WorldWideScience

Sample records for hard sphere mixtures

  1. Fundamental measure theory for hard-sphere mixtures: a review

    International Nuclear Information System (INIS)

    Roth, Roland

    2010-01-01

    Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments. (topical review)

  2. Isotropic-nematic transition in a mixture of hard spheres and hard spherocylinders: scaled particle theory description

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2017-12-01

    Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.

  3. Computer simulation of solid-liquid coexistence in binary hard sphere mixtures

    NARCIS (Netherlands)

    Kranendonk, W.G.T.; Frenkel, D.

    1991-01-01

    We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a

  4. Orientational Ordering and Phase Behaviour of Binary Mixtures of Hard Spheres and Hard Spherocylinders.

    Czech Academy of Sciences Publication Activity Database

    Wu, L.; Malijevský, Alexandr; Jackson, G.; Muller, E.A.; Avendano, C.

    2015-01-01

    Roč. 143, č. 4 (2015), s. 044906 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA13-02938S Grant - others:EPSRC(GB) GR/T17595; EPSRC(GB) GR/N35991; EPSRC(GB) EP/E016340; EPSRC(GB) EP/J014958; JREI(GB) GR/M94426 Institutional support: RVO:67985858 Keywords : phase behaviour * liquid crystals * hard spheres Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.894, year: 2015

  5. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  6. Edwards' approach to horizontal and vertical segregation in a mixture of hard spheres under gravity

    International Nuclear Information System (INIS)

    Fierro, Annalisa; Nicodemi, Mario; Coniglio, Antonio

    2003-01-01

    We study the phenomenon of size segregation, observed in models of vibrated granular mixtures such as powders or sand. This consists of the de-mixing of the different components of the system under shaking. Several mechanisms have been proposed to explain this phenomenon. However, the criteria for predicting segregation in a mixture, an issue of great practical importance, are largely unknown. In the present paper we study a binary hard-sphere mixture under gravity on a three-dimensional lattice using Monte Carlo simulations. The vertical and horizontal segregation observed during the tap dynamics is interpreted in the framework of a statistical mechanics approach to granular media in the manner of Edwards. A phase diagram for the vertical segregation is derived, and compared with the simulation data

  7. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    Science.gov (United States)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  8. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition

    NARCIS (Netherlands)

    Ni, R.; Smallenburg, F.; Filion, L.C.; Dijkstra, M.

    2011-01-01

    We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to

  9. Transport coefficients of hard-sphere mixtures: Theory and Monte Carlo molecular-dynamics calculations for an isotopic mixture

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.

    1989-01-01

    The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion

  10. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.

    Science.gov (United States)

    Amokrane, S; Ayadim, A; Malherbe, J G

    2005-11-01

    A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.

  11. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  12. Binary non-additive hard sphere mixtures: fluid demixing, asymptotic decay of correlations and free fluid interfaces

    International Nuclear Information System (INIS)

    Hopkins, Paul; Schmidt, Matthias

    2010-01-01

    Using a fundamental measure density functional theory we investigate both bulk and inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large (positive) non-additivity the mixture phase separates into two fluid phases with different compositions. We calculate bulk fluid-fluid coexistence curves for a range of size ratios and non-additivity parameters and find that they compare well to simulation results from the literature. Using the Ornstein-Zernike equation, we investigate the asymptotic, r→∞, decay of the partial pair correlation functions, g ij (r). At low densities a structural crossover occurs in the asymptotic decay between two different damped oscillatory modes with different wavelengths corresponding to the two intra-species hard-core diameters. On approaching the fluid-fluid critical point there is a Fisher-Widom crossover from exponentially damped oscillatory to monotonic asymptotic decay. Using the density functional we calculate the density profiles for the planar free fluid-fluid interface between coexisting fluid phases. We show that the type of asymptotic decay of g ij (r) not only determines the asymptotic decay of the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We also determine the surface tension of the free fluid interface, finding that it increases with non-additivity, and that on approaching the critical point mean-field scaling holds.

  13. The Wertheim integral equation theory with the ideal chain approximation and a dimer equation of state: Generalization to mixtures of hard-sphere chain fluids

    International Nuclear Information System (INIS)

    Chang, J.; Sandler, S.I.

    1995-01-01

    We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics

  14. Density anomaly of charged hard spheres of different diameters in a mixture with core-softened model solvent. Monte Carlo simulation results

    Directory of Open Access Journals (Sweden)

    B. Hribar-Lee

    2013-01-01

    Full Text Available Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory (J. Chem. Phys., Vol. 137, 244502 (2012. Our objective of the present short work is to complement this study by considering univalent ions of unequal diameters in a mixture with the same soft-core fluid model. Specifically, we are interested in the analysis of changes of the temperature of maximum density (TMD lines with ion concentration for three model salt solutes, namely sodium chloride, potassium chloride and rubidium chloride models. We resort to Monte Carlo simulations for this purpose. Our discussion also involves the dependences of the pair contribution to excess entropy and of constant volume heat capacity on the temperature of maximum density line. Some examples of the microscopic structure of mixtures in question in terms of pair distributions functions are given in addition.

  15. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  16. Equilibrium distribution of hard-sphere systems and revised Enskog theory

    NARCIS (Netherlands)

    Beijeren, H. van

    1983-01-01

    A revised Enskog theory (RET) is shown to lead to a correct equilibrium distribution in hard-sphere systems in a stationary external potential, while the standard Enskog theory (SET) does not. Attention is given to the s-component hard-sphere mixture with constant external potential acting on

  17. Bond-orientational analysis of hard-disk and hard-sphere structures.

    Science.gov (United States)

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  18. Hard Spheres on the Primitive Surface

    Science.gov (United States)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  19. Structure and effective interactions in three-component hard sphere liquids.

    Science.gov (United States)

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  20. Structure of colloidal sphere-plate mixtures

    International Nuclear Information System (INIS)

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I

    2011-01-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  1. Structure of colloidal sphere-plate mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)

    2011-05-18

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  2. Thermodynamics and vibrational modes of hard sphere colloidal systems

    NARCIS (Netherlands)

    Zargar, R.

    2014-01-01

    The central question that we address in this thesis is the thermodynamics of colloidal glasses. The thermodynamics of colloidal hard sphere glasses are directly related to the entropy of the system, since the phase behavior of hard sphere systems is dictated only by entropic contributions, and also

  3. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  4. Simple heuristic for the viscosity of polydisperse hard spheres

    Science.gov (United States)

    Farr, Robert S.

    2014-12-01

    We build on the work of Mooney [Colloids Sci. 6, 162 (1951)] to obtain an heuristic analytic approximation to the viscosity of a suspension any size distribution of hard spheres in a Newtonian solvent. The result agrees reasonably well with rheological data on monodispserse and bidisperse hard spheres, and also provides an approximation to the random close packing fraction of polydisperse spheres. The implied packing fraction is less accurate than that obtained by Farr and Groot [J. Chem. Phys. 131(24), 244104 (2009)], but has the advantage of being quick and simple to evaluate.

  5. Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems.

    NARCIS (Netherlands)

    Ogarko, V.; Luding, Stefan

    2012-01-01

    We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation results are compared with previously found analytical equations of state by looking at the compressibility factor, Z, and agreement is found with much better than 1% deviation in the fluid

  6. Flexible equation of state for a hard sphere and Lennard–Jones fluid ...

    Indian Academy of Sciences (India)

    Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...

  7. Local order and crystallization of dense polydisperse hard spheres

    Science.gov (United States)

    Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic

    2018-04-01

    Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.

  8. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  9. Simple liquids’ quasiuniversality and the hard-sphere paradigm

    DEFF Research Database (Denmark)

    Dyre, Jeppe C.

    2016-01-01

    This topical review discusses the quasiuniversality of simple liquids' structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues t...

  10. Simple liquids' quasiuniversality and the hard-sphere paradigm

    DEFF Research Database (Denmark)

    Dyre, Jeppe C.

    This presentation reflects on the well-known quasiuniversality of simple liquids’ structure and dynamics [1, 2, 3, 4, 5]. We discuss two possible justifications of it [6, 7]. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic ph...

  11. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  12. Crystallizing hard-sphere glasses by doping with active particles

    NARCIS (Netherlands)

    Ni, Ran; Cohen Stuart, Martien A.; Dijkstra, Marjolein; Bolhuis, Peter G.

    2014-01-01

    Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as

  13. Force distribution affects vibrational properties in hard-sphere glasses

    NARCIS (Netherlands)

    DeGiuli, E.; Lerner, E.; Brito, C.; Wyart, M.

    2014-01-01

    We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f

  14. Elasticity of Hard-Spheres-And-Tether Systems

    International Nuclear Information System (INIS)

    Farago, O.; Kantor, Y.

    1999-01-01

    Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems

  15. Random close packing of hard spheres and disks

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    A simple definition of random close packing of hard spheres is presented, and the consequences of this definition are explored. According to this definition, random close packing occurs at the minimum packing fraction eta for which the median nearest-neighbor radius equals the diameter of the spheres. Using the radial distribution function at more dilute concentrations to estimate median nearest-neighbor radii, lower bounds on the critical packing fraction eta/sub RCP/ are obtained and the value of eta/sub RCP/ is estimated by extrapolation. Random close packing is predicted to occur for eta/sub RCP/ = 0.64 +- 0.02 in three dimensions and eta/sub RCP/ = 0.82 +- 0.02 in two dimensions. Both of these predictions are shown to be consistent with the available experimental data

  16. Supercooled liquid dynamics for the charged hard-sphere model

    International Nuclear Information System (INIS)

    Lai, S.K.; Chang, S.Y.

    1994-08-01

    We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs

  17. The Enskog Equation for Confined Elastic Hard Spheres

    Science.gov (United States)

    Maynar, P.; García de Soria, M. I.; Brey, J. Javier

    2018-03-01

    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

  18. Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids

    International Nuclear Information System (INIS)

    Zhou, Y.; Hall, C.K.; Stell, G.

    1995-01-01

    We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics

  19. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    Science.gov (United States)

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  20. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    Directory of Open Access Journals (Sweden)

    Kim Nygård

    2016-02-01

    Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  1. Towards an analytical theory for charged hard spheres

    Directory of Open Access Journals (Sweden)

    L.Blum

    2007-09-01

    Full Text Available Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel (DH theory, where ions are point charges, is accurate only in the limit of infinite dilution. The mean spherical approximation (MSA is the embedding of hard cores into DH, and is valid for higher densities. The properties of any ionic mixture can be represented by the single screening parameter Γ which for the equal ionic size restricted model is obtained from the Debye parameter κ. This Γ representation, the binding mean spherical approximation (BIMSA, is also valid for complex/associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. Furthermore, the contact pair distribution function calculated from our theory agrees with the Monte Carlo of Bresmeea. (Phys. Rev. E, 1995, 51, 289.

  2. Collective modes in simple melts: Transition from soft spheres to the hard sphere limit.

    Science.gov (United States)

    Khrapak, Sergey; Klumov, Boris; Couëdel, Lénaïc

    2017-08-11

    We study collective modes in a classical system of particles with repulsive inverse-power-law (IPL) interactions in the fluid phase, near the fluid-solid coexistence (IPL melts). The IPL exponent is varied from n = 10 to n = 100 to mimic the transition from moderately soft to hard-sphere-like interactions. We compare the longitudinal dispersion relations obtained using molecular dynamic (MD) simulations with those calculated using the quasi-crystalline approximation (QCA) and find that this simple theoretical approach becomes grossly inaccurate for [Formula: see text]. Similarly, conventional expressions for high-frequency (instantaneous) elastic moduli, predicting their divergence as n increases, are meaningless in this regime. Relations of the longitudinal and transverse elastic velocities of the QCA model to the adiabatic sound velocity, measured in MD simulations, are discussed for the regime where QCA is applicable. Two potentially useful freezing indicators for classical particle systems with steep repulsive interactions are discussed.

  3. New results for virial coefficients of hard spheres in D dimensions

    Indian Academy of Sciences (India)

    We present new results for the virial coefficients Bk for k ≤ 10 for hard spheres in dimensions D ... for the hard sphere gas of particles of diameter σ in D dimensions defined by the two-body potential. U(r) = ..... [22] A J Guttmann, Asymptotic analysis of power-series expansions, in Phase transitions and critical phenomena ...

  4. Structure and dynamics of colloidal hard spheres in real-space

    NARCIS (Netherlands)

    Dullens, Roel P.A.

    2005-01-01

    This thesis deals with various aspects of the structure and dynamics of colloidal hard spheres. A general introduction on colloids as experimental realization of hard spheres is presented in Chapter 1. The basic principles of confocal microscopy, the main technique used in this thesis, as well as

  5. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2011-03-21

    A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."

  6. Homogeneous Free Cooling State in Binary Granular Fluids of Inelastic Rough Hard Spheres

    Science.gov (United States)

    Santos, Andrés

    2011-05-01

    In a recent paper [A. Santos, G. M. Kremer, and V. Garzó, Prog. Theor. Phys. Suppl. 184, 31-48 (2010)] the collisional energy production rates associated with the translational and rotational granular temperatures in a granular fluid mixture of inelastic rough hard spheres have been derived. In the present paper the energy production rates are explicitly decomposed into equipartition rates (tending to make all the temperatures equal) plus genuine cooling rates (reflecting the collisional dissipation of energy). Next the homogeneous free cooling state of a binary mixture is analyzed, with special emphasis on the quasi-smooth limit. A previously reported singular behavior (according to which a vanishingly small amount of roughness has a finite effect, with respect to the perfectly smooth case, on the asymptotic long-time translational/translational temperature ratio) is further elaborated. Moreover, the study of the time evolution of the temperature ratios shows that this dramatic influence of roughness already appears in the transient regime for times comparable to the relaxation time of perfectly smooth spheres.

  7. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    Science.gov (United States)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  8. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition

    NARCIS (Netherlands)

    Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.

    2010-01-01

    We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium

  9. Three-particle equilibrium correlations in dense hard-sphere fluids

    NARCIS (Netherlands)

    Haffmans, A.F.E.M.; Schepper, I.M. de; Michels, J.P.J.; Beijeren, H. van

    1988-01-01

    We performed molecular-dynamics simulation experiments for a hard-sphere fluid at four high densities and determined the spatial Fourier transform of the three-particle equilibrium correlation function with two of the three particles at contact.

  10. Dynamical study of a polydisperse hard-sphere system

    KAUST Repository

    Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi

    2010-01-01

    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition

  11. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    Science.gov (United States)

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 attractive with increasing temperature (ΔB2/ΔT attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  12. Excluded-volume effects in the diffusion of hard spheres

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2012-01-01

    Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using

  13. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    Science.gov (United States)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.

  14. Dynamical study of a polydisperse hard-sphere system

    KAUST Repository

    Nogawa, Tomoaki

    2010-08-10

    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition line, which corresponds to the critical polydispersity above which the crystal state is unstable, is on the glass transition line. This means that crystal and fluid states at the melting point becomes less distinguishable as polydispersity increases and finally they become identical state, i.e., marginal glass state, at critical polydispersity. © 2010 The American Physical Society.

  15. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    International Nuclear Information System (INIS)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi

    2014-01-01

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions

  16. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)

    2006-11-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.

  17. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    International Nuclear Information System (INIS)

    Bhaduri, R K; Dijk, W van; Srivastava, M K

    2006-01-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system

  18. Ionic pairing in binary liquids of charged hard spheres with non-additive diameters

    International Nuclear Information System (INIS)

    Pastore, G.; Giaquinta, P.V.; Thakur, J.S.; Tosi, M.P.

    1985-07-01

    We examine types of short range order that arise in binary liquids from a combination of Coulombic interactions and non-additivity of excluded volumes, the initial motivation being observations of complex formation by hydrated ions in concentrated aqueous solutions. The model is a fluid of charged hard spheres with contact distances σsub(+-)not=1/2(σsub(++)+σsub(--)), its structural functions being evaluated in the mean spherical approximation and in the hypernetted chain approximation. Cation-anion pairing is clearly seen in the calculated structural functions for negative deviations from additivity (σsub(+-) σsub(++)=σsub(--)) favour long-wavelength concentration fluctuations and demixing in a neutral mixture: these are suppressed by Coulombic interactions in favour of microscopic intermixing of the two species in the local liquid structure, up to like-ion pairing. Contact is made with diffraction from concentrated aqueous solutions of cadmium sulphate and other instances of possible applicability of the model are pointed out. (author)

  19. Excluded-volume effects in the diffusion of hard spheres

    KAUST Repository

    Bruna, Maria

    2012-01-03

    Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples. © 2012 American Physical Society.

  20. Perturbation and variational approach for the equation of state for hard-sphere and Lennard—Jones fluids

    International Nuclear Information System (INIS)

    Khasare, S.B.

    2012-01-01

    The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)

  1. Crystalline and amorphous solid phases in the classical hard sphere system

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Souza, R.F.T.; Llano, M. de; Mini, S.

    1984-01-01

    A qualitative crystalline, as well as amorphous, solid behavior is simultaneously extracted for a classical hard sphere system from its known virial power series expansion in the density augmented by only one further virial coefficient, taken from an extrapolated estimate of the Cauchy-Hadamard radius of convergence criterion. Results are compared with computer simulation data. (Author) [pt

  2. Brownian dynamics of aggregation kinetics of hard spheres with flexibele bounds

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.; Vliet, van T.

    2001-01-01

    Brownian dynamics (BD) simulations have been performed on the aggregation dynamics of colloidal particles within the context of a ball-and-string model. Particles are treated as hard spheres that can bind irreversibly through a string attached to their surface. The model is set up to mimic some

  3. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass

    NARCIS (Netherlands)

    Ghosh, A.; Chikkadi, V.; Schall, P.; Bonn, D.

    2011-01-01

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging

  4. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic

  5. Hard sphere-like glass transition in eye lens α-crystallin solutions.

    Science.gov (United States)

    Foffi, Giuseppe; Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M; Stradner, Anna; Schurtenberger, Peter

    2014-11-25

    We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.

  6. Exact equivalence between one-dimensional Bose gases interacting via hard-sphere and zero-range potentials

    DEFF Research Database (Denmark)

    Valiente, Manuel

    2012-01-01

    We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...

  7. The structural origin of the hard-sphere glass transition in granular packing.

    Science.gov (United States)

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.

  8. Parallelized event chain algorithm for dense hard sphere and polymer systems

    International Nuclear Information System (INIS)

    Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-01

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers

  9. Analytical expressions for the correlation function of a hard sphere dimer fluid

    Science.gov (United States)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  10. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.

    Science.gov (United States)

    Ghosh, Antina; Chikkadi, Vijayakumar; Schall, Peter; Bonn, Daniel

    2011-10-28

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales.

  11. Analytic methods for the Percus-Yevick hard sphere correlation functions

    Directory of Open Access Journals (Sweden)

    D. Henderson

    2009-01-01

    Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.

  12. Statistical mechanics of molecular fluids. The RHNC theory applied to hard dipolar spheres

    International Nuclear Information System (INIS)

    Lombardero, M.; Lado, F.; Abascal, J.L.F.; Lago, S.; Enciso, E.

    1988-01-01

    The RHNC (reference hipernetted chain) equation, together with an optimization criterion which extremalizes the Helmholtz free energy, is used to obtain structural, thermodynamic, and dielectric properties of a system made up of hard dipolar spheres. The comparison with simulation results is made in the same boundary conditions and then the properties of an infinite system are evaluated for a variaty of states at different densities and dipolar moments. (Author)

  13. A linear programming algorithm to test for jamming in hard-sphere packings

    International Nuclear Information System (INIS)

    Donev, Aleksandar; Torquato, Salvatore.; Stillinger, Frank H.; Connelly, Robert

    2004-01-01

    Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper by Torquato and Stillinger [J. Phys. Chem. B 105 (2001)], a classification scheme of jammed packings into hierarchical categories of locally, collectively and strictly jammed configurations has been proposed. They suggest that these jamming categories can be tested using numerical algorithms that analyze an equivalent contact network of the packing under applied displacements, but leave the design of such algorithms as a future task. In this work, we present a rigorous and practical algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is jammed according to the aforementioned categories. The algorithm is based on linear programming and is applicable to regular as well as random packings of finite size with hard-wall and periodic boundary conditions. If the packing is not jammed, the algorithm yields representative multi-particle unjamming motions. Furthermore, we extend the jamming categories and the testing algorithm to packings with significant interparticle gaps. We describe in detail two variants of the proposed randomized linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings with significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of the feasible particle displacements. We have implemented the algorithms and applied them to ordered as well as random packings of circular disks and spheres with periodic boundary conditions. Some representative results for large disordered disk and sphere packings are given, but more robust and efficient implementations as well as further applications (e.g., non-spherical particles) are anticipated for the future

  14. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  15. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    Energy Technology Data Exchange (ETDEWEB)

    Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis

    2014-08-17

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.

  16. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    International Nuclear Information System (INIS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis

    2014-01-01

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions

  17. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  18. Free energy landscape and cooperatively rearranging region in a hard sphere glass

    Science.gov (United States)

    Yoshidome, Takashi; Yoshimori, Akira; Odagaki, Takashi

    2007-08-01

    Exploiting the density functional theory, we calculate the free energy landscape (FEL) of the hard sphere glass in three dimensions. From the FEL, we estimate the number of the particles in the cooperatively rearranging region (CRR). We find that the density dependence of the number of the particles in the CRR is expressed as a power law function of the density. Analyzing the relaxation process in the CRR, we also find that the string motion is the elementary process for the structural relaxation, which leads to the natural definition of the simultaneously rearranging region as the particles displaced in the string motion.

  19. Charged hard spheres in a uniform neutralizing background: The role of thermodynamics selfconsistence

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Pastore, G.; Tosi, M.P.

    1991-06-01

    Calculations of the thermodynamic properties and pair distribution function of a one-component classical fluid of charged hard spheres in a uniform neutralizing background are reported and compared with Monte Carlo results of Hansen and Weis. Thermodynamic selfconsistence between the virial pressure and the fluctuations formula for the isothermal compressibility is enforced in the calculations by various alternative approaches. The role of thermodynamic selfconsistence is crucial to obtain a satisfactory quantitative description of this model fluid, in view of its applications in the theory of liquid metals and of dispersions of charged colloidal particles. (author). 23 refs, 4 figs, 3 tabs

  20. First-principle proof of the modified collision boundary conditions for the hard-sphere system

    International Nuclear Information System (INIS)

    Tessarotto, Massimo; Cremaschini, Claudio

    2014-01-01

    A fundamental issue lying at the foundation of classical statistical mechanics is the determination of the collision boundary conditions that characterize the dynamical evolution of multi-particle probability density functions (PDF) and are applicable to systems of hard-spheres undergoing multiple elastic collisions. In this paper it is proved that, when the deterministic N-body PDF is included in the class of admissible solutions of the Liouville equation, the customary form of collision boundary conditions adopted in previous literature becomes physically inconsistent and must actually be replaced by suitably modified collision boundary conditions.

  1. Analytical expression for the correlation function of a hard sphere chain fluid

    Science.gov (United States)

    Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.

  2. Density fluctuations and the structure of a nonuniform hard sphere fluid

    OpenAIRE

    Katsov, Kirill; Weeks, John D.

    2000-01-01

    We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation fo...

  3. High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system

    International Nuclear Information System (INIS)

    Ross, M.

    1979-01-01

    A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy

  4. Macromolecular diffusion in crowded media beyond the hard-sphere model.

    Science.gov (United States)

    Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc

    2018-04-25

    The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

  5. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    Lai, S.K.; Akinlade, O.; Tosi, M.P.

    1989-12-01

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  6. Packing simulation code to calculate distribution function of hard spheres by Monte Carlo method : MCRDF

    International Nuclear Information System (INIS)

    Murata, Isao; Mori, Takamasa; Nakagawa, Masayuki; Shirai, Hiroshi.

    1996-03-01

    High Temperature Gas-cooled Reactors (HTGRs) employ spherical fuels named coated fuel particles (CFPs) consisting of a microsphere of low enriched UO 2 with coating layers in order to prevent FP release. There exist many spherical fuels distributed randomly in the cores. Therefore, the nuclear design of HTGRs is generally performed on the basis of the multigroup approximation using a diffusion code, S N transport code or group-wise Monte Carlo code. This report summarizes a Monte Carlo hard sphere packing simulation code to simulate the packing of equal hard spheres and evaluate the necessary probability distribution of them, which is used for the application of the new Monte Carlo calculation method developed to treat randomly distributed spherical fuels with the continuous energy Monte Carlo method. By using this code, obtained are the various statistical values, namely Radial Distribution Function (RDF), Nearest Neighbor Distribution (NND), 2-dimensional RDF and so on, for random packing as well as ordered close packing of FCC and BCC. (author)

  7. Aging of a hard-sphere glass: effect of the microscopic dynamics

    International Nuclear Information System (INIS)

    Puertas, Antonio M

    2010-01-01

    We present simulations of the aging of a quasi-hard-sphere glass, with Newtonian and Brownian microscopic dynamics. The system is equilibrated at the desired density (above the glass transition in hard spheres) with short-range attractions, which are removed at t = 0. The structural part of the decay of the density correlation function can be time rescaled to collapse onto a master function independent of the waiting time, t w , and the timescale follows a power law with t w , with exponent z ∼ 0.89; the non-ergodicity parameter is larger than that of the glass transition point (the localization length is smaller) and oscillates in harmony with S q . The aging with both microscopic dynamics is identical, except for a scale factor from the age in Newtonian to the age in Brownian dynamics. This factor is approximately the same as that which scales the α-decay of the correlation function in fluids close to the glass transition.

  8. Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension.

    Science.gov (United States)

    Richard, David; Speck, Thomas

    2018-06-14

    Combining three numerical methods (forward flux sampling, seeding of droplets, and finite-size droplets), we probe the crystallization of hard spheres over the full range from close to coexistence to the spinodal regime. We show that all three methods allow us to sample different regimes and agree perfectly in the ranges where they overlap. By combining the nucleation work calculated from forward flux sampling of small droplets and the nucleation theorem, we show how to compute the nucleation work spanning three orders of magnitude. Using a variation of the nucleation theorem, we show how to extract the pressure difference between the solid droplet and ambient liquid. Moreover, combining the nucleation work with the pressure difference allows us to calculate the interfacial tension of small droplets. Our results demonstrate that employing bulk quantities yields inaccurate results for the nucleation rate.

  9. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    Science.gov (United States)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

  10. Direct measurement of the free energy of aging hard sphere colloidal glasses.

    Science.gov (United States)

    Zargar, Rojman; Nienhuis, Bernard; Schall, Peter; Bonn, Daniel

    2013-06-21

    The nature of the glass transition is one of the most important unsolved problems in condensed matter physics. The difference between glasses and liquids is believed to be caused by very large free energy barriers for particle rearrangements; however, so far it has not been possible to confirm this experimentally. We provide the first quantitative determination of the free energy for an aging hard sphere colloidal glass. The determination of the free energy allows for a number of new insights in the glass transition, notably the quantification of the strong spatial and temporal heterogeneity in the free energy. A study of the local minima of the free energy reveals that the observed variations are directly related to the rearrangements of the particles. Our main finding is that the probability of particle rearrangements shows a power law dependence on the free energy changes associated with the rearrangements similar to the Gutenberg-Richter law in seismology.

  11. Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.

    Science.gov (United States)

    Brey, J Javier; Maynar, P; de Soria, M I García

    2011-04-01

    Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society

  12. A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Donev, A; Alder, B J; Garcia, A L

    2009-08-03

    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.

  13. Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.

    2015-01-01

    We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases

  14. Ultra small angle neutron scattering : a tool to study packing of relatively monodisperse small polymer spheres and their binary mixtures

    International Nuclear Information System (INIS)

    Reynolds, Philip A.; McGillivray, Duncan J.; White, John W.; Jackson, Andrew J.; University of Maryland, College Paerk, Maryland, USA

    2009-01-01

    Full text: We measured ultra small angle neutron scattering (USANS) from polymethylmethacrylate spheres tamped down in air. Two slightly polydisperse pure sphere sizes (1.5/-lm and 7.5/-lm diameter) and five mixtures of these were used. All were loose packed (packing fractions 0.3 to 0.6) with nongravitational forces (e.g., friction) important, preventing close packing. The USANS data is rich in information on powder packing. A modified Percus-Yevick fluid model was used to parametrise the data - adequately but not well. The modifications required introduction of small voids, less than the sphere size, and a parameter reflecting substantial deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor accounting for the presence within these 'clusters' of self avoidance of the large spheres (that is large spheres coated with more small spheres than Percus-Yevick would predict). The overall deviations from the hardsphere Percus-Yevick model that we find here suggests fluid models of loose packed powders are unlikely to be successful, but lay the groundwork for future theoretical and computational work.

  15. On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. II. Molecular dynamics estimates of the friction coefficient

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1994-01-01

    The friction coefficient γ exerted by a hard-sphere fluid on an infinitely massive Brownian sphere is calculated for several size ratios Σ/σ where Σ and σ are the diameters of the Brownian and fluid spheres, respectively. The exact microscopic expression derived in part I of this work from kinetic theory is transformed and shown to be proportional to the time integral of the autocorrelation function of the momentum transferred from the fluid to the Brownian sphere during instantaneous collisions. Three different methods are described to extract the friction coefficient from molecular dynamics simulations carried out on finite systems. The three independent methods lead to estimates of γ which agree within statistical errors (typically 5%). The results are compared to the predictions of Enskog theory and of the hydrodynamic Stokes law. The former breaks down as the size ratio and/or the packing fraction of the fluid increase. Somewhat surprisingly, Stokes' law is found to hold with stick boundary conditions, in the range 1 ≤ Σ/σ ≤ 4.5 explored in the present simulations, with a hydrodynamic diameter d=Σ. The analysis of the molecular dynamics data on the basis of Stokes' law with slip boundary conditions is less conclusive, although the right trend is found as Σ/σ increases

  16. Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres

    Directory of Open Access Journals (Sweden)

    J. Javier Brey

    2017-02-01

    Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.

  17. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.

    2011-12-23

    Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows.

  18. Polydispersity effects in the crystallisation of hard-sphere colloidal samples

    International Nuclear Information System (INIS)

    Martin, S.; Bryant, G.

    2002-01-01

    Full text: Colloidal particles mimicking hard-sphere behaviour have been shown to undergo the freezing and melting transition as predicted from computer simulations. Due to the large size and slow movement of the colloidal particles, it is possible to measure the time dependence of the growth of the main Bragg reflection using laser light scattering. The new data presented here was taken on a newly built crystallisation spectrometer which averages the Bragg reflections over the whole Debye-Scherrer cone, where previous work has mostly been done with the detector fixed in one plane. This new apparatus allows us to observe the crystallisation process at earlier times, on lower density samples than had previously been possible. Measurements have been made on samples made from colloidal particles with radii 320nm and 247 nm and polydispersities of ∼6.9% and >8% respectively. The results have been compared with other results from particles with >4% polydispersity. The results show that increasing the polydispersity in the particles increases the time lag before significant crystal growth occurs, but polydispersity doesn't appear to directly affect the rate of crystal growth

  19. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime.

    Science.gov (United States)

    Goussev, Arseni; Dorfman, J R

    2006-07-01

    We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.

  20. Fused hard-sphere chain molecules: Comparison between Monte Carlo simulation for the bulk pressure and generalized Flory theories

    International Nuclear Information System (INIS)

    Costa, L.A.; Zhou, Y.; Hall, C.K.; Carra, S.

    1995-01-01

    We report Monte Carlo simulation results for the bulk pressure of fused-hard-sphere (FHS) chain fluids with bond-length-to-bead-diameter ratios ∼ 0.4 at chain lengths n=4, 8 and 16. We also report density profiles for FHS chain fluids at a hard wall. The results for the compressibility factor are compared to results from extensions of the Generalized Flory (GF) and Generalized Flory Dimer (GFD) theories proposed by Yethiraj et al. and by us. Our new GF theory, GF-AB, significantly improves the prediction of the bulk pressure of fused-hard-sphere chains over the GFD theories proposed by Yethiraj et al. and by us although the GFD theories give slightly better low-density results. The GFD-A theory, the GFD-B theory and the new theories (GF-AB, GFD-AB, and GFD-AC) satisfy the exact zero-bonding-length limit. All theories considered recover the GF or GFD theories at the tangent hard-sphere chain limit

  1. Monaural ICA of white noise mixtures is hard

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Petersen, Kaare Brandt

    2003-01-01

    Separation of monaural linear mixtures of `white' source signals is fundamentally ill-posed. In some situations it is not possible to find the mixing coefficients for the full `blind' problem. If the mixing coefficients are known, the structure of the source prior distribution determines the sour...... of white noise signals and give a set of `no go' cases.......Separation of monaural linear mixtures of `white' source signals is fundamentally ill-posed. In some situations it is not possible to find the mixing coefficients for the full `blind' problem. If the mixing coefficients are known, the structure of the source prior distribution determines the source...

  2. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  3. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  4. The correlation functions of hard-sphere chain fluids: Comparison of the Wertheim integral equation theory with the Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chang, J.; Sandler, S.I.

    1995-01-01

    The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed

  5. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    Science.gov (United States)

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  6. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    Science.gov (United States)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  7. Induced supersolidity in a mixture of normal and hard-core bosons

    International Nuclear Information System (INIS)

    Mishra, Tapan; Das, B. P.; Pai, Ramesh V.

    2010-01-01

    We present a scenario where a supersolid is induced in one of the components of a mixture of two species bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson mixture with only the former possessing long-range interactions. We consider three cases: the first where the total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the charge density wave and the supersolid orders can be induced in the hard-core species as a result of the competing interatomic interactions.

  8. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Jiang, Hao; Adidharma, Hertanto

    2014-01-01

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions

  9. Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid

    International Nuclear Information System (INIS)

    Hansen-Goos, Hendrik

    2016-01-01

    We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R , the modified weight functions have range 3 R . Based on the augmented FMT, we calculate the radial distribution function g (r) up to second order in the density within Percus’ test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g (r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r   >  6 R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r   =  2 R) we construct a free energy which is based on the accurate Carnahan–Starling equation of state, rather than the Percus–Yevick compressibility equation underlying standard FMT. (paper)

  10. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.; Watanabe, H.; Ito, N.

    2010-01-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first

  11. Crystallization of sheared hard spheres at 64.5% volume fraction

    Science.gov (United States)

    Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.

    2017-11-01

    A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.

  12. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Science.gov (United States)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  13. Polydispersity effect on solid-fluid transition in hard sphere systems

    KAUST Repository

    Nogawa, T.

    2010-02-01

    The solid-fluid transition of the hard elastic particle system with size polydispersity is studied by molecular dynamics simulations. Using nonequilibrium relaxation from the mixed initial condition we determines the melting point where the first order transition between the solid, fcc crystal, and fluid states occurs. It is found that the density gap between the bistable states decreases with increasing the strength of the polydispersity and continuously approaches to zero at the critical point. © 2010.

  14. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition.

    Science.gov (United States)

    Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2013-10-24

    We consider the theory of the glass phase and jamming of hard spheres in the large space dimension limit. Building upon the exact expression for the free-energy functional obtained previously, we find that the random first order transition (RFOT) scenario is realized here with two thermodynamic transitions: the usual Kauzmann point associated with entropy crisis and a further transition at higher pressures in which a glassy structure of microstates is developed within each amorphous state. This kind of glass-glass transition into a phase dominating the higher densities was described years ago by Elisabeth Gardner, and may well be a generic feature of RFOT. Microstates that are small excitations of an amorphous matrix-separated by low entropic or energetic barriers-thus emerge naturally, and modify the high pressure (or low temperature) limit of the thermodynamic functions.

  15. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests

    Science.gov (United States)

    Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick

    2011-03-01

    We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.

  16. Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height.

    Science.gov (United States)

    Zhou, Shiqi; Solana, J R

    2009-11-28

    A bridge function approximation is proposed to close the Ornstein-Zernike (OZ) integral equation for fluids with purely repulsive potentials. The performance of the bridge function approximation is then tested by applying the approximation to two kinds of repulsive potentials, namely, the square shoulder potential and the triangle shoulder potential. An extensive comparison between simulation and the OZ approach is performed over a wide density range for the fluid phase and several temperatures. It is found that the agreement between the two routes is excellent for not too low temperatures and satisfactory for extremely low temperatures. Then, this globally trustworthy OZ approach is used to investigate the possible existence or not of a liquid anomaly, i.e., a liquid-liquid phase transition at low temperatures and negative values of the thermal expansion coefficient in certain region of the phase diagram. While the existence of the liquid anomaly in the square shoulder potential has been previously predicted by a traditional first-order thermodynamic perturbation theory (TPT), the present investigation indicates that the liquid-liquid phase transition disappears in the OZ approach, so that its prediction by the first-order TPT is only an artifact originating from the low temperature inadequacy of the first-order TPT. However, the OZ approach indeed predicts negative thermal expansion coefficients. The present bridge function approximation, free of adjustable parameters, is suitable to be used within the context of a recently proposed nonhard sphere perturbation scheme.

  17. Influence exothermical mixtures contents Na or B on elongation and hardness AlSi12 alloy

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2008-04-01

    Full Text Available The experiments were conducted on alloy AlSi12, following a factor design 23 for 3 independent variables. Mixtures composed of NaNO3, Na2B4O7, and Mg were used for alloy treatment. The amount of a reducing agent (Mg necessary to carry out the process was calculated on the basis of chemical reactions. The mass fraction (weight in weight concentration of individual variables is presented in Table 1. Results of study present by graphical forms. Figures 2-8 present until elongation (A5 and Brinell hardness (HB for each variable, at extreme (lower or higher levels of the other two.

  18. Gelation in a model 1-component system with adhesive hard-sphere interactions

    Science.gov (United States)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  19. The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2012-05-16

    The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    Science.gov (United States)

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  1. The Widom-Rowlinson mixture on a sphere: elimination of exponential slowing down at first-order phase transitions

    International Nuclear Information System (INIS)

    Fischer, T; Vink, R L C

    2010-01-01

    Computer simulations of first-order phase transitions using 'standard' toroidal boundary conditions are generally hampered by exponential slowing down. This is partly due to interface formation, and partly due to shape transitions. The latter occur when droplets become large such that they self-interact through the periodic boundaries. On a spherical simulation topology, however, shape transitions are absent. We expect that by using an appropriate bias function, exponential slowing down can be largely eliminated. In this work, these ideas are applied to the two-dimensional Widom-Rowlinson mixture confined to the surface of a sphere. Indeed, on the sphere, we find that the number of Monte Carlo steps needed to sample a first-order phase transition does not increase exponentially with system size, but rather as a power law τ∝V α , with α∼2.5, and V the system area. This is remarkably close to a random walk for which α RW = 2. The benefit of this improved scaling behavior for biased sampling methods, such as the Wang-Landau algorithm, is investigated in detail.

  2. Chord length distributions between hard disks and spheres in regular, semi-regular, and quasi-random structures

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2008-01-01

    In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution

  3. Chord length distributions between hard disks and spheres in regular, semi-regular, and quasi-random structures

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gordon L. [Computer and Computational Sciences Division (CCS-2), Los Alamos National Laboratory, 5 Foxglove Circle, Madison, WI 53717 (United States)], E-mail: olson99@tds.net

    2008-11-15

    In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution.

  4. A Local Approximation of Fundamental Measure Theory Incorporated into Three Dimensional Poisson-Nernst-Planck Equations to Account for Hard Sphere Repulsion Among Ions

    Science.gov (United States)

    Qiao, Yu; Liu, Xuejiao; Chen, Minxin; Lu, Benzhuo

    2016-04-01

    The hard sphere repulsion among ions can be considered in the Poisson-Nernst-Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst-Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435-438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475-2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It's observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both

  5. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2011-12-01

    Full Text Available Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamic perturbation theory (TPT is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426 1st-order high temperature series expansion (HTSE TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861, have some serious shortcomings: (i the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE and a non hard sphere (HS perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii We give a quantitative analysis on why

  6. Attractive and repulsive interactions among methanol molecules in supercritical state investigated by Raman spectroscopy and perturbed hard-sphere theory.

    Science.gov (United States)

    Saitow, Ken-ichi; Sasaki, Jungo

    2005-03-08

    The short-range structure of supercritical methanol (CH(3)OH) is investigated by measuring the spontaneous Raman spectra of the C-O stretching mode. The spectra are obtained at a reduced temperature, T(r)=T/T(c)=1.02 (522.9 K), which permits the neat fluid to be studied isothermally as a function of density. As the density increases, the spectral peaks shift toward the lower energy side and the spectra broaden. In the supercritical region, the amount of shifting shows nonlinear density dependence and the width becomes anomalously large. We use the perturbed hard-sphere model to analyze these density dependencies along the vibrational coordinate. The amount of shifting is decomposed into attractive and repulsive components, and the changes in attractive and repulsive energies are evaluated as functions of density and packing fraction, both of which are continuously varied by a factor of 120. Here we show that the shift amount consists principally of the attractive component at all densities, since the attractive energy is about eight times the repulsive energy. The density dependence of the widths is analyzed by calculating homogeneous and inhomogeneous widths as a function of density. The results show that, although vibrational dephasing and density inhomogeneity contribute similarly to the width at low and middle densities, at high density the main contributor turns out to be the vibrational dephasing. We estimate the local density enhancements of supercritical CH(3)OH as function of bulk density by two methods. The results of these analyses show common features, and both the estimated local density enhancements of CH(3)OH are considerably larger than the local density enhancements of simple fluids, i.e., those having nonhydrogen bonding. It is revealed that the local density of supercritical CH(3)OH is 40%-60% greater than the local densities of the simple fluids. We also estimate the local density fluctuation using the obtained values of attractive shift

  7. The Modified Enskog Equation for Mixtures

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1973-01-01

    In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport

  8. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  9. Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness

    Directory of Open Access Journals (Sweden)

    H. Löwe

    2015-11-01

    Full Text Available The description of snow microstructure in microwave models is often simplified to facilitate electromagnetic calculations. Within dense media radiative transfer (DMRT, the microstructure is commonly described by sticky hard spheres (SHS. An objective mapping of real snow onto SHS is however missing which prevents measured input parameters from being used for DMRT. In contrast, the microwave emission model of layered snowpacks (MEMLS employs a conceptually different approach, based on the two-point correlation function which is accessible by tomography. Here we show the equivalence of both electromagnetic approaches by reformulating their microstructural models in a common framework. Using analytical results for the two-point correlation function of hard spheres, we show that the scattering coefficient in both models only differs by a factor which is close to unity, weakly dependent on ice volume fraction and independent of other microstructural details. Additionally, our analysis provides an objective retrieval method for the SHS parameters (diameter and stickiness from tomography images. For a comprehensive data set we demonstrate the variability of stickiness and compare the SHS diameter to the optical equivalent diameter. Our results confirm the necessity of a large grain-size scaling when relating both diameters in the non-sticky case, as previously suggested by several authors.

  10. A variable hard sphere-based phenomenological inelastic collision model for rarefied gas flow simulations by the direct simulation Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)

    2012-04-01

    A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.

  11. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  12. A general mixture theory. I. Mixtures of spherical molecules

    Science.gov (United States)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  13. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    Science.gov (United States)

    Frusawa, Hiroshi

    2014-05-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕc=e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕc and the jamming limit in the car parking problem.

  14. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: A coarse-grained similarity to the car parking problem

    International Nuclear Information System (INIS)

    Frusawa, Hiroshi

    2014-01-01

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of ϕ c =e/(1+e)=0.731⋯ , at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above ϕ c and the jamming limit in the car parking problem.

  15. Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom

    DEFF Research Database (Denmark)

    Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.

    1991-01-01

    A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...... by the method in the case of a binary mixture, and results are presented for varying disk-size ratios and degeneracies. The results are also compared with the predictions of the extended scaled-particle theory. Applications of the model are discussed in relation to lipid monolayers spread on air...

  16. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang Bo-Kai; Ma Yu-Qiang; Li Jian; Chen Kang; Tian Wen-De

    2016-01-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. (rapid communication)

  17. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  18. Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume

    International Nuclear Information System (INIS)

    Krainov, A Yu; Moiseeva, K M

    2016-01-01

    The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)

  19. Effect of excluded volume interactions on the interfacial properties of colloid-polymer mixtures

    NARCIS (Netherlands)

    Fortini, A.; Bolhuis, P.G.; Dijkstra, M.

    2008-01-01

    We report a numerical study of equilibrium phase diagrams and interfacial properties of bulk and confined colloid-polymer mixtures using grand canonical Monte Carlo simulations. Colloidal particles are treated as hard spheres, while the polymer chains are described as soft repulsive spheres. The

  20. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    Science.gov (United States)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  1. Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material

    Science.gov (United States)

    Poeloengasih, Crescentiana Dewi; Pranoto, Yudi; Anggraheni, Frida Dwi; Marseno, Djagal Wiseso

    2017-03-01

    In order to replace gelatin in capsule shell production, blends of sago starch and carrageenan were developed. Films and capsules were prepared with 10% (w/v) of sago starch, 25% (w/w starch) of glycerol and various carrageenan concentration (1, 2, 3% w/w starch) in two different kappa/iota-carrageenan ratio (1:3 and 3:1). The resulted films and capsules were characterized by mechanical property, water vapor and oxygen permeability. In addition, moisture absorption and solubility of capsule in acid solution were investigated. The results reveal that addition of carrageenan makes the films stronger and less permeable. Higher kappa-carrageenan content improved tensile strength and barrier properties of the films, whereas higher iota-carrageenan content produced films with higher elongation, moisture absorption and capsule solubility in acid solution. Capsule with 2% (w/w starch) of carrageenan at kappa-/iota-ratio 3:1 had the lowest moisture absorption, whereas capsule with 3% (w/w starch) of carrageenan at kappa/iota ratio 1:3 had the highest solubility. It is illustrated that sago starch/carrageenan blends can be used as hard capsule material.

  2. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    Science.gov (United States)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems

  3. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  4. Critical phenomena in binary fluid mixtures : Classification of phase equilibria with the simplified-perturbed-hard-chain theory

    NARCIS (Netherlands)

    Van Pelt, A.

    1992-01-01

    I. INTRODUCTION AND THEORY This PhD research is mainly concerned with the global phase behaviour, that is calculated from the Simplified-Perturbed-Hard-Chain equation. This equation distinguishes itself from many other equations of state by a sound theoretical background. We enter the field of the

  5. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    Science.gov (United States)

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  6. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....

  7. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    Science.gov (United States)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  8. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-11-14

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for

  9. Free Volume of the Hard Spheres Gas

    Science.gov (United States)

    Shutler, P. M. E.; Martinez, J. C.; Springham, S. V.

    2007-01-01

    The Enskog factor [chi] plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how…

  10. Free volume of the hard spheres gas

    International Nuclear Information System (INIS)

    Shutler, P M E; Martinez, J C; Springham, S V

    2007-01-01

    The Enskog factor χ plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how all these instances of χ amount to different ways of looking at the derivative of the free volume with respect to the packing density. We show how to compute the free volume explicitly for finitely many molecules in a finite box and demonstrate excellent agreement between its derivative and mean free paths obtained from computer simulations, where the number of molecules N varies from 1000 down to 2, and where the mean free paths vary from many times the molecular diameter at low density down to a small fraction of the molecular diameter at high density. Since the boundary corrections involved are relatively simple and intuitive this strengthens the link between the teaching of large N theory for real physical systems, and the running of small N simulations in undergraduate physics laboratories

  11. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.

    Science.gov (United States)

    Dimic-Misic, Katarina; Hummel, Michael; Paltakari, Jouni; Sixta, Herbert; Maloney, Thad; Gane, Patrick

    2015-05-15

    Suspensions of mineral pigment and cellulose fibrillar derivatives are materials regularly found in the forest products industries, particularly in paper and board production. Many manufacturing processes, including forming and coating employ flow geometries incorporating extensional flow. Traditionally, colloidal mineral pigment suspensions have been considered to show little to no non-linear behaviour in extensional viscosity. Additionally, recently, nanofibrillar materials, such as microfibrillar (MFC) and nanofibrillar cellulose (NFC), collectively termed MNFC, have been confirmed by their failure to follow the Cox-Merz rule to behave more as particulate material rather than showing polymeric rheological properties when dispersed in water. Such suspensions and their mixtures are currently intensively investigated to enable them to generate likely enhanced composite material properties. The processes frequently involve exposure to increasing levels of ionic strength, coming either from the weak solubility of pigments, such as calcium carbonate, or retained salts arising from the feed fibre source processing. By taking the simple case of polyacrylate stabilised calcium carbonate suspension and comparing the extensional viscosity as a function of post extension capillary-induced Hencky strain on a CaBER extensional rheometer over a range of increasing salt concentration, it has been shown that the regime of constriction changes as the classic DLVO double layer is progressively suppressed. This change is seen to lead to a characteristic double (bimodal) measured viscosity response for flocculated systems. With this novel characteristic established, more complex mixed suspensions of calcium carbonate, clay and MNFC have been studied, and the effects of fibrils versus flocculation identified and where possible separated. This technique is suggested to enable a better understanding of the origin of viscoelasticity in these important emerging water-based suspensions

  12. Work Hard / Play Hard

    OpenAIRE

    Burrows, J.; Johnson, V.; Henckel, D.

    2016-01-01

    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with AntiUniversity.org. As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  13. Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Kontogeorgis, Georgios

    2016-01-01

    The cubic plus association (CPA) equation of state (EoS) is extended to include quadrupolar interactions. The quadrupolar term is based on a modification of the perturbation terms by Larsen et al. (1977) [5] for a hard sphere fluid with a symmetric point quadrupole moment. The new quadrupolar CPA......CPA can accurately correlate both the phase behaviour of CO2+hydrocarbon mixtures as well as mixtures of CO2+a self-associating compound....

  14. Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    International Nuclear Information System (INIS)

    Fortini, Andrea; Dijkstra, Marjolein; Tuinier, Remco

    2005-01-01

    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened Coulomb repulsion. For relatively large polymers, the effect of the screened Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases upon increasing the range of the screened Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids

  15. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  16. Scaling in soft spheres: fragility invariance on the repulsive potential softness

    International Nuclear Information System (INIS)

    Michele, Cristiano De; Sciortino, Francesco; Coniglio, Antonio

    2004-01-01

    We address the question of the dependence of the fragility of glass forming supercooled liquids on the 'softness' of an interacting potential by performing numerical simulation of a binary mixture of soft spheres with different power n of the interparticle repulsive potential. We show that the temperature dependence of the diffusion coefficients for various n collapses onto a universal curve, supporting the unexpected view that fragility is not related to the hard core repulsion. We also find that the configurational entropy correlates with the slowing down of the dynamics for all studied n. (letter to the editor)

  17. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  18. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  19. Silo outflow of soft frictionless spheres

    Science.gov (United States)

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  20. Specific surface area of overlapping spheres in the presence of obstructions.

    Science.gov (United States)

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  1. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  2. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  3. A Powerful Public Sphere?

    DEFF Research Database (Denmark)

    Fiig, Christina

    The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...

  4. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    International Nuclear Information System (INIS)

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  5. Experiment SPHERE status 2008

    International Nuclear Information System (INIS)

    Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-01-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.

  6. Experiment SPHERE status 2008

    Energy Technology Data Exchange (ETDEWEB)

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)

    2009-12-15

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.

  7. Soft And Hard Skills of Social Worker

    OpenAIRE

    HANTOVÁ, Libuše

    2011-01-01

    The work deals with soft and hard skills relevant to the profession of social worker. The theoretical part at first evaluates and analyzes important soft and hard skills necessary for people working in the field of social work. Then these skills are compared. The practical part illustrates the use of soft and hard skills in practice by means of model scenes and deals with the preferences in three groups of people ? students of social work, social workers and people outside the sphere, namely ...

  8. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.

    Science.gov (United States)

    Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V

    2007-07-21

    The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.

  9. The sphere-PAC fuel code 'SPHERE-3'

    International Nuclear Information System (INIS)

    Wallin, H.

    2000-01-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  10. The sphere-pac fuel code 'SPHERE-3'

    International Nuclear Information System (INIS)

    Wallin, H.; Nordstroem, L.A.; Hellwig, C.

    2001-01-01

    Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  11. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  12. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  13. Spinning the fuzzy sphere

    International Nuclear Information System (INIS)

    Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin

    2015-01-01

    We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.

  14. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  15. Liquid viscosity of low-GWP refrigerant mixtures (R32 + R1234yf) and (R125 + R1234yf)

    International Nuclear Information System (INIS)

    Dang, Yagu; Kamiaka, Takumi; Dang, Chaobin; Hihara, Eiji

    2015-01-01

    Highlights: • We measured liquid viscosity of low GWP refrigerant R1234yf binary mixtures. • Viscosity of R1234yf mixtures were correlated with the roughness hard-sphere method. • Viscosity of R1234yf mixtures were correlated with the Grunberg and Nissan method. - Abstract: In this work, the viscosity of R1234yf, (R32 + R1234yf), and (R125 + R1234yf) in one-phase liquid was measured. The combined expanded uncertainty of viscosity measurement apparatus of confidence of 0.95 (k = 2) is about 2.0%. The measurements of mixtures containing (30.0, 50.0, and 70.0) wt% R32 or R125 were carried out between T = (283.0 and 323.0) K (at intervals of T = 5 K) and P = (1.58 and 2.74) MPa, with a moving piston viscometer (VISCOpro 1600, accuracy ±1.0%) and a Coriolis flowmeter (Ultramass MKII, accuracy ±0.001 g/ml). The measured data were correlated with a hard-sphere (RSH) method and the Grunberg and Nissan method. The average absolute deviations are (2.2 and 3.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RSH method, (2.8 and 1.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by Grunberg and Nissan method, while (3.5 and 2.4)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RefProp V9.1, respectively

  16. Computer simulations of a rough sphere fluid

    International Nuclear Information System (INIS)

    Lyklema, J.W.

    1978-01-01

    A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)

  17. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Directory of Open Access Journals (Sweden)

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  18. The hard-sphere model of strongly interacting fermion systems

    OpenAIRE

    Mecca, Angela

    2016-01-01

    The formalism based on Correlated Basis Functions (CBF) and the cluster-expansion technique has been recently employed to derive an effective interaction from a realistic nuclear Hamiltonian. One of the main objectives of the work described in this Thesis is establishing the accuracy of this novel approach--that allows to combine the flexibility of perturbation theory in the basis of eigenstates of the noninteracting system with a realistic description of short-range correlations in coordinat...

  19. Theory of molecular crowding in Brownian hard-sphere liquids.

    Science.gov (United States)

    Zaccone, Alessio; Terentjev, Eugene M

    2012-06-01

    We derive an analytical pair potential of mean force for Brownian molecules in the liquid state. Our approach accounts for many-particle correlations of crowding particles of the liquid and for diffusive transport across the spatially modulated local density of crowders in the dense environment. Focusing on the limit of equal-size particles, we show that this diffusive transport leads to additional density- and structure-dependent terms in the interaction potential and to a much stronger attraction (by a factor of ≈4 at average volume fraction of crowders φ{0}=0.25) than in the standard depletion interaction where the diffusive effects are neglected. As an illustration of the theory, we use it to study the size of a polymer chain in a solution of inert crowders. Even in the case of an athermal background solvent, when a classical chain should be fully swollen, we find a sharp coil-globule transition of the ideal chain collapsing at a critical value of the crowder volume fraction φ{c}≈0.145.

  20. Structural relaxation in dense hard-sphere fluids

    International Nuclear Information System (INIS)

    Ladd, A.J.C.; Edward Alley, W.; Alder, B.J.

    1987-01-01

    The long-time decay of the shear-stress autocorrelation function is shown to be quantitatively related to the decay of correlations between the orientation of ''bonds'' connecting colliding pairs of particles. Within computational uncertainties, we find that orientational correlations in high-density fluids decay as a ''stretched'' exponential in time, with an exponent that is independent of density. However, at low densities the decay is exponential. In two-dimensional systems the decay is exponential, even at high density

  1. Theorising Public and Private Spheres

    Directory of Open Access Journals (Sweden)

    Sima Remina

    2016-12-01

    Full Text Available The 19th century saw an expression of women’s ardent desire for freedom, emancipation and assertion in the public space. Women hardly managed to assert themselves at all in the public sphere, as any deviation from their traditional role was seen as unnatural. The human soul knows no gender distinctions, so we can say that women face the same desire for fulfillment as men do. Today, women are more and more encouraged to develop their skills by undertaking activities within the public space that are different from those that form part of traditional domestic chores. The woman of the 19th century felt the need to be useful to society, to make her contribution visible in a variety of domains. A woman does not have to become masculine to get power. If she is successful in any important job, this does not mean that she thinks like a man, but that she thinks like a woman. Women have broken through the walls that cut them off from public life, activity and ambition. There are no hindrances that can prevent women from taking their place in society.

  2. VMware vSphere Design

    CERN Document Server

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  3. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  4. Direct numerical simulation of non-isothermal flow through dense bidisperse random arrays of spheres

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2017-01-01

    Extensive direct numerical simulations were performed to obtain the heat transfer coefficients (HTC) of bidisperse random arrays of spheres. We have calculated the HTC for a range of compositions and solids volume fractions for mixtures of spheres with a size ratio of 1:2. The Reynolds numbers are

  5. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Fortini, Andrea; Dijkstra, Marjolein

    2004-01-01

    Using density functional theory and Monte Carlo simulations we investigate the Asakura-Oosawa-Vrij mixture of hard sphere colloids and non-adsorbing ideal polymers under selective confinement of the colloids to a planar slab geometry. This is a model for confinement of colloid-polymer mixtures by either two parallel walls with a semi-permeable polymer coating or through the use of laser tweezers. We find that such a pore favours the colloidal gas over the colloidal liquid phase and induces capillary evaporation. A treatment based on the Kelvin equation gives a good account of the location of the capillary binodal for large slit widths. The colloid density profile is found to exhibit a minimum (maximum) at contact with the wall for large (small) slit widths

  6. Beyond fuzzy spheres

    International Nuclear Information System (INIS)

    Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T

    2010-01-01

    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.

  7. Falling-sphere radioactive viscometry

    International Nuclear Information System (INIS)

    Souza, R. de.

    1987-01-01

    In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt

  8. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  9. Analytic functionals on the sphere

    CERN Document Server

    Morimoto, Mitsuo

    1998-01-01

    This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.

  10. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  11. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  12. Pele's tears and spheres

    Science.gov (United States)

    Porritt, L. A.; Quane, S.; Russell, K.

    2011-12-01

    Pele's tears are a well known curiosity commonly associated with low viscosity basaltic explosive eruptions. However, these pyroclasts are rarely studied in detail and there is no full explanation for their formation. These intriguing pyroclasts have smooth glassy surfaces, vesiculated interiors, and fluidal morphologies tending towards droplets and then spheres as they decrease in size to Pele's tears from the 1959 fire-fountaining eruption of Kilauea Iki involving size and density measurements. Using thin section and SEM analysis we also consider their internal and external morphologies, porosity and bubble size distributions, and surface textures. Finally we consider the mechanisms of magma fragmentation, timescales of relaxation, and cooling rates that are responsible for their formation.

  13. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  14. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  15. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  16. Spherical Approximation on Unit Sphere

    Directory of Open Access Journals (Sweden)

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  17. Non-ergodicity transition and multiple glasses in binary mixtures: on the accuracy of the input static structure in the mode coupling theory

    International Nuclear Information System (INIS)

    Tchangnwa Nya, F; Ayadim, A; Germain, Ph; Amokrane, S

    2012-01-01

    We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld’s fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D 2 /D 1 = 10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model. (paper)

  18. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M

    2014-01-01

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  19. Excess Properties of Aqueous Solutions: Hard Spheres versus Pseudo-Hard Bodies

    Czech Academy of Sciences Publication Activity Database

    Rouha, M.; Nezbeda, Ivo

    2011-01-01

    Roč. 109, č. 4 (2011), s. 613-617 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : partial molar volume * primitive models * thermodynamic properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.819, year: 2011

  20. Of spheres and squares

    DEFF Research Database (Denmark)

    Skrydstrup, Martin

    2016-01-01

    This article explores how different visions and values of science translate into different architectural shapes. I bring Peter Sloterdijk’s ‘spherology’ to bear on my ethnographic fieldwork at the NEEM ice core base in Greenland, a significant node in the global infrastructure of climate science. I...... argue that the visual form of the geodesic dome of the camp materializes specific values and visions of this branch of paleoclimate science, which I elaborate vis-a-vis the pragmatic claims of the scientists/designers and the particular architectural history of Danish ice core drilling in Greenland. I...... as the lab space is rectangular and the recreational space is spherical. Third, I argue that NEEM scientists and Sloterdijk are essentially engaged in a common project: the scientists work hard to align air bubbles in the cores with atmospheric fluctuations in the hemisphere on the evidentiary terrain of ice...

  1. Public Sphere as Digital Assemblage

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...

  2. Differential Calculus on Quantum Spheres

    OpenAIRE

    Welk, Martin

    1998-01-01

    We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.

  3. Grouting mixture

    Energy Technology Data Exchange (ETDEWEB)

    Klyusov, A A; Bakshutov, V S; Kulyavtsev, V A

    1980-10-23

    A grouting mixture is proposed for low-temperature boreholes. The mixture contains cement, beta gypsum polyhydrate, and calcium chloride, so as to increase the water resistance and strength properties of expanding brick at conditions from 20 to -5/sup 0/ C, the components are in the following ratios: (by wt.-%): cement, 77.45-88.06; beta gypsum polyhydrate, 9.79-19.36; calcium chloride, 2.15-3.19. Grouting mortar for cold boreholes serves as the cement.

  4. Entropic patchiness drives multiphase coexistence in discotic colloid–depletant mixtures

    NARCIS (Netherlands)

    González García, A.; Wensink, H.H.; Lekkerkerker, H.N.W.; Tuinier, R.

    2017-01-01

    Entropy–driven equilibrium phase behaviour of hard particle dispersions can be understood from excluded volume arguments only. While monodisperse hard spheres only exhibit a fluid–solid phase transition, anisotropic hard particles such as rods, discs, cuboids or boards exhibit various multi–phase

  5. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    Science.gov (United States)

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  6. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G., E-mail: wgchap@rice.edu [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251 (United States)

    2016-08-21

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.

  7. Troubleshooting vSphere storage

    CERN Document Server

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  8. Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.

  9. Spheres of discharge of springs

    Science.gov (United States)

    Springer, Abraham E.; Stevens, Lawrence E.

    2009-02-01

    Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

  10. Neuroscience in the public sphere.

    Science.gov (United States)

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Neuroscience in the Public Sphere

    OpenAIRE

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-01-01

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere.

  12. Magnetohydraulic flow through a packed bed of electrically conducting spheres

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1985-01-01

    The flow of an electrically conducting fluid through a packed bed of electrically conducting spheres in the presence of a strong magnetic field constitutes a very complex flow situation due to the constant turning of the fluid in and out of magnetic field lines. The interaction of the orthogonal components of the velocity and magnetic field will induce electric fields that are orthogonal to both and the electric fields in turn can cause currents that interact with the magnetic field to generate forces against the direction of flow. The strengths of these generated forces depend primarily upon the closure paths taken by the induced currents which, in turn, depend upon the relative ratio of the electrical resistance of the solid spheres to that of the fluid. Both experimental and analytical analyses of the slow flow of a eutectic mixture of sodium and potassium (NaK) through packed cylinders containing stainless steel spheres in the presence of a strong transverse magnetic field were completed. A theory of magnetohydraulic flow is developed by analogy with the development of hydraulic radius theories of flow through porous media. An exact regional analysis is successfully applied to an infinite bed of electrically conducting spheres with a conducting or non-conducting constraining wall on one side. The equations derived are solved for many different combinations of flowrate, magnetic field strength, porosity, and electrical resistance ratio

  13. Tessellating the Sphere with Regular Polygons

    Science.gov (United States)

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  14. Multi-template synthesis of hierarchically porous carbon spheres with potential application in supercapacitors

    NARCIS (Netherlands)

    Zhou, Weizheng; Lin, Zhixing; Tong, Gangsheng; Stoyanov, Simeon D.; Yan, Deyue; Mai, Yiyong; Zhu, Xinyuan

    2016-01-01

    A new and simple multi-template approach towards hierarchical porous carbon (HPC) materials was reported. HPC spheres were prepared by using hierarchical silica capsules (HSCs) as the hard template and triblock copolymer Pluronic P123 as the soft template. Three types of pores were tunably

  15. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  16. Archaic artifacts resembling celestial spheres

    Science.gov (United States)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  17. Spheres of Justice within Schools

    DEFF Research Database (Denmark)

    Sabbagh, Clara; Resh, Nura; Mor, Michal

    2006-01-01

    This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do not correspond...

  18. The optical levitation of spheres

    International Nuclear Information System (INIS)

    Roosen, G.

    1979-01-01

    In this article we are dealing with optical levitation, that is the possibility of maintaining particles in a stable equilibrium position in air or vacuum by means of laser beams. In the first part, we review the methods used to calculate the force exerted on a sphere by a laser beam. The axial and transverse force components could be obtained either by applying Debye theory to laser beams which have a non-uniform energy distribution or by using, in the case of large spheres, a geometrical optics approach. From the results achieved with the geometrical optics approach, we derive, in a second part, the required stable equilibrium conditions for a sphere placed either in a vertical beam or in two horizontal ones having the same axis but opposite direction. In the last part, we describe in detail the levitation experiments carried out using either a vertical or two horizontal beams. In conclusion, we point out some applications of optical levitation, emphasizing especially the suspension by optical levitation of the targets used in laser fusion experiments. (author) [fr

  19. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  20. The sphere-PAC fuel code 'SPHERE-3'

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, H

    2000-07-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  1. A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS

    OpenAIRE

    Bota Anton Florin

    2009-01-01

    The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou

  2. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  3. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  4. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  5. Sampling from a polytope and hard-disk Monte Carlo

    International Nuclear Information System (INIS)

    Kapfer, Sebastian C; Krauth, Werner

    2013-01-01

    The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation

  6. VMware vSphere design

    CERN Document Server

    Guthrie, Forbes

    2013-01-01

    Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v

  7. AIE-doped poly(ionic liquid) photonic spheres: a single sphere-based customizable sensing platform for the discrimination of multi-analytes.

    Science.gov (United States)

    Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao; Zhang, Deqing; Li, Guangtao

    2017-09-01

    By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array.

  8. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Science.gov (United States)

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  9. Poisson denoising on the sphere

    Science.gov (United States)

    Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.

    2009-08-01

    In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.

  10. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  11. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  12. The Positive Freedom of the Public Sphere

    DEFF Research Database (Denmark)

    Hansen, Ejvind

    2015-01-01

    calls for new reflections on the possible relationship between media, public sphere and democracy. This paper argues that we should change the questions that are raised when we try to assess the public sphere. It is argued that the traditional (Enlightenment) focus upon negative liberties and the truth-value......The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...

  13. Sphere Rényi entropies

    International Nuclear Information System (INIS)

    Dowker, J S

    2013-01-01

    I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Rényi entropies are computed. Massive fields are also considered and a renormalization to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. From the deformation of the corresponding lune result, I conjecture that the effective action on all odd manifolds with a simple conical singularity has an extremum when the singularity disappears. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann ζ-functions (and log 2). (paper)

  14. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  15. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  16. Electric dipoles on the Bloch sphere

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  17. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  18. Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions

    Science.gov (United States)

    Klatt, Michael A.; Torquato, Salvatore

    2018-01-01

    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.

  19. Anomalies, conformal manifolds, and spheres

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  20. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  1. Unsteady flow over a decelerating rotating sphere

    Science.gov (United States)

    Turkyilmazoglu, M.

    2018-03-01

    Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

  2. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  3. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  4. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  5. Formal Variability of Terms in the Sphere of Network Technologies

    Directory of Open Access Journals (Sweden)

    Roman Viktorovich Deniko

    2015-09-01

    Full Text Available The article addresses the problem of formal variability of terms in the sphere of network terminology in the Russian language. The research is based on data from the Internet communication in the sphere of network technologies. Such formal variability types as graphical, phonemic, word building and complex (graphic and phonetic, morphologic and accentual are discussed in this article. The authors reveal the reasons for graphic variability of foreign origin terms making up the international terminological fund. These reasons cover such aspects as the use of graphics of source language and recipient language; the presence or absence of hyphenation, etc. It is determined that the phonemic variants of terms appear as a result of oral or written borrowings. The existence of such variants is also connected with the stage of their adaptation in the Russian language after borrowing. In this case the variants are related with soft or hard pronunciation of consonants. There are also some cases of phonemic variability on the graphic level. The complex variability is regarded as a part of active processes taking place in the modern Russian language, and these processes involve both native and foreign origin terms. The particular attention is paid to the word-building variants – word-building affixes the variability of which is peculiar of network technologies. The results of the research show that the variability of professional units belonging to the network technologies sublanguage is caused by the active process of borrowing of specialpurpose vocabulary into the Russian language. The process is due to the intensification of intercultural communication in the professional spheres.

  6. Finding a source inside a sphere

    International Nuclear Information System (INIS)

    Tsitsas, N L; Martin, P A

    2012-01-01

    A sphere excited by an interior point source or a point dipole gives a simplified yet realistic model for studying a variety of applications in medical imaging. We suppose that there is an exterior field (transmission problem) and that the total field on the sphere is known. We give analytical inversion algorithms for determining the interior physical characteristics of the sphere as well as the location, strength and orientation of the source/dipole. We start with static problems (Laplace’s equation) and then proceed to acoustic problems (Helmholtz equation). (paper)

  7. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  8. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Kim, H.S. [University of Newcastle, Callaghan, NSW (Australia). Faculty of Engineering & Built Environments

    2007-08-15

    Novel syntactic foams for potential building material applications were developed using starch as binder and ceramic hollow micro-spheres available as waste from coal-fired power stations. Foams of four different micro-sphere size groups were manufactured with either pre- or post-mould gelatinization process. They were of ternary system including voids with a foam density range of approximately 0.33-0.44 g/cc. Compressive failure behaviour and mechanical properties of the manufactured foams were evaluated. Not much difference in failure behaviour or in mechanical properties between the two different processes (pre- and post-mould gels) was found for a given binder content. Compressive failure of all syntactic foams was of shear on plane inclined 45 degrees to compressive loading direction. Failure surfaces of most syntactic foams were characterized by debonded micro-spheres. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified. Some formation of starch webs on failure surfaces was discussed.

  9. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  10. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  11. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  12. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  13. Spheres of SA Government, responsibilities and delivery

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2010-09-01

    Full Text Available The institutional framework for government in South Africa was established in 1996 with the adoption of the first democratic Constitution. National, provincial and local government was established as three elected spheres of government, each...

  14. Gender, Diversity and the European Public Sphere

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  15. Hydrodynamic interaction between bacteria and passive sphere

    Science.gov (United States)

    Zhang, Bokai; Ding, Yang; Xu, Xinliang

    2017-11-01

    Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.

  16. Acoustic levitation of a large solid sphere

    International Nuclear Information System (INIS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-01-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  17. 1-Public sphere Ambadiang.pmd

    African Journals Online (AJOL)

    \\376\\377\\000s\\000e\\000r\\000i\\000a\\000n\\000e\\000.\\000c\\000a\\000m\\000a\\000r\\000a

    2011-03-09

    Mar 9, 2011 ... Council for the Development of Social Science Research in Africa, 2010 .... Ambadiang: Public Sphere, Linguistic Sphericules and Discourse Communities in Africa ...... eds., Media, Ritual, Identity, London: Routledge, pp.

  18. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  19. Elastic spheres can walk on water.

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  20. which spheres of government are responsible

    African Journals Online (AJOL)

    XXX

    basic guidelines for a land use management system in the municipality. 38. The issue ... property in Linden to permit the establishment of a restaurant and gift shop. 40. The .... spheres of government do not operate in sealed compartments. 65.

  1. Scintillation forward spectrometer of the SPHERE setup

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Afanas'ev, S.V.; Bondarev, V.K.

    1991-01-01

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  2. Optimal mixture experiments

    CERN Document Server

    Sinha, B K; Pal, Manisha; Das, P

    2014-01-01

    The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model.  Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...

  3. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Directory of Open Access Journals (Sweden)

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  4. New trends in the ICRU sphere

    International Nuclear Information System (INIS)

    Morstin, K.; Kawecka, B.; Booz, J.

    1985-01-01

    A space transformation has been applied that enables the transport equation to be efficiently solved for spheres exposed to radiations of almost arbitrary angular distribution. Depth dose distributions in the ICRU sphere have been calculated with the 1-D ANISN transport code for neutron energies from thermal up to 20 MeV and for photons up to 15 MeV. Several irradiation geometries are considered. For deep-penetrating radiations, maximum possible dose equivalent index significantly exceeds Hsub(10) star

  5. Hardy type inequalities on the sphere

    Directory of Open Access Journals (Sweden)

    Xiaomei Sun

    2017-06-01

    Full Text Available Abstract In this paper, we consider the L p $L^{p}$ -Hardy inequalities on the sphere. By the divergence theorem, we establish the L p $L^{p}$ -Hardy inequalities on the sphere. Furthermore, we also obtain their best constants. Our results can be regarded as the extension of Xiao’s (J. Math. Inequal. 10:793-805, 2016.

  6. vSphere virtual machine management

    CERN Document Server

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  7. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  8. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    Science.gov (United States)

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  9. Film boiling heat transfer from a hot sphere falling in two-phase pool

    International Nuclear Information System (INIS)

    Bang, K. H.; Kim, K. Y.

    1998-01-01

    The purpose of the present study is to experimentally investigate film boiling heat trasfer from a hot sphere falling in steam-water two-phase pool, which is the key heat transfer mode in molten fuel and coolant mixing. To measure film boiling heat transfer coefficients on a spere falling in two-phase pool, a heated sphere with a thermocouple embedded at the center is dropped in a vertical tube filled with steam-water mixture. The present experiment is unique in making the heated sphere fall through the two-phase pool while the previous experiments were performed with stationary spheres in flowing fluid. The falling speed of the sphere is measured using a set of magnet pickup coils distributed along the tube. The ranges of the experimental conditions are: spere fall speed 0-0.5 m/s, average void fraction 0-25,% steam superficial velocity 0-0.25 m/s. The results show that the forced convection film boiling heat transfer coefficient decrease slightly as the steam superficial velocity (void fraction) is increased

  10. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  11. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  12. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.

    2007-01-15

    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  13. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  14. A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS

    Directory of Open Access Journals (Sweden)

    Bota Anton Florin

    2009-05-01

    Full Text Available The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou

  15. Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information

    Science.gov (United States)

    Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.

    2017-04-01

    We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.

  16. The Separate Spheres Model of Gendered Inequality.

    Science.gov (United States)

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  17. The Separate Spheres Model of Gendered Inequality.

    Directory of Open Access Journals (Sweden)

    Andrea L Miller

    Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  18. The Separate Spheres Model of Gendered Inequality

    Science.gov (United States)

    Miller, Andrea L.; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  19. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray scattering

    International Nuclear Information System (INIS)

    Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.

    2000-01-01

    X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems

  20. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-10-02

    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  1. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  2. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  3. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  4. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  5. The thermal conductivity of beds of spheres

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.

    1987-01-01

    The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs

  6. Instability of extremal relativistic charged spheres

    International Nuclear Information System (INIS)

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  7. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  8. Fuzzy spheres from inequivalent coherent states quantizations

    International Nuclear Information System (INIS)

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  9. Glass transition in soft-sphere dispersions

    International Nuclear Information System (INIS)

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  10. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  11. Hard Copy Market Overview

    Science.gov (United States)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  12. Willmore energy estimates in conformal Berger spheres

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel

    2011-01-01

    Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  13. Does Negative Type Characterize the Round Sphere?

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2007-01-01

    We discuss the measure theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere, was put forward in a previous paper....... We resolve this conjecture in the class of Riemannian symmetric spaces by showing, that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres....

  14. Path integral representations on the complex sphere

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  15. Path integral representations on the complex sphere

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  16. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  17. vSphere design best practices

    CERN Document Server

    Bolander, Brian

    2014-01-01

    An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.

  18. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  19. Electro-Optomechanical Transduction & Quantum Hard-Sphere Model for Dissipative Rydberg-EIT Media

    DEFF Research Database (Denmark)

    Zeuthen, Emil

    by two key parameters, the signal transfer efficiency and added noise temperature. In terms of these, we may evaluate its performance in various tasks ranging from classical signal detection to quantum state conversion between, e.g., superconducting circuitry and traveling optical signals. Having...... transduction functionality into the well-established framework of electrical engineering, thereby facilitating its implementation in potential applications such as nuclear magnetic resonance imaging and radio astronomy. We consider such optomechanical sensing of weak electrical signals and discuss how...... in a cold, optically dense cloud with light fields propagating under the condition of electromagnetically induced transparency (EIT). This can lead to strong and non-linear dissipative dynamics at the quantum level that prevent slow-light polaritons from coexisting within a blockade radius of one another...

  20. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.; Xu, X.; Rice, S. A.; Dinner, A. R.; Cohen, I.

    2011-01-01

    under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow

  1. Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.

    Science.gov (United States)

    van de Waal, B. W.

    1985-01-01

    Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…

  2. Fluid of Hard Spheres with a Modified Dipole: Simulation and Theory

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Nezbeda, Ivo

    2008-01-01

    Roč. 73, č. 4 (2008), s. 541-557 ISSN 0010-0765 R&D Projects: GA AV ČR 1ET400720409; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular simulation * monte carlo method * perturbation theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  3. Free cooling of hard-spheres with short and long range interactions

    NARCIS (Netherlands)

    Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2015-01-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range

  4. Flexible equation of state for a hard sphere and Lennard–Jones fluid ...

    Indian Academy of Sciences (India)

    where λ is a suitable density- and temperature-dependent function. kc(ηc, α) is a suitable constant and it is arbitrarily found out. Case (m = m1 = 0.5, α6 = 1). In order to get root mean square deviation (RMSD) to be minimum selecting kc(ηc, α) = kc1 = 0.1142022080, we obtained kc(ηc, α) by numerical technique yielding.

  5. New results for virial coefficients of hard spheres in D dimensions

    Indian Academy of Sciences (India)

    Nathan Clisby1 Barry M McCoy2. ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, 139 Barry Street, The University of Melbourne, Victoria 3010, Australia; C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794-3840, USA ...

  6. Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu.

    1995-01-01

    The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)

  7. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  8. Computing variational bounds for flow through random aggregates of Spheres

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    Known formulas for variational bounds on Darcy's constant for slow flow through porous media depend on two-point and three-poiint spatial correlation functions. Certain bounds due to Prager and Doi depending only a two-point correlation functions have been calculated for the first time for random aggregates of spheres with packing fractions (eta) up to eta = 0.64. Three radial distribution functions for hard spheres were tested for eta up to 0.49: (1) the uniform distribution or ''well-stirred approximation,'' (2) the Percus Yevick approximation, and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution functions of Benett andd Finney were used for packing fractions near the random-close-packing limit (eta/sub RCP/dapprox.0.64). An accurate multidimensional Monte Carlo integration method (VEGAS) developed by Lepage was used to compute the required two-point correlation functions. The results show that Doi's bounds are preferred for eta>0.10 while Prager's bounds are preferred for eta>0.10. The ''upper bounds'' computed using the well-stirred approximation actually become negative (which is physically impossible) as eta increases, indicating the very limited value of this approximation. The other two choices of radial distribution function give reasonable results for eta up to 0.49. However, these bounds do not decrease with eta as fast as expected for large eta. It is concluded that variational bounds dependent on three-point correlation functions are required to obtain more accurate bounds on Darcy's constant for large eta

  9. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  10. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  11. 1/4-pinched contact sphere theorem

    DEFF Research Database (Denmark)

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness...

  12. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  13. On the torus cobordant cohomology spheres

    Indian Academy of Sciences (India)

    Let a compact Lie group G act on a smooth integral cohomology sphere with G = .... is a compact connected Lie group, (X, A) is a G space and H. ∗ ..... [15] Hsiang W-Y, Cohomology theory of topological transformation groups (New York,.

  14. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  15. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.; Schaeffer, N.; Hollerbach, R.; Cebron, D.; Nore, C.; Luddens, F.; Guermond, J.- L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.- Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A.

    2014-01-01

    of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions

  16. TEACHING PHYSICS: Biking around a hollow sphere

    Science.gov (United States)

    Mak, Se-yuen; Yip, Din-yan

    1999-11-01

    The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.

  17. The Dirac operator on the Fuzzy sphere

    International Nuclear Information System (INIS)

    Grosse, H.

    1994-01-01

    We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)

  18. Institutional change and spheres of authority

    DEFF Research Database (Denmark)

    Aagaard, Peter

    institutioner. Denne tilgang bidrager til at udvikle global governance begrebet "spheres of authority" Det forklarer hvordan transnational lederskab kan bevares, selv om magten spredes i en globaliseret verden. Gennem en illustrativ case om microcredit, viser artiklen hvordan en tilgang baseret på institutional...

  19. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  20. The Nationalisation of the Domestic Sphere

    NARCIS (Netherlands)

    Storm, H.J.

    2016-01-01

    Banal forms of nationalism permeate our everyday life. However, it is not very clear when all kinds of banal objects and practices became nationalised. In this article, I focus on the domestic sphere by analysing how around 1900 a small group of activists began to propagate the nationalisation of

  1. Spheres: from Ground Development to ISS Operations

    Science.gov (United States)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  2. Pious Entertainment: Hizbullah's Islamic Cultural Sphere

    NARCIS (Netherlands)

    Alagha, J.E.; Nieuwkerk, K. van

    2011-01-01

    Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and

  3. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  4. VMware vSphere PowerCLI Reference Automating vSphere Administration

    CERN Document Server

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  5. Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters

    Energy Technology Data Exchange (ETDEWEB)

    Walton, O.R.; Braun, R.L.

    1993-11-01

    The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.

  6. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  7. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak

    2014-01-01

    societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation...

  8. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  9. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  10. Thermal signature measurements for ammonium nitrate/fuel mixtures by laser heating

    International Nuclear Information System (INIS)

    Nazarian, Ashot; Presser, Cary

    2016-01-01

    Highlights: • LDTR is a useful diagnostic for characterizing AN/fuel mixture thermochemical behavior. • Each AN/fuel mixture thermal signature was different. • AN/fuel mixture signature features were defined by the individual constituents. • Baseline signatures changed after an experiment. - Abstract: Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal

  11. Crown sealing and buckling instability during water entry of spheres

    KAUST Repository

    Marston, J. O.; Truscott, T. T.; Speirs, N. B.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2016-01-01

    . Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates

  12. Evaluation of Physical Properties of Wax Mixtures Obtained From Recycling of Patterns Used in Precision Casting

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2015-04-01

    Full Text Available The study investigated the properties of selected certified mixtures used to make wax patterns for the production of precision castings for the aerospace industry. In addition, an assessment of the recycled mixtures consisting of certified wax materials recovered during autoclaving was carried out. Hardness was tested via a proposed method based on penetration, creep related deformation, bending strength and linear contraction. The hardness was studied on laboratory specimens and patterns made with the use of injection molding equipment. For these patterns, linear contraction was estimated at variable pressure and for different temperature injection parameters. Deformations connected with creep and resistance were evaluated on cylindrical specimens. Differences in creep resistance in relation to the hardness were observed depending on the type of pattern mixtures. Recycled mixture has a greater resistance and smaller linear contraction than certified mixtures used for making sprue, raisers and other parts of filler system.

  13. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  14. The semantic sphere of juvenile offenders

    Directory of Open Access Journals (Sweden)

    Oshevsky D.S.

    2017-01-01

    Full Text Available The article presents the results of a preliminary empirical study aimed to identify features of the semantic sphere of adolescents who have committed illegal, including aggressive acts. The study included 50 male juveniles aged of 16 - 17 years. The first group consisted of adolescents convicted of aggressive and violent crimes; the second – of property socially dangerous acts (SDA. It is shown that evaluation of such adolescents is generally categorical and polar, the semantic field is subdifferentiable, less hierarchic, and has not enough realistic structure of meanings. Developed structure of motives and meanings is the basis of voluntary regulation of socially significant behavior. Thus, assessing the semantic sphere of juvenile offenders we can highlight its characteristics as risk factors of unlawful behavior, as well as the resource side, that will contribute to addressing issues of prevention and correction of unlawful behavior. Key words: juvenile offenders, semantic field of juvenile offenders, unlawful behavior.

  15. Criticality of a 237Np sphere

    International Nuclear Information System (INIS)

    Sanchez, Rene G.; Loaiza, David J.; Kimpland, Robert H.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.; Butterfield, Kenneth B.

    2003-01-01

    A critical mass experiment using a 6-kg 237 Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of 237 Np. To attain criticality, the 237 Np sphere was surrounded with 93 wt% 235 U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k eff of 0.99089 ± 0.0003 compared with a k eff 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of 237 Np ranges from kilogram weights in the high fifties to low sixties. (author)

  16. Coated sphere scattering by geometric optics approximation.

    Science.gov (United States)

    Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang

    2014-10-01

    A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.

  17. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  19. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  20. Ceramica sphere production by a gel casting

    International Nuclear Information System (INIS)

    Santos, A.; Assis, G. de; Ferreira, R.A.N.; Ferraz, W.B.; Lopes, J.A.M.; Prado, M.A.S.; Miranda, O.; Drumond, F.J.

    1987-01-01

    The technology of (Th,U)O 2 microspheres production by gel casting and subsequente thermal treatment has been transferred from NUKEM GmbH assisted by Kraftwerk Union A.G., both West Germany, to NUCLEBRAS, where it was jointly adapted to produce microspheres suitable for pressing. As a result, there are now available various possibilities to produce ceramic spheres with different characteristics that can be used in different applications. Examples of these characteristics are the range of gel sphere diameters (200 to 5000 μmm) and the value of the specific surface (about 50m 2 /g for calcined (Th, U)O 2 and potentially higher than m 2 /g for other ceramic materials) (Author) [pt

  1. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  2. White Dwarf Stars as Polytropic Gas Spheres

    OpenAIRE

    Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.

    2014-01-01

    Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...

  3. Log Gaussian Cox processes on the sphere

    DEFF Research Database (Denmark)

    Pacheco, Francisco Andrés Cuevas; Møller, Jesper

    We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....

  4. Nineteenth Century Public And Private Spheres

    Directory of Open Access Journals (Sweden)

    SIMA REMINA

    2014-12-01

    Full Text Available The aim of this paper is to illustrate the public and private spheres. The former represents the area in which each of us carries out their daily activities, while the latter is mirrored by the home. Kate Chopin and Charlotte Perkins Gilman are two salient nineteenth-century writers who shape the everyday life of the historical period they lived in, within their literary works that shed light on the areas under discussion.

  5. On the revolution of heavenly spheres

    CERN Document Server

    Copernicus, Nicolaus

    1995-01-01

    The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.

  6. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2003-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of weighted distances between the circle and the facilities is minimized, or such that the maximum weighted distance is minimized. The problem properties are analyzed, and we...... give solution procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible....

  7. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  8. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  9. The sea - landfill or sphere of life

    International Nuclear Information System (INIS)

    Haury, H.J.; Koller, U.; Assmann, G.

    1990-01-01

    The Environmental Information Agency held its third seminar for journalists, entitled 'The sea - landfill or sphere of life' in Hamburg on July 18, 1989. Some 40 journalists - radio journalists and journalists from the staff of dailies and the technical press - took the opportunity to listen for a day to short lectures on selected subjects and submit their questions concerning sea pollution to scientists of diverse disciplines. (orig.) [de

  10. Nonstatic radiating spheres in general relativity

    International Nuclear Information System (INIS)

    Krori, K.D.; Borgohain, P.; Sarma, R.

    1985-01-01

    The method of Herrera, Jimenez, and Ruggeri of obtaining nonstatic solutions of Einstein's field equations to study the evolution of stellar bodies is applied to obtain two models of nonstatic radiating spheres from two well-known static solutions of field equations, viz., Tolman's solutions IV and V. Whereas Tolman's type-IV model is found to be contracting for the period under investigation, Tolman's type-V model shows a bounce after attaining a minimum radius

  11. Perception of trigeminal mixtures.

    Science.gov (United States)

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Modeling of steel spheres impacting polyethylene; TOPICAL

    International Nuclear Information System (INIS)

    Serduke, F; Gerassimenko, M

    1999-01-01

    The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the Phebus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort

  13. Bidispersed Sphere Packing on Spherical Surfaces

    Science.gov (United States)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  14. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2011-01-01

    A premixed, shock-induced combustion engine has been proposed in the past as a viable option for operating in the Mach 10 to 15 range in a single stage to orbit vehicle. In this approach, a shock is used to initiate combustion in a premixed fuel/air mixture. Apparent advantages over a conventional scramjet engine include a shorter combustor that, in turn, results in reduced weight and heating loads. There are a number of technical challenges that must be understood and resolved for a practical system: premixing of fuel and air upstream of the combustor without premature combustion, understanding and control of instabilities of the shock-induced combustion front, ability to produce sufficient thrust, and the ability to operate over a range of Mach numbers. This study evaluated the stability of the shock-induced combustion front in a model problem of a sphere traveling in a fuel/air mixture at high Mach numbers. A new, rapid analysis method was developed and applied to study such flows. In this method the axisymmetric, body-centric Navier-Stokes equations were expanded about the stagnation streamline of a sphere using the local similarity hypothesis in order to reduce the axisymmetric equations to a quasi-1D set of equations. These reduced sets of equations were solved in the stagnation region for a number of flow conditions in a premixed, hydrogen/air mixture. Predictions from the quasi-1D analysis showed very similar stable or unstable behavior of the shock-induced combustion front as compared to experimental studies and higher-fidelity computational results. This rapid analysis tool could be used in parametric studies to investigate effects of fuel rich/lean mixtures, non-uniformity in mixing, contaminants in the mixture, and different chemistry models.

  15. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  16. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    International Nuclear Information System (INIS)

    Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark

    2015-01-01

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces

  17. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  18. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  19. Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter

    Directory of Open Access Journals (Sweden)

    Xiaoxi Yan

    2014-01-01

    Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.

  20. Agglomeration techniques for the production of spheres for packed beds

    International Nuclear Information System (INIS)

    Sullivan, J.D.

    1988-03-01

    One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling

  1. Surface modes of two spheres embedded into a third medium

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1990-07-01

    Surface modes of two spheres embedded into a third medium are studied. We obtain a result which relates the dependence of frequency on the distance between the two spheres. The derived expression reproduces previous results in the limit where the separation between the spheres is very large. Two surface mode branches are shown to exist for each order n. We apply the theory to three cases of practical interest: first, two similar metallic spheres in vacuum; secondly, two similar metallic spheres embedded into a different metal; thirdly, two spherical voids embedded into a metal. (author). 19 refs, 6 figs

  2. The quantum 2-sphere as a complex quantum manifold

    International Nuclear Information System (INIS)

    Chu Chongsun; Ho Peiming; Zumino, B.

    1996-01-01

    We describe the quantum sphere of Podles for c=0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q (2) coefficients as well as under the action of SU q (2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane. (orig.)

  3. Production of graphite spheres with a high density

    International Nuclear Information System (INIS)

    Tscherry, V.

    1976-01-01

    It is possible to obtain small spheres with a diameter of approximately 1,000 μm with the help of an automated press fitted with a profiled plunger. The spheres consist of graphite and a binder. Depending on the size of the plunger, 1 + 6 Σn (n = 0,1,2,...) spheres of equivalent diameter may be pressed with one stroke of the plunger. The spheres are bound to each other by a thin burr. The green end product is obtained by breaking the sheets of spheres and deburring them. (orig.) [de

  4. Application of INAA in the characterisation and quantification of Dy-labeled ceramic spheres and their use as inert tracers in soil studies

    International Nuclear Information System (INIS)

    Duke, M.J.M.; Plante, A.F.; McGill, W.B.

    2000-01-01

    An inert, activated tracer method, using sized ceramic spheres custom labeled with ∼15% Dy 2 O 3 manufacture, has been developed to study soil aggregation. Instrumental neutron activation analysis (INAA) with a Slowpoke reactor, using 165m Dy (T 1/2 = 1.26 min), provides an extremely rapid means with which to characterise the Dy-content of the various size fractions of labeled spheres from different production runs. In contrast, the Dy-content (and hence number of spheres) of 5-8 g soil/sphere mixtures is determined using the longer-lived 165 Dy (T 1/2 = 2.33 hrs) following a ∼30-minute decay period during which the otherwise interfering 28 Al (T 1/2 = 2.24 min) preferentially decays. The method is expected to find many applications. (author)

  5. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  6. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  7. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  8. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  9. Examples of Entropy-driven Ordering

    Indian Academy of Sciences (India)

    driven Ordering. Orientational ordering of long objects. Entropy of sliding increases. Freezing in hard-sphere systems. Vibrational entropy increases. Phase separation in hard-sphere binary mixtures with disparate sizes. More room for smaller ...

  10. Hard processes. Vol. 1

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.

    1984-01-01

    Deep inelastic (hard) processes are now at the epicenter of modern high-energy physics. These processes are governed by short-distance dynamics, which reveals the intrinsic structure of elementary particles. The theory of deep inelastic processes is now sufficiently well settled. The authors' aim was to give an effective tool to theoreticians and experimentalists who are engaged in high-energy physics. This book is intended primarily for physicists who are only beginning to study the field. To read the book, one should be acquainted with the Feynman diagram technique and with some particular topics from elementary particle theory (symmetries, dispersion relations, Regge pole theory, etc.). Theoretical consideration of deep inelastic processes is now based on quantum chromodynamics (QCD). At the same time, analysis of relevant physical phenomena demands a synthesis of QCD notions (quarks, gluons) with certain empirical characteristics. Therefore, the phenomenological approaches presented are a necessary stage in a study of this range of phenomena which should undoubtedly be followed by a detailed description based on QCD and electroweak theory. The authors were naturally unable to dwell on experimental data accumulated during the past decade of intensive investigations. Priority was given to results which allow a direct comparison with theoretical predictions. (Auth.)

  11. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  12. Fermions, Skyrmions and the 3-sphere

    International Nuclear Information System (INIS)

    Goatham, Stephen W; Krusch, Steffen

    2010-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  13. Test Results of PBMR Fuel Spheres

    International Nuclear Information System (INIS)

    Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail

    2014-01-01

    Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)

  14. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  15. On the simplified path integral on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Universita di Bologna, Dipartimento di Fisica ed Astronomia, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Corradini, Olindo [Universita degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany)

    2017-11-15

    We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d = 14 and d = 16. (orig.)

  16. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  17. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2007-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...

  18. Further Investigations of NIST Water Sphere Discrepancies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    2001-01-01

    Measurements have been performed on a family of water spheres at the National Institute of Standards and Technology (NIST) facilities. These measurements are important for criticality safety studies in that, frequently, difficulties have arisen in predicting the reactivity of individually subcritical components assembled in a critical array. It has been postulated that errors in the neutron leakage from individual elements in the array could be responsible for these problems. In these NIST measurements, an accurate determination of the leakage from a fission spectrum, modified by water scattering, is available. Previously, results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without cadmium covers over the fission chambers, were presented for four fissionable materials: 235 U, 238 U, 237 Np, and 239 Pu. Results were also given for ''dry'' systems, in which the water spheres were drained of water, with the results corresponding to essentially measurements of unmoderated 252 Cf spontaneous-fission neutrons. The calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry systems and 0.93 to 1.05 for the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%. These results indicated discrepancies that were clearly outside of the experimental uncertainties, and further investigation was suggested. This work updates the previous calculations with a comparison of the predicted C/E values with ENDF/B-V and ENDF/B-VI transport cross sections. Variations in the predicted C/E values that arise from the use of ENDF/B-V, ENDF/B-VI, ENDL92, and LLLDOS for the response fission cross sections are also tabulated. The use of both a 45-group NIST fission spectrum and a continuous-energy fission spectrum for 252 Cf are evaluated. The use of the generalized-linear-least-squares (GLLSM) procedures to investigate the reported discrepancies in the water sphere results for 235 U, 238 U, 239 Pu, and 237 Np is reported herein. These studies

  19. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  20. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    Science.gov (United States)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  1. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  2. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  3. The single scattering properties of the aerosol particles as aggregated spheres

    International Nuclear Information System (INIS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-01-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  4. Critical masses of bare metal spheres using SCALE/XSDRN

    International Nuclear Information System (INIS)

    Wright, R.Q.; Jordan, W.C.; Westfall, R.M.

    2000-01-01

    More than 200 actinide isotopes are known; most of them have very short half-lives (only 45 with T 1/2 > 40 days). Only 41 have been predicted capable of a self-sustaining nuclear chain reaction, some of them with fast neutrons and others with either thermal or fast neutrons. Of these 41 there are 13 nuclides for which the average production is >1 g/tonne for pressurized water reactors or boiling water reactors (35 GWd/tonne--power 35 W/g; cooling time, 90 days). Six actinides, 233 U, 235 U, 238 U, 239 Pu, 240 Pu, and 241 Pu, have cross sections that are relatively well known. Cross sections for the other actinides are not as well known. In the United States, criticality safety guidelines for nuclides other than 233 U, 235 U, and 239 Pu is provided by the American National Standard for Nuclear Criticality Control of Special Actinide Elements, ANSI/ANS-8.15. The standard appeared in 1981 and was reaffirmed in 1987 and 1995. The standard provides guidance for 14 nuclei: 237 Np, 238 Pu, 240 Pu, 241 Pu, 242 Pu, 241 Am, 242m Am, 243 Am, 243 Cm, 244 Cm, 245 Cm, 247 Cm, 249 Cf, and 251 Cf. The ANS-8.15 Standard Work Group is in the process of revising the standard. Five nuclides will be added to the list of nuclides included-- 231 Pa, 234 U, 250 Cf, 252 Cf, and 254 Es--resulting in a total of 19 nuclides in the revised standard. Subcritical mass limits in the current standard are based on calculations by Clark and Westfall. The calculations were based on ENDF/B-IV and preliminary ENDF/B-V evaluations. For several of the actinides, new or revised evaluations are available in ENDF/B-VI. All of the 19 nuclides in the revised standard are included in the current paper with the exception of 231 Pa. In a previous paper, minimum critical mass estimates for metal-water mixtures (spherical geometry), fully reflected by water, for 20 fissile nuclides with values of Z between 92 and 99 were given. A simple exponential fit was developed that gives quite accurate values for the

  5. Movements of a Sphere Moving Over Smooth and Rough Inclines

    Science.gov (United States)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free

  6. Chaotic Fluid Mixing in Crystalline Sphere Arrays

    Science.gov (United States)

    Turuban, Regis; Lester, Daniel; Meheust, Yves; Le Borgne, Tanguy

    2017-11-01

    We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insights are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures. The authors acknowledge the support of ERC project ReactiveFronts (648377).

  7. Clifford coherent state transforms on spheres

    Science.gov (United States)

    Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao

    2018-01-01

    We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.

  8. Röntgen spheres around active stars

    Science.gov (United States)

    Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista

    2018-01-01

    X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.

  9. Chaotic Fluid Mixing in Crystalline Sphere Arrays

    Science.gov (United States)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2017-12-01

    We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.

  10. Impact velocity vs. target hardness relationships for equivalent response of cask structures

    International Nuclear Information System (INIS)

    Chen, T.F.; Chen, J.C.; Witte, M.C.; Fischer, L.E.

    1993-01-01

    In this paper, impact velocity vs. target hardness relationships for cask structures are reviewed. The relationships are based on equivalent cask responses in terms of equal deceleration or similar cask damages. By examining several past cask or container tests as well as some analytical results, some conclusions can be drawn about the relationship between target hardness and equivalent impact velocities. This relationship clearly shows that the cask response to impact is cask-dependent and that the rigid sphere impact model results in an unconservative estimate of equivalent velocity

  11. Mixtures Estimation and Applications

    CERN Document Server

    Mengersen, Kerrie; Titterington, Mike

    2011-01-01

    This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject

  12. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  13. Development of a new-generation active falling sphere

    Science.gov (United States)

    Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.

    1997-01-01

    A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.

  14. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  15. I-optimal mixture designs

    OpenAIRE

    GOOS, Peter; JONES, Bradley; SYAFITRI, Utami

    2013-01-01

    In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...

  16. Plane wave interaction with a homogeneous warm plasma sphere

    International Nuclear Information System (INIS)

    Ruppin, R.

    1975-01-01

    A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)

  17. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  18. Human postprandial gastric emptying of 1-3-millimeter spheres

    International Nuclear Information System (INIS)

    Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.

    1988-01-01

    Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food

  19. Social movements and the Transnational Transformation of Public Spheres

    DEFF Research Database (Denmark)

    Bourne, Angela

    2017-01-01

    This article presents a theoretical framework for the empirical study of social movements as agents and arenas in the transnational transformation of public spheres. It draws on the existing literature on transnationalisation of public spheres, which predominantly focuses on the broadcast media...... and overlapping, permits analysis of social movements as agents of public sphere transformation as the form of actors or arenas, either within transnational spaces or through more routine forms of contestation within the nation-state. I then adapt indicators developed to measure the degree of transnationalisation...... of public spheres and illustrate their applicability for the study of social movements using contemporary examples of movement practices and discourses....

  20. Human postprandial gastric emptying of 1-3-millimeter spheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.

    1988-06-01

    Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food.

  1. IBM WebSphere Application Server 80 Administration Guide

    CERN Document Server

    Robinson, Steve

    2011-01-01

    IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.

  2. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  3. Mixtures and interactions

    NARCIS (Netherlands)

    Groten, J.P.

    2000-01-01

    Drinking water can be considered as a complex mixture that consists of tens, hundreds or thousands of chemicals of which the composition is qualitatively and quantitatively not fully known. From a public health point of view it is most relevant to answer the question of whether chemicals in drinking

  4. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  5. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating.

    Science.gov (United States)

    Nazarian, Ashot; Presser, Cary

    2016-01-10

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.

  6. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    Science.gov (United States)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  7. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  8. Holographic mutual information of two disjoint spheres

    Science.gov (United States)

    Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong

    2018-04-01

    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.

  9. Determinantal point process models on the sphere

    DEFF Research Database (Denmark)

    Møller, Jesper; Nielsen, Morten; Porcu, Emilio

    defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....

  10. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    treatment of a mixture of sucrose and ammonia followed by carbonization of the mixture in N-2 at high temperatures. The porous carbon produced by this method was subsequently applied as a hard template in the synthesis of mesoporous silicalite-1 and removed by combustion after synthesis. X-ray diffraction......A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal...... the porous carbon template as well as the mesoporous zeolite single-crystal material....

  11. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  12. Comparative experimental and modeling studies of the viscosity behavior of ethanol+C7 hydrocarbon mixtures versus pressure and temperature

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Watson, G.; Baylaucq, A.

    2006-01-01

    viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg-Nissan...

  13. Orbital Motion of Electrically Charged Spheres in Microgravity

    Science.gov (United States)

    Banerjee, Shubho; Andring, Kevin; Campbell, Desmond; Janeski, John; Keedy, Daniel; Quinn, Sean; Hoffmeister, Brent

    2008-01-01

    The similar mathematical forms of Coulomb's law and Newton's law of gravitation suggest that two uniformly charged spheres should be able to orbit each other just as two uniform spheres of mass are known to do. In this paper we describe an experiment that we performed to demonstrate such an orbit. This is the first published account of a…

  14. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  15. Radioactive spheres without inactive wall for lesion simulation in PET

    International Nuclear Information System (INIS)

    Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.

    2008-01-01

    With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)

  16. Covariant differential calculus on quantum spheres of odd dimension

    International Nuclear Information System (INIS)

    Welk, M.

    1998-01-01

    Covariant differential calculus on the quantum spheres S q 2N-1 is studied. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including first and higher order calculi and a symmetry concept. (author)

  17. Translating in the public sphere: Birth pangs of a developing ...

    African Journals Online (AJOL)

    Translating in the public sphere: Birth pangs of a developing democracy in today's Russia. ... the article considers the dramatic consequences of the failure to give full consideration to translation as a major factor in the public sphere, especially in countries with developing democracies, such as present-day Putinite Russia.

  18. Squeeze flow between a sphere and a textured wall

    Energy Technology Data Exchange (ETDEWEB)

    Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)

    2016-02-15

    The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.

  19. Applications of Bonner sphere detectors in neutron field dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Sanna, R.S.

    1983-09-01

    The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed

  20. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2011-01-01

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined

  1. VMware vSphere 5.5 cookbook

    CERN Document Server

    G B, Abhilash

    2015-01-01

    This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.

  2. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....

  3. Axioms of spheres in lightlike geometry of submanifolds

    Indian Academy of Sciences (India)

    Introduction. The notion of axioms of planes for Riemannian manifolds was originally introduced by. Cartan [2]. In [8], Leung and Nomizu generalized the notion of axioms of planes to the axioms of spheres on Riemannian manifolds. In [7], Kumar et al. studied the axioms of spheres and planes for indefinite Riemannian ...

  4. Incorporation of high-level nuclear waste in gel spheres

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Bond, W.D.; Angelini, P.; Stinton, D.P.

    1981-01-01

    Waste sludge is incorporated in gel spheres by the method of internal gelation. Gel spheres containing up to 90 wt % waste have been produced from defense and commercial wastes. A generic cesium-bearing waste form has been developed. Pyrolytic carbon and SiC coatings reduce the leachability of all tested articles to the detection limits

  5. Social Justice and Education in the Public and Private Spheres

    Science.gov (United States)

    Power, Sally; Taylor, Chris

    2013-01-01

    This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…

  6. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  7. Mixture based outlier filtration

    Czech Academy of Sciences Publication Activity Database

    Pecherková, Pavla; Nagy, Ivan

    2006-01-01

    Roč. 46, č. 2 (2006), s. 30-35 ISSN 1210-2709 R&D Projects: GA MŠk 1M0572; GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : data filtration * system modelling * mixture models Subject RIV: BD - Theory of Information http://library.utia.cas.cz/prace/20060165.pdf

  8. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  9. Algorithm for generating a Brownian motion on a sphere

    International Nuclear Information System (INIS)

    Carlsson, Tobias; Elvingson, Christer; Ekholm, Tobias

    2010-01-01

    We present a new algorithm for generation of a random walk on a two-dimensional sphere. The algorithm is obtained by viewing the 2-sphere as the equator in the 3-sphere surrounded by an infinitesimally thin band with boundary which reflects Brownian particles and then applying known effective methods for generating Brownian motion on the 3-sphere. To test the method, the diffusion coefficient was calculated in computer simulations using the new algorithm and, for comparison, also using a commonly used method in which the particle takes a Brownian step in the tangent plane to the 2-sphere and is then projected back to the spherical surface. The two methods are in good agreement for short time steps, while the method presented in this paper continues to give good results also for larger time steps, when the alternative method becomes unstable.

  10. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  11. Criticality of a 237Np sphere

    International Nuclear Information System (INIS)

    Sanchez, Rene; Loaiza, David; Kimpland, Robert; Hayes, David; Cappiello, Charlene; Chadwick, Mark

    2006-01-01

    For the past five years, scientists at Los Alamos National Laboratory have mounted an unprecedented effort to get a better estimate of the critical mass of 237 Np. To accomplish this task, a 6-kg neptunium sphere was recently cast at the Chemical and Metallurgy Research (CMR) facility, which is part of the Los Alamos National Laboratory. The neptunium sphere was clad with tungsten and nickel to reduce the dose rates from the 310 keV gamma rays from the first daughter of neptunium, namely, 233 Pa. 237 Np is a byproduct of power production in nuclear reactors. It is primarily produced by successive neutron captures in 235 U or through the (n,2n) reaction in 238 U. These nuclear reactions lead to the production of 237 U, which decays by beta emission into 237 Np, namely, 235 U(n,γ) 236 U, 236 U(n,γ) 237 U→β→ 237 Np, 238 U (n,2n) 237 U→β→ 237 Np. It is estimated that a typical 1000 MW(e) produces on the order of 12 to 13 kg of neptunium in a year. Some of this neptunium in irradiated fuel elements has been separated and is presently stored in containers in a liquid form. This method of storage is quite adequate because the fission cross section for 237 Np at thermal energies is quite low and any moderation of the neutron population by diluting the configurations with water would increase the critical mass to infinity. However, for long term storage, the neptunium liquid solutions must be converted into oxides and metals because these form are less movable and less likely to leak out of containers. Metals and oxides made out of neptunium have finite critical masses but there is a great uncertainty about these values because of the lack of experimental criticality data. Knowing precisely the critical mass of neptunium not only will help to validate mass storage limits or optimize storage configurations for safe disposition of these materials, but will also save thousands of dollars in transportation and disposition costs. The experimental results presented in

  12. Neutron spectrometry and dosimetry with neural networks and Bonner spheres: a study to reduce the spheres number

    International Nuclear Information System (INIS)

    Espinoza G, J. G.; Martinez B, M. R.; Leon P, A. A.; Hernandez P, C. F.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; De Sousa L, M. A.

    2016-10-01

    For neutron spectrometry and neutron dosimetry, the Bonner spheres spectrometric system has been the most widely used system, however, the number, size and weight of the spheres composing the system, as well as the need to use a reconstruction code and the long periods of time used to carry out the measurements are some of the disadvantages of this system. For the reconstruction of the spectra, different techniques such as artificial neural networks of reverse propagation have been used. The objective of this work was to reduce the number of Bonner spheres and to use counting speeds in a reverse propagation neural network, optimized by means of the robust design methodology, to reconstruct the neutron spectra. For the design of the neural network we used the neutron spectra of the IAEA and the response matrix of the Bonner spheres with "6LiI(Eu) detector. The performance of the network was compared; using 7 Bonner spheres against other cases where only 2 and one sphere are used. The network topologies were trained 36 times for each case keeping constant the objective error (1E(-3)), the training algorithm was trains cg and the robust design methodology to determine the best network architectures. With these, the best and worst results were compared. The results obtained using 7 spheres were similar to those with the 5-in sphere, however is still in an information analysis stage. (Author)

  13. Hard power dismisses soft power – the United States’ relations with the Iranian Islamic Republic in the shadow of the nuclear program

    OpenAIRE

    Fiedler, Radosław

    2013-01-01

    In the paper a correlation between hard and soft policy in relations between Iran and US is shown. These two states share a negative heritage (hostage crisis, US interference in Iranian politics, terrorism and nuclear program). Washington has decided to use hard policy methods against Iran, through numerous sanctions, without any effect in changing Iranian behaviour. The ignored sphere of soft policy is presented in the article, upon which America and Iran could achieve much more. W artyku...

  14. Separating Underdetermined Convolutive Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan

    2006-01-01

    a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...

  15. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2012-01-01

    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar t...

  16. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  17. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  18. SPHERE: Irradiation of sphere-pac fuel of UPuO2−x containing 3% Americium

    International Nuclear Information System (INIS)

    D’Agata, E.; Hania, P.R.; McGinley, J.; Somers, J.; Sciolla, C.; Baas, P.J.; Kamer, S.; Okel, R.A.F.; Bobeldijk, I.; Delage, F.; Bejaoui, S.

    2014-01-01

    Highlights: • SPHERE is designed to check the behaviour of MADF sphere-pac concept. • MADF sphere-pac are compared with MADF pellet. • Swelling, helium release and restructuring behaviour will be the main output of the experiment. • An experiment to check sphere-pac MABB fuel behaviour is now under design. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241 Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. The SPHERE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS) performed in the HFR (High Flux Reactor). The SPHERE experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as helium induced fuel swelling have been shown to be the key issues for the design of Am-bearing targets. The main objective of the SPHERE experiment is to study the in-pile behaviour of fuel containing 3% of americium and to compare the behaviour of sphere-pac fuel to pellet fuel, in particular the role of microstructure and temperature on fission gas release (mainly He) and on fuel swelling. The SPHERE experiment is being irradiated since September 2013 in the HFR in Petten (The Netherlands) and is expected to be terminated in spring 2015. The experiment has been designed to last up to 18 reactor cycles (corresponding to 18 months) but may reach its target earlier. This paper discusses the rationale and objective of the SPHERE experiment and provides a general description of its design

  19. Digital Culture, Education and Public Sphere

    Directory of Open Access Journals (Sweden)

    Luiz Roberto Gomes

    2016-02-01

    Full Text Available In the context of the so-called digital culture, this paper discusses the issue of education and the political implications of the distance learning expansion movement in Brazil. In addition to the advances in the democratization of the access to information through the mediation of information and communication technologies (ICTs, which should be recognized as an effort to spread a certain “political culture”, this does not necessarily mean, as Habermas (2003b recalls, that the effective political participation of citizens is assured, especially in light of recurrent dislocation between the political public sphere and civil society. What are the interests behind the phenomenon of digitization of culture? And what is the purpose of education in this new cultural context? As an expression of contemporary social life, digital culture generates structural changes, not only in the form of transmission and access to culture, but also in the very concept and attitude towards culture, with decisive political implications for education. That leads us to think, for example, about the differences between the concepts of education present in the classical Greek Paideia culture, in the modern culture of Bildung, and in the contemporary educational model increasingly subservient to the ICTs we now have.

  20. Second-order impartiality and public sphere

    Directory of Open Access Journals (Sweden)

    Sládeček Michal

    2016-01-01

    Full Text Available In the first part of the text the distinction between first- and second-order impartiality, along with Brian Barry’s thorough elaboration of their characteristics and the differences between them, is examined. While the former impartiality is related to non-favoring fellow-persons in everyday occasions, the latter is manifested in the institutional structure of society and its political and public morality. In the second part of the article, the concept of public impartiality is introduced through analysis of two examples. In the first example, a Caledonian Club with its exclusive membership is considered as a form of association which is partial, but nevertheless morally acceptable. In the second example, the so-called Heinz dilemma has been reconsidered and the author points to some flaws in Barry’s interpretation, arguing that Heinz’s right of giving advantage to his wife’s life over property rights can be recognized through mitigating circum-stances, and this partiality can be appreciated in the public sphere. Thus, public impartiality imposes limits to the restrictiveness and rigidity of political impartiality implied in second-order morality. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  1. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  2. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  3. Prevalence Incidence Mixture Models

    Science.gov (United States)

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  4. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  5. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  6. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  7. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  8. Radar Imaging of Spheres in 3D using MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Berryman, J G

    2003-01-21

    We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.

  9. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  10. Forming MOFs into spheres by use of molecular gastronomy methods.

    Science.gov (United States)

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Public sphere as assemblage: the cultural politics of roadside memorialization.

    Science.gov (United States)

    Campbell, Elaine

    2013-09-01

    This paper investigates contemporary academic accounts of the public sphere. In particular, it takes stock of post-Habermasian public sphere scholarship, and acknowledges a lively and variegated debate concerning the multiple ways in which individuals engage in contemporary political affairs. A critical eye is cast over a range of key insights which have come to establish the parameters of what 'counts' as a/the public sphere, who can be involved, and where and how communicative networks are established. This opens up the conceptual space for re-imagining a/the public sphere as an assemblage. Making use of recent developments in Deleuzian-inspired assemblage theory - most especially drawn from DeLanda's (2006) 'new philosophy of society' - the paper sets out an alternative perspective on the notion of the public sphere, and regards it as a space of connectivity brought into being through a contingent and heterogeneous assemblage of discursive, visual and performative practices. This is mapped out with reference to the cultural politics of roadside memorialization. However, a/the public sphere as an assemblage is not simply a 'social construction' brought into being through a logic of connectivity, but is an emergent and ephemeral space which reflexively nurtures and assembles the cultural politics (and political cultures) of which it is an integral part. The discussion concludes, then, with a consideration of the contribution of assemblage theory to public sphere studies. (Also see Campbell 2009a). © London School of Economics and Political Science 2013.

  12. Musica Universalis or the Music of the Spheres

    Science.gov (United States)

    Birat, Jean-Pierre

    2018-06-01

    The Music of the Spheres was a model of the universe proposed by Pythagoras and Aristotle, which explained cosmology in terms of spheres to which the sun, the moon and the planets were pinned, while their motion was driven by something akin to music. Modern thinking, related to ecology and industrial ecology, has metaphorically breathed life back into this old model by speaking about spheres again: biosphere, geosphere, anthroposphere, technosphere, hydrosphere, cryosphere, atmosphere, etc. Sustainable development also speaks about its three pillars (economy, environment, society) represented in a Venn diagram as intersecting circles (or spheres). All these models differ from the models of physicists, as they are more conceptual diagrams than a representation of the world as it is. Thus, they remind us of the old Music of the Spheres model. They also stress connections, exchanges, equilibria between the spheres - or the lack of them -, like Pythagoras' music. The presentation will discuss these various approaches, see how they match to some extent, but also how they do not show a perfect fit. Analyzing what happens at the boundaries of the spheres, where they overlap or penetrate into each other, is a powerful way to analyze the connection between technology, society, life and ecosystems. It can also help discuss pollution, ecotoxicology and explore global solutions. This article was given as a keynote lecture at the EMERC 2017 (First International Conference on Energy and Material Efficiency), organized by ISIJ in Kobe, Japan, 11-13 October, 2017.

  13. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  14. Compression cracking of plastic spheres: a high speed photography study

    International Nuclear Information System (INIS)

    Majzoub, R.; Chaudhri, M.M.

    1999-01-01

    Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)

  15. Thermodynamic properties and entropy scaling law for diffusivity in soft spheres.

    Science.gov (United States)

    Pieprzyk, S; Heyes, D M; Brańka, A C

    2014-07-01

    The purely repulsive soft-sphere system, where the interaction potential is inversely proportional to the pair separation raised to the power n, is considered. The Laplace transform technique is used to derive its thermodynamic properties in terms of the potential energy and its density derivative obtained from molecular dynamics simulations. The derived expressions provide an analytic framework with which to explore soft-sphere thermodynamics across the whole softness-density fluid domain. The trends in the isochoric and isobaric heat capacity, thermal expansion coefficient, isothermal and adiabatic bulk moduli, Grüneisen parameter, isothermal pressure, and the Joule-Thomson coefficient as a function of fluid density and potential softness are described using these formulas supplemented by the simulation-derived equation of state. At low densities a minimum in the isobaric heat capacity with density is found, which is a new feature for a purely repulsive pair interaction. The hard-sphere and n = 3 limits are obtained, and the low density limit specified analytically for any n is discussed. The softness dependence of calculated quantities indicates freezing criteria based on features of the radial distribution function or derived functions of it are not expected to be universal. A new and accurate formula linking the self-diffusion coefficient to the excess entropy for the entire fluid softness-density domain is proposed, which incorporates the kinetic theory solution for the low density limit and an entropy-dependent function in an exponential form. The thermodynamic properties (or their derivatives), structural quantities, and diffusion coefficient indicate that three regions specified by a convex, concave, and intermediate density dependence can be expected as a function of n, with a narrow transition region within the range 5 < n < 8.

  16. Separation of gas mixtures

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  17. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  18. Mastering VMware vSphere 5.5

    CERN Document Server

    Lowe, Scott; Guthrie, Forbes; Liebowitz, Matt; Atwell, Josh

    2013-01-01

    The 2013 edition of the bestselling vSphere book on the market Virtualization remains the hottest trend in the IT world, and VMware vSphere is the industry's most widely deployed virtualization solution. The demand for IT professionals skilled in virtualization and cloud-related technologies is great and expected to keep growing. This comprehensive Sybex guide covers all the features and capabilities of VMware vSphere, showing administrators step by step how to install, configure, operate, manage, and secure it. This perfect blend of hands-on instruction, conceptual explanation, and practic

  19. Twistor Interpretation of Harmonic Spheres and Yang–Mills Fields

    Directory of Open Access Journals (Sweden)

    Armen Sergeev

    2015-03-01

    Full Text Available We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic spheres conjecture stating the existence of the bijective correspondence between based harmonic spheres in the loop space \\(\\Omega G\\ of a compact Lie group \\(G\\ and the moduli space of Yang–Mills \\(G\\-fields on \\(\\mathbb R^4\\.

  20. Construction method of pre assembled unit of bolt sphere grid

    Science.gov (United States)

    Hu, L. W.; Guo, F. L.; Wang, J. L.; Bu, F. M.

    2018-03-01

    The traditional construction of bolt sphere grid has many disadvantages, such as high cost, large amount of work at high altitude and long construction period, in order to make up for these shortcomings, in this paper, a new and applicable construction method is explored: setting up local scaffolding, installing the bolt sphere grid starting frame on the local scaffolding, then the pre assembled unit of bolt sphere grid is assembled on the ground, using small hoisting equipment to lift pre assembled unit to high altitude and install. Compared with the traditional installation method, the construction method has strong practicability and high economic efficiency, and has achieved good social and economic benefits.

  1. Preparation of nuclear fuel spheres by flotation-internal gelation

    Science.gov (United States)

    Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

    1984-12-21

    A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

  2. POSTGRADUATE EDUCATION FUNCTIONING PATTERNS OF TOURISM SPHERE SPECIALISTS IN SWITZERLAND

    Directory of Open Access Journals (Sweden)

    Наталія Закордонець

    2014-04-01

    Full Text Available Functioning patterns of postgraduate education of tourism sphere specialists in Switzerland have been established. The competences of tourism sphere specialist, the formation of which programs of postgraduate education are focused on have been considered. The benefits of educational qualification of Masters in Business Administration with a major specialization in tourism have been outlined. The characteristics of the core curriculum of the Doctor of Management of leading universities in the field of tourism education have been determined. The performance criteria of postgraduate education system functioning of tourism sphere specialists in Switzerland have been revealed.

  3. Quantum hall fluid on fuzzy two dimensional sphere

    International Nuclear Information System (INIS)

    Luo Xudong; Peng Dantao

    2004-01-01

    After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)

  4. Ceramic sphere-pac breeder design for fusion blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  5. Microstructures of alloyed and dispersed hard particles in the aluminium surface

    CSIR Research Space (South Africa)

    Pityana, S

    2010-03-01

    Full Text Available Laser surface alloying of A1200 aluminium alloy was carried out using a 4.4 kW Nd:YAG laser. Powder mixtures of SiC and TiC hard particles were injected into the laser generated melt pool on the aluminium substrate using a commercial powder feeder...

  6. Mean spherical model for hard ions and dipoles: Thermodynamics and correlation functions

    International Nuclear Information System (INIS)

    Vericat, F.; Blum, L.

    1980-01-01

    The solution of the mean spherical model of a mixture of equal-size hard ions and dipoles is reinvestigated. Simple expressions for the coefficients of the Laplace transform of the pair correlation function and the other thermodynamic properties are given

  7. The effect of attractions on the structure of fused sphere chains confined between surfaces

    International Nuclear Information System (INIS)

    Patra, C.N.; Yethiraj, A.; Curro, J.G.

    1999-01-01

    The effect of attractive interactions on the behavior of polymers between surfaces is studied using Monte Carlo simulations. The molecules are modeled as fused sphere freely rotating chains with fixed bond lengths and bond angles; wall endash fluid and fluid endash fluid site endash site interaction potentials are of the hard sphere plus Yukawa form. For athermal chains the density at the surface (relative to the bulk) is depleted at low densities and enhanced at high densities. The introduction of a fluid endash fluid attraction causes a reduction of site density at the surface, and an introduction of a wall endash fluid attraction causes an enhancement of site density at the surface, compared to when these interactions are absent. When the wall endash fluid and fluid endash fluid attractions are of comparable strength, however, the depletion mechanism due to the fluid endash fluid attraction dominates. The center of mass profiles show the same trends as the site density profiles. Near the surface, the parallel and the perpendicular components of chain dimensions are different, which is explained in terms of a reorientation of chains. copyright 1999 American Institute of Physics. thinsp

  8. Response matrix of an extended range Bonner sphere spectrometer for the characterization of collimated neutron beams

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Gomez-Ros, J.M.

    2010-01-01

    Accelerator-based neutron beams are becoming popular tools for material testing, radiation hardness and soft errors studies. The characterization of these beams in terms of dosimetric and spectrometric quantities is a challenging task, mainly due to their wide energy interval (from thermal up to hundreds MeV) and, in certain facilities like VESUVIO - ISIS (RAL, UK), to their small dimension (few cm in radius). Extended Range Bonner Sphere Spectrometers (ERBSS) would be a valuable tool, due to their wide energy range, good photon discrimination and possibility to choose among different central detectors according to the intensity, photon component and time structure of the field. Nevertheless, the non-uniform irradiation of the spheres could lead to important systematic errors. With the aim of bringing the advantages of ERBSS into the characterization of collimated beams, a dedicated study was performed using the VESUVIO spallation-based collimated beam at ISIS (Rutherford Appleton Laboratory, Oxford). Here a 3.21 cm radius collimated beam was characterized using a Dysprosium activation foil-based ERBSS whose response matrix was recalculated for this specific beam diameter. Besides the results of the experimental campaign, this paper presents the calculation of the response matrix and its dependence on the beam dimension.

  9. Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence

    Directory of Open Access Journals (Sweden)

    Lisa Ann Levin

    2016-05-01

    Full Text Available Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by benthic background fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as

  10. Hydrothermal vents and methane seeps: Rethinking the sphere of influence

    Science.gov (United States)

    Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda W.J.; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les

    2016-01-01

    Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as

  11. Regulatory Hybridization in the Transnational Sphere

    DEFF Research Database (Denmark)

    Kjær, Poul Fritz; Jurcys, Paulius; Yrakami, Ren

    Hybridization has become a defining feature of regulatory frameworks. The combined forces of globalization and privatization together with increased reliance on self-regulation have resulted in the emergence of a multitude of regulatory arrangements which combine elements from several legal orders....... This book offers a conceptual framework as well as numerous empirical explorations capable of increasing our understanding of regulatory hybridization. A number of central dichotomies are deconstructed: national vs. transnational law; international vs. transnational law; convergence vs. divergence; … read...... moresoft law vs. hard law; territorial vs. non-territorial, ‘top-down’ vs. ‘bottom-up’ globalization and national vs. global just as the implications of regulatory hybridization for the question of choice of court and conflict of laws are analyzed....

  12. Depletion interactions in two-dimensional colloid-polymer mixtures: molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Soon-Chul; Seong, Baek-Seok; Suh, Soong-Hyuck

    2009-01-01

    The depletion interactions acting between two hard colloids immersed in a bath of polymers, in which the interaction potentials include the soft repulsion/attraction, are extensively studied by using the molecular dynamics simulations. The collision frequencies and collision angle distributions for both incidental and reflection conditions are computed to study the dynamic properties of the colloidal mixtures. The depletion effect induced by the polymer-polymer and colloid-polymer interactions are investigated as well as the size ratio of the colloid and polymer. The simulated results show that the strong depletion interaction between two hard colloids appears for the highly asymmetric hard-disc mixtures. The attractive depletion force at contact becomes deeper and the repulsive barrier becomes wider as the asymmetry in size ratio increases. The strong polymer-polymer attraction leads to the purely attractive depletion interaction between two hard colloids, whereas the purely repulsive depletion interaction is induced by the strong colloid-polymer attraction.

  13. Seismic signals hard clipping overcoming

    Science.gov (United States)

    Olszowa, Paula; Sokolowski, Jakub

    2018-01-01

    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  14. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  15. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  16. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  17. Ensuring Economic Security in Lending Sphere

    Directory of Open Access Journals (Sweden)

    Ivan Vadimovich Kochikin

    2016-06-01

    Full Text Available Relevance of the topic is determined by the need for sustainable development of the country’s banking system, capable of ensuring the process of raising funds to producers and the public for their projects. One of the implementation of this objective is to discourage unfair behavior in financial markets. Trust is a key factor in the development of financial markets, therefore it is necessary to suppress the appearance of unfair practices and participants – black creditors, falsification of financial statements, trading on insider information and market manipulation. It requires a whole range of activities, and above all ensuring the inevitability and proportionality of punishment for unscrupulous players, the introduction of requirements for the business reputation of the management of financial institutions.The article is devoted to structuring legal violations in the lending sphere. The analysis of indicators of credit organizations in Russia was conducted to fulfill this aim. This analysis revealed the causes of sustainable growth of overdue accounts payable – job cuts in enterprises, violations in the financial sector, various errors in the credit granting / raising. The authors carry out the systematization and classification of offenses in the area of lending, provide examples, as well as factual material illustrating the violations in the lending process having the characteristics of a fraud. The article substantiates the obligations of employees of the credit institution, in the result of which risks of granting credit to fraudsters can be reduced. The methods of fraud prevention should include the identified methods of protection against fraud in the area under consideration – exchange of information by banks associated with the criminal intentions of customers; technology development and technical support, training, and personnel responsibilities.

  18. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  19. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  20. Solution Construction of Multigeometry Nanoparticles and Multicompartment Superstructures from Block Copolymer Mixtures

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Wooley, Karen; Pochan, Darrin

    2013-03-01

    Novel soft objects with both compositional and geometric complexity at nanoscale have been constructed through solution supramolecular assembly from block copolymer mixtures due to their non-ergodic character. The mixture is composed of two block copolymers with distinctive hydrophobic blocks but the same poly(acrylic acid) hydrophilic block. First, multigeometry nanoparticles, due to segregation of unlike block copolymer molecules into multiple subdomains trapped within the same micelle-like structures, have been assembled in tetrahydrofuran/water solution. Through carefully designed molecular architecture, mixing ratio and pathway kinetics, both size and shape of subdomains can be controlled to produce a novel class of multigeometry nanoparticles, including sphere-sphere, sphere-cylinder, cylinder-cylinder, cylinder-disk, and sphere-disk hybrid nanoparticles. Second, hierarchical multicompartment superstructures including particle chains, rings and other nano to micro cluster formations, have been built up from pre-formed multigeometry nanoparticles by taking advantage of their surface anisotropy and the controlled particle-particle association. The interparticle association can be achieved via either covalent or non-covalent bindings due to different post-polymerization chemical modifications with hydroxyethyl acrylate or crown ether functionalities, respectively.

  1. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  2. Gender and Diversity in the European Public Spheres

    DEFF Research Database (Denmark)

    Siim, Birte

    The increasing institutionalization of rights in EU has inspired a debate about the gap between the EU polity and citizens' abilities to influence multilevel governance and politics. The objective of the paper is to discuss diversity in the European public spheres from a gender perspective....... It first gives an overview of different feminist approaches to diversity and intersectionality. It explores the arguments for and against creating a democratic European Public Sphere and discusses the tensions between universal principles of equality at the one hand and concerns for inequalities...... state and to link feminist proposals for gender justice with frames for a multilayered trans-national citizenship. The paper aims to contribute to debates about theoretical approaches and models to study gender and diversity in the public sphere in general and in particular The European Public Sphere...

  3. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  4. The Perception of Community Radio as Public Sphere and its ...

    African Journals Online (AJOL)

    Levi Manda

    This study takes initial look at the promise of community radio as a public sphere. Given the .... case studies typically contribute only incrementally to our theoretical ..... news and public affairs in mass media communication associated with.

  5. Experimental performance evaluation of sintered Gd spheres packed beds

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo

    2016-01-01

    Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...

  6. Packings of a charged line on a sphere.

    Science.gov (United States)

    Alben, Silas

    2008-12-01

    We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.

  7. Dyadic Green's function of a cluster of spheres.

    Science.gov (United States)

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2007-11-01

    The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities.

  8. 21 CFR 886.3320 - Eye sphere implant.

    Science.gov (United States)

    2010-04-01

    ... sphere implant is a device intended to be implanted in the eyeball to occupy space following the removal of the contents of the eyeball with the sclera left intact. (b) Classification. Class II. ...

  9. [The power of religion in the public sphere] / Alar Kilp

    Index Scriptorium Estoniae

    Kilp, Alar, 1969-

    2012-01-01

    Arvustus: Buthler, Judith, Habermas, Jürgen, Taylor, Charles, West, Cornel. The power of religion in the public sphere. (Eduardo Mendieta, Jonathan VanAntwerpen (eds.) Afterword by Craig Calhoun.) New York ; Chichester : Columbia University Press, 2011

  10. Cluster analysis in systems of magnetic spheres and cubes

    Energy Technology Data Exchange (ETDEWEB)

    Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.

  11. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  12. Internet and the Egyptian Public Sphere | Mehanna | Africa ...

    African Journals Online (AJOL)

    Internet and the Egyptian Public Sphere. ... to gain information and engage in political, social and religious discussions. ... This has led to the emergence of a kind of alternative media run by professionals, semi-professionals and amateurs.

  13. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  14. Collapse of radiating fluid spheres and cosmic censorship

    International Nuclear Information System (INIS)

    Unruh, W.G.

    1985-01-01

    The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship

  15. Evaluation framework for K-best sphere decoders

    KAUST Repository

    Shen, Chungan; Eltawil, Ahmed M.; Salama, Khaled N.

    2010-01-01

    or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature

  16. Mutagenicity of complex mixtures

    International Nuclear Information System (INIS)

    Pelroy, R.A.

    1985-01-01

    The effect of coal-derived complex chemical mixtures on the mutagenicity of 6-aminochrysene (6-AC) was determined with Salmonella typhimurium TA98. Previous results suggested that the mutagenic potency of 6-AC for TA98 in the standard microsomal activation (Ames) assay increased if it was presented to the cells mixed with high-boiling coal liquids (CL) from the solvent refined coal (SRC) process. In this year's work, the apparent mutational synergism of CL and 6-AC was independently verified in a fluctuation bioassay which allowed quantitation of mutational frequencies and cell viability. The results of this assay system were similar to those in the Ames assay. Moreover, the fluctation assay revealed that mutagenesis and cellular toxicity induced by 6-AC were both strongly enhanced if 6-AC was presented to the cells mixed in a high-boiling CL. 4 figures

  17. SPHERES: From Ground Development to Operations on ISS

    Science.gov (United States)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  18. A hollow sphere soft lithography approach for long-term hanging drop methods.

    Science.gov (United States)

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  19. AIE-doped poly(ionic liquid) photonic spheres: a single sphere-based customizable sensing platform for the discrimination of multi-analytes† †Electronic supplementary information (ESI) available: Synthesis and characterization of the AIE luminogen, experimental details, response profiles and results of the multivariate analysis. See DOI: 10.1039/c7sc02409f Click here for additional data file.

    Science.gov (United States)

    Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao

    2017-01-01

    By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662

  20. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    International Nuclear Information System (INIS)

    Ben Ayed, Mohamed; El Mehdi, Khalil

    2003-07-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)