE ON LINE EXPANSION LOOPS IN HYDRAULIC INSTALLATIONS ON MODERN TANKERS

    OpenAIRE

    2011-01-01

    Finite element method analysis of main lines of hydraulic central loading system installation expansion loops mounted on product and chemical tankers has been presented in the paper. The axial forces problem in installations mounted along the ship's open decks executed from hull deformations on waves and thermal stresses is given. Use of "U" type expansion loops is described. Results of forces in anchor points and stresses of Mises due to expansion loop deformations are shown. Calculations we...

  17. MHD modeling of coronal loops: the transition region throat

    CERN Document Server

    Guarrasi, M; Orlando, S; Mignone, A; Klimchuk, J A

    2014-01-01

    The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.

  18. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  19. Dismantling design for the loop rooms on the MR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.; Fecitt, L. [NUKEM Limited, Dounreay (United Kingdom); Gorlinsky, Yu.E. [RRC Kurchatov Institute, Moscow (Russian Federation); Harman, N.F.; Jackson, R. [Serco Technical and Assurance Services, Warrington (United Kingdom); Kolyadin, V.I. [RRC Kurchatov Institute, Moscow (Russian Federation); Lobach, Yu.N., E-mail: lobach@kinr.kiev.u [Institute for Nuclear Research of NASU, pr.Nauki, 47, 03680 Kiev (Ukraine); Pavlenko, V.I. [RRC Kurchatov Institute, Moscow (Russian Federation)

    2009-12-15

    The recently completed international co-operation project was aimed at planning for decommissioning the MR reactor identified as a pilot plant for the decommissioning of the other shutdown reactors on the site. The MR reactor was a pool-type, materials testing reactor with the total thermal power of 50 MW which incorporated pressure tubes containing fuel under test. The MR facility includes the reactor with its nine loop rig rooms containing pumps, heat exchangers and experimental equipment as well as systems and equipment located in other buildings in the complex. The objective of the MR reactor decommissioning project was to identify dismantling equipment and the decommissioning methodology for the reactor, loop rooms and redundant services to permit the refit and re-use of the building for a different nuclear related purpose. The dismantling design comprises two separate, but combined, tasks, namely, the dismantling of reactor installation itself and dismantling of experimental loops. The techniques proposed to undertake the dismantling operations within the loop rooms are described. Two options have been developed for removing contaminated equipment from the high radiation field loop rooms and packaging the waste into approved waste containers. The benefits and detriments of both methods have been identified, which allows implementing the safe, timely and cost-effective decommissioning.

  20. Design factors analyses of second-loop PRHRS

    Directory of Open Access Journals (Sweden)

    ZHANG Hongyan

    2017-05-01

    Full Text Available In order to study the operating characteristics of a second-loop Passive Residual Heat Removal System (PRHRS, the transient thermal analysis code RELAP5 is used to build simulation models of the main coolant system and second-loop PRHRS. Transient calculations and comparative analyses under station blackout accident and one-side feed water line break accident conditions are conducted for three critical design factors of the second-loop PRHRS:design capacity, emergency makeup tank and isolation valve opening speed. The impacts of the discussed design factors on the operating characteristics of the second-loop PRHRS are summarized based on calculations and analyses. The analysis results indicate that the system safety and cooling rate should be taken into consideration in designing PRHRS's capacity,and water injection from emergency makeup tank to steam generator can provide advantage to system cooling in the event of accident,and system startup performance can be improved by reducing the opening speed of isolation valve. The results can provide references for the design of the second-loop PRHRS in nuclear power plants.

  1. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  2. Numerical simulation of transient operation of loop heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, T. [Carleton University, Department of Mechanical and Aerospace Engineering, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada)], E-mail: tkaya@mae.carleton.ca; Perez, R.; Gregori, C.; Torres, A. [IberEspacio, Tecnologia Aeroespacial, Magallanes, 1, 28015 Madrid (Spain)

    2008-06-15

    A numerical model is developed to simulate the transient performance characteristics of loop heat pipes (LHP). The model satisfactorily simulates the overall dynamic behavior of an LHP unit tested under ambient and vacuum environments. The startup phase is also reproduced using the experimentally obtained incipient wall superheat. The accurate heat leak predictions at low powers remain problematic and experimental correlation is necessary. The model can be used to analyze the dynamic behavior of an LHP based thermal control system exposed to transient thermal loads.

  3. Adaptive Local Loop Shaping and Inverse-based Youla-Kucera Parameterization with Application to Precision Control

    OpenAIRE

    Chen, Xu

    2013-01-01

    In this dissertation we discuss loop-shaping algorithms that bring enhanced servo performance at multiple local frequency regions. These local loop shaping (LLS) algorithms are motivated by several new demands in practical control systems such as hard disk drives in information storage industry, wafer scanners in semiconductor manufacturing, active steering in automotive vehicles, and active suspension in structural vibration rejection. We will examine how knowledge about the disturbance/refe...

  4. Bol loops of odd prime exponent

    CERN Document Server

    Foguel, Tuval

    2009-01-01

    Although any finite Bol loop of odd prime exponent is solvable, we show there exist such Bol loops with trivial center. We also construct finitely generated, infinite, simple Bruck loops of odd prime exponent for sufficiently large primes. This shows that the Burnside problem for Bruck loops has a negative answer.

  5. Classifying Finitely Generated Indecomposable RA Loops

    CERN Document Server

    Cornelissen, Mariana

    2012-01-01

    In 1995, E. Jespers, G. Leal and C. Polcino Milies classified all finite ring alternative loops (RA loops for short) which are not direct products of proper subloops. In this paper we extend this result to finitely generated RA loops and provide an explicit description of all such loops.

  6. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  7. Hard Diffraction at D{phi}

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Gilvan A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Lab. de Cosmologia e Fisica Experimental de Altas Energias

    2000-07-01

    Full text follows: We review recent Hard Diffraction results from the D{phi} experiment at Fermilab, for the following processes: hard color singlet exchange, hard single diffraction, and hard double pomeron exchange. Measurements of rates, {eta}, E{sub T} and {radical}S dependencies are presented and comparisons made with predictions of several models. (author)

  8. Full parabolic trough qualification from prototype to demonstration loop

    Science.gov (United States)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  9. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  10. Study of the Open Loop and Closed Loop Oscillator Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imel, George R. [Idaho State Univ., Pocatello, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Tony [Knolls Atomic Power Lab. (KAPL), Schenectady, NY (United States); Langbehn, Adam [Puget Sound Naval Base, Bremerton, WA (United States); Aryal, Harishchandra [Idaho State Univ., Pocatello, ID (United States); Benzerga, M. Lamine [Idaho State Univ., Pocatello, ID (United States)

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  11. BPS Wilson Loops on S^2 at Higher Loops

    CERN Document Server

    Young, Donovan

    2008-01-01

    We consider supersymmetric Wilson loops of the variety constructed by Drukker, Giombi, Ricci, and Trancanelli, whose spatial contours lie on a two-sphere. Working to second order in the 't Hooft coupling in planar N=4 Supersymmetric Yang-Mills Theory (SYM), we compute the vacuum expectation value of a wavy-latitude and of a loop composed of two longitudes. We evaluate the resulting integrals numerically and find that the results are consistent with the zero-instanton sector calculation of Wilson loops in 2-d Yang-Mills on S^2 performed by Bassetto and Griguolo. We also consider the connected correlator of two distinct latitudes to third order in the 't Hooft coupling in planar N=4 SYM. We compare the result in the limit where the latitudes become coincident to a perturbative calculation in 2-d Yang-Mills on S^2 using a light-cone Wu-Mandelstam-Leibbrandt prescription. The two calculations produce differing results.

  12. Hard Diffraction in Pythia 8

    CERN Document Server

    Rasmussen, Christine O

    2015-01-01

    We present an overview of the options for diffraction implemented in the general--purpose event generator Pythia 8. We review the existing model for low-- and high--mass soft diffraction and present a new model for hard diffraction in pp and ppbar collisions. Both models uses the Pomeron approach pioneered by Ingelman and Schlein, factorising the single diffractive cross section into a Pomeron flux and a Pomeron PDF. The model for hard diffraction is implemented as a part of the multiparton interactions framework, thereby introducing a dynamical rapidity gap survival probability that explicitly breaks factorisation.

  13. Hard Diffraction in Pythia 8

    CERN Document Server

    Rasmussen, Christine O

    2015-01-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  14. Hard diffraction in Pythia 8

    Science.gov (United States)

    Overgaard Rasmussen, Christine

    2016-07-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8 [1]. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  15. Generalized loop space and TMDs

    Directory of Open Access Journals (Sweden)

    Mertens Tom

    2014-06-01

    Full Text Available The Standard Model describes the three (of four basic interactions known in Nature in terms of the quantum fields which are constituted by representations of special unitary gauge groups of symmetry. However, the physical observables do not always coincide with the fundamental degrees of freedom of the Standard Model. Therefore it can be useful to switch to the loop space representation of the gauge theory, where the variables are inherently gauge invariant but the degrees of freedom are absorbed in the path/loop dependence. Over-completeness of this space requires the introduction of an equivalence relation which is provided by Wilson loop functionals operating on piecewise regular paths. It is well known that certain Wilson loops show the same singularity structure as some Transverse Momentum Dependent PDFs (TMDs, which are not renormalizable by the common methods due to exactly this singularity structure. By introducing geometrical operators, like the area-derivative, we were able to derive an evolution equation for these Wilson loops and we hope to apply this method in the future to find some renormalization schemes for TMDs.

  16. Loop coupled resonator optical waveguides.

    Science.gov (United States)

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  17. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform...

  18. Effect of steaming on shape memory polyurethane fibers with various hard segment contents

    Science.gov (United States)

    Zhu, Yong; Hu, Jinlian; Yeung, Lap-Yan; Lu, Jing; Meng, Qinghao; Chen, Shaojun; Yeung, Kwok-wing

    2007-08-01

    To illustrate the effect of post-treatment high-pressure steaming and hard segment content on shape memory polyurethane (SMPU) fiber, a series of shape memory polyurethane having various hard segment contents was synthesized with the pre-polymerization method, spun with a wet spinning process and treated with high pressure saturated water vapor. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), wide angle x-ray diffraction (WAXD), mechanical testing and cyclic tensile testing were conducted to investigate the particular thermal/mechanical properties, crystallization of hard segments and shape memory properties of SMPU fibers. In addition, in the light of a comparison between the original and the treated SMPU fiber, the effect of steaming post-treatment in SMPU fibers with various hard segment contents was illustrated. The steaming treatment gives rise to a higher elongation ratio at break, lower tenacity and initial modulus. Hard segment crystallization can be induced, especially in fiber with higher hard segment content after treatment. The glass transition temperature of the soft segment of SMPU fibers was decreased after steaming and the trends are most likely significant in high hard segment content specimens. Steaming with high pressure saturated water vapor can eliminate the thermal shrinkage and provide dimensional stability to the original SMPU fibers. The recoverability remains well in all treated specimens, but the fixity ability decreases with the decrease of hard segment content.

  19. Boosted Fast Flux Loop Alternative Cooling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  20. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    CERN Document Server

    Laine, M; Tassler, M

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.

  1. Energetic electron propagation in the decay phase of non-thermal flare emission

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Tsap, Yuri T., E-mail: huangj@nao.cas.cn [Crimean Astrophysical Observatory of Kyiv National Taras Shevchenko University, 98409 Crimea, Nauchny (Ukraine)

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  2. Hard Trying and These Recipes

    Science.gov (United States)

    Atwell, Nancie

    2003-01-01

    Writers thrive when they are motivated to work hard, have regular opportunities to practice and reflect, and benefit from a knowledgeable teacher who knows writing. Student feedback to lessons during writing workshop helped guide Nancie Atwell in her quest to provide the richest and most efficient path to better writing.

  3. Kinetic theory of hard spheres

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1979-01-01

    Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca

  4. Metrics for Hard Goods Merchandising.

    Science.gov (United States)

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in hard goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…

  5. Inclusive Hard Diffraction at HERA

    CERN Document Server

    Proskuryakov, Alexander

    2010-01-01

    Recent data from the H1 and ZEUS experiments on hard inclusive diffraction are discussed. Results of QCD analyses of the diffractive deep-inelastic scattering processes are reported. Predictions based on the extracted parton densities are compared to diffractive dijet measurements.

  6. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  7. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  8. Unifying approach to hard diffraction

    CERN Document Server

    Navelet, H

    2001-01-01

    We find a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. A theoretical interpretation in terms of S-Matrix and perturbative QCD properties in the small x_{Bj} regime is proposed.

  9. Verrucous Carcinoma of Hard Plate

    OpenAIRE

    Parmod Kalstra,Monica Manhas,Rajdeep Sood

    2000-01-01

    VerrucouS squamous cell carcinoma occurs mainly in oral cavity and larynx, buccal mucosa being most commonly involved. One case of verrucous carcinoma involvmg left hard palate (T4 No Mo)in an adult male is being reported who underwent left total maxillectomy. The tumor behaviour andlts management has been dlscussed.

  10. Heating and dynamics of two flare loop systems observed by AIA and EIS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-02-01

    We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet of the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.

  11. Hard processes in hadronic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.

  12. All digital pulsewidth control loop

    Science.gov (United States)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  13. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Martin Bojowald

    2004-10-01

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to classical singularities are very different from general relativity. The quantum theory is free of singularities, and there are new phenomenological scenarios for the evolution of the very early universe such as inflation. We give an overview of the main effects, focussing on recent results obtained by different groups.

  14. Loop quantum geometry: a primer

    Energy Technology Data Exchange (ETDEWEB)

    Corichi, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)

    2005-01-15

    This is the written version of a lecture given at the 'VI Mexican School of Gravitation and Mathematical Physics' (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.

  15. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  16. Loop Quantum Geometry: A primer

    OpenAIRE

    Corichi, Alejandro

    2005-01-01

    This is the written version of a lecture given at the ``VI Mexican School of Gravitation and Mathematical Physics" (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-expert...

  17. Characterization of hard piezoelectric lead-free ceramics.

    Science.gov (United States)

    Zhang, Shujun; Lim, Jong Bong; Lee, Hyeong Jae; Shrout, Thomas R

    2009-08-01

    K4CuNb8O23 doped K(0.45)Na(0.55)NbO3(KNNKCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacancies, which lead to piezoelectric "hardening" effect, by stabilizing and pinning of the domain wall motion. The dielectric loss for the hard lead-free piezoelectric ceramic was found to be 0.6%, with mechanical quality factors Q on the order of >1500. Furthermore, the piezoelectric properties were found to decrease and the coercive field increased, when compared with the undoped material, exhibiting a typical characteristic of "hard" behavior. The temperature usage range was limited by the polymorphic phase transition temperature, being 188 degrees C. The full set of material constants was determined for the KNN-KCN materials. Compared with conventional hard PZT ceramics, the lead-free possessed lower dielectric and piezoelectric properties; however, comparable values of mechanical Q, dielectric loss, and coercive fields were obtained, making acceptor modified KNN based lead-free piezoelectric material promising for high-power applications, where leadfree materials are desirable.

  18. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    Science.gov (United States)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  19. Dirac Induction for loop groups

    NARCIS (Netherlands)

    Posthuma, H.

    2011-01-01

    Using a coset version of the cubic Dirac operators for affine Lie algebras, we give an algebraic construction of the Dirac induction homomorphism for loop group representations. With this, we prove a homogeneous generalization of the Weyl-Kac character formula and show compatibility with Dirac induc

  20. Five-loop massive tadpoles

    CERN Document Server

    Luthe, T

    2016-01-01

    We provide an update on a long-term project that aims at evaluating massive vacuum integrals at the five-loop frontier, with high precision and in various space-time dimensions. A number of applications are sketched, mainly concerning the determination of anomalous dimensions, for quantum field theories in four, three and two dimensions.

  1. Loop quantum gravity and observations

    CERN Document Server

    Barrau, A

    2014-01-01

    Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.

  2. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  3. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities

    Science.gov (United States)

    Berkowitz, Max; Parr, Robert G.

    1988-02-01

    Hardness and softness kernels η(r,r') and s(r,r') are defined for the ground state of an atomic or molecular electronic system, and the previously defined local hardness and softness η(r) and s(r) and global hardness and softness η and S are obtained from them. The physical meaning of s(r), as a charge capacitance, is discussed (following Huheey and Politzer), and two alternative ``hardness'' indices are identified and briefly discussed.

  4. Ultrasonic material hardness depth measurement

    Science.gov (United States)

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  5. Development of Radiation Hard Scintillators

    CERN Document Server

    Tiras, Emrah; Bilki, Burak; Winn, David; Onel, Yasar

    2016-01-01

    Modern high-energy physics experiments are in ever increasing need for radiation hard scintillators and detectors. In this regard, we have studied various radiation-hard scintillating materials such as Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), our prototype material Scintillator X (SX) and Eljen (EJ). Scintillation and transmission properties of these scintillators are studied using stimulated emission from a 334 nm wavelength UV laser with PMT before and after certain amount of radiation exposure. Recovery from radiation damage is studied over time. While the primary goal of this study is geared for LHC detector upgrades, these new technologies could easily be used for future experiments such as the FCC and ILC. Here we discuss the physics motivation, recent developments and laboratory measurements of these materials.

  6. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  7. Schwannoma of the hard palate

    OpenAIRE

    2009-01-01

    Schwannomas are benign encapsulated perineural tumors. The head and neck region is the most common site. Intraoral origin is seen in only 1% of cases, tongue being the most common site; its location in the palate is rare. We report a case of hard-palate schwannoma with bony erosion which was immunohistochemically confirmed. The tumor was excised completely intraorally. After two months of follow-up, the defect was found to be completely covered with palatal mucosa.

  8. Playing Moderately Hard to Get

    Directory of Open Access Journals (Sweden)

    Stephen Reysen

    2013-12-01

    Full Text Available In two studies, we examined the effect of different degrees of attraction reciprocation on ratings of attraction toward a potential romantic partner. Undergraduate college student participants imagined a potential romantic partner who reciprocated a low (reciprocating attraction one day a week, moderate (reciprocating attraction three days a week, high (reciprocating attraction five days a week, or unspecified degree of attraction (no mention of reciprocation. Participants then rated their degree of attraction toward the potential partner. The results of Study 1 provided only partial support for Brehm’s emotion intensity theory. However, after revising the high reciprocation condition vignette in Study 2, supporting Brehm’s emotion intensity theory, results show that a potential partners’ display of reciprocation of attraction acted as a deterrent to participants’ intensity of experienced attraction to the potential partner. The results support the notion that playing moderately hard to get elicits more intense feelings of attraction from potential suitors than playing too easy or too hard to get. Discussion of previous research examining playing hard to get is also re-examined through an emotion intensity theory theoretical lens.

  9. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Mikuła, K.; Heinzel, P.; Liu, W.; Berlicki, A.

    2017-08-01

    Flare loops were well observed with the Interface Region Imaging Spectrograph (IRIS) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg ii lines. Synthetic profiles of the Mg ii h line are computed using the classical cloud model and assuming a uniform background intensity. In this paper, we study novel IRIS NUV observations of such loops in Mg ii h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg ii spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg ii lines. Emission profiles of Mg ii were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.

  10. CO II laser free-form processing of hard tissue

    Science.gov (United States)

    Werner, Martin; Klasing, Manfred; Ivanenko, Mikhail; Harbecke, Daniela; Steigerwald, Hendrik; Hering, Peter

    2007-07-01

    Drilling and surface processing of bone and tooth tissue belongs to standard medical procedures (bores and embeddings for implants, trepanation etc.). Small circular bores can be generally quickly produced with mechanical drills. However problems arise at angled drilling, the need to execute drilling procedures without damaging of sensitive soft tissue structures underneath the bone or the attempt to mill small non-circular cavities in hard tissue with high precision. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The processing of bone is done with a CO II laser (10.6 μm) with pulse durations of 50 - 100 μs, combined with a PC-controlled fast galvanic laser beam scanner and a fine water-spray, which helps keeping the ablation process effective and without thermal side-effects. Laser "milling" of non-circular cavities with 1 - 4 mm width and about 10 mm depth can be especially interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser processing of these cavities without thermal damage and with minimised tapering. It included the exploration of different filling patterns (concentric rings, crosshatch, parallel lines, etc.), definition of maximal pulse duration, repetition rate and laser power, and optimal water spray position. The optimised results give evidence for the applicability of pulsed CO II lasers for biologically tolerable effective processing of deep cavities in hard tissue.

  11. Magnetic hysteresis loop technique as a tool for the evaluation of {sigma} phase embrittlement in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, J.N., E-mail: jnmohapatra@gmail.com [NDE and Science Research Center, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kamada, Y.; Murakami, T.; Echigoya, J.; Kikuchi, H.; Kobayashi, S. [NDE and Science Research Center, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan)

    2013-02-15

    Fe-48 wt% Cr alloy was isothermally aged at 700 Degree-Sign C up to 250 h for the formation and growth of {sigma} phase. Micro Vicker's hardness and magnetic hysteresis loop (MHL) measurements were carried out at various lengths of time by interrupting the test to observe the change in mechanical and magnetic properties respectively. A small volume fraction of {sigma} phase did not produce any change in the hardness whereas a drastic decrease in remanence was found for its demagnetizing effect. The existence of {sigma} phase was confirmed by transmission electron microscopy. The maximum induction of the alloy decreased with thermal ageing as the volume of ferrites decreased for the formation of non-magnetic {sigma} phase. The volume fraction of {sigma} phase was estimated from the maximum induction. The results showed that MHL technique can even detect 1% of {sigma} phase in the alloy considering remanence as a measuring parameter. Hence MHL would be a powerful non-destructive evaluation technique for the evaluation of {sigma} phase embrittlement in Fe-Cr alloys. - Highlights: Black-Right-Pointing-Pointer MHL technique to detect small volume fraction of {sigma} phase in Fe-Cr alloys. Black-Right-Pointing-Pointer Estimation of volume fraction of {sigma} phase from maximum induction. Black-Right-Pointing-Pointer Remanence is a suitable parameter for the detection of {sigma} phase. Black-Right-Pointing-Pointer MHL technique can detect 1% of {sigma} phase in Fe-Cr alloys. Black-Right-Pointing-Pointer MHL is a powerful NDE technique for detecting {sigma} phase embrittlement in Fe-Cr alloys.

  12. Thermodynamic examination of 1- to 5-nt purine bulge loops in RNA and DNA constructs.

    Science.gov (United States)

    Strom, Shane; Shiskova, Evgenia; Hahm, Yaeeun; Grover, Neena

    2015-07-01

    Bulge loops are common features of RNA structures that are involved in the formation of RNA tertiary structures and are often sites for interactions with proteins and ions. Minimal thermodynamic data currently exist on the bulge size and sequence effects. Using thermal denaturation methods, thermodynamic properties of 1- to 5-nt adenine and guanine bulge loop constructs were examined in 10 mM MgCl(2) or 1 M KCl. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in RNA constructs were between 3.07 and 5.31 kcal/mol in 1 M KCl buffer. In 10 mM magnesium ions, the ΔΔG° values relative to 1 M KCl were 0.47-2.06 kcal/mol more favorable for the RNA bulge loops. The [Formula: see text] loop parameters for 1- to 5-nt purine bulge loops in DNA constructs were between 4.54 and 5.89 kcal/mol. Only 4- and 5-nt guanine constructs showed significant change in stability for the DNA constructs in magnesium ions. A linear correlation is seen between the size of the bulge loop and its stability. New prediction models are proposed for 1- to 5-nt purine bulge loops in RNA and DNA in 1 M KCl. We show that a significant stabilization is seen for small bulge loops in RNA in the presence of magnesium ions. A prediction model is also proposed for 1- to 5-nt purine bulge loop RNA constructs in 10 mM magnesium chloride.

  13. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  14. Why Are Drugs So Hard to Quit?

    Medline Plus

    Full Text Available ... Quitting drugs is hard because addiction is a brain disease. Your brain is like a control tower that sends out ... and choices. Addiction changes the signals in your brain and makes it hard to feel OK without ...

  15. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  16. Crystal packing effects on protein loops.

    Science.gov (United States)

    Rapp, Chaya S; Pollack, Rena M

    2005-07-01

    The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.

  17. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  18. Hard x-ray spectroscopy for proton flare prediction

    Science.gov (United States)

    Garcia, Howard A.; Farnik, Frantisek; Kiplinger, Alan L.

    1998-11-01

    High energy interplanetary proton events can jeopardize vital military and civilian spacecraft by disrupting logical circuits and by actually damaging spacecraft electronic components. Studies of solar hard x-rays indicate that high-energy proton events observed near Earth are highly associated with an uncommon type of solar flare exhibiting temporal progressively hardening hard x-ray spectra. A hard x-ray spectrometer is being developed by the Czech Astronomical Institute to provide a test bed for evaluating this phenomenon as a possible proton-storm prediction method. The instrument is designed to measure hard x-ray spectra in a high fluence, high-energy particle background environment such as that found at geosynchronous altitude. This experiment has been selected for space flight by the DoD Space Test Program and will fly aboard the Department of Energy satellite, Multi-spectral thermal Imager, scheduled for a three year mission, beginning in late 1999. The timing of this mission, fortuitously, coincides with the experiment are: 1) to evaluate the efficacy of this type of solar instrument in predicting interplanetary proton storms; 2) to study the high-energy physics of solar flares in concert with the premier flight of the NOAA soft x-ray imaging telescope, SXI, on the GOES 12 weather satellite and other solar mission. If the first goal is demonstrated by this mission, continuous monitoring of the Sun for proton events could become operational from geo-synchronous orbit during solar cycle 24.

  19. Transport properties of the rough hard sphere fluid.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2012-01-28

    Results are presented of a systematic study of the transport properties of the rough hard sphere fluid. The rough hard sphere fluid is a simple model consisting of spherical particles that exchange linear and angular momenta, and energy upon collision. This allows a study of the sole effect of particle rotation upon fluid properties. Molecular dynamics simulations have been used to conduct extensive benchmark calculations of self-diffusion, shear and bulk viscosity, and thermal conductivity coefficients. As well, the validity of several kinetic theory equations have been examined at various levels of approximation as a function of density and translational-rotational coupling. In particular, expressions from Enskog theory using different numbers of basis sets in the representation of the distribution function were tested. Generally Enskog theory performs well at low density but deviates at larger densities, as expected. The dependence of these expressions upon translational-rotational coupling was also examined. Interestingly, even at low densities, the agreement with simulation results was sometimes not even qualitatively correct. Compared with smooth hard sphere behaviour, the transport coefficients can change significantly due to translational-rotational coupling and this effect becomes stronger the greater the coupling. Overall, the rough hard sphere fluid provides an excellent model for understanding the effects of translational-rotational coupling upon transport coefficients.

  20. Raman Model Predicting Hardness of Covalent Crystals

    OpenAIRE

    Zhou, Xiang-Feng; Qian, Quang-Rui; Sun, Jian; Tian, Yongjun; Wang, Hui-Tian

    2009-01-01

    Based on the fact that both hardness and vibrational Raman spectrum depend on the intrinsic property of chemical bonds, we propose a new theoretical model for predicting hardness of a covalent crystal. The quantitative relationship between hardness and vibrational Raman frequencies deduced from the typical zincblende covalent crystals is validated to be also applicable for the complex multicomponent crystals. This model enables us to nondestructively and indirectly characterize the hardness o...