SURFACES OF HARD-SPHERE SYSTEMS
Directory of Open Access Journals (Sweden)
Dietrich Stoyan
2014-07-01
Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.
Supercooled liquid dynamics for the charged hard-sphere model
International Nuclear Information System (INIS)
Lai, S.K.; Chang, S.Y.
1994-08-01
We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs
Elasticity of Hard-Spheres-And-Tether Systems
International Nuclear Information System (INIS)
Farago, O.; Kantor, Y.
1999-01-01
Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Macromolecular diffusion in crowded media beyond the hard-sphere model.
Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc
2018-04-25
The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.
Hard sphere-like glass transition in eye lens α-crystallin solutions.
Foffi, Giuseppe; Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M; Stradner, Anna; Schurtenberger, Peter
2014-11-25
We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.
Kravchenko, Olga; Thachuk, Mark
2011-03-21
A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."
Thermodynamics and vibrational modes of hard sphere colloidal systems
Zargar, R.
2014-01-01
The central question that we address in this thesis is the thermodynamics of colloidal glasses. The thermodynamics of colloidal hard sphere glasses are directly related to the entropy of the system, since the phase behavior of hard sphere systems is dictated only by entropic contributions, and also
Fundamental measure theory for hard-sphere mixtures: a review
International Nuclear Information System (INIS)
Roth, Roland
2010-01-01
Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments. (topical review)
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...
Structure and effective interactions in three-component hard sphere liquids.
König, A; Ashcroft, N W
2001-04-01
Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.
Simple heuristic for the viscosity of polydisperse hard spheres
Farr, Robert S.
2014-12-01
We build on the work of Mooney [Colloids Sci. 6, 162 (1951)] to obtain an heuristic analytic approximation to the viscosity of a suspension any size distribution of hard spheres in a Newtonian solvent. The result agrees reasonably well with rheological data on monodispserse and bidisperse hard spheres, and also provides an approximation to the random close packing fraction of polydisperse spheres. The implied packing fraction is less accurate than that obtained by Farr and Groot [J. Chem. Phys. 131(24), 244104 (2009)], but has the advantage of being quick and simple to evaluate.
Structure and dynamics of colloidal hard spheres in real-space
Dullens, Roel P.A.
2005-01-01
This thesis deals with various aspects of the structure and dynamics of colloidal hard spheres. A general introduction on colloids as experimental realization of hard spheres is presented in Chapter 1. The basic principles of confocal microscopy, the main technique used in this thesis, as well as
Equilibrium distribution of hard-sphere systems and revised Enskog theory
Beijeren, H. van
1983-01-01
A revised Enskog theory (RET) is shown to lead to a correct equilibrium distribution in hard-sphere systems in a stationary external potential, while the standard Enskog theory (SET) does not. Attention is given to the s-component hard-sphere mixture with constant external potential acting on
Hard Spheres on the Primitive Surface
Dotera, Tomonari; Takahashi, Yusuke
2015-03-01
Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, V.
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Brownian dynamics of aggregation kinetics of hard spheres with flexibele bounds
Rzepiela, A.A.; Opheusden, van J.; Vliet, van T.
2001-01-01
Brownian dynamics (BD) simulations have been performed on the aggregation dynamics of colloidal particles within the context of a ball-and-string model. Particles are treated as hard spheres that can bind irreversibly through a string attached to their surface. The model is set up to mimic some
Stochastic interactions of two Brownian hard spheres in the presence of depletants
International Nuclear Information System (INIS)
Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi
2014-01-01
A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions
New results for virial coefficients of hard spheres in D dimensions
Indian Academy of Sciences (India)
We present new results for the virial coefficients Bk for k ≤ 10 for hard spheres in dimensions D ... for the hard sphere gas of particles of diameter σ in D dimensions defined by the two-body potential. U(r) = ..... [22] A J Guttmann, Asymptotic analysis of power-series expansions, in Phase transitions and critical phenomena ...
Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A
2012-10-14
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
Directory of Open Access Journals (Sweden)
M.F. Holovko
2017-12-01
Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed
The structural origin of the hard-sphere glass transition in granular packing.
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-09-28
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2015-12-01
Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality
Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids
International Nuclear Information System (INIS)
Zhou, Y.; Hall, C.K.; Stell, G.
1995-01-01
We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2013-12-01
Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic
Simple liquids’ quasiuniversality and the hard-sphere paradigm
DEFF Research Database (Denmark)
Dyre, Jeppe C.
2016-01-01
This topical review discusses the quasiuniversality of simple liquids' structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues t...
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Three-particle equilibrium correlations in dense hard-sphere fluids
Haffmans, A.F.E.M.; Schepper, I.M. de; Michels, J.P.J.; Beijeren, H. van
1988-01-01
We performed molecular-dynamics simulation experiments for a hard-sphere fluid at four high densities and determined the spatial Fourier transform of the three-particle equilibrium correlation function with two of the three particles at contact.
Simple liquids' quasiuniversality and the hard-sphere paradigm
DEFF Research Database (Denmark)
Dyre, Jeppe C.
This presentation reflects on the well-known quasiuniversality of simple liquids’ structure and dynamics [1, 2, 3, 4, 5]. We discuss two possible justifications of it [6, 7]. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic ph...
Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R
2013-12-17
The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 attractive with increasing temperature (ΔB2/ΔT attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.
Amokrane, S; Ayadim, A; Malherbe, J G
2005-11-01
A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.
Crystallizing hard-sphere glasses by doping with active particles
Ni, Ran; Cohen Stuart, Martien A.; Dijkstra, Marjolein; Bolhuis, Peter G.
2014-01-01
Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as
Force distribution affects vibrational properties in hard-sphere glasses
DeGiuli, E.; Lerner, E.; Brito, C.; Wyart, M.
2014-01-01
We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f
Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas
Energy Technology Data Exchange (ETDEWEB)
Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)
2006-11-01
Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.
Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas
International Nuclear Information System (INIS)
Bhaduri, R K; Dijk, W van; Srivastava, M K
2006-01-01
Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system
The Enskog Equation for Confined Elastic Hard Spheres
Maynar, P.; García de Soria, M. I.; Brey, J. Javier
2018-03-01
A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.
Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces
Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.
1987-01-01
The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The
The phase behavior of a hard sphere chain model of a binary n-alkane mixture
International Nuclear Information System (INIS)
Malanoski, A. P.; Monson, P. A.
2000-01-01
Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics
Parallelized event chain algorithm for dense hard sphere and polymer systems
International Nuclear Information System (INIS)
Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan
2015-01-01
We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers
A linear programming algorithm to test for jamming in hard-sphere packings
International Nuclear Information System (INIS)
Donev, Aleksandar; Torquato, Salvatore.; Stillinger, Frank H.; Connelly, Robert
2004-01-01
Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper by Torquato and Stillinger [J. Phys. Chem. B 105 (2001)], a classification scheme of jammed packings into hierarchical categories of locally, collectively and strictly jammed configurations has been proposed. They suggest that these jamming categories can be tested using numerical algorithms that analyze an equivalent contact network of the packing under applied displacements, but leave the design of such algorithms as a future task. In this work, we present a rigorous and practical algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is jammed according to the aforementioned categories. The algorithm is based on linear programming and is applicable to regular as well as random packings of finite size with hard-wall and periodic boundary conditions. If the packing is not jammed, the algorithm yields representative multi-particle unjamming motions. Furthermore, we extend the jamming categories and the testing algorithm to packings with significant interparticle gaps. We describe in detail two variants of the proposed randomized linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings with significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of the feasible particle displacements. We have implemented the algorithms and applied them to ordered as well as random packings of circular disks and spheres with periodic boundary conditions. Some representative results for large disordered disk and sphere packings are given, but more robust and efficient implementations as well as further applications (e.g., non-spherical particles) are anticipated for the future
Random close packing of hard spheres and disks
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
A simple definition of random close packing of hard spheres is presented, and the consequences of this definition are explored. According to this definition, random close packing occurs at the minimum packing fraction eta for which the median nearest-neighbor radius equals the diameter of the spheres. Using the radial distribution function at more dilute concentrations to estimate median nearest-neighbor radii, lower bounds on the critical packing fraction eta/sub RCP/ are obtained and the value of eta/sub RCP/ is estimated by extrapolation. Random close packing is predicted to occur for eta/sub RCP/ = 0.64 +- 0.02 in three dimensions and eta/sub RCP/ = 0.82 +- 0.02 in two dimensions. Both of these predictions are shown to be consistent with the available experimental data
Energy Technology Data Exchange (ETDEWEB)
Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)
2012-04-01
A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.
Qiao, Yu; Liu, Xuejiao; Chen, Minxin; Lu, Benzhuo
2016-04-01
The hard sphere repulsion among ions can be considered in the Poisson-Nernst-Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst-Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435-438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475-2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It's observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Czech Academy of Sciences Publication Activity Database
Wu, L.; Malijevský, Alexandr; Jackson, G.; Muller, E.A.; Avendano, C.
2015-01-01
Roč. 143, č. 4 (2015), s. 044906 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA13-02938S Grant - others:EPSRC(GB) GR/T17595; EPSRC(GB) GR/N35991; EPSRC(GB) EP/E016340; EPSRC(GB) EP/J014958; JREI(GB) GR/M94426 Institutional support: RVO:67985858 Keywords : phase behaviour * liquid crystals * hard spheres Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.894, year: 2015
Aging of a hard-sphere glass: effect of the microscopic dynamics
International Nuclear Information System (INIS)
Puertas, Antonio M
2010-01-01
We present simulations of the aging of a quasi-hard-sphere glass, with Newtonian and Brownian microscopic dynamics. The system is equilibrated at the desired density (above the glass transition in hard spheres) with short-range attractions, which are removed at t = 0. The structural part of the decay of the density correlation function can be time rescaled to collapse onto a master function independent of the waiting time, t w , and the timescale follows a power law with t w , with exponent z ∼ 0.89; the non-ergodicity parameter is larger than that of the glass transition point (the localization length is smaller) and oscillates in harmony with S q . The aging with both microscopic dynamics is identical, except for a scale factor from the age in Newtonian to the age in Brownian dynamics. This factor is approximately the same as that which scales the α-decay of the correlation function in fluids close to the glass transition.
High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system
International Nuclear Information System (INIS)
Ross, M.
1979-01-01
A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy
Collective modes in simple melts: Transition from soft spheres to the hard sphere limit.
Khrapak, Sergey; Klumov, Boris; Couëdel, Lénaïc
2017-08-11
We study collective modes in a classical system of particles with repulsive inverse-power-law (IPL) interactions in the fluid phase, near the fluid-solid coexistence (IPL melts). The IPL exponent is varied from n = 10 to n = 100 to mimic the transition from moderately soft to hard-sphere-like interactions. We compare the longitudinal dispersion relations obtained using molecular dynamic (MD) simulations with those calculated using the quasi-crystalline approximation (QCA) and find that this simple theoretical approach becomes grossly inaccurate for [Formula: see text]. Similarly, conventional expressions for high-frequency (instantaneous) elastic moduli, predicting their divergence as n increases, are meaningless in this regime. Relations of the longitudinal and transverse elastic velocities of the QCA model to the adiabatic sound velocity, measured in MD simulations, are discussed for the regime where QCA is applicable. Two potentially useful freezing indicators for classical particle systems with steep repulsive interactions are discussed.
Analytic methods for the Percus-Yevick hard sphere correlation functions
Directory of Open Access Journals (Sweden)
D. Henderson
2009-01-01
Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.
International Nuclear Information System (INIS)
Costa, L.A.; Zhou, Y.; Hall, C.K.; Carra, S.
1995-01-01
We report Monte Carlo simulation results for the bulk pressure of fused-hard-sphere (FHS) chain fluids with bond-length-to-bead-diameter ratios ∼ 0.4 at chain lengths n=4, 8 and 16. We also report density profiles for FHS chain fluids at a hard wall. The results for the compressibility factor are compared to results from extensions of the Generalized Flory (GF) and Generalized Flory Dimer (GFD) theories proposed by Yethiraj et al. and by us. Our new GF theory, GF-AB, significantly improves the prediction of the bulk pressure of fused-hard-sphere chains over the GFD theories proposed by Yethiraj et al. and by us although the GFD theories give slightly better low-density results. The GFD-A theory, the GFD-B theory and the new theories (GF-AB, GFD-AB, and GFD-AC) satisfy the exact zero-bonding-length limit. All theories considered recover the GF or GFD theories at the tangent hard-sphere chain limit
Crystalline and amorphous solid phases in the classical hard sphere system
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Souza, R.F.T.; Llano, M. de; Mini, S.
1984-01-01
A qualitative crystalline, as well as amorphous, solid behavior is simultaneously extracted for a classical hard sphere system from its known virial power series expansion in the density augmented by only one further virial coefficient, taken from an extrapolated estimate of the Cauchy-Hadamard radius of convergence criterion. Results are compared with computer simulation data. (Author) [pt
Flexible equation of state for a hard sphere and Lennard–Jones fluid ...
Indian Academy of Sciences (India)
Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...
Local order and crystallization of dense polydisperse hard spheres
Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic
2018-04-01
Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.
Computer simulation of solid-liquid coexistence in binary hard sphere mixtures
Kranendonk, W.G.T.; Frenkel, D.
1991-01-01
We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a
International Nuclear Information System (INIS)
Jiang, Hao; Adidharma, Hertanto
2014-01-01
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions
Double layer for hard spheres with an off-center charge
Directory of Open Access Journals (Sweden)
W. Silvestre-Alcantara
2016-02-01
Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.
Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics
Herring, A. R.; Henderson, J. R.
2007-01-01
Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry
International Nuclear Information System (INIS)
Badirkhan, Z.; Pastore, G.; Tosi, M.P.
1991-06-01
Calculations of the thermodynamic properties and pair distribution function of a one-component classical fluid of charged hard spheres in a uniform neutralizing background are reported and compared with Monte Carlo results of Hansen and Weis. Thermodynamic selfconsistence between the virial pressure and the fluctuations formula for the isothermal compressibility is enforced in the calculations by various alternative approaches. The role of thermodynamic selfconsistence is crucial to obtain a satisfactory quantitative description of this model fluid, in view of its applications in the theory of liquid metals and of dispersions of charged colloidal particles. (author). 23 refs, 4 figs, 3 tabs
Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states
Energy Technology Data Exchange (ETDEWEB)
Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis
2014-08-17
Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.
Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states
International Nuclear Information System (INIS)
Bomont, Jean-Marc; Bretonnet, Jean-Louis
2014-01-01
Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.
2010-01-01
We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium
International Nuclear Information System (INIS)
Oshima, Hiraku; Kinoshita, Masahiro
2015-01-01
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient
Analytical expressions for the correlation function of a hard sphere dimer fluid
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass
Ghosh, A.; Chikkadi, V.; Schall, P.; Bonn, D.
2011-01-01
Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging
Specific surface area of overlapping spheres in the presence of obstructions.
Jenkins, D R
2013-02-21
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Density fluctuations and the structure of a nonuniform hard sphere fluid
Katsov, Kirill; Weeks, John D.
2000-01-01
We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation fo...
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics
Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system
Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.
2018-04-01
The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.
A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid
Energy Technology Data Exchange (ETDEWEB)
Donev, A; Alder, B J; Garcia, A L
2009-08-03
A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.
International Nuclear Information System (INIS)
Murata, Isao; Mori, Takamasa; Nakagawa, Masayuki; Shirai, Hiroshi.
1996-03-01
High Temperature Gas-cooled Reactors (HTGRs) employ spherical fuels named coated fuel particles (CFPs) consisting of a microsphere of low enriched UO 2 with coating layers in order to prevent FP release. There exist many spherical fuels distributed randomly in the cores. Therefore, the nuclear design of HTGRs is generally performed on the basis of the multigroup approximation using a diffusion code, S N transport code or group-wise Monte Carlo code. This report summarizes a Monte Carlo hard sphere packing simulation code to simulate the packing of equal hard spheres and evaluate the necessary probability distribution of them, which is used for the application of the new Monte Carlo calculation method developed to treat randomly distributed spherical fuels with the continuous energy Monte Carlo method. By using this code, obtained are the various statistical values, namely Radial Distribution Function (RDF), Nearest Neighbor Distribution (NND), 2-dimensional RDF and so on, for random packing as well as ordered close packing of FCC and BCC. (author)
Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen
2014-09-01
In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.
Ogarko, V.; Luding, Stefan
2012-01-01
We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation results are compared with previously found analytical equations of state by looking at the compressibility factor, Z, and agreement is found with much better than 1% deviation in the fluid
The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.
Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne
2012-05-16
The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Statistical mechanics of molecular fluids. The RHNC theory applied to hard dipolar spheres
International Nuclear Information System (INIS)
Lombardero, M.; Lado, F.; Abascal, J.L.F.; Lago, S.; Enciso, E.
1988-01-01
The RHNC (reference hipernetted chain) equation, together with an optimization criterion which extremalizes the Helmholtz free energy, is used to obtain structural, thermodynamic, and dielectric properties of a system made up of hard dipolar spheres. The comparison with simulation results is made in the same boundary conditions and then the properties of an infinite system are evaluated for a variaty of states at different densities and dipolar moments. (Author)
Richard, David; Speck, Thomas
2018-06-14
Combining three numerical methods (forward flux sampling, seeding of droplets, and finite-size droplets), we probe the crystallization of hard spheres over the full range from close to coexistence to the spinodal regime. We show that all three methods allow us to sample different regimes and agree perfectly in the ranges where they overlap. By combining the nucleation work calculated from forward flux sampling of small droplets and the nucleation theorem, we show how to compute the nucleation work spanning three orders of magnitude. Using a variation of the nucleation theorem, we show how to extract the pressure difference between the solid droplet and ambient liquid. Moreover, combining the nucleation work with the pressure difference allows us to calculate the interfacial tension of small droplets. Our results demonstrate that employing bulk quantities yields inaccurate results for the nucleation rate.
Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.
Brey, J Javier; Maynar, P; de Soria, M I García
2011-04-01
Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society
Ionic pairing in binary liquids of charged hard spheres with non-additive diameters
International Nuclear Information System (INIS)
Pastore, G.; Giaquinta, P.V.; Thakur, J.S.; Tosi, M.P.
1985-07-01
We examine types of short range order that arise in binary liquids from a combination of Coulombic interactions and non-additivity of excluded volumes, the initial motivation being observations of complex formation by hydrated ions in concentrated aqueous solutions. The model is a fluid of charged hard spheres with contact distances σsub(+-)not=1/2(σsub(++)+σsub(--)), its structural functions being evaluated in the mean spherical approximation and in the hypernetted chain approximation. Cation-anion pairing is clearly seen in the calculated structural functions for negative deviations from additivity (σsub(+-) σsub(++)=σsub(--)) favour long-wavelength concentration fluctuations and demixing in a neutral mixture: these are suppressed by Coulombic interactions in favour of microscopic intermixing of the two species in the local liquid structure, up to like-ion pairing. Contact is made with diffraction from concentrated aqueous solutions of cadmium sulphate and other instances of possible applicability of the model are pointed out. (author)
Ni, R.; Smallenburg, F.; Filion, L.C.; Dijkstra, M.
2011-01-01
We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to
Directory of Open Access Journals (Sweden)
B. Hribar-Lee
2013-01-01
Full Text Available Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory (J. Chem. Phys., Vol. 137, 244502 (2012. Our objective of the present short work is to complement this study by considering univalent ions of unequal diameters in a mixture with the same soft-core fluid model. Specifically, we are interested in the analysis of changes of the temperature of maximum density (TMD lines with ion concentration for three model salt solutes, namely sodium chloride, potassium chloride and rubidium chloride models. We resort to Monte Carlo simulations for this purpose. Our discussion also involves the dependences of the pair contribution to excess entropy and of constant volume heat capacity on the temperature of maximum density line. Some examples of the microscopic structure of mixtures in question in terms of pair distributions functions are given in addition.
International Nuclear Information System (INIS)
Bocquet, L.; Hansen, J.P.; Piasecki, J.
1994-01-01
The friction coefficient γ exerted by a hard-sphere fluid on an infinitely massive Brownian sphere is calculated for several size ratios Σ/σ where Σ and σ are the diameters of the Brownian and fluid spheres, respectively. The exact microscopic expression derived in part I of this work from kinetic theory is transformed and shown to be proportional to the time integral of the autocorrelation function of the momentum transferred from the fluid to the Brownian sphere during instantaneous collisions. Three different methods are described to extract the friction coefficient from molecular dynamics simulations carried out on finite systems. The three independent methods lead to estimates of γ which agree within statistical errors (typically 5%). The results are compared to the predictions of Enskog theory and of the hydrodynamic Stokes law. The former breaks down as the size ratio and/or the packing fraction of the fluid increase. Somewhat surprisingly, Stokes' law is found to hold with stick boundary conditions, in the range 1 ≤ Σ/σ ≤ 4.5 explored in the present simulations, with a hydrodynamic diameter d=Σ. The analysis of the molecular dynamics data on the basis of Stokes' law with slip boundary conditions is less conclusive, although the right trend is found as Σ/σ increases
Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.
Heyes, D M; Brańka, A C
2008-07-21
Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).
Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.
Ghosh, Antina; Chikkadi, Vijayakumar; Schall, Peter; Bonn, Daniel
2011-10-28
Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales.
Directory of Open Access Journals (Sweden)
H. Löwe
2015-11-01
Full Text Available The description of snow microstructure in microwave models is often simplified to facilitate electromagnetic calculations. Within dense media radiative transfer (DMRT, the microstructure is commonly described by sticky hard spheres (SHS. An objective mapping of real snow onto SHS is however missing which prevents measured input parameters from being used for DMRT. In contrast, the microwave emission model of layered snowpacks (MEMLS employs a conceptually different approach, based on the two-point correlation function which is accessible by tomography. Here we show the equivalence of both electromagnetic approaches by reformulating their microstructural models in a common framework. Using analytical results for the two-point correlation function of hard spheres, we show that the scattering coefficient in both models only differs by a factor which is close to unity, weakly dependent on ice volume fraction and independent of other microstructural details. Additionally, our analysis provides an objective retrieval method for the SHS parameters (diameter and stickiness from tomography images. For a comprehensive data set we demonstrate the variability of stickiness and compare the SHS diameter to the optical equivalent diameter. Our results confirm the necessity of a large grain-size scaling when relating both diameters in the non-sticky case, as previously suggested by several authors.
Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid
International Nuclear Information System (INIS)
Lai, S.K.; Akinlade, O.; Tosi, M.P.
1989-12-01
The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs
Edwards' approach to horizontal and vertical segregation in a mixture of hard spheres under gravity
International Nuclear Information System (INIS)
Fierro, Annalisa; Nicodemi, Mario; Coniglio, Antonio
2003-01-01
We study the phenomenon of size segregation, observed in models of vibrated granular mixtures such as powders or sand. This consists of the de-mixing of the different components of the system under shaking. Several mechanisms have been proposed to explain this phenomenon. However, the criteria for predicting segregation in a mixture, an issue of great practical importance, are largely unknown. In the present paper we study a binary hard-sphere mixture under gravity on a three-dimensional lattice using Monte Carlo simulations. The vertical and horizontal segregation observed during the tap dynamics is interpreted in the framework of a statistical mechanics approach to granular media in the manner of Edwards. A phase diagram for the vertical segregation is derived, and compared with the simulation data
Free energy landscape and cooperatively rearranging region in a hard sphere glass
Yoshidome, Takashi; Yoshimori, Akira; Odagaki, Takashi
2007-08-01
Exploiting the density functional theory, we calculate the free energy landscape (FEL) of the hard sphere glass in three dimensions. From the FEL, we estimate the number of the particles in the cooperatively rearranging region (CRR). We find that the density dependence of the number of the particles in the CRR is expressed as a power law function of the density. Analyzing the relaxation process in the CRR, we also find that the string motion is the elementary process for the structural relaxation, which leads to the natural definition of the simultaneously rearranging region as the particles displaced in the string motion.
Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement
Directory of Open Access Journals (Sweden)
Kim Nygård
2016-02-01
Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.
Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro
2013-10-01
Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.
Analytical expression for the correlation function of a hard sphere chain fluid
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid
International Nuclear Information System (INIS)
Hansen-Goos, Hendrik
2016-01-01
We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R , the modified weight functions have range 3 R . Based on the augmented FMT, we calculate the radial distribution function g (r) up to second order in the density within Percus’ test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g (r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r > 6 R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r = 2 R) we construct a free energy which is based on the accurate Carnahan–Starling equation of state, rather than the Percus–Yevick compressibility equation underlying standard FMT. (paper)
Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties
International Nuclear Information System (INIS)
Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.
2015-01-01
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
Directory of Open Access Journals (Sweden)
J. Javier Brey
2017-02-01
Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.
Homogeneous Free Cooling State in Binary Granular Fluids of Inelastic Rough Hard Spheres
Santos, Andrés
2011-05-01
In a recent paper [A. Santos, G. M. Kremer, and V. Garzó, Prog. Theor. Phys. Suppl. 184, 31-48 (2010)] the collisional energy production rates associated with the translational and rotational granular temperatures in a granular fluid mixture of inelastic rough hard spheres have been derived. In the present paper the energy production rates are explicitly decomposed into equipartition rates (tending to make all the temperatures equal) plus genuine cooling rates (reflecting the collisional dissipation of energy). Next the homogeneous free cooling state of a binary mixture is analyzed, with special emphasis on the quasi-smooth limit. A previously reported singular behavior (according to which a vanishingly small amount of roughness has a finite effect, with respect to the perfectly smooth case, on the asymptotic long-time translational/translational temperature ratio) is further elaborated. Moreover, the study of the time evolution of the temperature ratios shows that this dramatic influence of roughness already appears in the transient regime for times comparable to the relaxation time of perfectly smooth spheres.
On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems
Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino
2018-03-01
The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.
First-principle proof of the modified collision boundary conditions for the hard-sphere system
International Nuclear Information System (INIS)
Tessarotto, Massimo; Cremaschini, Claudio
2014-01-01
A fundamental issue lying at the foundation of classical statistical mechanics is the determination of the collision boundary conditions that characterize the dynamical evolution of multi-particle probability density functions (PDF) and are applicable to systems of hard-spheres undergoing multiple elastic collisions. In this paper it is proved that, when the deterministic N-body PDF is included in the class of admissible solutions of the Liouville equation, the customary form of collision boundary conditions adopted in previous literature becomes physically inconsistent and must actually be replaced by suitably modified collision boundary conditions.
Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made
Doherty, Michael P.
2000-01-01
Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g
Sound Scattering and Its Reduction by a Janus Sphere Type
Directory of Open Access Journals (Sweden)
Deliya Kim
2014-01-01
Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality.
Directory of Open Access Journals (Sweden)
Andrea L Miller
Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
International Nuclear Information System (INIS)
Hopkins, Paul; Schmidt, Matthias
2010-01-01
Using a fundamental measure density functional theory we investigate both bulk and inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large (positive) non-additivity the mixture phase separates into two fluid phases with different compositions. We calculate bulk fluid-fluid coexistence curves for a range of size ratios and non-additivity parameters and find that they compare well to simulation results from the literature. Using the Ornstein-Zernike equation, we investigate the asymptotic, r→∞, decay of the partial pair correlation functions, g ij (r). At low densities a structural crossover occurs in the asymptotic decay between two different damped oscillatory modes with different wavelengths corresponding to the two intra-species hard-core diameters. On approaching the fluid-fluid critical point there is a Fisher-Widom crossover from exponentially damped oscillatory to monotonic asymptotic decay. Using the density functional we calculate the density profiles for the planar free fluid-fluid interface between coexisting fluid phases. We show that the type of asymptotic decay of g ij (r) not only determines the asymptotic decay of the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We also determine the surface tension of the free fluid interface, finding that it increases with non-additivity, and that on approaching the critical point mean-field scaling holds.
Polydispersity effects in the crystallisation of hard-sphere colloidal samples
International Nuclear Information System (INIS)
Martin, S.; Bryant, G.
2002-01-01
Full text: Colloidal particles mimicking hard-sphere behaviour have been shown to undergo the freezing and melting transition as predicted from computer simulations. Due to the large size and slow movement of the colloidal particles, it is possible to measure the time dependence of the growth of the main Bragg reflection using laser light scattering. The new data presented here was taken on a newly built crystallisation spectrometer which averages the Bragg reflections over the whole Debye-Scherrer cone, where previous work has mostly been done with the detector fixed in one plane. This new apparatus allows us to observe the crystallisation process at earlier times, on lower density samples than had previously been possible. Measurements have been made on samples made from colloidal particles with radii 320nm and 247 nm and polydispersities of ∼6.9% and >8% respectively. The results have been compared with other results from particles with >4% polydispersity. The results show that increasing the polydispersity in the particles increases the time lag before significant crystal growth occurs, but polydispersity doesn't appear to directly affect the rate of crystal growth
Soft And Hard Skills of Social Worker
HANTOVÁ, Libuše
2011-01-01
The work deals with soft and hard skills relevant to the profession of social worker. The theoretical part at first evaluates and analyzes important soft and hard skills necessary for people working in the field of social work. Then these skills are compared. The practical part illustrates the use of soft and hard skills in practice by means of model scenes and deals with the preferences in three groups of people ? students of social work, social workers and people outside the sphere, namely ...
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Directory of Open Access Journals (Sweden)
Solveig Næss
2017-10-01
Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Direct measurement of the free energy of aging hard sphere colloidal glasses.
Zargar, Rojman; Nienhuis, Bernard; Schall, Peter; Bonn, Daniel
2013-06-21
The nature of the glass transition is one of the most important unsolved problems in condensed matter physics. The difference between glasses and liquids is believed to be caused by very large free energy barriers for particle rearrangements; however, so far it has not been possible to confirm this experimentally. We provide the first quantitative determination of the free energy for an aging hard sphere colloidal glass. The determination of the free energy allows for a number of new insights in the glass transition, notably the quantification of the strong spatial and temporal heterogeneity in the free energy. A study of the local minima of the free energy reveals that the observed variations are directly related to the rearrangements of the particles. Our main finding is that the probability of particle rearrangements shows a power law dependence on the free energy changes associated with the rearrangements similar to the Gutenberg-Richter law in seismology.
Silo outflow of soft frictionless spheres
Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf
2017-12-01
Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.
International Nuclear Information System (INIS)
Khasare, S.B.
2012-01-01
The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)
Transport coefficients and mechanical response in hard-disk colloidal suspensions
International Nuclear Information System (INIS)
Zhang Bo-Kai; Ma Yu-Qiang; Li Jian; Chen Kang; Tian Wen-De
2016-01-01
We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. (rapid communication)
Dynamical study of a polydisperse hard-sphere system
Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi
2010-01-01
We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition
Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow
Cheng, X.
2011-12-23
Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows.
International Nuclear Information System (INIS)
Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.
2000-01-01
X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems
Transport coefficients and mechanical response in hard-disk colloidal suspensions
Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang
2016-11-01
We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).
Energy exchange in thermal energy atom-surface scattering: impulsive models
International Nuclear Information System (INIS)
Barker, J.A.; Auerbach, D.J.
1979-01-01
Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)
Crystallization of sheared hard spheres at 64.5% volume fraction
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
Tuning the bridging attraction between large hard particles by the softness of small microgels.
Luo, Junhua; Yuan, Guangcui; Han, Charles C
2016-09-20
In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.
International Nuclear Information System (INIS)
Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.
2017-01-01
The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction
Computer simulations of a rough sphere fluid
International Nuclear Information System (INIS)
Lyklema, J.W.
1978-01-01
A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)
Modeling of steel spheres impacting polyethylene; TOPICAL
International Nuclear Information System (INIS)
Serduke, F; Gerassimenko, M
1999-01-01
The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the Phebus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort
Dynamical study of a polydisperse hard-sphere system
Nogawa, Tomoaki
2010-08-10
We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition line, which corresponds to the critical polydispersity above which the crystal state is unstable, is on the glass transition line. This means that crystal and fluid states at the melting point becomes less distinguishable as polydispersity increases and finally they become identical state, i.e., marginal glass state, at critical polydispersity. © 2010 The American Physical Society.
International Nuclear Information System (INIS)
Olson, Gordon L.
2008-01-01
In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution
Energy Technology Data Exchange (ETDEWEB)
Olson, Gordon L. [Computer and Computational Sciences Division (CCS-2), Los Alamos National Laboratory, 5 Foxglove Circle, Madison, WI 53717 (United States)], E-mail: olson99@tds.net
2008-11-15
In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution.
Sampling from a polytope and hard-disk Monte Carlo
International Nuclear Information System (INIS)
Kapfer, Sebastian C; Krauth, Werner
2013-01-01
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation
Towards an analytical theory for charged hard spheres
Directory of Open Access Journals (Sweden)
L.Blum
2007-09-01
Full Text Available Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel (DH theory, where ions are point charges, is accurate only in the limit of infinite dilution. The mean spherical approximation (MSA is the embedding of hard cores into DH, and is valid for higher densities. The properties of any ionic mixture can be represented by the single screening parameter Γ which for the equal ionic size restricted model is obtained from the Debye parameter κ. This Γ representation, the binding mean spherical approximation (BIMSA, is also valid for complex/associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. Furthermore, the contact pair distribution function calculated from our theory agrees with the Monte Carlo of Bresmeea. (Phys. Rev. E, 1995, 51, 289.
A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres
Directory of Open Access Journals (Sweden)
Huadong Fu
2015-01-01
Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.
arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere
Closset, Cyril; Seong, Rak-Kyeong
2018-05-04
It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.
Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models
Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.
2018-06-01
This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).
DEFF Research Database (Denmark)
Fiig, Christina
The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...
Impact velocity vs. target hardness relationships for equivalent response of cask structures
International Nuclear Information System (INIS)
Chen, T.F.; Chen, J.C.; Witte, M.C.; Fischer, L.E.
1993-01-01
In this paper, impact velocity vs. target hardness relationships for cask structures are reviewed. The relationships are based on equivalent cask responses in terms of equal deceleration or similar cask damages. By examining several past cask or container tests as well as some analytical results, some conclusions can be drawn about the relationship between target hardness and equivalent impact velocities. This relationship clearly shows that the cask response to impact is cask-dependent and that the rigid sphere impact model results in an unconservative estimate of equivalent velocity
Model of the absorbed dose on a small sphere into a gamma irradiation field
International Nuclear Information System (INIS)
Mangussi, J.
2009-01-01
Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)
User Modeling and Personalization in the Microblogging Sphere
Gao, Q.
2013-01-01
Microblogging has become a popular mechanism for people to publish, share, and propagate information on the Web. The massive amount of digital traces that people have left in the microblogging sphere, creates new possibilities and poses challenges for user modeling and personalization. How can
Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco
2013-10-24
We consider the theory of the glass phase and jamming of hard spheres in the large space dimension limit. Building upon the exact expression for the free-energy functional obtained previously, we find that the random first order transition (RFOT) scenario is realized here with two thermodynamic transitions: the usual Kauzmann point associated with entropy crisis and a further transition at higher pressures in which a glassy structure of microstates is developed within each amorphous state. This kind of glass-glass transition into a phase dominating the higher densities was described years ago by Elisabeth Gardner, and may well be a generic feature of RFOT. Microstates that are small excitations of an amorphous matrix-separated by low entropic or energetic barriers-thus emerge naturally, and modify the high pressure (or low temperature) limit of the thermodynamic functions.
The Cognitive Modeling of Development of Tourism Sphere
Directory of Open Access Journals (Sweden)
Los Vita O.
2017-10-01
Full Text Available The article explores the inter-sectoral interaction in the tourism sphere, which is based on the application of cognitive modeling. The authors consider the interaction of powers (political environment, tourism (tourism business, business (socio-economic environment and ecology (ecological environment. The ecology is identified as the exceptional decisive factor in creating an enabling environment for the development of the market for tourism services. A static analysis of the cognitive model was carried out, which revealed 624 contours, of which 473 were stabilizing and 151 were destabilizing. Based on results of the systemic characterizations of the cognitive model, it was found that the interaction between the two sectors, tourism (tourist business and business (socio-economic environment needs special attention. A dynamic analysis of the built cognitive model was carried out using the method of impulse processes that helped to generate alternative scenarios for the development of tourism services. As a result, it has been found that increased investment in restaurant and hotel activities facilitates the increase in the level of development of market for tourism services for one period earlier than the increase in financing tourism sphere from the budget.
Fe2O3 hollow sphere nanocomposites for supercapacitor applications
Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming
2018-02-01
Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.
Excluded-volume effects in the diffusion of hard spheres
Bruna, Maria; Chapman, S. Jonathan
2012-01-01
Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using
Particle production at large transverse momentum and hard collision models
International Nuclear Information System (INIS)
Ranft, G.; Ranft, J.
1977-04-01
The majority of the presently available experimental data is consistent with hard scattering models. Therefore the hard scattering model seems to be well established. There is good evidence for jets in large transverse momentum reactions as predicted by these models. The overall picture is however not yet well enough understood. We mention only the empirical hard scattering cross section introduced in most of the models, the lack of a deep theoretical understanding of the interplay between quark confinement and jet production, and the fact that we are not yet able to discriminate conclusively between the many proposed hard scattering models. The status of different hard collision models discussed in this paper is summarized. (author)
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis
2015-10-01
Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)
2015-11-14
When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for
Directory of Open Access Journals (Sweden)
Arthur Coré
2017-01-01
Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.
The sphere-PAC fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.
2000-01-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
The sphere-pac fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.; Nordstroem, L.A.; Hellwig, C.
2001-01-01
Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
Polydispersity effect on solid-fluid transition in hard sphere systems
Nogawa, T.; Watanabe, H.; Ito, N.
2010-01-01
The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first
Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.
van de Waal, B. W.
1985-01-01
Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…
Synergy of modeling processes in the area of soft and hard modeling
Directory of Open Access Journals (Sweden)
Sika Robert
2017-01-01
Full Text Available High complexity of production processes results in more frequent use of computer systems for their modeling and simulation. Process modeling helps to find optimal solution, verify some assumptions before implementation and eliminate errors. In practice, modeling of production processes concerns two areas: hard modeling (based on differential equations of mathematical physics and soft (based on existing data. In the paper the possibility of synergistic connection of these two approaches was indicated: it means hard modeling support based on the tools used in soft modeling. It aims at significant reducing the time in order to obtain final results with the use of hard modeling. Some test were carried out in the Calibrate module of NovaFlow&Solid (NF&S simulation system in the frame of thermal analysis (ATAS-cup. The authors tested output values forecasting in NF&S system (solidification time on the basis of variable parameters of the thermal model (heat conduction, specific heat, density. Collected data was used as an input to prepare soft model with the use of MLP (Multi-Layer Perceptron neural network regression model. The approach described above enable to reduce the time of production process modeling with use of hard modeling and should encourage production companies to use it.
Determinantal point process models on the sphere
DEFF Research Database (Denmark)
Møller, Jesper; Nielsen, Morten; Porcu, Emilio
defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....
Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory
Directory of Open Access Journals (Sweden)
R. A. Reis
2004-12-01
Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.
Frusawa, Hiroshi
2014-05-01
A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕc=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕc and the jamming limit in the car parking problem.
International Nuclear Information System (INIS)
Frusawa, Hiroshi
2014-01-01
A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕ c =e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕ c and the jamming limit in the car parking problem.
Phase behaviour of charged colloidal sphere dispersions with added polymer chains
International Nuclear Information System (INIS)
Fortini, Andrea; Dijkstra, Marjolein; Tuinier, Remco
2005-01-01
We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened Coulomb repulsion. For relatively large polymers, the effect of the screened Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases upon increasing the range of the screened Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids
Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors
International Nuclear Information System (INIS)
Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.
2010-01-01
A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies
Degiacomi, Matteo T.
2018-05-01
Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.
Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.
Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests
Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick
2011-03-01
We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.
Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere
Raftopoulos, D. D.; Spicer, A. L.
1976-01-01
An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.
A molecular-thermodynamic model for polyelectrolyte solutions
Energy Technology Data Exchange (ETDEWEB)
Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)
1998-01-01
Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}
Modeling hard clinical end-point data in economic analyses.
Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V
2013-11-01
The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are
Development and Analysis of Volume Multi-Sphere Method Model Generation using Electric Field Fitting
Ingram, G. J.
Electrostatic modeling of spacecraft has wide-reaching applications such as detumbling space debris in the Geosynchronous Earth Orbit regime before docking, servicing and tugging space debris to graveyard orbits, and Lorentz augmented orbits. The viability of electrostatic actuation control applications relies on faster-than-realtime characterization of the electrostatic interaction. The Volume Multi-Sphere Method (VMSM) seeks the optimal placement and radii of a small number of equipotential spheres to accurately model the electrostatic force and torque on a conducting space object. Current VMSM models tuned using force and torque comparisons with commercially available finite element software are subject to the modeled probe size and numerical errors of the software. This work first investigates fitting of VMSM models to Surface-MSM (SMSM) generated electrical field data, removing modeling dependence on probe geometry while significantly increasing performance and speed. A proposed electric field matching cost function is compared to a force and torque cost function, the inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom VMSM models generated using electric field matching are investigated. The resulting E-field based VMSM development framework is illustrated on a box-shaped hub with a single solar panel, and convergence properties of select models are qualitatively analyzed. Despite the complex non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions provide force and torque fits within a few percent.
Modelling of nuclear explosions in hard rock sites
International Nuclear Information System (INIS)
Brunish, W.M.; App, F.N.
1993-01-01
This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock
PENGEMBANGAN MODEL PEMBELAJARAN SOFT SKILLS DAN HARD SKILLS UNTUK SISWA SMK
Widarto Noto Widodo, Pardjono
2013-01-01
Abstrak: Pengembangan Model Pembelajaran Soft Skills dan Hard Skills untuk Siswa SMK. Era global menuntut sumber daya manusia yang memiliki daya saing, adaptif dan antisipatif, mampu belajar, terampil, mudah beradaptasi dengan teknologi baru. Profil tenaga kerja yang dibutuhkan pasar adalah yang kuat pada aspek soft skills dan hard skills. Ada tiga alternatif model pendidikan yang memadukan hard skills dan soft skills, yaitu (1) aspek soft skills dan hard skills dilaksanakan di sekolah; (2) a...
Creation of a simplified benchmark model for the neptunium sphere experiment
International Nuclear Information System (INIS)
Mosteller, Russell D.; Loaiza, David J.; Sanchez, Rene G.
2004-01-01
Although neptunium is produced in significant amounts by nuclear power reactors, its critical mass is not well known. In addition, sizeable uncertainties exist for its cross sections. As an important step toward resolution of these issues, a critical experiment was conducted in 2002 at the Los Alamos Critical Experiments Facility. In the experiment, a 6-kg sphere of 237 Np was surrounded by nested hemispherical shells of highly enriched uranium. The shells were required in order to reach a critical condition. Subsequently, a detailed model of the experiment was developed. This model faithfully reproduces the components of the experiment, but it is geometrically complex. Furthermore, the isotopics analysis upon which that model is based omits nearly 1 % of the mass of the sphere. A simplified benchmark model has been constructed that retains all of the neutronically important aspects of the detailed model and substantially reduces the computer resources required for the calculation. The reactivity impact, of each of the simplifications is quantified, including the effect of the missing mass. A complete set of specifications for the benchmark is included in the full paper. Both the detailed and simplified benchmark models underpredict k eff by more than 1% Δk. This discrepancy supports the suspicion that better cross sections are needed for 237 Np.
International Nuclear Information System (INIS)
Lin, Z.W.
2011-01-01
It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.
International Nuclear Information System (INIS)
Erpenbeck, J.J.
1989-01-01
The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion
Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th
2010-07-01
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.
The hard-core model on random graphs revisited
International Nuclear Information System (INIS)
Barbier, Jean; Krzakala, Florent; Zhang, Pan; Zdeborová, Lenka
2013-01-01
We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K ≥ 20, and that for K > 16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming
Zhou, Weizheng; Lin, Zhixing; Tong, Gangsheng; Stoyanov, Simeon D.; Yan, Deyue; Mai, Yiyong; Zhu, Xinyuan
2016-01-01
A new and simple multi-template approach towards hierarchical porous carbon (HPC) materials was reported. HPC spheres were prepared by using hierarchical silica capsules (HSCs) as the hard template and triblock copolymer Pluronic P123 as the soft template. Three types of pores were tunably
The sphere-PAC fuel code 'SPHERE-3'
Energy Technology Data Exchange (ETDEWEB)
Wallin, H
2000-07-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
Equilibrium and nonequilibrium dynamics of soft sphere fluids.
Ding, Yajun; Mittal, Jeetain
2015-07-14
We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation
Musica Universalis or the Music of the Spheres
Birat, Jean-Pierre
2018-06-01
The Music of the Spheres was a model of the universe proposed by Pythagoras and Aristotle, which explained cosmology in terms of spheres to which the sun, the moon and the planets were pinned, while their motion was driven by something akin to music. Modern thinking, related to ecology and industrial ecology, has metaphorically breathed life back into this old model by speaking about spheres again: biosphere, geosphere, anthroposphere, technosphere, hydrosphere, cryosphere, atmosphere, etc. Sustainable development also speaks about its three pillars (economy, environment, society) represented in a Venn diagram as intersecting circles (or spheres). All these models differ from the models of physicists, as they are more conceptual diagrams than a representation of the world as it is. Thus, they remind us of the old Music of the Spheres model. They also stress connections, exchanges, equilibria between the spheres - or the lack of them -, like Pythagoras' music. The presentation will discuss these various approaches, see how they match to some extent, but also how they do not show a perfect fit. Analyzing what happens at the boundaries of the spheres, where they overlap or penetrate into each other, is a powerful way to analyze the connection between technology, society, life and ecosystems. It can also help discuss pollution, ecotoxicology and explore global solutions. This article was given as a keynote lecture at the EMERC 2017 (First International Conference on Energy and Material Efficiency), organized by ISIJ in Kobe, Japan, 11-13 October, 2017.
Strip yielding model for calculation of COD in spheres with short cracks
International Nuclear Information System (INIS)
Miller, A.G.
1981-08-01
The crack opening displacement at the centre of a crack in a sphere with internal pressure has been calculated, using a strip yielding model. The results have been displayed for a range of geometrical parameters and loads. (author)
Excluded-volume effects in the diffusion of hard spheres
Bruna, Maria
2012-01-03
Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples. © 2012 American Physical Society.
Numerical investigation of flow over a sphere using LES and the Spalart-Allmaras turbulence model
International Nuclear Information System (INIS)
Wang, Y.Q.; Jackson, P.L.; Ackerman, J.D.
2005-01-01
Numerical simulations of forced convection of air for flow over a sphere are presented. The primary aim is to determine if FLUENT, a commercial computational fluid dynamics software package, is capable of providing the solution for heat transfer in a three dimensional massively separating flow. Spalart-Allmaras, a one-equation turbulence model and Large Eddy Simulation (LES) are used in the present study. Simulations are performed in the range of Reynolds numbers from 10 3 to 1.5 x 10 5 with a Prandtl number of 0.71. The mean Nusselt number over the sphere predicted by both models are in good agreement with both measurements and empirical correlations. For Reynolds number of 10 4 , the mean Nusselt number over the sphere predicted by LES is 92.92 and predicted by the Spalart-Allmaras model is 94.55 on a coarse grid and 92.94 on a finer grid. The differences between the predicted values and one of the well-established empirical corrections is 0%, 1.7% and 0.02% respectively. In addition, the agreement with previous observations is reasonable for pressure coefficients and skin friction coefficients along the sphere. The present study has established that commercially-available software like FLUENT can provide a reasonable good solution of complicated flow structures, including flow with separation. (author)
Woo, Myeung-Jouh; Greber, Isaac
1995-01-01
Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.
Experimental investigation of shock wave diffraction over a single- or double-sphere model
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Polydispersity effect on solid-fluid transition in hard sphere systems
Nogawa, T.
2010-02-01
The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.
Hydrodynamic interaction between bacteria and passive sphere
Zhang, Bokai; Ding, Yang; Xu, Xinliang
2017-11-01
Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
International Nuclear Information System (INIS)
Nastase, Horatiu; Papageorgakis, Constantinos
2009-01-01
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .
Finding a source inside a sphere
International Nuclear Information System (INIS)
Tsitsas, N L; Martin, P A
2012-01-01
A sphere excited by an interior point source or a point dipole gives a simplified yet realistic model for studying a variety of applications in medical imaging. We suppose that there is an exterior field (transmission problem) and that the total field on the sphere is known. We give analytical inversion algorithms for determining the interior physical characteristics of the sphere as well as the location, strength and orientation of the source/dipole. We start with static problems (Laplace’s equation) and then proceed to acoustic problems (Helmholtz equation). (paper)
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
Energy Technology Data Exchange (ETDEWEB)
Walton, O.R.; Braun, R.L.
1993-11-01
The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.
2012-07-19
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.; Marston, J. O.; Thoroddsen, Sigurdur T
2012-01-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Incoherent SSI Analysis of Reactor Building using 2007 Hard-Rock Coherency Model
International Nuclear Information System (INIS)
Kang, Joo-Hyung; Lee, Sang-Hoon
2008-01-01
Many strong earthquake recordings show the response motions at building foundations to be less intense than the corresponding free-field motions. To account for these phenomena, the concept of spatial variation, or wave incoherence was introduced. Several approaches for its application to practical analysis and design as part of soil-structure interaction (SSI) effect have been developed. However, conventional wave incoherency models didn't reflect the characteristics of earthquake data from hard-rock site, and their application to the practical nuclear structures on the hard-rock sites was not justified sufficiently. This paper is focused on the response impact of hard-rock coherency model proposed in 2007 on the incoherent SSI analysis results of nuclear power plant (NPP) structure. A typical reactor building of pressurized water reactor (PWR) type NPP is modeled classified into surface and embedded foundations. The model is also assumed to be located on medium-hard rock and hard-rock sites. The SSI analysis results are obtained and compared in case of coherent and incoherent input motions. The structural responses considering rocking and torsion effects are also investigated
Squeeze flow between a sphere and a textured wall
Energy Technology Data Exchange (ETDEWEB)
Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)
2016-02-15
The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.
The generalized chiral Schwinger model on the two-sphere
International Nuclear Information System (INIS)
Bassetto, A.
1995-01-01
A family of theories which interpolate between vector and chiral Schwinger models is studied on the two-sphere S 2 . The conflict between the loss of gauge invariance and global geometrical properties is solved by introducing a fixed background connection. In this way the generalized Dirac-Weyl operator can be globally defined on S 2 . The generating functional of the Green functions is obtained by taking carefully into account the contribution of gauge fields with non-trivial topological charge and of the related zero-modes of the Dirac determinant. In the decompactification limit, the Green functions of the flat case are recovered; in particular the fermionic condensate in the vacuum vanishes, at variance with its behaviour in the vector Schwinger model. ((orig.))
Study of light scattering by a granulated coated sphere - a model of granulated blood cells
Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.
2008-01-01
We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett
Design and tolerance analysis of a transmission sphere by interferometer model
Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao
2015-09-01
The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.
Methodology for construction of hollow spheres for use in physical phantoms
International Nuclear Information System (INIS)
Oliveira, A.C.H.; Lima, F.R.A.; Oliveira, F.; Vieira, J.W.
2015-01-01
In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv
2007-04-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
International Nuclear Information System (INIS)
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv
2007-01-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change
The Coulomb gas representation of critical RSOS models on the sphere and the torus
International Nuclear Information System (INIS)
Foda, O.; Nienhuis, B.
1989-01-01
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.)
The Coulomb gas representation of critical RSOS models on the sphere and the torus
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Nienhuis, B. (Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde)
1989-10-02
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.).
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
Falling-sphere radioactive viscometry
International Nuclear Information System (INIS)
Souza, R. de.
1987-01-01
In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt
International Nuclear Information System (INIS)
Wiegel, B.; Alevra, A.V.; Siebert, B.R.L.
1994-11-01
A realistic geometry model of a Bonner sphere system with a spherical 3 He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3 He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.) [de
3D Visualization of Trees Based on a Sphere-Board Model
Directory of Open Access Journals (Sweden)
Jiangfeng She
2018-01-01
Full Text Available Because of the smooth interaction of tree systems, the billboard and crossed-plane techniques of image-based rendering (IBR have been used for tree visualization for many years. However, both the billboard-based tree model (BBTM and the crossed-plane tree model (CPTM have several notable limitations; for example, they give an impression of slicing when viewed from the top side, and they produce an unimpressive stereoscopic effect and insufficient lighted effects. In this study, a sphere-board-based tree model (SBTM is proposed to eliminate these defects and to improve the final visual effects. Compared with the BBTM or CPTM, the proposed SBTM uses one or more sphere-like 3D geometric surfaces covered with a virtual texture, which can present more details about the foliage than can 2D planes, to represent the 3D outline of a tree crown. However, the profile edge presented by a continuous surface is overly smooth and regular, and when used to delineate the outline of a tree crown, it makes the tree appear very unrealistic. To overcome this shortcoming and achieve a more natural final visual effect of the tree model, an additional process is applied to the edge of the surface profile. In addition, the SBTM can better support lighted effects because of its cubic geometrical features. Interactive visualization effects for a single tree and a grove are presented in a case study of Sabina chinensis. The results show that the SBTM can achieve a better compromise between realism and performance than can the BBTM or CPTM.
Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review
Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal
2017-08-01
Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.
Directory of Open Access Journals (Sweden)
Lixin Xia
2014-01-01
Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.
VMware vSphere PowerCLI Reference Automating vSphere Administration
Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan
2011-01-01
Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and
Modelling of nuclear explosions in hard rock sites
International Nuclear Information System (INIS)
Brunish, W.M.; App, F.N.
1993-01-01
This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface
Carr, Elliot J; Pontrelli, Giuseppe
2018-04-12
We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.
Model-based sphere localization (MBSL) in x-ray projections
Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc
2017-08-01
The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.
Acoustic levitation of a large solid sphere
International Nuclear Information System (INIS)
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-01-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
Energy Technology Data Exchange (ETDEWEB)
Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)
2016-07-25
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...
The effect of attractions on the structure of fused sphere chains confined between surfaces
International Nuclear Information System (INIS)
Patra, C.N.; Yethiraj, A.; Curro, J.G.
1999-01-01
The effect of attractive interactions on the behavior of polymers between surfaces is studied using Monte Carlo simulations. The molecules are modeled as fused sphere freely rotating chains with fixed bond lengths and bond angles; wall endash fluid and fluid endash fluid site endash site interaction potentials are of the hard sphere plus Yukawa form. For athermal chains the density at the surface (relative to the bulk) is depleted at low densities and enhanced at high densities. The introduction of a fluid endash fluid attraction causes a reduction of site density at the surface, and an introduction of a wall endash fluid attraction causes an enhancement of site density at the surface, compared to when these interactions are absent. When the wall endash fluid and fluid endash fluid attractions are of comparable strength, however, the depletion mechanism due to the fluid endash fluid attraction dominates. The center of mass profiles show the same trends as the site density profiles. Near the surface, the parallel and the perpendicular components of chain dimensions are different, which is explained in terms of a reorientation of chains. copyright 1999 American Institute of Physics. thinsp
Three-sphere swimmer in a nonlinear viscoelastic medium
Curtis, Mark P.
2013-04-10
A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.
Hydrodynamic capture of microswimmers into sphere-bound orbits.
Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun
2014-03-21
Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.
Experimental determination of the dynamics of an acoustically levitated sphere
Energy Technology Data Exchange (ETDEWEB)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Experimental determination of the dynamics of an acoustically levitated sphere
International Nuclear Information System (INIS)
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-01-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator
International Nuclear Information System (INIS)
Takahashi, Ryouta; Ishiguro, Shin-ichi
1991-01-01
The formation of chloro, bromo and iodo complexes of yttrium(III), and bromo and iodo complexes of lanthanum(III), neodymium(III), terbium(III) and thulium(III) has been studied by precise titration calorimetry in N,N-dimethylformamide (DMF) at 25 o C. The formation of [YCl] 2+ , [YCl 2 ] + , [YCl 3 ] and [YCl 4 ] - , and [MBr] 2+ and [MBr 2 ] + (M = Y, La, Nd, Tb, Tm) was revealed, and their formation constants, enthalpies and entropies were determined. It is found that the formation enthalpies change in the sequence ΔH o (Cl) > ΔH o (l), which is unusual for hard metal (III) ions. This implies that, unlike the chloride ion, the bromide ion forms outer-sphere complexes with the lanthanide(III) and yttrium(III) ions in DMF. Evidence for either an inner- or outer-sphere complex was obtained from 89 Y NMR spectra for Y(ClO 4 ) 3 , YCl 3 and YBr 3 DMF solutions at room temperature. (author)
Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding
International Nuclear Information System (INIS)
Yamashita, Kiyonobu.
1995-01-01
The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)
Glass transition in soft-sphere dispersions
International Nuclear Information System (INIS)
RamIrez-Gonzalez, P E; Medina-Noyola, M
2009-01-01
The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.
Graphs with Eulerian unit spheres
Knill, Oliver
2015-01-01
d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...
Exact sampling hardness of Ising spin models
Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.
2017-09-01
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
Guthrie, Forbes; Saidel-Keesing, Maish
2011-01-01
The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late
Structure of colloidal sphere-plate mixtures
International Nuclear Information System (INIS)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I
2011-01-01
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
Structure of colloidal sphere-plate mixtures
Energy Technology Data Exchange (ETDEWEB)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)
2011-05-18
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
Meningkatkan Hard Skills dan Soft Skills Siswa melalui Model Pembelajaran Koooperatif Tipe Stad
Alfiansyah, Muhammad; Jamal, M. Arifuddin; An'nur, Syubhan
2014-01-01
Penelitian ini secara umum bertujuan untuk mendeskripsikan keefektifan model pembelajaran kooperatif tipe STAD dalam meningkatkan hard skills dan soft skills siswa SMAN 8 Barabai pada pokok bahasan fluida statis. Secara khusus untuk mendeskripsikan keterlaksanaan RPP model kooperatif tipe STAD, hard skills siswa, soft skills siswa dan respon siswa. Metode penelitian yang digunakan merupakan penelitian tindakan kelas model Kemmis dan Mc Taggart. Hasil penelitian menunjukkan bahwa terjadi pen...
ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE
Directory of Open Access Journals (Sweden)
Rosemarie HAINES
2013-12-01
Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.
Gender and Diversity in the European Public Spheres
DEFF Research Database (Denmark)
Siim, Birte
The increasing institutionalization of rights in EU has inspired a debate about the gap between the EU polity and citizens' abilities to influence multilevel governance and politics. The objective of the paper is to discuss diversity in the European public spheres from a gender perspective....... It first gives an overview of different feminist approaches to diversity and intersectionality. It explores the arguments for and against creating a democratic European Public Sphere and discusses the tensions between universal principles of equality at the one hand and concerns for inequalities...... state and to link feminist proposals for gender justice with frames for a multilayered trans-national citizenship. The paper aims to contribute to debates about theoretical approaches and models to study gender and diversity in the public sphere in general and in particular The European Public Sphere...
Saitow, Ken-ichi; Sasaki, Jungo
2005-03-08
The short-range structure of supercritical methanol (CH(3)OH) is investigated by measuring the spontaneous Raman spectra of the C-O stretching mode. The spectra are obtained at a reduced temperature, T(r)=T/T(c)=1.02 (522.9 K), which permits the neat fluid to be studied isothermally as a function of density. As the density increases, the spectral peaks shift toward the lower energy side and the spectra broaden. In the supercritical region, the amount of shifting shows nonlinear density dependence and the width becomes anomalously large. We use the perturbed hard-sphere model to analyze these density dependencies along the vibrational coordinate. The amount of shifting is decomposed into attractive and repulsive components, and the changes in attractive and repulsive energies are evaluated as functions of density and packing fraction, both of which are continuously varied by a factor of 120. Here we show that the shift amount consists principally of the attractive component at all densities, since the attractive energy is about eight times the repulsive energy. The density dependence of the widths is analyzed by calculating homogeneous and inhomogeneous widths as a function of density. The results show that, although vibrational dephasing and density inhomogeneity contribute similarly to the width at low and middle densities, at high density the main contributor turns out to be the vibrational dephasing. We estimate the local density enhancements of supercritical CH(3)OH as function of bulk density by two methods. The results of these analyses show common features, and both the estimated local density enhancements of CH(3)OH are considerably larger than the local density enhancements of simple fluids, i.e., those having nonhydrogen bonding. It is revealed that the local density of supercritical CH(3)OH is 40%-60% greater than the local densities of the simple fluids. We also estimate the local density fluctuation using the obtained values of attractive shift
Simulation of induced electric field distribution based on five-sphere model used in rTMS.
Pu, Lina; Liu, Zhipeng; Yin, Tao; An, Hao; Li, Song
2010-01-01
Repetitive Transcranial magnetic stimulation (TMS) is a relatively new technique, which is non-invasive and painless used to stimulate the central and peripheral neural tissues. The principle is generating time-varying magnetic fields to stimulate the cerebral cortex neuron and inducing eddy current inside the tissues. Many researches study on the distributing of magnetic field and electric field induced inside the human brain, whereas the static electric field was neglected roughly in many studies. In this paper, a five-sphere model is established to simulate the human head used in rTMS. According to the different dielectric properties of the head tissues, the Laplace equation of static electric field is deduced by both of Gauss theorem and current's continuity principle. Boundary conditions used in different interface between two adjacent layers in the five-sphere model is proposed in this paper. Simulating study is conducted to calculate the distribution of the electric field in the model. Simulating results suggest that the model is useful to get the parameters of the most focus coil. Therefore this study could be potential to promote the development of rTMS stimulator.
Ceramic sphere-pac breeder design for fusion blankets
International Nuclear Information System (INIS)
Gierszewski, P.J.; Sullivan, J.D.
1991-01-01
Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
Directory of Open Access Journals (Sweden)
George P. Petropoulos
2015-05-01
Full Text Available In today’s changing climate, the development of robust, accurate and globally applicable models is imperative for a wider understanding of Earth’s terrestrial biosphere. Moreover, an understanding of the representation, sensitivity and coherence of such models are vital for the operationalisation of any physically based model. A Global Sensitivity Analysis (GSA was conducted on the SimSphere land biosphere model in which a meta-modelling method adopting Bayesian theory was implemented. Initially, effects of assuming uniform probability distribution functions (PDFs for the model inputs, when examining sensitivity of key quantities simulated by SimSphere at different output times, were examined. The development of topographic model input parameters (e.g., slope, aspect, and elevation were derived within a Geographic Information System (GIS before implementation within the model. The effect of time of the simulation on the sensitivity of previously examined outputs was also analysed. Results showed that simulated outputs were significantly influenced by changes in topographic input parameters, fractional vegetation cover, vegetation height and surface moisture availability in agreement with previous studies. Time of model output simulation had a significant influence on the absolute values of the output variance decomposition, but it did not seem to change the relative importance of each input parameter. Sensitivity Analysis (SA results of the newly modelled outputs allowed identification of the most responsive model inputs and interactions. Our study presents an important step forward in SimSphere verification given the increasing interest in its use both as an independent modelling and educational tool. Furthermore, this study is very timely given on-going efforts towards the development of operational products based on the synergy of SimSphere with Earth Observation (EO data. In this context, results also provide additional support for the
Gelation in a model 1-component system with adhesive hard-sphere interactions
Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman
2012-02-01
Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).
DEFF Research Database (Denmark)
Trenz, Hans-Jörg
2015-01-01
In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....
Global Calibration of Multiple Cameras Based on Sphere Targets
Directory of Open Access Journals (Sweden)
Junhua Sun
2016-01-01
Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.
The sintering behavior of close-packed spheres
DEFF Research Database (Denmark)
Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund
2012-01-01
The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....
DEFF Research Database (Denmark)
Zeberg-Mikkelsen, Claus Kjær; Watson, G.; Baylaucq, A.
2006-01-01
viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg-Nissan...
Impact of a Hydrophobic Sphere onto a Bath
Harris, Daniel M.; Edmonds, John; Galeano-Rios, Carlos A.; Milewski, Paul A.
2017-11-01
Small hydrophobic particles impacting a water surface can rebound completely from the interface (Lee & Kim, Langmuir, 2008). In the present work, we focus on the bouncing dynamics of millimetric hydrophobic spheres impacting the surface of a quiescent water bath. Particular attention is given to the dependence of the normal coefficient of restitution and contact time on the impact velocity and the radius and density of the sphere. Our experimental observations are compared to the predictions of a fluid model derived from linearized Navier-Stokes under the assumption of a high Reynolds number regime (Galeano-Rios et al., JFM, in press). In the model, the motions of the sphere and the fluid interface are found by imposing the natural geometric and kinematic compatibility conditions. Future directions will be discussed. C.A.G.-R. and P.A.M. gratefully acknowledge support through the EPSRC project EP/N018176/1.
Inner- and outer-sphere complexation of ions at the goethite-solution interface
Rahnemaie, R.; Hiemstra, T.; Riemsdijk, van W.H.
2006-01-01
Formation of inner- and outer-sphere complexes of environmentally important divalent ions on the goethite surface was examined by applying the charge distribution CD model for inner- and outer-sphere complexation. The model assumes spatial charge distribution between the surface (0-plane) and the
Convection heat transfer of closely-spaced spheres with surface blowing
Energy Technology Data Exchange (ETDEWEB)
Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))
1993-05-01
A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)
International Nuclear Information System (INIS)
Bertagnolli, H.
1978-01-01
For the case of special molecular models representing the acetonitrile molecule the expansion coefficients of the molecular par distribution function are calculated by use of pertubation theory. These results are used to get theoretical access to scattering intensities in the frame of several approximations. The first model describes the molecule by three hard spheres and uses a hard sphere liquid as reference. In the second cast the calculations are based on an anisotropic Lennard-Jones potential by application of a model of overlapping ellipsoids and by use of a Lennard-Jones liquid as a reference system. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. Finally all the calculations with different intermolecular potentials are compared with neutron scattering experiments. (orig.) 891 HK [de
Modelling heat transfer during flow through a random packed bed of spheres
Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel
2018-04-01
Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
Scaling in soft spheres: fragility invariance on the repulsive potential softness
International Nuclear Information System (INIS)
Michele, Cristiano De; Sciortino, Francesco; Coniglio, Antonio
2004-01-01
We address the question of the dependence of the fragility of glass forming supercooled liquids on the 'softness' of an interacting potential by performing numerical simulation of a binary mixture of soft spheres with different power n of the interparticle repulsive potential. We show that the temperature dependence of the diffusion coefficients for various n collapses onto a universal curve, supporting the unexpected view that fragility is not related to the hard core repulsion. We also find that the configurational entropy correlates with the slowing down of the dynamics for all studied n. (letter to the editor)
Analytic functionals on the sphere
Morimoto, Mitsuo
1998-01-01
This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.
Building the Platform of Digital Earth with Sphere Split Bricks
Directory of Open Access Journals (Sweden)
WANG Jinxin
2015-06-01
Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.
Capillary holdup between vertical spheres
Directory of Open Access Journals (Sweden)
S. Zeinali Heris
2009-12-01
Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.
Energy Technology Data Exchange (ETDEWEB)
Shew, Chwen-Yang, E-mail: chwenyang.shew@csi.cuny.edu; Kondo, Kenta [Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314 (United States); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394 (Japan)
2014-01-14
We have investigated the inhomogeneous interior of confined spherical cavities as capsules containing encapsulated binary hard sphere mixtures for different compositions and cavity wall rigidity. Such a greatly simplified model manifests the effects of macromolecular crowding arising from excluded volume interactions in a tiny cell or a cellular nucleus. By fixing the number of large particles, the level of crowding is adjusted by changing the amount of small hard spheres in the cavity. For a rigid cavity, large spheres tend to pack in liquid-like order apart from the surface to the center of the cavity as the crowding level is increased. Whereas, for a soft cavity, larger spheres tend to blend with small spheres in the peripheral region at near the boundary of the cavity, and are susceptible to be depleted from the interior of the cavity as the cavity becomes more crowded. These results may help future elucidation of the thermodynamic pathways to stabilize the inhomogeneous structure of mixtures confined in cavities, such as the derepression of genome materials around the interior rim of the nucleus in a cancerous cell.
International Nuclear Information System (INIS)
Shew, Chwen-Yang; Kondo, Kenta; Yoshikawa, Kenichi
2014-01-01
We have investigated the inhomogeneous interior of confined spherical cavities as capsules containing encapsulated binary hard sphere mixtures for different compositions and cavity wall rigidity. Such a greatly simplified model manifests the effects of macromolecular crowding arising from excluded volume interactions in a tiny cell or a cellular nucleus. By fixing the number of large particles, the level of crowding is adjusted by changing the amount of small hard spheres in the cavity. For a rigid cavity, large spheres tend to pack in liquid-like order apart from the surface to the center of the cavity as the crowding level is increased. Whereas, for a soft cavity, larger spheres tend to blend with small spheres in the peripheral region at near the boundary of the cavity, and are susceptible to be depleted from the interior of the cavity as the cavity becomes more crowded. These results may help future elucidation of the thermodynamic pathways to stabilize the inhomogeneous structure of mixtures confined in cavities, such as the derepression of genome materials around the interior rim of the nucleus in a cancerous cell
Singular value decomposition and artificial neutral network for analyzing bonner sphere data
International Nuclear Information System (INIS)
Zhu, Qingjun; Song, Gang; Song, Fengquan; Guo, Qian; Wu, Yican
2012-01-01
The objective of this study was to build an effective and reliable method based on the artificial neural network (ANN) model for unfolding neutron spectrum. The number of counts measured by 15 Bonner spheres and 281 neutron spectra were selected as the database. After singular value decomposition was used to determine the relationship between Bonner spheres, 11 Bonner spheres were chosen as input descriptors. The three-layer feedforward neural networks (11-5-1) were employed to predict the spectrum in each energy bin. Using information entropy theory and the results of the ANN calculations, the sensitivity of each sphere to the entropy of the spectrum was quantitatively analyzed. The spectra results were compared with the results obtained using the maximum entropy method (MEM). The averaged root mean-square-error (MSE) of the MEM output and the desired spectra was 0.012; the averaged MSE of the ANN calculations was 0.006. The MSE results indicate that the 11-5-1 ANN models are able to accurately and reliably predict neutron spectra. The ANN model developed in this study to unfold neutron spectra from the counts measured by 11 Bonner spheres provides an alternative method for unfolding spectrum. The singular value decomposition is an effective method for the analysis of data obtained from Bonner spheres and the neutron spectra.
Excess Properties of Aqueous Solutions: Hard Spheres versus Pseudo-Hard Bodies
Czech Academy of Sciences Publication Activity Database
Rouha, M.; Nezbeda, Ivo
2011-01-01
Roč. 109, č. 4 (2011), s. 613-617 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : partial molar volume * primitive models * thermodynamic properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.819, year: 2011
Fan Affinity Laws from a Collision Model
Bhattacharjee, Shayak
2012-01-01
The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…
Fusion breeder sphere - PAC blanket design
International Nuclear Information System (INIS)
Sullivan, J.D.; Palmer, B.J.F.
1987-11-01
There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm
Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations
Rapisarda, S.; Ingram, A.; van der Klis, M.
2017-12-01
We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.
International Nuclear Information System (INIS)
Saito, Toki; Nakajima, Yoshikazu; Sugita, Naohiko; Mitsuishi, Mamoru; Hashizume, Hiroyuki; Kuramoto, Kouichi; Nakashima, Yosio
2011-01-01
Statistical deformable model based two-dimensional/three-dimensional (2-D/3-D) registration is a promising method for estimating the position and shape of patient bone in the surgical space. Since its accuracy depends on the statistical model capacity, we propose a method for accurately generating a statistical bone model from a CT volume. Our method employs the Sphere-Attribute-Image (SAI) and has improved the accuracy of corresponding point search in statistical model generation. At first, target bone surfaces are extracted as SAIs from the CT volume. Then the textures of SAIs are classified to some regions using Maximally-stable-extremal-regions methods. Next, corresponding regions are determined using Normalized cross-correlation (NCC). Finally, corresponding points in each corresponding region are determined using NCC. The application of our method to femur bone models was performed, and worked well in the experiments. (author)
Collapse of radiating fluid spheres and cosmic censorship
International Nuclear Information System (INIS)
Unruh, W.G.
1985-01-01
The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship
International Nuclear Information System (INIS)
Sanchez, Rene G.; Loaiza, David J.; Kimpland, Robert H.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.; Butterfield, Kenneth B.
2003-01-01
A critical mass experiment using a 6-kg 237 Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of 237 Np. To attain criticality, the 237 Np sphere was surrounded with 93 wt% 235 U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k eff of 0.99089 ± 0.0003 compared with a k eff 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of 237 Np ranges from kilogram weights in the high fifties to low sixties. (author)
SPHERE: Irradiation of sphere-pac fuel of UPuO2−x containing 3% Americium
International Nuclear Information System (INIS)
D’Agata, E.; Hania, P.R.; McGinley, J.; Somers, J.; Sciolla, C.; Baas, P.J.; Kamer, S.; Okel, R.A.F.; Bobeldijk, I.; Delage, F.; Bejaoui, S.
2014-01-01
Highlights: • SPHERE is designed to check the behaviour of MADF sphere-pac concept. • MADF sphere-pac are compared with MADF pellet. • Swelling, helium release and restructuring behaviour will be the main output of the experiment. • An experiment to check sphere-pac MABB fuel behaviour is now under design. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241 Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. The SPHERE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS) performed in the HFR (High Flux Reactor). The SPHERE experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as helium induced fuel swelling have been shown to be the key issues for the design of Am-bearing targets. The main objective of the SPHERE experiment is to study the in-pile behaviour of fuel containing 3% of americium and to compare the behaviour of sphere-pac fuel to pellet fuel, in particular the role of microstructure and temperature on fission gas release (mainly He) and on fuel swelling. The SPHERE experiment is being irradiated since September 2013 in the HFR in Petten (The Netherlands) and is expected to be terminated in spring 2015. The experiment has been designed to last up to 18 reactor cycles (corresponding to 18 months) but may reach its target earlier. This paper discusses the rationale and objective of the SPHERE experiment and provides a general description of its design
Gravitational potential energy of a disk-sphere pair of galaxies
International Nuclear Information System (INIS)
Ballabh, G.M.
1975-01-01
Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)
Nonstatic radiating spheres in general relativity
International Nuclear Information System (INIS)
Krori, K.D.; Borgohain, P.; Sarma, R.
1985-01-01
The method of Herrera, Jimenez, and Ruggeri of obtaining nonstatic solutions of Einstein's field equations to study the evolution of stellar bodies is applied to obtain two models of nonstatic radiating spheres from two well-known static solutions of field equations, viz., Tolman's solutions IV and V. Whereas Tolman's type-IV model is found to be contracting for the period under investigation, Tolman's type-V model shows a bounce after attaining a minimum radius
The hard-sphere model of strongly interacting fermion systems
Mecca, Angela
2016-01-01
The formalism based on Correlated Basis Functions (CBF) and the cluster-expansion technique has been recently employed to derive an effective interaction from a realistic nuclear Hamiltonian. One of the main objectives of the work described in this Thesis is establishing the accuracy of this novel approach--that allows to combine the flexibility of perturbation theory in the basis of eigenstates of the noninteracting system with a realistic description of short-range correlations in coordinat...
Equivalent sphere approximations for skin, eye, and blood-forming organs
International Nuclear Information System (INIS)
Maxson, W.L.; Townsend, L.W.; Bier, S.G.
1996-01-01
Throughout the manned spaceflight program, protecting astronauts from space radiation has been the subject of intense study. For interplanetary crews, two main sources of radiation hazards are solar particle events (SPEs) and galactic cosmic rays. For nearly three decades, crew doses and related shielding requirements have been assessed using the assumption that body organ exposures are well approximated by exposures at the center of tissue-equivalent spheres. For the skin and for blood-forming organs (BFOs), these spheres have radii of 0 and 5 cm, respectively. Recent studies indicate that significant overestimation of organ doses occurs if these models are used instead of realistic human geometry models. The use of the latter, however, requires much longer computational times. In this work, the authors propose preliminary revisions to these equivalent sphere approximations that yield more realistic dose estimates
Computer simulation model of the structure of ion implanted impurities in semiconductors
International Nuclear Information System (INIS)
Roman, E.; Majlis, N.
1983-02-01
A system of ion implanted impurities in a semiconductor is described by a Monte Carlo simulation of a non-equilibrium system of random distributed hard spheres. The radial distribution function of this system is found. The comparison is made with the fluid hard sphere case. The assumption of the absence either of annealing or diffusion of the impurities after the implantation process is also made. (author)
Magnetic dynamics of simple collective modes in a two-sphere plasma model
International Nuclear Information System (INIS)
Essen, Hanno
2005-01-01
A plasma blob is modeled as consisting of two homogeneous spheres of equal radius and equal but opposite charge densities that can move relative to each other. Relative translational and rotational motion are considered separately. Magnetic effects from the current density caused by the relative motion are included. Magnetic interaction is seen to cause an inductive inertia. In the relative translation case the Coulomb attraction, approximately a linear force for small amplitudes, causes an oscillation. For a large number of particles, the corresponding oscillation frequency will not be the Langmuir plasma frequency, because of the large inductive inertia. For rotation an external magnetic field is included and the energy and diamagnetism of the plasma in the model is calculated. Finally, it is noted how the neglect of resistivity is motivated by the results
Higher-dimensional relativistic-fluid spheres
International Nuclear Information System (INIS)
Patel, L. K.; Ahmedabad, Gujarat Univ.
1997-01-01
They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given
Granular packing as model glass formers
International Nuclear Information System (INIS)
Wang Yujie
2017-01-01
Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1
Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres
International Nuclear Information System (INIS)
Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping
2017-01-01
Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.
Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres
Energy Technology Data Exchange (ETDEWEB)
Song, Jinliang [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Sun, Quansheng [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Yang, Zhenning; Luo, Shengmin [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Xiao, Xianghui [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Arwade, Sanjay R. [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Zhang, Guoping, E-mail: zhangg@umass.edu [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States)
2017-03-14
Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.
International Nuclear Information System (INIS)
Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.
2009-01-01
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.
Energy Technology Data Exchange (ETDEWEB)
Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)
2009-12-15
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.
Comparison of hard scattering models for particle production at large transverse momentum. 2
International Nuclear Information System (INIS)
Schiller, A.; Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.; Ranft, G.; Ranft, J.
1977-01-01
Single particle distributions of π + and π - at large transverse momentum are analysed using various hard collision models: qq → qq, qantiq → MantiM, qM → qM. The transverse momentum dependence at thetasub(cm) = 90 0 is well described in all models except qantiq → MantiM. This model has problems with the ratios (pp → π + +X)/(π +- p → π 0 +X). Presently available data on rapidity distributions of pions in π - p and pantip collisions are at rather low transverse momentum (however large xsub(perpendicular) = 2psub(perpendicular)/√s) where it is not obvious that hard collision models should dominate. The data, in particular the π - /π + asymmetry are well described by all models except qM → Mq (CIM). At large values of transverse momentum significant differences between the models are predicted. (author)
Formal Variability of Terms in the Sphere of Network Technologies
Directory of Open Access Journals (Sweden)
Roman Viktorovich Deniko
2015-09-01
Full Text Available The article addresses the problem of formal variability of terms in the sphere of network terminology in the Russian language. The research is based on data from the Internet communication in the sphere of network technologies. Such formal variability types as graphical, phonemic, word building and complex (graphic and phonetic, morphologic and accentual are discussed in this article. The authors reveal the reasons for graphic variability of foreign origin terms making up the international terminological fund. These reasons cover such aspects as the use of graphics of source language and recipient language; the presence or absence of hyphenation, etc. It is determined that the phonemic variants of terms appear as a result of oral or written borrowings. The existence of such variants is also connected with the stage of their adaptation in the Russian language after borrowing. In this case the variants are related with soft or hard pronunciation of consonants. There are also some cases of phonemic variability on the graphic level. The complex variability is regarded as a part of active processes taking place in the modern Russian language, and these processes involve both native and foreign origin terms. The particular attention is paid to the word-building variants – word-building affixes the variability of which is peculiar of network technologies. The results of the research show that the variability of professional units belonging to the network technologies sublanguage is caused by the active process of borrowing of specialpurpose vocabulary into the Russian language. The process is due to the intensification of intercultural communication in the professional spheres.
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2013-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2012-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates
Directory of Open Access Journals (Sweden)
Adrian Rauchfleisch
2016-04-01
Full Text Available Almost since the advent of the Internet, there has been great interest in analyzing and understanding online communication from the perspective of public sphere theory. The question of whether the properties of the Internet and, specifically, social media actually contribute to the public sphere is the matter of ongoing and somewhat heated scientific debate. The aim of the article is twofold. First, we propose a hierarchical model of generalized functions of public sphere. On a theoretical level, we interweave different strands of thought on the public sphere, and the resulting model is more inclusive and less rigid than each of those strands on their own. We identify four generalized functions: identity building, agenda-setting, control and criticism, and deliberation. The Internet does not contribute equally to these functions and we evaluate the impact of the Internet on each of these functions as a diminishing marginal utility. Second, we empirically explore the plausibility of our model in a global comparative analysis with focus on the Internet. With the help of macro-level variables which indicate the structural preconditions for a public sphere, we identify the highest possible function of the public sphere for each country to which the Internet can potentially contribute. Based on this approach, future research can be contextualized: case-study-based research can plausibly articulate expectations regarding the impact of the Internet on the public sphere.
International Nuclear Information System (INIS)
Chang Yiren; Hsu Long; Chi Sien
2006-01-01
Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system
Vector model for mapping of visual space to subjective 4-D sphere
International Nuclear Information System (INIS)
Matuzevicius, Dalius; Vaitkevicius, Henrikas
2014-01-01
Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia
Mathematical modeling for surface hardness in investment casting applications
International Nuclear Information System (INIS)
Singh, Rupinder
2012-01-01
Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model
Directory of Open Access Journals (Sweden)
Shiqi Zhou
2011-12-01
Full Text Available Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426 1st-order high temperature series expansion (HTSE TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861, have some serious shortcomings: (i the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE and a non hard sphere (HS perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii We give a quantitative analysis on why
Theorising Public and Private Spheres
Directory of Open Access Journals (Sweden)
Sima Remina
2016-12-01
Full Text Available The 19th century saw an expression of women’s ardent desire for freedom, emancipation and assertion in the public space. Women hardly managed to assert themselves at all in the public sphere, as any deviation from their traditional role was seen as unnatural. The human soul knows no gender distinctions, so we can say that women face the same desire for fulfillment as men do. Today, women are more and more encouraged to develop their skills by undertaking activities within the public space that are different from those that form part of traditional domestic chores. The woman of the 19th century felt the need to be useful to society, to make her contribution visible in a variety of domains. A woman does not have to become masculine to get power. If she is successful in any important job, this does not mean that she thinks like a man, but that she thinks like a woman. Women have broken through the walls that cut them off from public life, activity and ambition. There are no hindrances that can prevent women from taking their place in society.
Comparison of PIV measurements and a discrete particle model in a rectangular 3D spout-fluid bed
Link, J.M.; Deen, N.G.; Kuipers, J.A.M.
2004-01-01
Particle image velocimetry and a 3D hard sphere discrete particle model were applied to determine particle velocity profiles in the plane around a spout in a spoutfluid bed for various initial bed heights, spout and background fluidization velocities. Comparison between experimental and numerical
Fiedler, Radosław
2013-01-01
In the paper a correlation between hard and soft policy in relations between Iran and US is shown. These two states share a negative heritage (hostage crisis, US interference in Iranian politics, terrorism and nuclear program). Washington has decided to use hard policy methods against Iran, through numerous sanctions, without any effect in changing Iranian behaviour. The ignored sphere of soft policy is presented in the article, upon which America and Iran could achieve much more. W artyku...
Some properties of a non-static uniform density sphere with center singularity
International Nuclear Information System (INIS)
Knutsen, H.
1984-01-01
A class of exact models for non-static uniform density spheres with pressure gradient and singularity is investigated. Necessary and sufficient conditions are given for the pressure gradient to be negative and for the circumference of the sphere to be an increasing function of radial coordinate. The time history of marginally trapped surfaces are studied, and it is found that for physically acceptable models the singularity is always hidden by a trapped surface. (Auth.)
Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres
Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.
2013-12-01
The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the
Burrows, J.; Johnson, V.; Henckel, D.
2016-01-01
Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B
Generating perfect fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-06-01
Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.
Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-01-01
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands
Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.
2016-05-01
The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.
MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17
International Nuclear Information System (INIS)
Velázquez, P. F.; Rodríguez-González, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J.
2013-01-01
We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.
International Nuclear Information System (INIS)
Thylander, Sara; Menzel, Andreas; Ristinmaa, Matti
2012-01-01
The number of industrial applications of electroactive polymers (EAPs) is increasing and, consequently, the need for reliable modelling frameworks for such materials as well as related robust simulation techniques continuously increases. In this context, we combine the modelling of non-linear electroelasticity with a computational micro-sphere formulation in order to simulate the behaviour of EAPs. The micro-sphere approach in general enables the use of physics-based constitutive models like, for instance, the so-called worm-like chain model. By means of the micro-sphere formulation, scalar-valued micromechanical constitutive relations can conveniently be extended to a three-dimensional continuum setting. We discuss several electromechanically coupled numerical examples and make use of the finite element method to solve inhomogeneous boundary value problems. The incorporated material parameters are referred to experimental data for an electrostrictive polymer. The numerical examples show that the coupled micro-sphere formulation combined with the finite element method results in physically sound simulations that mimic the behaviour of an electrostrictive polymer. (paper)
International Nuclear Information System (INIS)
Espinoza G, J. G.; Martinez B, M. R.; Leon P, A. A.; Hernandez P, C. F.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; De Sousa L, M. A.
2016-10-01
For neutron spectrometry and neutron dosimetry, the Bonner spheres spectrometric system has been the most widely used system, however, the number, size and weight of the spheres composing the system, as well as the need to use a reconstruction code and the long periods of time used to carry out the measurements are some of the disadvantages of this system. For the reconstruction of the spectra, different techniques such as artificial neural networks of reverse propagation have been used. The objective of this work was to reduce the number of Bonner spheres and to use counting speeds in a reverse propagation neural network, optimized by means of the robust design methodology, to reconstruct the neutron spectra. For the design of the neural network we used the neutron spectra of the IAEA and the response matrix of the Bonner spheres with "6LiI(Eu) detector. The performance of the network was compared; using 7 Bonner spheres against other cases where only 2 and one sphere are used. The network topologies were trained 36 times for each case keeping constant the objective error (1E(-3)), the training algorithm was trains cg and the robust design methodology to determine the best network architectures. With these, the best and worst results were compared. The results obtained using 7 spheres were similar to those with the 5-in sphere, however is still in an information analysis stage. (Author)
Comparison of models of high energy heavy ion collision
International Nuclear Information System (INIS)
Gyulassy, M.
1977-01-01
Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions
Public Sphere as Digital Assemblage
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...
Ruis, H.G.M.; Venema, P.; Linden, van der E.
2007-01-01
The effect of pH and temperature on the interaction potential of sodium caseinate solutions in terms of an adhesive-(or sticky)-hard-sphere model was studied. The sodium caseinate aggregates are regarded to be sticky hard spheres with a certain radius. The value of the stickiness parameter as
In Vivo Evaluation of a New Embolic Spherical Particle (HepaSphere) in a Kidney Animal Model
International Nuclear Information System (INIS)
Luis, Esther de; Bilbao, Jose I.; Ciercoles, Jose A. Garcia Jalon de; Martinez-Cuesta, Antonio; Martino Rodriguez, Alba de; Lozano, Maria D.
2008-01-01
HepaSphere is a new spherical embolic material developed in a dry state that absorbs fluids and adapts to the vessel wall, leaving no space between the particle and the arterial wall. The aim of this study was to elucidate the final in vivo size, deformation, final location, and main properties of the particles when reconstituted with two different contrast media (Iodixanol and Ioxaglate) in an animal model. Two sizes of 'dry-state' particles (50-100 and 150-200 μm) were reconstituted using both ionic and nonionic contrast media. The mixture was used to partly embolize both kidneys in an animal model (14 pigs). The animals were sacrificed 4 weeks after the procedure and the samples processed. The final size of the particles was 230.2 ± 62.5 μm for the 50- to 100-μm dry-state particles and 314.4 ± 71 μm for the 150- to 200-μm dry-state particles. When the contrast medium (ionic versus nonionic) used for the reconstitution was studied to compare (Student's t-test) the final size of the particles, no differences were found (p > 0.05). The mean in vivo deformation for HepaSphere was 17.1% ± 12.3%. No differences (p > 0.05) were found in the deformation of the particle regarding the dry-state size or the contrast medium (Mann-Whitney test). We conclude that HepaSphere is stable, occludes perfectly, and morphologically adapts to the vessel lumen of the arteries embolized. There is no recanalization of the arteries 4 weeks after embolization. Its final in vivo size is predictable and the particle has the same properties in terms of size and deformation with the two different contrast media (Iodixanol and Ioxaglate)
Motion of a damped oscillating sphere as a function of the medium viscosity
International Nuclear Information System (INIS)
Mendoza-Arenas, J J; Perico, E L D; Fajardo, F
2010-01-01
In this paper, an experimental setup for undergraduate courses to study the damped harmonic motion of a sphere inside a fluid as a function of the medium viscosity is presented. To observe the dependence of the oscillation of the sphere on the medium viscosity, different concentrations of glycerin in water were used. The sphere is suspended on the end of a spring and its displacement is indirectly obtained using a force sensor. To describe the sphere motion, a drag force different from that given by Stokes' law is used. Our experimental results fit satisfactorily when semiempirical coefficients are introduced in the model. The frequency and relaxation time of the sphere oscillations diminish as the concentration of glycerin increases. Boundary effects due to the fluid container size are studied. We found that when the container size decreases the oscillations decay more rapidly due to a greater resistance to the motion of the sphere.
A class of Matérn-like covariance functions for smooth processes on a sphere
Jeong, Jaehong
2015-02-01
© 2014 Elsevier Ltd. There have been noticeable advancements in developing parametric covariance models for spatial and spatio-temporal data with various applications to environmental problems. However, literature on covariance models for processes defined on the surface of a sphere with great circle distance as a distance metric is still sparse, due to its mathematical difficulties. It is known that the popular Matérn covariance function, with smoothness parameter greater than 0.5, is not valid for processes on the surface of a sphere with great circle distance. We introduce an approach to produce Matérn-like covariance functions for smooth processes on the surface of a sphere that are valid with great circle distance. The resulting model is isotropic and positive definite on the surface of a sphere with great circle distance, with a natural extension for nonstationarity case. We present extensive numerical comparisons of our model, with a Matérn covariance model using great circle distance as well as chordal distance. We apply our new covariance model class to sea level pressure data, known to be smooth compared to other climate variables, from the CMIP5 climate model outputs.
A class of Matérn-like covariance functions for smooth processes on a sphere
Jeong, Jaehong; Jun, Mikyoung
2015-01-01
© 2014 Elsevier Ltd. There have been noticeable advancements in developing parametric covariance models for spatial and spatio-temporal data with various applications to environmental problems. However, literature on covariance models for processes defined on the surface of a sphere with great circle distance as a distance metric is still sparse, due to its mathematical difficulties. It is known that the popular Matérn covariance function, with smoothness parameter greater than 0.5, is not valid for processes on the surface of a sphere with great circle distance. We introduce an approach to produce Matérn-like covariance functions for smooth processes on the surface of a sphere that are valid with great circle distance. The resulting model is isotropic and positive definite on the surface of a sphere with great circle distance, with a natural extension for nonstationarity case. We present extensive numerical comparisons of our model, with a Matérn covariance model using great circle distance as well as chordal distance. We apply our new covariance model class to sea level pressure data, known to be smooth compared to other climate variables, from the CMIP5 climate model outputs.
Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.
Directory of Open Access Journals (Sweden)
Robert Sonntag
Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.
Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.
Arima, Yoshitaka
2017-10-01
For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.
Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.
Soto, R; Piasecki, J; Mareschal, M
2001-09-01
Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].
Surface phenomena and the evolution of radiating fluid spheres in general relativity
International Nuclear Information System (INIS)
Herrera, L.; Jimenez, J.; Esculpi, M.; Ibanez, J.
1989-01-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs
Energy Technology Data Exchange (ETDEWEB)
Ridley, Mora K. [Texas Tech University, Lubbock; Hiemstra, T [Oak Ridge National Laboratory (ORNL); Van Riemsdijk, Willem H. [Wageningen University and Research Centre, The Netherlands; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL
2009-01-01
Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic
Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.
2009-04-01
Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic
Hard electronics; Hard electronics
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.
Method for producing small hollow spheres
International Nuclear Information System (INIS)
Hendricks, C.D.
1979-01-01
A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
New interior solution describing relativistic fluid sphere
Indian Academy of Sciences (India)
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...
Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.
2016-12-01
NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP
Cavity formation by the impact of Leidenfrost spheres
Marston, Jeremy
2012-05-01
We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.
Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water
Jetly, Aditya
2018-01-22
We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.
International Nuclear Information System (INIS)
Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin
2015-01-01
Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models
International Nuclear Information System (INIS)
Reynolds, Philip A.; McGillivray, Duncan J.; White, John W.; Jackson, Andrew J.; University of Maryland, College Paerk, Maryland, USA
2009-01-01
Full text: We measured ultra small angle neutron scattering (USANS) from polymethylmethacrylate spheres tamped down in air. Two slightly polydisperse pure sphere sizes (1.5/-lm and 7.5/-lm diameter) and five mixtures of these were used. All were loose packed (packing fractions 0.3 to 0.6) with nongravitational forces (e.g., friction) important, preventing close packing. The USANS data is rich in information on powder packing. A modified Percus-Yevick fluid model was used to parametrise the data - adequately but not well. The modifications required introduction of small voids, less than the sphere size, and a parameter reflecting substantial deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor accounting for the presence within these 'clusters' of self avoidance of the large spheres (that is large spheres coated with more small spheres than Percus-Yevick would predict). The overall deviations from the hardsphere Percus-Yevick model that we find here suggests fluid models of loose packed powders are unlikely to be successful, but lay the groundwork for future theoretical and computational work.
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Mean spherical model for hard ions and dipoles: Thermodynamics and correlation functions
International Nuclear Information System (INIS)
Vericat, F.; Blum, L.
1980-01-01
The solution of the mean spherical model of a mixture of equal-size hard ions and dipoles is reinvestigated. Simple expressions for the coefficients of the Laplace transform of the pair correlation function and the other thermodynamic properties are given
Wang, Yu
2015-01-01
© The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m^{2} g^{-1} were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g^{-1}).
Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.
Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar
2017-01-01
Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.
Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.
Directory of Open Access Journals (Sweden)
Min Li
Full Text Available Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.
Lee, Won-Ho; Lee, Jong-Chul
2018-09-01
A numerical simulation was developed for magnetic nanoparticles in a liquid dielectric to investigate the AC breakdown voltage of the magnetic nanofluids according to the volume concentration of the magnetic nanoparticles. In prior research, we found that the dielectric breakdown voltage of the transformer oil-based magnetic nanofluids was positively or negatively affected according to the amount of magnetic nanoparticles under a testing condition of dielectric fluids, and the trajectory of the magnetic nanoparticles in a fabricated chip was visualized to verify the related phenomena via measurements and computations. In this study, a numerical simulation of magnetic nanoparticles in an insulating fluid was developed to model particle tracing for AC breakdown mechanisms happened to a sphere-sphere electrode configuration and to propose a possible mechanism regarding the change in the breakdown strength due to the behavior of the magnetic nanoparticles with different applied voltages.
Chemical association in simple models of molecular and ionic fluids. III. The cavity function
Zhou, Yaoqi; Stell, George
1992-01-01
Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.
Production of graphite spheres with a high density
International Nuclear Information System (INIS)
Tscherry, V.
1976-01-01
It is possible to obtain small spheres with a diameter of approximately 1,000 μm with the help of an automated press fitted with a profiled plunger. The spheres consist of graphite and a binder. Depending on the size of the plunger, 1 + 6 Σn (n = 0,1,2,...) spheres of equivalent diameter may be pressed with one stroke of the plunger. The spheres are bound to each other by a thin burr. The green end product is obtained by breaking the sheets of spheres and deburring them. (orig.) [de
Bulk and interfacial stresses in suspensions of soft and hard colloids
International Nuclear Information System (INIS)
Truzzolillo, D; Roger, V; Dupas, C; Cipelletti, L; Mora, S
2015-01-01
We explore the influence of particle softness and internal structure on both the bulk and interfacial rheological properties of colloidal suspensions. We probe bulk stresses by conventional rheology, by measuring the flow curves, shear stress versus strain rate, for suspensions of soft, deformable microgel particles and suspensions of near hard-sphere-like silica particles. A similar behaviour is seen for both kinds of particles in suspensions at concentrations up to the random close packing volume fraction, in agreement with recent theoretical predictions for sub-micron colloids. Transient interfacial stresses are measured by analyzing the patterns formed by the interface between the suspensions and their solvent, due to a generalized Saffman–Taylor hydrodynamic instability. At odds with the bulk behaviour, we find that microgels and hard particle suspensions exhibit vastly different interfacial stress properties. We propose that this surprising behaviour results mainly from the difference in particle internal structure (polymeric network for microgels versus compact solid for the silica particles), rather than softness alone. (paper)
CSIR Research Space (South Africa)
Matthews, MW
2013-01-01
Full Text Available A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly...
Application of the RISM theory to Lennard-Jones interaction site molecular fluids
International Nuclear Information System (INIS)
Johnson, E.; Hazoume, R.P.
1979-01-01
It seems that reference interaction site model (RISM) theory atom--atom distribution functions have been obtained directly from the RISM equations only for fused hard sphere molecular fluids. RISM distribution functions for Lennard-Jones interaction site fluids are presented. Results presented suggest that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids
Thermodynamic properties and entropy scaling law for diffusivity in soft spheres.
Pieprzyk, S; Heyes, D M; Brańka, A C
2014-07-01
The purely repulsive soft-sphere system, where the interaction potential is inversely proportional to the pair separation raised to the power n, is considered. The Laplace transform technique is used to derive its thermodynamic properties in terms of the potential energy and its density derivative obtained from molecular dynamics simulations. The derived expressions provide an analytic framework with which to explore soft-sphere thermodynamics across the whole softness-density fluid domain. The trends in the isochoric and isobaric heat capacity, thermal expansion coefficient, isothermal and adiabatic bulk moduli, Grüneisen parameter, isothermal pressure, and the Joule-Thomson coefficient as a function of fluid density and potential softness are described using these formulas supplemented by the simulation-derived equation of state. At low densities a minimum in the isobaric heat capacity with density is found, which is a new feature for a purely repulsive pair interaction. The hard-sphere and n = 3 limits are obtained, and the low density limit specified analytically for any n is discussed. The softness dependence of calculated quantities indicates freezing criteria based on features of the radial distribution function or derived functions of it are not expected to be universal. A new and accurate formula linking the self-diffusion coefficient to the excess entropy for the entire fluid softness-density domain is proposed, which incorporates the kinetic theory solution for the low density limit and an entropy-dependent function in an exponential form. The thermodynamic properties (or their derivatives), structural quantities, and diffusion coefficient indicate that three regions specified by a convex, concave, and intermediate density dependence can be expected as a function of n, with a narrow transition region within the range 5 < n < 8.
Evolution of nickel sulfide hollow spheres through topotactic transformation
Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng
2013-11-01
In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f
Entanglement entropy in scalar field theory on the fuzzy sphere
International Nuclear Information System (INIS)
Okuno, Shizuka; Suzuki, Mariko; Tsuchiya, Asato
2016-01-01
We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy
Time Extensions of Petri Nets for Modelling and Verification of Hard Real-Time Systems
Directory of Open Access Journals (Sweden)
Tomasz Szmuc
2002-01-01
Full Text Available The main aim ofthe paper is a presentation of time extensions of Petri nets appropriate for modelling and analysis of hard real-time systems. It is assumed, that the extensions must provide a model of time flow an ability to force a transition to fire within a stated timing constraint (the so-called the strong firing rule, and timing constraints represented by intervals. The presented survey includes extensions of classical Place/Transition Petri nets, as well as the ones applied to high-level Petri nets. An expressiveness of each time extension is illustrated using simple hard real-time system. The paper includes also a brief description of analysis and veryication methods related to the extensions, and a survey of software tools supporting modelling and analysis ofthe considered Petri nets.
Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid
International Nuclear Information System (INIS)
Zhou Shiqi
2008-01-01
In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a non-uniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail. (condensed matter: structure, thermal and mechanical properties)
A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS
Bota Anton Florin
2009-01-01
The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence
Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef
2015-09-01
Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.
The Positive Freedom of the Public Sphere
DEFF Research Database (Denmark)
Hansen, Ejvind
2015-01-01
calls for new reflections on the possible relationship between media, public sphere and democracy. This paper argues that we should change the questions that are raised when we try to assess the public sphere. It is argued that the traditional (Enlightenment) focus upon negative liberties and the truth-value......The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...
Hardness of model dental composites - the effect of filler volume fraction and silanation.
McCabe, J F; Wassell, R W
1999-05-01
The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers
Smith, Carol Lynn Kay
2009-01-01
This study contributes an approach to understanding the cognitive models underlying rhetorical arguments about the "first wave" of women's rights discourse in the United States, which began to emerge more publically with the Seneca Falls convention in 1848 and started to gain momentum in 1851 and beyond. The usage of the lexical item "sphere" (in…
Spherical Approximation on Unit Sphere
Directory of Open Access Journals (Sweden)
Eman Samir Bhaya
2018-01-01
Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of functions in spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in spaces for by modulus of smoothness of functions.
A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS
Directory of Open Access Journals (Sweden)
Bota Anton Florin
2009-05-01
Full Text Available The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou
TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD
Directory of Open Access Journals (Sweden)
Yury A. Krasnitsky
2018-01-01
Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties.
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
Coated sphere scattering by geometric optics approximation.
Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang
2014-10-01
A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.
CSIR Research Space (South Africa)
Monem, S
2015-12-01
Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...
Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji
2016-11-23
The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.
Lowe, Scott; Guthrie, Forbes; Liebowitz, Matt; Atwell, Josh
2013-01-01
The 2013 edition of the bestselling vSphere book on the market Virtualization remains the hottest trend in the IT world, and VMware vSphere is the industry's most widely deployed virtualization solution. The demand for IT professionals skilled in virtualization and cloud-related technologies is great and expected to keep growing. This comprehensive Sybex guide covers all the features and capabilities of VMware vSphere, showing administrators step by step how to install, configure, operate, manage, and secure it. This perfect blend of hands-on instruction, conceptual explanation, and practic
SPHERE: a spherical-geometry multimaterial electron/photon Monte Carlo transport code
International Nuclear Information System (INIS)
Halbleib, J.A. Sr.
1977-06-01
SPHERE provides experimenters and theorists with a method for the routine solution of coupled electron/photon transport through multimaterial configurations possessing spherical symmetry. Emphasis is placed upon operational simplicity without sacrificing the rigor of the model. SPHERE combines condensed-history electron Monte Carlo with conventional single-scattering photon Monte Carlo in order to describe the transport of all generations of particles from several MeV down to 1.0 and 10.0 keV for electrons and photons, respectively. The model is more accurate at the higher energies, with a less rigorous description of the particle cascade at energies where the shell structure of the transport media becomes important. Flexibility of construction permits the user to tailor the model to specific applications and to extend the capabilities of the model to more sophisticated applications through relatively simple update procedures. 8 figs., 3 tables
Light Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances
Directory of Open Access Journals (Sweden)
Dimitrios Tzarouchis
2018-01-01
Full Text Available Light scattering by a small spherical particle, a central topic for electromagnetic scattering theory, is here considered. In this short review, some of the basic features of its resonant scattering behavior are covered. First, a general physical picture is described by a full electrodynamic perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the existence of two distinctive types of polarization enhancement: the plasmonic and the dielectric resonances. The corresponding electrostatic (Rayleigh picture is analyzed and the polarizability of a homogeneous spherical inclusion is extracted. This description facilitates the identification of the first type of resonance, i.e., the localized surface plasmon (plasmonic resonance, as a function of the permittivity. Moreover, the electrostatic picture is linked with the plasmon hybridization model through the case of a step-inhomogeneous structure, i.e., a core–shell sphere. The connections between the electrostatic and electrodynamic models are reviewed in the small size limit and details on size-induced aspects, such as the dynamic depolarization and the radiation reaction on a small sphere are exposed through the newly introduced Mie–Padé approximative perspective. The applicability of this approximation is further expanded including the second type of resonances, i.e., the dielectric resonances. For this type of resonances, the Mie–Padé approximation reveals the main character of the two different cases of resonances of either magnetic or electric origin. A unified picture is therefore described encompassing both plasmonic and dielectric resonances, and the resonant conditions of all three different types are extracted as functions of the permittivity and the size of the sphere. Lastly, the directional scattering behavior of the first two dielectric resonances is exposed in a simple manner, namely the Kerker conditions for maximum forward and
Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando
2015-04-21
A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.
Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height.
Zhou, Shiqi; Solana, J R
2009-11-28
A bridge function approximation is proposed to close the Ornstein-Zernike (OZ) integral equation for fluids with purely repulsive potentials. The performance of the bridge function approximation is then tested by applying the approximation to two kinds of repulsive potentials, namely, the square shoulder potential and the triangle shoulder potential. An extensive comparison between simulation and the OZ approach is performed over a wide density range for the fluid phase and several temperatures. It is found that the agreement between the two routes is excellent for not too low temperatures and satisfactory for extremely low temperatures. Then, this globally trustworthy OZ approach is used to investigate the possible existence or not of a liquid anomaly, i.e., a liquid-liquid phase transition at low temperatures and negative values of the thermal expansion coefficient in certain region of the phase diagram. While the existence of the liquid anomaly in the square shoulder potential has been previously predicted by a traditional first-order thermodynamic perturbation theory (TPT), the present investigation indicates that the liquid-liquid phase transition disappears in the OZ approach, so that its prediction by the first-order TPT is only an artifact originating from the low temperature inadequacy of the first-order TPT. However, the OZ approach indeed predicts negative thermal expansion coefficients. The present bridge function approximation, free of adjustable parameters, is suitable to be used within the context of a recently proposed nonhard sphere perturbation scheme.
Student Centric Learning Through Planned Hard work - An Innovative Model
Aithal, Sreeramana; Aithal, Shubrajyotsna
2016-01-01
The strategies followed by educational institutions and the students become very important when the performance of students in the examinations is concerned. By means of properly planned and well guided model of training and motivation to do hard work, students can follow a well disciplined study plan and become exceptionally successful in examinations. Teaching and training by experienced and dedicated faculty members, continuous support by parents and motivating the students based on settin...
iSPHERE - A New Approach to Collaborative Research and Cloud Computing
Al-Ubaidi, T.; Khodachenko, M. L.; Kallio, E. J.; Harry, A.; Alexeev, I. I.; Vázquez-Poletti, J. L.; Enke, H.; Magin, T.; Mair, M.; Scherf, M.; Poedts, S.; De Causmaecker, P.; Heynderickx, D.; Congedo, P.; Manolescu, I.; Esser, B.; Webb, S.; Ruja, C.
2015-10-01
The project iSPHERE (integrated Scientific Platform for HEterogeneous Research and Engineering) that has been proposed for Horizon 2020 (EINFRA-9- 2015, [1]) aims at creating a next generation Virtual Research Environment (VRE) that embraces existing and emerging technologies and standards in order to provide a versatile platform for scientific investigations and collaboration. The presentation will introduce the large project consortium, provide a comprehensive overview of iSPHERE's basic concepts and approaches and outline general user requirements that the VRE will strive to satisfy. An overview of the envisioned architecture will be given, focusing on the adapted Service Bus concept, i.e. the "Scientific Service Bus" as it is called in iSPHERE. The bus will act as a central hub for all communication and user access, and will be implemented in the course of the project. The agile approach [2] that has been chosen for detailed elaboration and documentation of user requirements, as well as for the actual implementation of the system, will be outlined and its motivation and basic structure will be discussed. The presentation will show which user communities will benefit and which concrete problems, scientific investigations are facing today, will be tackled by the system. Another focus of the presentation is iSPHERE's seamless integration of cloud computing resources and how these will benefit scientific modeling teams by providing a reliable and web based environment for cloud based model execution, storage of results, and comparison with measurements, including fully web based tools for data mining, analysis and visualization. Also the envisioned creation of a dedicated data model for experimental plasma physics will be discussed. It will be shown why the Scientific Service Bus provides an ideal basis to integrate a number of data models and communication protocols and to provide mechanisms for data exchange across multiple and even multidisciplinary platforms.
Polymer models with optimal good-solvent behavior
D'Adamo, Giuseppe; Pelissetto, Andrea
2017-11-01
We consider three different continuum polymer models, which all depend on a tunable parameter r that determines the strength of the excluded-volume interactions. In the first model, chains are obtained by concatenating hard spherocylinders of height b and diameter rb (we call them thick self-avoiding chains). The other two models are generalizations of the tangent hard-sphere and of the Kremer-Grest models. We show that for a specific value r* , all models show optimal behavior: asymptotic long-chain behavior is observed for relatively short chains. For r < r* , instead, the behavior can be parametrized by using the two-parameter model, which also describes the thermal crossover close to the θ point. The bonds of the thick self-avoiding chains cannot cross each other, and therefore the model is suited for the investigation of topological properties and for dynamical studies. Such a model also provides a coarse-grained description of double-stranded DNA, so that we can use our results to discuss under which conditions DNA can be considered as a model good-solvent polymer.
IBM WebSphere Application Server 80 Administration Guide
Robinson, Steve
2011-01-01
IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.
A novel synthesis of micrometer silica hollow sphere
International Nuclear Information System (INIS)
Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing
2009-01-01
Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented
Unsteady flow over a decelerating rotating sphere
Turkyilmazoglu, M.
2018-03-01
Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.
Radiated energy of electric and magnetic dipoles located inside or outside a sphere
International Nuclear Information System (INIS)
Romanov, N.P.
1986-01-01
Expressions for the electromagnetic field of elementary electric and magnetic radiators (dipoles) in the presence of a sphere are presented. The field representations in the form of expansions in vector spherical wave functions together with the earlier-obtained expressions for the energy flux of partial waves permits one to compute the energy flux of these dipoles in any spherical region with the center coinciding with the center of the sphere. An analysis of particular cases shows that for nonabsorbing media the ratio of the energies of the inner and outer dipoles, having the same amplitude and located near the surface of the sphere, is independent of the radius of the sphere and is determined only by the relative refractive index and relative magnetic permeability. A model of elementary radiators is described for the interpretation of Raman scattering and luminescence
Reversible thermal gelation in soft spheres
DEFF Research Database (Denmark)
Kapnistos, M.; Vlassopoulos, D.; Fytas, G.
2000-01-01
Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...
Spheres of discharge of springs
Springer, Abraham E.; Stevens, Lawrence E.
2009-02-01
Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.
Why if at all is the Public Sphere a Useful Concept?
Grbeša, Marijana
2004-01-01
The public sphere is in the work of Jürgen Habermas conceived as a neutral social space for critical debate among private persons who gather to discuss matters of common concern in a free, rational and in principle disinterested way. Praised as a normative ideal – especially by the advocates of participatory democracy – and criticised as a working model, the concept of the public sphere has triggered many controversies. The first part of this paper examines the usefulness of the concept by ac...
vSphere high performance cookbook
Sarkar, Prasenjit
2013-01-01
vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.
Differential Calculus on Quantum Spheres
Welk, Martin
1998-01-01
We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.
Definition of mean free path for real gases
Bird, G. A.
1983-11-01
Attention is drawn to the inconsistency in the conventional procedure for the definition of a mean free path in a real gas through the classical hard sphere result. It is shown that the variable cross-section hard sphere, or VHS, model can be used to define a mean free path that properly accounts for the temperature exponent of the coefficient of viscosity of the gas. In addition, the VHS model is shown to have advantages over the classical inverse power law models for numerical and analytical studies.
Scattering characteristics of relativistically moving concentrically layered spheres
Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.
2018-02-01
The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.
Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training
2016-03-01
identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research
Plasmon excitations in small diamond spheres by fast penetrating electrons
International Nuclear Information System (INIS)
Fehlhaber, R.P.; Bursill, L.A.
1998-01-01
The hydrodynamic model is used to calculate the excitation probability due to the surface and the volume plasmon of small diamond spheres. The theoretical approach incorporates an impact parameter p 0 and includes all multipole modes; it was first derived by Tran Thoai and Zeitler (1988, Phys. Stat. Sol. (a) 107, 791) who applied it to investigate small aluminium spheres. The aim of the present work is to analyze the multipole modes in detail since certain aspects are screened out due to the large damping factor of a wide band gap material like diamond. Various patterns will be revealed, thus simplifying computational attempts and enhancing the predictability of experimental results. It will finally be shown that using this model, it is possible to determine the grain size to an accuracy of about 1 Angstrom. (authors)
Instability of extremal relativistic charged spheres
International Nuclear Information System (INIS)
Anninos, Peter; Rothman, Tony
2002-01-01
With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao; Zhang, Deqing; Li, Guangtao
2017-09-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array.
On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films
Mansoor, Mohammad Mujtaba
2016-06-01
shear rates calculated using particle image velocimtery (PIV) measurements reveal the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is also solved for the squeeze flow in the regime identified for shear-induced cavity events to investigate the criterion for cavity inception in further detail.
Movements of a Sphere Moving Over Smooth and Rough Inclines
Jan, Chyan-Deng
1992-01-01
The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free
Improved Bonner sphere neutron spectrometry measurements for the nuclear industry
Roberts, N. J.; Thomas, D. J.; Visser, T. P. P.
2017-11-01
A novel, two-stage approach has been developed for producing the a priori spectrum for Bonner sphere unfolding in a case where neutrons are produced by spontaneous fission and (α,n) reactions, e.g. in UF6. The code SOURCES 4C is first used to obtain the energy spectrum of the neutrons inside the material, which is then fed into a MCNP model of the entire geometry to derive the neutron spectrum at the location of the Bonner sphere. Using this as the a priori spectrum produces a much more detailed unfolded Bonner sphere spectrum retaining fine structure from the calculation that would not be present if a simple estimated spectrum had been used as the a priori spectrum. This is illustrated using a Bonner sphere measurement of the neutron energy spectrum produced by a 48Y cylinder of UF6. From the unfolded spectrum an estimate has been made of the neutron ambient dose equivalent, i.e. the quantity which a neutron survey instrument should measure. The difference in the ambient dose equivalent of the unfolded spectrum is over 10% when using the novel approach instead of using a simpler estimate consisting of a single high energy peak, 1/E continuum, and thermal peak.
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Human postprandial gastric emptying of 1-3-millimeter spheres
International Nuclear Information System (INIS)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-01-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food
Human postprandial gastric emptying of 1-3-millimeter spheres
Energy Technology Data Exchange (ETDEWEB)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-06-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food.
Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.
2018-01-01
The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems
Electric dipoles on the Bloch sphere
International Nuclear Information System (INIS)
Vutha, Amar C
2015-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)
Troubleshooting vSphere storage
Preston, Mike
2013-01-01
This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge
2003-01-01
CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.
Using hardness to model yield and tensile strength
Energy Technology Data Exchange (ETDEWEB)
Hawk, Jeffrey A.; Dogan, Omer N.; Schrems, Karol K.
2005-02-01
The current direction in hardness research is towards smaller and smaller loads as nano-scale materials are developed. There remains, however, a need to investigate the mechanical behavior of complex alloys for severe environment service. In many instances this entails casting large ingots and making numerous tensile samples as the bounds of the operating environment are explored. It is possible to gain an understanding of the tensile strength of these alloys using room and elevated temperature hardness in conjunction with selected tensile tests. The approach outlined here has its roots in the work done by Tabor for metals and low alloy and carbon steels. This research seeks to extend the work to elevated temperatures for multi-phase, complex alloys. A review of the approach will be given after which the experimental data will be examined. In particular, the yield stress and tensile strength will be compared to their corresponding hardness based values.
Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.
2018-03-01
circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.
Energy Technology Data Exchange (ETDEWEB)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.
A semiempirical approach to a viscously damped oscillating sphere
International Nuclear Information System (INIS)
Alexander, P; Indelicato, E
2005-01-01
A simple model of damped harmonic motion is usually presented in undergraduate physics textbooks and straightforwardly applied for a variety of well-known experiments in student laboratories. Results for the decaying vertical oscillation of a sphere attached to the lower end of a spring in containers with different liquids are analysed here under this standard framework. Some important mismatches between observation and theory are found, which are attributed to oversimplifications in the formulation of the drag force. A more elaborate expression for the latter within a semiempirical approach is then introduced and a more appropriate description of the measurements is shown to be attained. Two coefficients account for experimental corrections, which under certain conditions permit in addition the calculation of specific fluid quantities associated with the oscillating sphere. Rough relations between viscosity and damping factor under appropriate limits are derived. The laboratory experience may also be used to introduce the concept of a semiempirical model and exhibit its utility in physics
Ni hollow spheres as catalysts for methanol and ethanol electrooxidation
Energy Technology Data Exchange (ETDEWEB)
Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2007-08-15
In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)
G B, Abhilash
2015-01-01
This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.
Phylogeography by diffusion on a sphere: whole world phylogeography
Directory of Open Access Journals (Sweden)
Remco Bouckaert
2016-09-01
Full Text Available Background Techniques for reconstructing geographical history along a phylogeny can answer many questions of interest about the geographical origins of species. Bayesian models based on the assumption that taxa move through a diffusion process have found many applications. However, these methods rely on diffusion processes on a plane, and do not take the spherical nature of our planet in account. Performing an analysis that covers the whole world thus does not take in account the distortions caused by projections like the Mercator projection. Results In this paper, we introduce a Bayesian phylogeographical method based on diffusion on a sphere. When the area where taxa are sampled from is small, a sphere can be approximated by a plane and the model results in the same inferences as with models using diffusion on a plane. For taxa sampled from the whole world, we obtain substantial differences. We present an efficient algorithm for performing inference in a Markov Chain Monte Carlo (MCMC algorithm, and show applications to small and large samples areas. We compare results between planar and spherical diffusion in a simulation study and apply the method by inferring the origin of Hepatitis B based on sequences sampled from Eurasia and Africa. Conclusions We describe a framework for performing phylogeographical inference, which is suitable when the distortion introduced by map projections is large, but works well on a smaller scale as well. The framework allows sampling tips from regions, which is useful when the exact sample location is unknown, and placing prior information on locations of clades in the tree. The method is implemented in the GEO_SPHERE package in BEAST 2, which is open source licensed under LGPL and allows joint tree and geography inference under a wide range of models.
Quantum black holes: the event horizon as a fuzzy sphere
International Nuclear Information System (INIS)
Dolan, Brian P.
2005-01-01
Modeling the event horizon of a black hole by a fuzzy sphere leads us to modify some suggestions in the literature concerning black hole mass spectra. We derive a formula for the mass spectrum of quantum black holes in terms of four integers which define the area, angular momentum, electric and magnetic charge of the black hole. Although the event horizon becomes a commutative sphere in the classical limit a vestige of the quantum theory still persists in that the event horizon stereographically projects onto the non-commutative plane. We also suggest how the classical bounds on extremal black holes might be modified in the quantum theory. (author)
Modelling the normal bouncing dynamics of spheres in a viscous fluid
Directory of Open Access Journals (Sweden)
Izard Edouard
2017-01-01
Full Text Available Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003, e.g. in a multi-particle configuration.
Computing variational bounds for flow through random aggregates of Spheres
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Known formulas for variational bounds on Darcy's constant for slow flow through porous media depend on two-point and three-poiint spatial correlation functions. Certain bounds due to Prager and Doi depending only a two-point correlation functions have been calculated for the first time for random aggregates of spheres with packing fractions (eta) up to eta = 0.64. Three radial distribution functions for hard spheres were tested for eta up to 0.49: (1) the uniform distribution or ''well-stirred approximation,'' (2) the Percus Yevick approximation, and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution functions of Benett andd Finney were used for packing fractions near the random-close-packing limit (eta/sub RCP/dapprox.0.64). An accurate multidimensional Monte Carlo integration method (VEGAS) developed by Lepage was used to compute the required two-point correlation functions. The results show that Doi's bounds are preferred for eta>0.10 while Prager's bounds are preferred for eta>0.10. The ''upper bounds'' computed using the well-stirred approximation actually become negative (which is physically impossible) as eta increases, indicating the very limited value of this approximation. The other two choices of radial distribution function give reasonable results for eta up to 0.49. However, these bounds do not decrease with eta as fast as expected for large eta. It is concluded that variational bounds dependent on three-point correlation functions are required to obtain more accurate bounds on Darcy's constant for large eta
Universal quantum computation by scattering in the Fermi–Hubbard model
International Nuclear Information System (INIS)
Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel
2015-01-01
The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)
Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan
2009-06-01
the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.
SPHERES: From Ground Development to Operations on ISS
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of
The quantum 2-sphere as a complex quantum manifold
International Nuclear Information System (INIS)
Chu Chongsun; Ho Peiming; Zumino, B.
1996-01-01
We describe the quantum sphere of Podles for c=0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q (2) coefficients as well as under the action of SU q (2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane. (orig.)
vSphere virtual machine management
Fitzhugh, Rebecca
2014-01-01
This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.
On the revolution of heavenly spheres
Copernicus, Nicolaus
1995-01-01
The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.
Energy Technology Data Exchange (ETDEWEB)
Teong, Benjamin; Chang, Shwu Jen [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Chuang, Chin Wen [Department of Electrical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan (China); Kuo, Shyh Ming, E-mail: smkuo@isu.edu.tw [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Manousakas, Ioannis, E-mail: i.manousakas@ieee.org [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China)
2013-12-01
Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.
International Nuclear Information System (INIS)
Teong, Benjamin; Chang, Shwu Jen; Chuang, Chin Wen; Kuo, Shyh Ming; Manousakas, Ioannis
2013-01-01
Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations decaying as r(-4), resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper, we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wave-number nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations scaling with r(-(d+1)) in d Euclidean space dimensions. A numerical and analytical analysis of the pore-size distribution for a binary maximally random jammed system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.
A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity
Directory of Open Access Journals (Sweden)
F. Chen
2017-02-01
Full Text Available The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains (oolites coated by a matrix. Two distinct classes of pores, i.e. micropores or intra oolitic pores (oolite porosity and mesopores or inter oolitic pores (inter oolite porosity, are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage (CSA models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme (SCS. At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme (GSCS and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.
Inelastic accretion of inertial particles by a towed sphere
Vallée, Robin; Henry, Christophe; Hachem, Elie; Bec, Jérémie
2018-02-01
The problem of accretion of small particles by a sphere embedded in a mean flow is studied in the case where the particles undergo inelastic collisions with the solid object. The collision efficiency, which gives the flux of particles experiencing at least one bounce on the sphere, is found to depend upon the sphere Reynolds number only through the value of the critical Stokes number below which no collision occurs. In the absence of molecular diffusion, it is demonstrated that multiple bounces do not provide enough energy dissipation for the particles to stick to the surface within a finite time. This excludes the possibility of any kind of inelastic collapse, so that determining an accretion efficiency requires modeling more precisely particle-surface microphysical interactions. A straightforward choice is to assume that the particles stick when their kinetic energy at impact is below a threshold. In this view, numerical simulations are performed to describe the statistics of impact velocities at various values of the Reynolds number. Successive bounces are shown to enhance accretion. These results are put together to provide a general qualitative picture on how the accretion efficiency depends upon the nondimensional parameters of the problem.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Directory of Open Access Journals (Sweden)
Tao Zhang
2017-12-01
Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Development of a new-generation active falling sphere
Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.
1997-01-01
A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.
Geometry-based density functional theory an overview
Schmidt, M
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.
Geometry-based density functional theory: an overview
Schmidt, Matthias
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.
Geometry-based density functional theory: an overview
International Nuclear Information System (INIS)
Schmidt, Matthias
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls
Response surface and neural network based predictive models of cutting temperature in hard turning
Directory of Open Access Journals (Sweden)
Mozammel Mia
2016-11-01
Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.
Response of hard superconductors to crossed magnetic fields: elliptic critical-state model
Energy Technology Data Exchange (ETDEWEB)
Romero-Salazar, C.; Perez-Rodriguez, F
2004-05-01
The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.
Hardy type inequalities on the sphere
Directory of Open Access Journals (Sweden)
Xiaomei Sun
2017-06-01
Full Text Available Abstract In this paper, we consider the L p $L^{p}$ -Hardy inequalities on the sphere. By the divergence theorem, we establish the L p $L^{p}$ -Hardy inequalities on the sphere. Furthermore, we also obtain their best constants. Our results can be regarded as the extension of Xiao’s (J. Math. Inequal. 10:793-805, 2016.
Black tide model of QSOs. II. Destruction in an isothermal sphere
International Nuclear Information System (INIS)
Young, P.J.
1977-01-01
The quasar models employing a black hole in a galactic nucleus are considered; it is shown that the black hole may be able to destroy the stellar population of the galactic nucleus in sufficient numbers to provide a power source for QSO, Seyfert nucleus, and radio galaxy phenomena.The basic model is of a black hole embedded in an isothermal sphere. When the mass of the hole M/sub H/9 or approx. =10 6 M/sub sun/it grows mainly by tidally disrupting stars which stray within its Roche limit. This source of gaseous debris for the hole to accrete is cut off due to falling stellar densities outside the galactic nucleus coupled with insufficiently fast relaxation of the stellar population into low angular momentum orbits; luminosities above 10 9 L/sub sun/are not possible. However, when M/sub H/9 or approx. =10 6 M/sub sun/a high-density cusp of stars bound to the black hole generates gaseous debris from stellar collisions and gravitational diffusion processes and allows sufficient fuel to boost the power output of the black hole to > or approx. =10 12 L/sub sun/in superdense galactic nuclei. This is cut off as the hole consumes the nucleus and lengthening relaxation times freeze the quasar into oblivion. This decay occurs only slowly with Lproportionalt/sup -1/2/
International Nuclear Information System (INIS)
Wu, Hongjing; Wu, Guanglei; Wu, Qiaofeng; Wang, Liuding
2014-01-01
We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H 2 or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that the defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H 2 and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H 2 , an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H 2 and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated
Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere
Krenn, Angela G.
2011-01-01
There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.
Franz, Silvio; Parisi, Giorgio
2016-04-01
We study a well known neural network model—the perceptron—as a simple statistical physics model of jamming of hard objects. We exhibit two regimes: (1) a convex optimization regime where jamming is hypostatic and non-critical; (2) a non-convex optimization regime where jamming is isostatic and critical. We characterize the critical jamming phase through exponents describing the distribution laws of forces and gaps. Surprisingly we find that these exponents coincide with the corresponding ones recently computed in high dimensional hard spheres. In addition, modifying the perceptron to a random linear programming problem, we show that isostaticity is not a sufficient condition for singular force and gap distributions. For that, fragmentation of the space of solutions (replica symmetry breaking) appears to be a crucial ingredient. We hypothesize universality for a large class of non-convex constrained satisfaction problems with continuous variables.
International Nuclear Information System (INIS)
Franz, Silvio; Parisi, Giorgio
2016-01-01
We study a well known neural network model—the perceptron—as a simple statistical physics model of jamming of hard objects. We exhibit two regimes: (1) a convex optimization regime where jamming is hypostatic and non-critical; (2) a non-convex optimization regime where jamming is isostatic and critical. We characterize the critical jamming phase through exponents describing the distribution laws of forces and gaps. Surprisingly we find that these exponents coincide with the corresponding ones recently computed in high dimensional hard spheres. In addition, modifying the perceptron to a random linear programming problem, we show that isostaticity is not a sufficient condition for singular force and gap distributions. For that, fragmentation of the space of solutions (replica symmetry breaking) appears to be a crucial ingredient. We hypothesize universality for a large class of non-convex constrained satisfaction problems with continuous variables. (paper)
Method and apparatus for producing small hollow spheres
International Nuclear Information System (INIS)
Hendricks, C.D.
1979-01-01
A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
Estimates on the mean current in a sphere of plasma
International Nuclear Information System (INIS)
Nunez, Manuel
2003-01-01
Several turbulent dynamo models predict the concentration of the magnetic field in chaotic plasmas in sheets with the field vector pointing alternatively in opposite directions, which should produce strong current sheets. It is proved that if the plasma is contained in a rigid sphere with perfectly conducting boundary the geometry of these sheets must be balanced so that the mean current remains essentially bounded by the Coulomb gauged mean vector potential of the field. This magnitude remains regular even for the sharp field variations expected in a chaotic flow. For resistive plasmas the same arguments imply that the contribution to the total current of the regions near the boundary compensates the current of the central part of the sphere
A numerical approximation to the elastic properties of sphere-reinforced composites
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
Public sphere proof against antinuclear phenomenon in France (1962-2012)
International Nuclear Information System (INIS)
Chambru, Mikael
2014-01-01
By using the concept of public sphere this article analyzes the dynamics of publicization the French nuclear power controversy by social movement. I recount the emergence of the antinuclear phenomenon since the sixties, its deployment across multiple oppositional public spheres, and its repercussions on the dynamics of public sphere until the year 2010. I highlight the ongoing interaction, over the decades, between oppositional public spheres and the established public sphere. This interaction results in a crossed process of empowerment and institutionalization of the action of social movements. (author)
Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex
Veenboer, Richard M. P.
2017-07-20
The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.
Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex
Veenboer, Richard M. P.; Collado, Alba; Dupuy, Sté phanie; Lebl, Tomas; Falivene, Laura; Cavallo, Luigi; Cordes, David B.; Slawin, Alexandra M. Z.; Cazin, Catherine S. J.; Nolan, Steven P.
2017-01-01
The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.
International Nuclear Information System (INIS)
Tekuchev, V.V.; Barashkov, B.I.; Rygalov, L.N.; Dolzhikov, Yu.S.
2001-01-01
For the first time one obtained the polytherms of ultrasound velocity for liquid high-melting metals within wide temperature range. In terms of the rigid sphere model on the basis of the acoustic data one calculated the entropy values for 34 liquid metals at the melting point. The average discrepancy of the calculated values of entropy with the published one constitutes 8.2%. With increase of metal valency the error increases from 2.8 up to 13%. In case of francium, radium, promethium, actinium, hafnium, polonium, rhenium one obtained data for the first time [ru
Weighted-density functional approach for the solid-liquid interfaces in electrolytes
International Nuclear Information System (INIS)
Cherepanova, T.A.; Stekolnikov, A.V.
1991-09-01
A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab
Röntgen spheres around active stars
Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista
2018-01-01
X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.
The thermal conductivity of beds of spheres
International Nuclear Information System (INIS)
McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.
1987-01-01
The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Directory of Open Access Journals (Sweden)
Zhong Kuo
2018-03-01
Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Radioactive spheres without inactive wall for lesion simulation in PET
International Nuclear Information System (INIS)
Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.
2008-01-01
With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Zhong, Kuo; Song, Kai; Clays, Koen
2018-03-01
In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Elucidation of spin echo small angle neutron scattering correlation functions through model studies.
Shew, Chwen-Yang; Chen, Wei-Ren
2012-02-14
Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics
Thermodynamics and elastic moduli of fluids with steeply repulsive potentials
Heyes, D. M.
1997-08-01
Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.
Energy Technology Data Exchange (ETDEWEB)
Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)
2002-12-01
The neural network model of Van der Wolk et al. (2002) describes the effect of composition on the phase regions of the continuous cooling transformation (CCT) diagram, yet does not consider the fractions of microstructural components and the hardness data that are often quoted in CCT diagrams. In the present paper, the construction of two more neural network models, one for the fractions of ferrite, pearlite, bainite and martensite in the microstructure, and one for the hardness after cooling, using the data of 338 and 412 diagrams, respectively. The accuracy of each model was found to be similar to the expected experimental error; moreover, the models were found to be mutually consistent, although they have been constructed independently. Furthermore, the trends in these properties for alloying elements can be quantified with the models, and are largely in line with metallurgical expectations. (orig.)
Spheres: from Ground Development to ISS Operations
Katterhagen, A.
2016-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
International Nuclear Information System (INIS)
Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong
2016-01-01
Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m 2 /g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong, E-mail: dszhang@shu.edu.cn
2016-04-30
Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m{sup 2}/g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.
Dynamics of dense particle disks
International Nuclear Information System (INIS)
Araki, S.; Tremaine, S.; Toronto Univ., Canada)
1986-01-01
The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references
Surface modes of two spheres embedded into a third medium
International Nuclear Information System (INIS)
Nkoma, J.S.
1990-07-01
Surface modes of two spheres embedded into a third medium are studied. We obtain a result which relates the dependence of frequency on the distance between the two spheres. The derived expression reproduces previous results in the limit where the separation between the spheres is very large. Two surface mode branches are shown to exist for each order n. We apply the theory to three cases of practical interest: first, two similar metallic spheres in vacuum; secondly, two similar metallic spheres embedded into a different metal; thirdly, two spherical voids embedded into a metal. (author). 19 refs, 6 figs
Agglomeration techniques for the production of spheres for packed beds
International Nuclear Information System (INIS)
Sullivan, J.D.
1988-03-01
One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling
Panoramic stereo sphere vision
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…
Hovland, H. J.; Mitchell, J. K.
1971-01-01
The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.
Hydrodynamics and burn of optimally imploded deuterium-tritium spheres
International Nuclear Information System (INIS)
Mason, R.J.; Morse, R.L.
1975-01-01
The phenomenology of optimized laser-driven DT sphere implosions leading to efficient thermonuclear burn is reviewed. The optimal laser deposition profile for spheres is heuristically derived. The performance of a 7.5 μg sphere, exposed to its optimal 5.3 kJ pulse, is scrutinized in detail. The timing requirements for efficient central ignition of propagating burn in the sphere are carefully explored. The difficulties stemming from superthermal electron production and thermal flux limitation are discussed. The hydro-burn performance of spheres is characterized as a function of the pulse energy, peak power, time scale, pulse exponent, wavelength, and on the degree of flux limitation. The optimal pulse parameters are determined for spheres with masses ranging from 40 ng to 250 μg, requiring from 50 J to 150 kJ of input energy, and the corresponding optimal performance levels are calculated. Discussion is given to the hydro-burn performance of new structured fusion targets, in which the DT is contained as a gas or frozen as an ice shell inside a high Z pusher-tamper layer
North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby
2015-04-01
With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model
Log Gaussian Cox processes on the sphere
DEFF Research Database (Denmark)
Pacheco, Francisco Andrés Cuevas; Møller, Jesper
We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....
Revisiting the definition of local hardness and hardness kernel.
Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W
2017-05-17
An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.
Triassico: A Sphere Positioning System for Surface Studies with IBA Techniques
Fontana, Cristiano L.; Doyle, Barney L.
We propose here a novel device, called the Triassico, to microscopically study the entire surface of millimeter-sized spheres. The sphere dimensions can be as small as 1 mm, and the upper limit defined only by the power and by the mechanical characteristics of the motors used. Three motorized driving rods are arranged so an equilateral triangle is formed by the rod's axes, on such a triangle the sphere sits. Movement is achieved by rotating the rods with precise relative speeds and by exploiting the friction between the sphere and the rods surfaces. The sphere can be held in place by gravity or by an opposing trio of rods. By rotating the rods with specific relative angular velocities, a net torque can be exerted on the sphere which then rotates. No repositioning of the sphere or of the motors is needed to cover the full surface with the investigating tools. An algorithm was developed to position the sphere at any arbitrary polar and azimuthal angle. The algorithm minimizes the number of rotations needed by the rods, in order to efficiently select a particular position on the sphere surface. A prototype Triassico was developed for the National Ignition Facility, of the Lawrence Livermore National Laboratory (Livermore, California, USA), as a sphere manipulation apparatus for ion microbeam analysis at Sandia National Laboratories (Albuquerque, NM, USA) of Xe-doped DT inertial confinement fusion fuel spheres. Other applications span from samples orientation, ball bearing manufacturing, or jewelry.
International Nuclear Information System (INIS)
Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng
2015-01-01
Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.
Matérn's hard core models of types I and II with arbitrary compact grains
DEFF Research Database (Denmark)
Kiderlen, Markus; Hörig, Mario
Matérn's classical hard core models can be interpreted as models obtained from a stationary marked Poisson process by dependent thinning. The marks are balls of fixed radius, and a point is retained when its associated ball does not hit any other balls (type I) or when its random birth time is st...... of this model with the process of intact grains of the dead leaves model and the Stienen model leads to analogous results for the latter....
Process development and fabrication for sphere-pac fuel rods
International Nuclear Information System (INIS)
Welty, R.K.; Campbell, M.H.
1981-06-01
Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted
Plane wave interaction with a homogeneous warm plasma sphere
International Nuclear Information System (INIS)
Ruppin, R.
1975-01-01
A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)
Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight
International Nuclear Information System (INIS)
Nguyen, Phuc H; Matzner, Richard A
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.
The optical levitation of spheres
International Nuclear Information System (INIS)
Roosen, G.
1979-01-01
In this article we are dealing with optical levitation, that is the possibility of maintaining particles in a stable equilibrium position in air or vacuum by means of laser beams. In the first part, we review the methods used to calculate the force exerted on a sphere by a laser beam. The axial and transverse force components could be obtained either by applying Debye theory to laser beams which have a non-uniform energy distribution or by using, in the case of large spheres, a geometrical optics approach. From the results achieved with the geometrical optics approach, we derive, in a second part, the required stable equilibrium conditions for a sphere placed either in a vertical beam or in two horizontal ones having the same axis but opposite direction. In the last part, we describe in detail the levitation experiments carried out using either a vertical or two horizontal beams. In conclusion, we point out some applications of optical levitation, emphasizing especially the suspension by optical levitation of the targets used in laser fusion experiments. (author) [fr
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusion corrections to the hard pomeron
Ciafaloni, Marcello; Müller, A H; Ciafaloni, Marcello; Taiuti, Martina
2001-01-01
The high-energy behaviour of two-scale hard processes is investigated in the framework of small-x models with running coupling, having the Airy diffusion model as prototype. We show that, in some intermediate high-energy regime, the perturbative hard Pomeron exponent determines the energy dependence, and we prove that diffusion corrections have the form hinted at before in particular cases. We also discuss the breakdown of such regime at very large energies, and the onset of the non-perturbative Pomeron behaviour.
Algorithm for generating a Brownian motion on a sphere
International Nuclear Information System (INIS)
Carlsson, Tobias; Elvingson, Christer; Ekholm, Tobias
2010-01-01
We present a new algorithm for generation of a random walk on a two-dimensional sphere. The algorithm is obtained by viewing the 2-sphere as the equator in the 3-sphere surrounded by an infinitesimally thin band with boundary which reflects Brownian particles and then applying known effective methods for generating Brownian motion on the 3-sphere. To test the method, the diffusion coefficient was calculated in computer simulations using the new algorithm and, for comparison, also using a commonly used method in which the particle takes a Brownian step in the tangent plane to the 2-sphere and is then projected back to the spherical surface. The two methods are in good agreement for short time steps, while the method presented in this paper continues to give good results also for larger time steps, when the alternative method becomes unstable.
Crown sealing and buckling instability during water entry of spheres
Marston, J. O.; Truscott, T. T.; Speirs, N. B.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T
2016-01-01
. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates
Directory of Open Access Journals (Sweden)
Gabriela GOUDENHOOFT
2014-11-01
Full Text Available This paper represents an introduction in the ongoing research on the search of identity of the journalistic discourse, identity able to contribute to the development of national public sphere and to its Europeanization. I presented some of the ideas and theories on modern and postmodern communication and public sphere trying to see how they create place to European issues and what status they have in contemporary journalistic discourse. Media interaction with national public spheres and the role of media in their transnationalization process is a complex one. In research of representations about EU and about major European themes and issues, which media create or transmit is important to emphasyse the role these representations play both in public discourse and in the comprehension process. This is an ongoing research and I have chosen only one example of representations, that of personalization, the antopomorphism of Europe image, the analogy with a human body, with its strengths and weaknesses, but also a body able to act in distress under the influence of diseases with significant effects on our lives. Romanian media is looking for its own identity linked to the European communication flow while European issues hardly make their way to our public space where the actors are aware of the lack of popularity of this topics, a deficit explained almost by their technicality and by the lack of a genuine European public.
Adsorption equilibrium of uranium on iron oxyhydroxide-PVA hydrogel spheres
Energy Technology Data Exchange (ETDEWEB)
Santos, Armindo; Campos, Victor B.; Ribeiro, Luciana S.; Escanio, Camila A.; Silva, Edilaine F.; Oliveira, Felipe W., E-mail: santosa@cdtn.br, E-mail: vbc@cdtn.br, E-mail: lsr@cdtn.br, E-mail: cae@cdtn.br, E-mail: efd@cdtn.br, E-mail: fwfo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2015-07-01
Uranium and its compounds are considered strategic mineral resources due to its usage as an energy source and war material. They are harmful to human health. Thus, liquid waste containing low uranium content (≤100 mgU/L), from the mining and/or uranium reprocessing plants or even of the research center activities require the development of methods for their treatment, in a way to reduce its content to 15 μgU/L. Adsorption is one of these methods; it requires the synthesis of preferably spherical adsorbents, chemically and physically stable and with high adsorptive capacity. The sol-gel process can synthesize adsorbents having such characteristics, prioritizing the nanostructuring of iron oxyhydroxide in a hydrophilic PVA (polyvinyl alcohol) polymer network, which had an accessible pore structure (micro-, meso- and macropores + macroholes). We successfully obtained iron-PVA hydrogel spheres with (3433 ± 63 μm) and without (2833 ± 69 μm) macroholes. Both types of spheres have good mechanical strength and chemical stability in the 2-9 pH range. Adsorptive capacity: 413.22 mgU/g (with macroholes; Freundlich model) and 249.38 mgU/g (without macroholes; Langmuir and Freundlich models), at pH 5-6, 30 °C, and 6 h. With 280 mL of with-macrohole hydrogel spheres, we can treat 1 L of liquid waste (100 mgU/L) and reduce uranium content to 20 μgU/L. (author)
Adsorption equilibrium of uranium on iron oxyhydroxide-PVA hydrogel spheres
International Nuclear Information System (INIS)
Santos, Armindo; Campos, Victor B.; Ribeiro, Luciana S.; Escanio, Camila A.; Silva, Edilaine F.; Oliveira, Felipe W.
2015-01-01
Uranium and its compounds are considered strategic mineral resources due to its usage as an energy source and war material. They are harmful to human health. Thus, liquid waste containing low uranium content (≤100 mgU/L), from the mining and/or uranium reprocessing plants or even of the research center activities require the development of methods for their treatment, in a way to reduce its content to 15 μgU/L. Adsorption is one of these methods; it requires the synthesis of preferably spherical adsorbents, chemically and physically stable and with high adsorptive capacity. The sol-gel process can synthesize adsorbents having such characteristics, prioritizing the nanostructuring of iron oxyhydroxide in a hydrophilic PVA (polyvinyl alcohol) polymer network, which had an accessible pore structure (micro-, meso- and macropores + macroholes). We successfully obtained iron-PVA hydrogel spheres with (3433 ± 63 μm) and without (2833 ± 69 μm) macroholes. Both types of spheres have good mechanical strength and chemical stability in the 2-9 pH range. Adsorptive capacity: 413.22 mgU/g (with macroholes; Freundlich model) and 249.38 mgU/g (without macroholes; Langmuir and Freundlich models), at pH 5-6, 30 °C, and 6 h. With 280 mL of with-macrohole hydrogel spheres, we can treat 1 L of liquid waste (100 mgU/L) and reduce uranium content to 20 μgU/L. (author)
Exponential critical-state model for magnetization of hard superconductors
International Nuclear Information System (INIS)
Chen, D.; Sanchez, A.; Munoz, J.S.
1990-01-01
We have calculated the initial magnetization curves and hysteresis loops for hard type-II superconductors based on the exponential-law model, J c (H i ) =k exp(-|H i |/H 0 ), where k and H 0 are constants. After discussing the general behavior of penetrated supercurrents in an infinitely long column specimen, we define a general cross-sectional shape based on two equal circles of radius a, which can be rendered into a circle, a rectangle, or many other shapes. With increasing parameter p (=ka/H 0 ), the computed M-H curves show obvious differences with those computed from Kim's model and approach the results of a simple infinitely narrow square pulse J c (H i ). For high-T c superconductors, our results can be applied to the study of the magnetic properties and the critical-current density of single crystals, as well as to the determination of the intergranular critical-current density from magnetic measurements
Hard and soft age discrimination: the dual nature of workplace discrimination.
Stypinska, Justyna; Turek, Konrad
2017-03-01
The paper concentrates on the problem of age discrimination in the labour market and the way it can be conceptualised and measured in a multi-disciplinary way. The approach proposed here combines two understandings of age discrimination-a sociological and legal one, what allows for a fuller and expanded understanding of ageism in the workplace. At the heart of the study is a survey carried out in Poland with a sample of 1000 men and women aged 45-65 years. The study takes a deeper and innovative look into the issue of age discrimination in employment. Confirmatory factor analysis with WLSMV estimation and logistic regressions were used to test the hypotheses. The study shows that age discrimination in labour market can take on different forms: hard and soft, where the hard type of age discrimination mirrors the legally prohibited types of behaviours and those which relate to the actual decisions of employers which can impact on the employee's career development. The soft discrimination corresponds with those occurrences, which are not inscribed in the legal system per se, are occurring predominantly in the interpersonal sphere, but can nevertheless have negative consequences. Soft discrimination was experienced more often (28.6% of respondents) than hard discrimination (15.7%) with higher occurrences among women, persons in precarious job situation or residents of urban areas. The role of education was not confirmed to influence the levels of perceived age discrimination.
Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian
2018-06-01
Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed ( p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium
Kapfer, Sebastian C.; Krauth, Werner
2017-12-01
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Bolander, Brian
2014-01-01
An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.
Passive control of flow structure interaction between a sphere and free-surface
Directory of Open Access Journals (Sweden)
Akilli Huseyin
2012-04-01
Full Text Available Flow characteristics for both a smooth and a vented sphere such as velocity vectors, patterns of streamlines, vorticity contours, stream-wise fluctuations, cross-stream velocity fluctuations and Reynolds stress correlations between a sphere and free-surface for various submerged ratio at Re =5,000 are studied by using dye visualization and the particle image velocimetry technique. Passive control of flow structure interaction between sphere and free surface was examined by using a modified geometry which has a 15% sphere diameter hole passing through the sphere equator. Both of the spheres were separately placed beneath the free surface with different positions from touching to the free surface to two sphere diameters below the free surface. It is demonstrated that reattachment point of the separated flow to the free surface varies for both of the sphere cases as the sphere position alters vertically through the water flow while the flow structure for the vented sphere occurs considerably symmetrical due to forming of a pair of counter-rotating ring vortices.
Finding Non-Zero Stable Fixed Points of the Weighted Kuramoto model is NP-hard
Taylor, Richard
2015-01-01
The Kuramoto model when considered over the full space of phase angles [$0,2\\pi$) can have multiple stable fixed points which form basins of attraction in the solution space. In this paper we illustrate the fundamentally complex relationship between the network topology and the solution space by showing that determining the possibility of multiple stable fixed points from the network topology is NP-hard for the weighted Kuramoto Model. In the case of the unweighted model this problem is shown...
AGEISM IN THE SPHERE OF HEALTH SUPPORT OF SENIOR CITIZENS
Directory of Open Access Journals (Sweden)
Lola Vladimirovna Kolpina
2013-10-01
Full Text Available The paper based on the results of the focus group which includes a medical and social workers; the ageism’s problems of the elderly people in the spheres of medical care, social protection and security are discussed. It is proved that the display of ageism is more typical for the medical sphere; practice of ageism has moral, organizational and socio-economic aspects, in the sphere of social protect and ensuring the greatest risks of ageism are associated with high psychological stress on social workers, which is conditioned with the complexity of communication with the elderly people.Purpose. Sociological diagnostics displays ageism elderly people in health and social work in the Belgorod region.Methodology. To achieve this goal, in May 2013 we carried out a focus group composed of doctors, nurses and employees of social service agencies and security in the amount of 16 people.Results. Theoretical and empirical models of ageismPractical implications. Institutions of medical and social services, and educational institutions that train specialists of relevant specialties.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-24
Hard and soft acids and bases: atoms and atomic ions.
Reed, James L
2008-07-07
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.
Theory of hard diffraction and rapidity gaps
International Nuclear Information System (INIS)
Del Duca, V.
1995-06-01
In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)
Production of Liquid Metal Spheres by Molding
Directory of Open Access Journals (Sweden)
Mohammed G. Mohammed
2014-10-01
Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.
Social movements and the Transnational Transformation of Public Spheres
DEFF Research Database (Denmark)
Bourne, Angela
2017-01-01
This article presents a theoretical framework for the empirical study of social movements as agents and arenas in the transnational transformation of public spheres. It draws on the existing literature on transnationalisation of public spheres, which predominantly focuses on the broadcast media...... and overlapping, permits analysis of social movements as agents of public sphere transformation as the form of actors or arenas, either within transnational spaces or through more routine forms of contestation within the nation-state. I then adapt indicators developed to measure the degree of transnationalisation...... of public spheres and illustrate their applicability for the study of social movements using contemporary examples of movement practices and discourses....
Numerical and experimental investigation of flow and scour around a half-buried sphere
DEFF Research Database (Denmark)
Dixen, Martin; Sumer, B. Mutlu; Fredsøe, Jørgen
2013-01-01
The paper describes the results of a numerical and experimental investigation of flow and scour around a half-buried sphere exposed to a steady current. Hot-film bed shear stress and Laser Doppler Anemometer measurements were made with a half sphere mounted on the smooth bed in an open channel......-buried sphere in currents. The morphologic model includes a sediment-transport description, and a description of surface-layer sand slides for bed slopes exceeding the angle of repose. The sediment transport description includes, for the first time, the effect of externally-generated turbulence (induced...... by the horseshoe-vortex flow and the lee-wake flow processes) on sediment transport. The results show that the scour depth increases and time scale decreases when the effect of externally-generated turbulence is incorporated in the calculations. Empirical expressions representing the numerically obtained data...
Fuzzy spheres from inequivalent coherent states quantizations
International Nuclear Information System (INIS)
Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques
2007-01-01
The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets
VMware vSphere 5 Administration Instant Reference
Kusek, Christopher; Daniel, Andy
2011-01-01
Compact and portable reference guide for quick answers to VMware vSphere If you're looking to migrate to the newest version of VMware vSphere, this concise guide will get you up to speed and down to business in no time. If you're new to VMware vSphere, this book is for you too! The compact size of this quick reference makes it easy for you to have by your side—whether you're in the field, server room, or at your desk. Helpful elements for finding information such as thumb tabs, tables of contents with page numbers at the beginning of each chapter, and special headers puts what you need a
Hard Diffraction - from Blois 1985 to 2005
Energy Technology Data Exchange (ETDEWEB)
Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)
2005-07-01
The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.
White Dwarf Stars as Polytropic Gas Spheres
Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.
2014-01-01
Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...
Packings of a charged line on a sphere.
Alben, Silas
2008-12-01
We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
Model independent method to deconvolve hard X-ray spectra
Energy Technology Data Exchange (ETDEWEB)
Polcaro, V.F.; Bazzano, A.; Ubertini, P.; La Padula, C. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale); Manchanda, R.K. (Tata Inst. of Fundamental Research, Bombay (India))
1984-07-01
A general purpose method to deconvolve the energy spectra detected by means of the use of a hard X-ray telescope is described. The procedure does not assume any form of input spectrum and the observed energy loss spectrum is directly deconvolved into the incident photon spectrum, the form of which can be determined independently of physical interpretation of the data. Deconvolution of the hard X-ray spectrum of Her X-1, detected during the HXR 81M experiment, by the method independent method is presented.
International Nuclear Information System (INIS)
Morstin, K.; Kawecka, B.; Booz, J.
1985-01-01
A space transformation has been applied that enables the transport equation to be efficiently solved for spheres exposed to radiations of almost arbitrary angular distribution. Depth dose distributions in the ICRU sphere have been calculated with the 1-D ANISN transport code for neutron energies from thermal up to 20 MeV and for photons up to 15 MeV. Several irradiation geometries are considered. For deep-penetrating radiations, maximum possible dose equivalent index significantly exceeds Hsub(10) star
Bubble entrapment during sphere impact onto quiescent liquid surfaces
Marston, Jeremy
2011-06-20
We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.
2014-01-26
Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.
Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity
International Nuclear Information System (INIS)
Li Xiaofang; Lv Kangle; Deng Kejian; Tang Junfeng; Su Rong; Sun Jie; Chen Lianqing
2009-01-01
To study the relationship between the morphology and the photoreactivity of the catalyst, hollow spheres of two semiconductors of ZnO and TiO 2 were synthesized by using sulfonated polystyrene (PS) as template. The catalyst samples were then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), diffuse reflectance spectra (DRS), transmission electron microscopy (TEM) and N 2 sorption. Reactive brilliant red X3B, an anionic organic dye, was used in this study as a model chemical with the aim of organic pollutants control. The results show that, whatever the catalyst was, both the adsorptive ability and photoreactivity of the hollow spheres were much higher than that of nanoparticles. The adsorption and photoreactivity of ZnO hollow spheres increased by a factor of 7.36 and 4.66, respectively compared with ZnO nanoparticles, while 3.74 times increased in adsorption and 3.41 times increased in photoreactivity for TiO 2 hollow spheres compared with TiO 2 nanoparticles. Correlations between adsorption and photoreactivity reflected the importance of adsorption in the enhanced photoreactivity of ZnO and TiO 2 hollow spheres
Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A
2007-06-01
Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.
Theory of hard diffraction and rapidity gaps
International Nuclear Information System (INIS)
Del Duca, V.
1996-01-01
In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics
Application of identifying transmission spheres for spherical surface testing
Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen
2017-06-01
We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.
Reliability modeling of a hard real-time system using the path-space approach
International Nuclear Information System (INIS)
Kim, Hagbae
2000-01-01
A hard real-time system, such as a fly-by-wire system, fails catastrophically (e.g. losing stability) if its control inputs are not updated by its digital controller computer within a certain timing constraint called the hard deadline. To assess and validate those systems' reliabilities by using a semi-Markov model that explicitly contains the deadline information, we propose a path-space approach deriving the upper and lower bounds of the probability of system failure. These bounds are derived by using only simple parameters, and they are especially suitable for highly reliable systems which should recover quickly. Analytical bounds are derived for both exponential and Wobble failure distributions encountered commonly, which have proven effective through numerical examples, while considering three repair strategies: repair-as-good-as-new, repair-as-good-as-old, and repair-better-than-old
International Nuclear Information System (INIS)
Serre, S.
2010-01-01
This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range
A reliable parameter to standardize the scoring of stem cell spheres.
Directory of Open Access Journals (Sweden)
Xiaochen Zhou
Full Text Available Sphere formation assay is widely used in selection and enrichment of normal stem cells or cancer stem cells (CSCs, also known as tumor initiating cells (TICs, based on their ability to grow in serum-free suspension culture for clonal proliferation. However, there is no standardized parameter to accurately score the spheres, which should be reflected by both the number and size of the spheres. Here we define a novel parameter, designated as Standardized Sphere Score (SSS, which is expressed by the total volume of selected spheres divided by the number of cells initially plated. SSS was validated in quantification of both tumor spheres from cancer cell lines and embryonic bodies (EB from mouse embryonic stem cells with high sensitivity and reproducibility.
Vescovi, Dalila; Berzi, Diego; Richard, Patrick; Brodu, Nicolas
2014-01-01
International audience; We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed av...
Duer, W. C.; And Others
1977-01-01
Discusses comparisons of packing densities derived from known molar volume data of liquids and solutions. Suggests further studies for using assemblies of spheres as models for simple liquids and solutions. (MLH)
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2007-01-01
We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...
Virial Coefficients for the Liquid Argon
Korth, Micheal; Kim, Saesun
2014-03-01
We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
International Nuclear Information System (INIS)
Elbakry, M.Y.; El-Helly, M.; Elbakry, M.Y.
2010-01-01
Neural networks are widely for solving many scientific linear and non-linear problems. In this work ,we used the artificial neural network (ANN) to simulate and predict the torque and force acting on the outer stationary sphere due to steady state motion of the second order fluid between two eccentric spheres by a rotating inner sphere with an angular velocity Ω. the (ANN) model has been trained based on the experimental data to produce the torque and force at different eccentricities. The experimental and trained torque and force are compared. The designed ANN shows a good match to the experimental data.
International Nuclear Information System (INIS)
Bedogni, R.; Esposito, A.; Gomez-Ros, J.M.
2010-01-01
Accelerator-based neutron beams are becoming popular tools for material testing, radiation hardness and soft errors studies. The characterization of these beams in terms of dosimetric and spectrometric quantities is a challenging task, mainly due to their wide energy interval (from thermal up to hundreds MeV) and, in certain facilities like VESUVIO - ISIS (RAL, UK), to their small dimension (few cm in radius). Extended Range Bonner Sphere Spectrometers (ERBSS) would be a valuable tool, due to their wide energy range, good photon discrimination and possibility to choose among different central detectors according to the intensity, photon component and time structure of the field. Nevertheless, the non-uniform irradiation of the spheres could lead to important systematic errors. With the aim of bringing the advantages of ERBSS into the characterization of collimated beams, a dedicated study was performed using the VESUVIO spallation-based collimated beam at ISIS (Rutherford Appleton Laboratory, Oxford). Here a 3.21 cm radius collimated beam was characterized using a Dysprosium activation foil-based ERBSS whose response matrix was recalculated for this specific beam diameter. Besides the results of the experimental campaign, this paper presents the calculation of the response matrix and its dependence on the beam dimension.
Directory of Open Access Journals (Sweden)
Graciela eGonzalez-Gil
2016-04-01
Full Text Available Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0, insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20 % and Pseudomonadaceae (c.a.10 % were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (~200 m of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.
Gonzalez-Gil, Graciela
2016-04-26
Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.
Energy Technology Data Exchange (ETDEWEB)
Massol, A.
2004-02-15
The application of statistically averaged two-fluid models for the simulation of complex indus- trial two-phase flows requires the development of adequate models for the drag force exerted on the inclusions and the interfacial heat exchange. This task becomes problematic at high volume fractions of the dispersed phase. The quality of the simulation strongly depends upon the inter- facial exchange terms, starting with the steady drag force. For example, an accurate modelling of the drag force is therefore a crucial point to simulate the expansion of dense fluidized beds. Most models used to study the exchange terms between particles and fluids are based on the interaction between an isolated particle and a surrounding gas. Those models are clearly not adequate in cases where the volume fraction of particles increases and particle-particle interactions become important. Studying such cases is a complex task because of the multiple possible configurations. While the interaction between an isolated sphere and a gas depends only on the particle size and the slip velocity between gas and particles, the interaction between a cloud of particles and a gas depends on many more parameters: size and velocity distribution of particles, relative position of particles. Even if the particles keep relative fixed positions, there is an infinite number of combinations to construct such an array. The objective of the present work is to perform steady and unsteady simulations of the flow in regular arrays of fixed particles in order to analyze the influence of the size and distributions of spheres on drag force and heat transfer (the array of spheres can be either monodispersed, either bi-dispersed). Several authors have studied the drag exerted on the spheres, but only for low Reynolds numbers and/or solid volume fractions close to the packed limit. Moreover some discrepancies are observed between the different studies. On top of that, all existing studies are limited to steady flows
Radar Imaging of Spheres in 3D using MUSIC
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H; Berryman, J G
2003-01-21
We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.
Coupling effects of depletion interactions in a three-sphere colloidal system
International Nuclear Information System (INIS)
Chen Ze-Shun; Dai Gang; Gao Hai-Xia; Xiao Chang-Ming
2013-01-01
In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte-Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the geometry factor are the same. (interdisciplinary physics and related areas of science and technology)
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa
2012-05-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Quantum hall fluid on fuzzy two dimensional sphere
International Nuclear Information System (INIS)
Luo Xudong; Peng Dantao
2004-01-01
After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)
Muralikrishnan, Bala; Rachakonda, Prem; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel; Cheok, Geraldine; Cournoyer, Luc
2017-12-01
Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud by measuring the range and two angles to a point. The fundamental measurement of a TLS is range. Relative range error is one component of the overall range error of TLS and its estimation is therefore an important aspect in establishing metrological traceability of measurements performed using these systems. Target geometry is an important aspect to consider when realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a plate target for the relative range tests. While a plate target may reasonably be expected to produce distortion free data even at far distances, the target itself needs careful alignment at each of the relative range test positions. In this paper, we discuss relative range experiments performed using a plate target and then address the advantages and limitations of using a sphere target. We then present a novel dual-sphere-plate target that draws from the advantages of the sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate target are used simply as fiducials to identify a point on the surface of the plate that is common to both the scanner and the reference instrument, thus overcoming the need to carefully align the target.
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.